1
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Alaziqi B, Beckitt L, Townsend DJ, Morgan J, Price R, Maerivoet A, Madine J, Rochester D, Akien G, Middleton DA. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer's Amyloid-β Peptide and Tau. ACS OMEGA 2024; 9:32557-32578. [PMID: 39100310 PMCID: PMC11292642 DOI: 10.1021/acsomega.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
The dietary consumption of extra virgin olive oil (EVOO) is believed to slow the progression of Alzheimer's disease (AD) symptoms. Its protective mechanisms are unclear, but specific EVOO phenolic compounds can individually impede the aggregation of amyloid-β (Aβ) peptides and the microtubule-associated protein tau, two important pathological manifestations of AD. It is unknown, however, whether the numerous and variable phenolic compounds that are consumed in dietary EVOO can collectively alter tau and Aβ aggregation as effectively as the individual compounds. The activity of these complex mixtures against Aβ and tau may be moderated by competition between active and nonactive phenolic components and by extensive derivatizations and isomerization. Here, phenolic mixtures extracted from two different EVOO sources are characterized and tested for how they modulate the aggregation of Aβ40 peptide and tau peptides in vitro. The chromatographic and NMR analysis of Greek and Saudi Arabian EVOO phenolic extracts reveals that they have different concentration profiles, and over 30 compounds are identified. Thioflavin T fluorescence and circular dichroism measurements show that relatively low concentrations (<20 μg/mL) of the Greek and Saudi extracts reduce the rate of Aβ40 aggregation and fibril mass, despite the extracts having different phenolic profiles. By contrast, the Greek extract reduces the rate of tau aggregation only at very high phenolic concentrations (>100 μg/mL). Most compounds in the extracts bind to preformed Aβ40 fibrils and release soluble Aβ oligomers that are mildly toxic to SH-SY5Y cells. Much higher (500 μg/mL) extract concentrations are required to remodel tau filaments into oligomers, and a minimal binding of phenolic compounds to the preformed filaments is observed. It is concluded that EVOO extracts having different phenol profiles are similarly capable of modulating Aβ40 aggregation and fibril morphology in vitro at relatively low concentrations but are less efficient at modulating tau aggregation. Over 2 M tonnes of EVOO are consumed globally each year as part of the Mediterranean diet, and the results here provide motivation for further clinical interrogation of the antiaggregation properties of EVOO as a potential protective mechanism against AD.
Collapse
Affiliation(s)
- Bakri Alaziqi
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Chemistry, University College in Al-Qunfudah,
Umm Al-Qura University, Makkah
Al-Mukarramah 1109, Saudi
Arabia
| | - Liam Beckitt
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David J. Townsend
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jasmine Morgan
- Department
of Biology, Edge Hill University, Ormskirk L39 4QP, United Kingdom
| | - Rebecca Price
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Alana Maerivoet
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Rochester
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Geoffrey Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A. Middleton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
3
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
4
|
Karademir Y, Mackie A, Tuohy K, Dye L. Effects of Ferulic Acid on Cognitive Function: A Systematic Review. Mol Nutr Food Res 2024; 68:e2300526. [PMID: 38342596 DOI: 10.1002/mnfr.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Indexed: 02/13/2024]
Abstract
SCOPE Plant (poly) phenolic compounds have been reported to decrease the risk of developing dementia and have been associated with maintenance of cognitive performance in normal ageing. Ferulic acid (FA) is a phenolic acid, present in a wide variety of foods including cereals, fruits, vegetables, and coffee. The aim of this systematic review is to examine the effect of FA on cognitive function in humans and animals. METHODS AND RESULTS The search terms "Ferulic acid AND cognit*" and "Ferulic acid OR feruloyl OR ferula AND (memory OR attention OR learning OR recognition)" are used in Web of Science, Scopus, PubMED, OVID (Medline/PsycInfo), and CINAHL through October 2023. No human studies are identified that matched the inclusion criteria. Twenty-six animal studies are identified. A small number (n = 5) of these studies examined FA in healthy animals whilst the remainder examined animal models of dementia. Alzheimer's disease (n = 11) is the most prevalent model. CONCLUSION Overall, results from studies employing disease models suggest that FA ameliorates induced cognitive decline in a time and dose-dependent manner. Similarly, studies in healthy animals show a beneficial effect of FA. However, further studies are required to determine the effects of FA on human cognitive function.
Collapse
Affiliation(s)
- Yesim Karademir
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Kieran Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Dye
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Sustainable Food & Department of Psychology, University of Sheffield, Sheffield, S1 2LT, UK
| |
Collapse
|
5
|
Kunnummal SP, Khan M. Diet-gut microbiome interaction and ferulic acid bioavailability: implications on neurodegenerative disorders. Eur J Nutr 2024; 63:51-66. [PMID: 37747555 DOI: 10.1007/s00394-023-03247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE OF THE REVIEW Ferulic acid (FA), which occurs naturally as the feruloylated sugar ester in grains, fruits, and vegetables, is critical for combating oxidative stress and alleviating neurodegenerative diseases resulting from free radical-generated protein aggregates in brain cells. However, FA cannot be absorbed in conjugated form. Therefore, strategies to improve the bioavailability of FA are gaining more importance. Ferulic acid esterases (FAE) of the gut microbiota are critical enzymes that facilitate FA release from feruloylated sugar ester conjugates and influence systemic health. This review provides insight into a nutrition-based approach to preventing neurodegenerative disorders such as Alzheimer's and Parkinson's by altering the diversity of FAE-producing gut microbiota. RECENT FINDINGS The human gut is a niche for a highly dense microbial population. Nutrient components and the quality of food shape the gut microbiota. Microbiota-diet-host interaction primarily involves an array of enzymes that hydrolyse complex polysaccharides and release covalently attached moieties, thereby increasing their bio-accessibility. Moreover, genes encoding polysaccharide degrading enzymes are substrate inducible, giving selective microorganisms a competitive advantage in scavenging nutrients. Nutraceutical therapy using specific food components holds promise as a prophylactic agent and as an adjunctive treatment strategy in neurotherapeutics, as it results in upregulation of polysaccharide utilisation loci containing fae genes in the gut microbiota, thereby increasing the release of FA and other antioxidant molecules and combat neurodegenerative processes.
Collapse
Affiliation(s)
- Saarika Pothuvan Kunnummal
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- CSIR-Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Mahejibin Khan
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- CSIR-Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
8
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Inflammation and the pathological progression of Alzheimer's disease are associated with low circulating choline levels. Acta Neuropathol 2023; 146:565-583. [PMID: 37548694 PMCID: PMC10499952 DOI: 10.1007/s00401-023-02616-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-β levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-β and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.
Collapse
Affiliation(s)
- Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, 85287, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA.
- School of Life Sciences, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Mahaman YAR, Huang F, Salissou MTM, Yacouba MBM, Wang JZ, Liu R, Zhang B, Li HL, Zhu F, Wang X. Ferulic Acid Improves Synaptic Plasticity and Cognitive Impairments by Alleviating the PP2B/DARPP-32/PP1 Axis-Mediated STEP Increase and Aβ Burden in Alzheimer's Disease. Neurotherapeutics 2023; 20:1081-1108. [PMID: 37079191 PMCID: PMC10457275 DOI: 10.1007/s13311-023-01356-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/21/2023] Open
Abstract
The burden of Alzheimer's disease, the most prevalent neurodegenerative disease, is increasing exponentially due to the increase in the elderly population worldwide. Synaptic plasticity is the basis of learning and memory, but it is impaired in AD. Uncovering the disease's underlying molecular pathogenic mechanisms involving synaptic plasticity could lead to the identification of targets for better disease management. Using primary neurons treated with Aβ and APP/PS1 animal models, we evaluated the effect of the phenolic compound ferulic acid (FA) on synaptic dysregulations. Aβ led to synaptic plasticity and cognitive impairments by increasing STEP activity and decreasing the phosphorylation of the GluN2B subunit of NMDA receptors, as well as decreasing other synaptic proteins, including PSD-95 and synapsin1. Interestingly, FA attenuated the Aβ-upregulated intracellular calcium and thus resulted in a decrease in PP2B-induced activation of DARPP-32, inhibiting PP1. This cascade event maintained STEP in its inactive state, thereby preventing the loss of GluN2B phosphorylation. This was accompanied by an increase in PSD-95 and synapsin1, improved LTP, and a decreased Aβ load, together leading to improved behavioral and cognitive functions in APP/PS1 mice treated with FA. This study provides insight into the potential use of FA as a therapeutic strategy in AD.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Health, Natural and Agriculture Sciences, Africa University, Mutare, Zimbabwe
| | | | - Jian-Zhi Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China.
| | - Xiaochuan Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Low circulating choline, a modifiable dietary factor, is associated with the pathological progression and metabolome dysfunction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539713. [PMID: 37214864 PMCID: PMC10197582 DOI: 10.1101/2023.05.06.539713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
Collapse
|
11
|
Vieira ADC, Medeiros EB, Zabot GC, Pereira NDS, do Nascimento NB, Lidio AV, Scheffer ÂK, Rempel LCT, Macarini BMN, Costa MDA, Gonçalves CL, Kucharska E, Rodrigues MS, Moreira JCF, de Oliveira J, Budni J. Neuroprotective effects of combined therapy with memantine, donepezil, and vitamin D in ovariectomized female mice subjected to dementia model. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110653. [PMID: 36195205 DOI: 10.1016/j.pnpbp.2022.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Women older than 60 have a higher risk of dementia, aging-related cognitive decline, and Alzheimer's Disease (AD) than the rest of the population. The main reason is hormonal senescence after menopause, a period characterized by a decline in estrogen levels. Since the effectiveness of drugs currently approved for the treatment of AD is limited, it is necessary to seek the development of new therapeutic strategies. Vitamin D deficiency is prevalent in AD patients and individuals with dementia in general. The supplementation of this vitamin in dementia patients might be an interesting approach for increasing the effectiveness of pre-existing medications for dementia treatment. Thus, the present study aims to investigate the effect of vitamin D treatment associated with memantine and donepezil in female mice submitted to ovariectomy (OVX) for five months and subjected to a dementia animal model induced by intracerebroventricular injection of aggregated amyloid βeta (Aβ1-42). For this purpose, Balb/c mice were divided into five experimental groups, which received 17 days of combined therapy with vitamin D, donepezil, and memantine. Then, animals were subjected to behavioral tests. OVX groups exhibited reduced levels of estradiol (E2) in serum, which was not altered by the combined therapy. Higher levels of vitamin D3 were found in the OVX animals submitted to the triple-association treatment. Mice exposed to both OVX and the dementia animal model presented impairment in short and long-term spatial and habituation memories. Also, female mice exposed to Aβ and OVX exhibited a reduction in brain-derived neurotrophic factor (BDNF) and interleukin-4 (IL-4) levels, and an increase in tumor necrose factor-α (TNFα) levels in the hippocampus. Besides, increased levels of IL-1β in the hippocampus and cerebral cortex were observed, as well as a significant increase in immunoreactivity for glial fibrillary acidic protein (GFAP), an astrocytes marker, in the hippocampus. Notably, triple-association treatment reversed the effects of the exposition of mice to Aβ and OVX in the long-term spatial and habituation memories impairment, as well as reversed changes in TNFα, IL-1β, IL-4, and GFAP immunoreactivity levels in the hippocampus of treated animals. Our results indicate that the therapeutic association of vitamin D, memantine, and donepezil has beneficial effects on memory performance and attenuated the neuroinflammatory response in female mice subjected to OVX associated with a dementia animal model.
Collapse
Affiliation(s)
- Ana Daniela Coutinho Vieira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Eduarda Behenck Medeiros
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriel Casagrande Zabot
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Nathalia de Souza Pereira
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Natália Baltazar do Nascimento
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adrielly Vargas Lidio
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ândrea Kohlrausch Scheffer
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Lisienny Campoli Tono Rempel
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Maiara de Aguiar Costa
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ewa Kucharska
- Akademia Ignatianum w Krakowie Wydział Pedagogiczny Instytut Nauk o Wychowaniu, Krakow, Poland
| | - Matheus Scarpatto Rodrigues
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Josiane Budni
- Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
12
|
Amini-Khoei H, Nasiri Boroujeni S, Lorigooini Z, Salehi A, Sadeghian R, Rahimi-Madiseh M. Implication of nitrergic system in the anticonvulsant effects of ferulic acid in pentylenetetrazole-induced seizures in male mice. J Basic Clin Physiol Pharmacol 2023; 34:197-203. [PMID: 34412169 DOI: 10.1515/jbcpp-2020-0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/17/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Seizures are abnormal discharge of neurons in the brain. Ferulic acid (FA) is a phenolic compound with antioxidant and neuroprotective effects. The present study aimed to investigate the role of the nitrergic system in the anticonvulsant effect of FA in pentylenetetrazol (PTZ)-induced seizures in male mice. METHODS 64 male Naval Medical Research Institute (NMRI) mice weighing 25-29 g were randomly divided into eight experimental groups (n=8). FA at doses 5, 10, and 40 mg/kg alone and in combination with L-nitro-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) or L-arginine (L-arg) (nitric oxide [NO] precursor) was administrated (intraperitoneal). PTZ was injected (i.v. route) 30 min after drugs administration (1 mL/min). Seizure onset time was recorded and the nitrite levels of prefrontal cortex and serum were determined by the Griess method. RESULTS FA at doses of 10 and 40 mg/kg significantly increased the seizure threshold as well as reduced the serum and brain NO levels in comparison to the saline-received group. Co-administration of the effective dose of FA (10 mg/kg) plus L-arg significantly decreased the seizure threshold in comparison to the effective dose of FA alone. Co-injection of the sub-effective dose of FA (5 mg/kg) with L-NAME significantly increased the seizure threshold as well as significantly decreased the brain NO level in comparison to the sub-effective dose of FA alone. CONCLUSIONS We showed that the nitrergic system, partially at least, mediated the anticonvulsant effect of FA in PTZ-induced seizures in mice. We concluded that L-NAME potentiated while L-arg attenuated the anticonvulsant effect of FA.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Salehi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
13
|
Suzuki A, Nomura T, Jokura H, Kitamura N, Fujii A, Hase T. Beneficial effects of oral supplementation with ferulic acid, a plant phenolic compound, on the human skin barrier in healthy men. INT J VITAM NUTR RES 2023; 93:54-60. [PMID: 33973806 DOI: 10.1024/0300-9831/a000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ferulic acid (FA) is a phytochemical compound with various physiologic functions. To clarify the effect of FA intake on skin barrier function (SBF), we conducted a placebo-controlled double-blind pilot trial. Sixteen healthy subjects were divided into 2 groups (n = 8) and ingested capsules containing either FA (200 mg) or placebo daily for 2 weeks. Two measures of SBF, transepidermal water loss and stratum corneum hydration, were assessed before and 2 weeks after the start of the study. Autonomic nervous activity, which is suggested to be related to SBF, was also measured. Compared with the values obtained before the start of the study, FA intake significantly reduced transepidermal water loss (from 6.1 ± 1.1 to 4.8 ± 1.0 g/m2/h, p = 0.005) and increased stratum corneum hydration (from 30.1 ± 7.6 to 32.3 ± 8.1 a.u., p = 0.027) after 2 weeks. In addition, the amount change in sympathetic nervous activity was significantly reduced after ingesting the FA capsules compared with the placebo capsules (-0.7 ± 1.6 vs. 1.1 ± 1.4, p = 0.035). These findings suggest that FA supplementation decreases sympathetic nervous activity and strengthens SBF in healthy men.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Tomoko Nomura
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Hiroko Jokura
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Naoya Kitamura
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Akihiko Fujii
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Tadashi Hase
- Research & Development, Kao Corporation, Sumida-ku, Tokyo, Japan
| |
Collapse
|
14
|
Gorina YV, Vlasova OL, Bolshakova AV, Salmina AB. Alzheimer’s Disease: a Search for the Best Experimental Models to Decode Cellular and Molecular Mechanisms of Its Development. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
16
|
Mahaman YAR, Feng J, Huang F, Salissou MTM, Wang J, Liu R, Zhang B, Li H, Zhu F, Wang X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022; 14:nu14204284. [PMID: 36296969 PMCID: PMC9609596 DOI: 10.3390/nu14204284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is a global public health problem and the most common form of dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory, anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive, learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels. Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation, the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines, and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic potential that can be used in the management of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Health, Natural and Agriculture Sciences Africa University, Mutare P.O. Box 1320, Zimbabwe
| | - Jianzhi Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Correspondence: (F.Z.); (X.W.)
| | - Xiaochuan Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
- Correspondence: (F.Z.); (X.W.)
| |
Collapse
|
17
|
Jeyakumar M, Sathya S, Gandhi S, Tharra P, Aarthy M, Balan DJ, Kiruthiga C, Baire B, Singh SK, Devi KP. α-bisabolol β-D-fucopyranoside inhibits β-amyloid (Aβ)25–35 induced oxidative stress in Neuro-2a cells via antioxidant approaches. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Di Giacomo S, Percaccio E, Gullì M, Romano A, Vitalone A, Mazzanti G, Gaetani S, Di Sotto A. Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer's Disease: A Narrative Review. Nutrients 2022; 14:3709. [PMID: 36145084 PMCID: PMC9503091 DOI: 10.3390/nu14183709] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the central nervous system, characterized by neuroinflammation, neurotransmitter deficits, and neurodegeneration, which finally leads to neuronal death. Emerging evidence highlighted that hyperglycemia and brain insulin resistance represent risk factors for AD development, thus suggesting the existence of an additional AD form, associated with glucose metabolism impairment, named type 3 diabetes. Owing to the limited pharmacological options, novel strategies, especially dietary approaches based on the consumption of polyphenols, have been addressed to prevent or, at least, slow down AD progression. Among polyphenols, ferulic acid is a hydroxycinnamic acid derivative, widely distributed in nature, especially in cereal bran and fruits, and known to be endowed with many bioactivities, especially antioxidant, anti-inflammatory and antidiabetic, thus suggesting it could be exploited as a possible novel neuroprotective strategy. Considering the importance of ferulic acid as a bioactive molecule and its widespread distribution in foods and medicinal plants, the aim of the present narrative review is to provide an overview on the existing preclinical and clinical evidence about the neuroprotective properties and mechanisms of action of ferulic acid, also focusing on its ability to modulate glucose homeostasis, in order to support a further therapeutic interest for AD and type 3 diabetes.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
20
|
Hwang HJ, Lee SR, Yoon JG, Moon HR, Zhang J, Park E, Yoon SI, Cho JA. Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11081448. [PMID: 35892649 PMCID: PMC9331426 DOI: 10.3390/antiox11081448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelial barrier is the primary and most significant defense barrier against ingested toxins and pathogenic bacteria. When the intestinal epithelium barrier is breached, inflammatory response is triggered. GWAS data showed that endoplasmic reticulum (ER) stress markers are elevated in Inflammatory Bowel Disease (IBD) patients, which suggests ER stress regulation might alleviate IBD symptoms. Ferulic acid (FA) is a polyphenol that is abundant in plants and has antioxidant and anti-inflammatory properties, although it is unclear whether FA has these effects on the intestine. Therefore, we investigated the effect of FA in vitro and in vivo. It was found that FA suppressed ER stress, nitric oxide (NO) generation, and inflammation in polarized Caco-2 and T84 cells, indicating that the ER stress pathway was implicated in its anti-inflammatory activities. The permeability of polarized Caco-2 cells in the presence and absence of proinflammatory cytokines were decreased by FA, and MUC2 mRNA was overexpressed in the intestines of mice fed a high-fat diet (HFD) supplemented with FA. These results suggest that FA has a protective effect on intestinal tight junctions. In addition, mouse intestine organoids proliferated significantly more in the presence of FA. Our findings shed light on the molecular mechanism responsible for the antioxidant effects of FA and its protective benefits on the health of the digestive system.
Collapse
Affiliation(s)
- Hye-Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - So Rok Lee
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Ju-Gyeong Yoon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Hye-Ri Moon
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Jingnan Zhang
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
| | - Eunmi Park
- Department of Food and Nutrition, Hannam University, 1646, Yuseung-daero, Yusung-gu, Daejeon 34054, Korea;
| | - Su-In Yoon
- Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Korea;
| | - Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (S.R.L.); (J.-G.Y.); (H.-R.M.); (J.Z.)
- Correspondence: ; Tel.: +82-42-821-6833
| |
Collapse
|
21
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
22
|
Abdalla AA, Yagi S, Abdallah AH, Abdalla M, Sinan KI, Zengin G. Phenolic profile, antioxidant and enzyme inhibition properties of seed methanolic extract of seven new Sunflower lines: From fields to industrial applications. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean ( Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11554-11571. [PMID: 34551518 DOI: 10.1021/acs.jafc.1c04049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mung bean contains various neuroprotective polyphenols, so it might be a healthy food for Alzheimer's disease (AD) prevention. Totally, 19 major phenolic compounds were quantified in mung bean, including 10 phenolic acids and 9 flavonoids. After summarizing their contents and effective doses in rodent AD models, it was speculated that vitexin, isovitexin, sinapic acid, and ferulic acid might be the major bioactive compounds for mung bean-mediated neuroprotection. The mechanisms involved inhibition of β-amyloidogenesis, tau hyperphosphorylation, oxidative stress, and neuroinflammation, and promotion of autophagy and acetylcholinesterase enzyme activity. Notably, the neuroprotective phenolic profile in mung bean changed after germination, with decreased vitexin and isovitexin, and increased rutin, isoquercitrin, isorhamnetin, and caffeic acid detected. However, only studies of individual phenolic compounds in mung bean are published at present. Hence, further studies are needed to elucidate the neuroprotective activities and mechanisms of extractions of mung bean seeds and sprouts, and the synergism between different phenolic compounds.
Collapse
Affiliation(s)
- Hui Xu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Rezaee N, Fernando WB, Hone E, Sohrabi HR, Johnson SK, Gunzburg S, Martins RN. Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer's Disease: A Review Article. Front Aging Neurosci 2021; 13:729949. [PMID: 34690742 PMCID: PMC8527926 DOI: 10.3389/fnagi.2021.729949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the excessive deposition of extracellular amyloid-beta peptide (Aβ) and the build-up of intracellular neurofibrillary tangles containing hyperphosphorylated tau proteins. This leads to neuronal damage, cell death and consequently results in memory and learning impairments leading to dementia. Although the exact cause of AD is not yet clear, numerous studies indicate that oxidative stress, inflammation, and mitochondrial dysfunction significantly contribute to its onset and progression. There is no effective therapeutic approach to stop the progression of AD and its associated symptoms. Thus, early intervention, preferably, pre-clinically when the brain is not significantly affected, is a better option for effective treatment. Natural polyphenols (PP) target multiple AD-related pathways such as protecting the brain from Aβ and tau neurotoxicity, ameliorating oxidative damage and mitochondrial dysfunction. Among natural products, the cereal crop sorghum has some unique features. It is one of the major global grain crops but in the developed world, it is primarily used as feed for farm animals. A broad range of PP, including phenolic acids, flavonoids, and condensed tannins are present in sorghum grain including some classes such as proanthocyanidins that are rarely found in others plants. Pigmented varieties of sorghum have the highest polyphenolic content and antioxidant activity which potentially makes their consumption beneficial for human health through different pathways such as oxidative stress reduction and thus the prevention and treatment of neurodegenerative diseases. This review summarizes the potential of sorghum PP to beneficially affect the neuropathology of AD.
Collapse
Affiliation(s)
- Nasim Rezaee
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - W.M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, WA, Australia
| | - Stuart K. Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Ingredients by Design Pty Ltd., Lesmurdie, WA, Australia
| | | | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
Wang EJ, Wu MY, Lu JH. Ferulic Acid in Animal Models of Alzheimer's Disease: A Systematic Review of Preclinical Studies. Cells 2021; 10:2653. [PMID: 34685633 PMCID: PMC8534433 DOI: 10.3390/cells10102653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a high incidence in the elderly. Many preclinical studies show that a natural product, ferulic acid (FA), displays neuroprotective effects in AD models. This review aims to systematically review and meta-analyze published pre-clinical researches about the effects, mechanism, and clinical prospects of FA in the treatment of AD. According to the pre-determined search strategy and inclusion criteria, a total of 344 animals in 12 papers were included in the meta-analysis. We used the fixed effects model to analyze data and I2 and p values to indicate heterogeneity. Results show that FA treatment can effectively improve rodents' spatial memory ability in MWM and Y maze experiments (I2 ≥ 70, p < 0.005), and reduce the deposition of Aβ in the brains of various model animals (I2 ≥ 50, p < 0.005). The potential mechanisms include anti-amyloidogenesis, anti-inflammation, anti-oxidation, mitochondrial protection, and inhibition of apoptosis. In conclusion, we systematically review and meta-analyze the literature reporting the effects of FA treatment on AD rodent models and solidify the benefits of FA in reducing Aβ deposition and improving memory in preclinical experiments. We also point out the limitations in the current research design and provide a strategy for the production research of FA in the future.
Collapse
Affiliation(s)
| | | | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; (E.-J.W.); (M.-Y.W.)
| |
Collapse
|
26
|
Sharma N, Tan MA, An SSA. Mechanistic Aspects of Apiaceae Family Spices in Ameliorating Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1571. [PMID: 34679705 PMCID: PMC8533116 DOI: 10.3390/antiox10101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. In an effort to search for new strategies for treating AD, natural products have become candidates of choice. Plants are a rich source of bioactive and effective compounds used in treating numerous diseases. Various plant extracts are known to display neuroprotective activities by targeting different pathophysiological pathways in association with the diseases, such as inhibiting enzymes responsible for degrading neurotransmitters, reducing oxidative stress, neuroprotection, inhibiting amyloid plaque formation, and replenishing mitochondrial function. This review presented a comprehensive evaluation of the available scientific literature (in vivo, in vitro, and in silico) on the neuroprotective mechanisms displayed by the extracts/bioactive compounds from spices belonging to the Apiaceae family in ameliorating AD.
Collapse
Affiliation(s)
- Niti Sharma
- Department of Bionano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam 461-701, Korea;
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam 461-701, Korea;
| |
Collapse
|
27
|
Tramontin NDS, Silveira PCL, Tietbohl LTW, Pereira BDC, Simon K, Muller AP. Effects of Low-Intensity Transcranial Pulsed Ultrasound Treatment in a Model of Alzheimer's Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2646-2656. [PMID: 34130881 DOI: 10.1016/j.ultrasmedbio.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. One of the main pathology markers of AD is the beta-amyloid plaques (βA1-42) created from residues of the badly processed amyloid precursor protein. The accumulation of these plaques can induce neuroinflammation and oxidative stress and impair antioxidant mechanisms, culminating in cognitive and memory deficits. New therapies are necessary to treat AD as the approved drugs do not treat the progress of the disease. Transcranial low-intensity pulsed ultrasound (LIPUS) affects brain metabolism and could be tested as a treatment for AD. This study was aimed at evaluating the LIPUS treatment in a model of AD induced by βA1-42 intracerebroventricularly (ICV) and its effects on learning memory, neurotrophins, neuroinflammation and oxidative status. βA1-42 was administered ICV 24 h before the start of a 5-wk LIPUS treatment. The treatment with LIPUS improved recognition memory, as well as increasing nerve growth factor β and brain-derived neurotrophic factor levels in the hippocampus and cortex. There was a decrease in protein damage in the hippocampus treated with LIPUS. Neuroinflammation and oxidative stress were not present in the AD model used. The results indicated that LIPUS is a novel and promising adjuvant strategy for treatment of the late stage of AD.
Collapse
Affiliation(s)
| | | | | | - Bárbara Da Costa Pereira
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Kellen Simon
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | |
Collapse
|
28
|
Pharmacological potential of ferulic acid for the treatment of metabolic diseases and its mechanism of action: A review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
30
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
31
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
32
|
Kitagaki H. Medical Application of Substances Derived from Non-Pathogenic Fungi Aspergillus oryzae and A. luchuensis-Containing Koji. J Fungi (Basel) 2021; 7:243. [PMID: 33804991 PMCID: PMC8063943 DOI: 10.3390/jof7040243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Although most fungi cause pathogenicity toward human beings, dynasties of the East Asian region have domesticated and utilized specific fungi for medical applications. The Japanese dynasty and nation have domesticated and utilized koji fermented with non-pathogenic fungus Aspergillus oryzae for more than 1300 years. Recent research has elucidated that koji contains medicinal substances such as Taka-diastase, acid protease, koji glycosylceramide, kojic acid, oligosaccharides, ethyl-α-d-glucoside, ferulic acid, ergothioneine, pyroglutamyl leucine, pyranonigrin A, resistant proteins, deferriferrichrysin, polyamines, Bifidobacterium-stimulating peptides, angiotensin I-converting enzyme inhibitor peptides, 14-dehydroergosterol, beta-glucan, biotin, and citric acid. This review introduces potential medical applications of such medicinal substances to hyperlipidemia, diabetes, hypertension, cardiovascular and cognitive diseases, chronic inflammation, epidermal permeability barrier disruption, coronavirus disease 2019 (COVID-19), and anti-cancer therapy.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
| |
Collapse
|
33
|
Singh YP, Rai H, Singh G, Singh GK, Mishra S, Kumar S, Srikrishna S, Modi G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's disease. Eur J Med Chem 2021; 215:113278. [PMID: 33662757 DOI: 10.1016/j.ejmech.2021.113278] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-related multifactorial neurodegenerative disorder characterized by severe central cholinergic neuronal loss, gradually contributing to cognitive dysfunction and impaired motor activity, resulting in the brain's cell death at the later stages of AD. Although the etiology of AD is not well understood, however, several factors such as oxidative stress, deposition of amyloid-β (Aβ) peptides to form Aβ plaques, intraneuronal accumulation of hyperphosphorylated tau protein, and low level of acetylcholine are thought to play a major role in the pathogenesis of AD. There is practically no drug for AD treatment that can address the basic factors responsible for the neurodegeneration and slow down the disease progression. The currently available therapies for AD in the market focus on providing only symptomatic relief without addressing the aforesaid basic factors responsible for the neurodegeneration. Ferulic acid (FA) is a phenol derivative from natural sources and serves as a potential pharmacophore that exerts multiple pharmacological properties such as antioxidant, neuroprotection, Aβ aggregation modulation, and anti-inflammatory. Several FA based hybrid analogs are under investigation as a multi-target directed ligand (MTDLs) to develop novel hybrid compounds for the treatment of AD. In the present review article, we are focused on the critical pathogenic factors responsible for the onset of AD followed by the developments of FA pharmacophore-based hybrids compounds as a novel multifunctional therapeutic agent to address the limitations associated with available treatment for AD. The rationale behind the development of these compounds and their pharmacological activities in particular to their ChE inhibition (ChEI), neuroprotection, antioxidant property, Aβ aggregation modulation, and metal chelation ability, are discussed in detail. We have also discussed the discovery of caffeic and cinnamic acids based MTDLs for AD. This review paper provides an in-depth insight into the research progress and current status of these novel therapeutics in AD and prospects for developing a druggable molecule with desired pharmacological affinity and reduced toxicity for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Sunil Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
34
|
A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 2021; 46:1043-1057. [PMID: 33547615 DOI: 10.1007/s11064-021-03257-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
Collapse
|
35
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
36
|
Shen Q, Liu L, Gu X, Xing D. Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer's disease. Aging Cell 2021; 20:e13289. [PMID: 33336891 PMCID: PMC7811840 DOI: 10.1111/acel.13289] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD), a severe age‐related neurodegenerative disorder, lacks effective therapeutic methods at present. Physical approaches such as gamma frequency light flicker that can effectively reduce amyloid load have been reported recently. Our previous research showed that a physical method named photobiomodulation (PBM) therapy rescues Aβ‐induced dendritic atrophy in vitro. However, it remains to be further investigated the mechanism by which PBM affects AD‐related multiple pathological features to improve learning and memory deficits. Here, we found that PBM attenuated Aβ‐induced synaptic dysfunction and neuronal death through MKP7‐dependent suppression of JNK3, a brain‐specific JNK isoform related to neurodegeneration. The results showed PBM‐attenuated amyloid load, AMPA receptor endocytosis, dendrite injury, and inflammatory responses, thereby rescuing memory deficits in APP/PS1 mice. We noted JNK3 phosphorylation was dramatically decreased after PBM treatment in vivo and in vitro. Mechanistically, PBM activated ERK, which subsequently phosphorylated and stabilized MKP7, resulting in JNK3 inactivation. Furthermore, activation of ERK/MKP7 signaling by PBM increased the level of AMPA receptor subunit GluR 1 phosphorylation and attenuated AMPA receptor endocytosis in an AD pathological model. Collectively, these data demonstrated that PBM has potential therapeutic value in reducing multiple pathological features associated with AD, which is achieved by regulating JNK3, thus providing a noninvasive, and drug‐free therapeutic strategy to impede AD progression.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Lei Liu
- College of Biophotonics South China Normal University Guangzhou China
| | - Xiaotong Gu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| |
Collapse
|
37
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
38
|
Menakh M, Boutellaa S, Mahdi D, Zellagui A, Lahouel M, Ozturk M. Hepatoprotective effects of Hertia cheirifolia butanolic extract and selenium against CCl 4-induced toxicity in rats. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_25_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Arora K, Green M, Prakash S. The Microbiome and Alzheimer's Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front Bioeng Biotechnol 2020; 8:537847. [PMID: 33384986 PMCID: PMC7771210 DOI: 10.3389/fbioe.2020.537847] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The Microbiome has generated significant attention for its impacts not only on gastrointestinal health, but also on signaling pathways of the enteric and central nervous system via the microbiome gut-brain axis. In light of this, microbiome modulation may be an effective therapeutic strategy for treating or mitigating many somatic and neural pathologies, including neurodegenerative disorders. Alzheimer's disease (AD) is a chronic neurodegenerative disease that interferes with cerebral function by progressively impairing memory, thinking and learning through the continuous depletion of neurons. Although its etiopathogenesis remains uncertain, recent literature endorses the hypothesis that probiotic, prebiotic and synbiotic supplementation alters AD-like symptoms and improves many of its associated disease biomarkers. Alternatively, a dysfunctional microbiota impairs the gut epithelial barrier by inducing chronic gastric inflammation, culminating in neuroinflammation and accelerating AD progression. The findings in this review suggest that probiotics, prebiotics or synbiotics have potential as novel biological prophylactics in treatment of AD, due to their anti-inflammatory and antioxidant properties, their ability to improve cognition and metabolic activity, as well as their capacity of producing essential metabolites for gut and brain barrier permeability.
Collapse
Affiliation(s)
- Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
- Biena Inc., Saint-Hyacinthe, QC, Canada
| | - Miranda Green
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Hashimoto M, Hossain S, Matsuzaki K, Shido O, Yoshino K. The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food. Crit Rev Food Sci Nutr 2020; 62:1502-1520. [PMID: 33190522 DOI: 10.1080/10408398.2020.1844138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although brown rice (BR) contains significantly higher levels of nutrients than the traditionally used polished white rice (WR), its consumption among the population is still not noteworthy. WR and BR are essentially same grain. The only difference between the two is the application of an exhaustive milling procedure during the processing of WR that removes all other layers of the grain except the portion of its white endosperm. BR, on the other hand, is prepared by removing only the outer hull of the rice seed. Thus, in addition to its inner endosperm, the bran and germ are also left on the BR. Hence, BR retains all its nutrients, including proteins, lipids, carbohydrates, fibers, vitamins, minerals, tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid (GABA) packed into the bran and germ of the seed. Since BR tastes nutty and takes longer to cook than WR, it is not appreciated by the consumers. However, these problems have been circumvented using non-thermal ultra-high hydrostatic pressure (UHHP)-processing for the treatment of BR. A superior modification in the physicochemical and functional qualities of UHHPBR, along with its ability to curb human diseases may make it a more palatable and nutritious choice of rice over WR or the untreated-BR. Here, we have reviewed the mechanism by which UHHP treatment leads to the modification of nutrients such as proteins, lipids, carbohydrates, and fibers. We have focused on the effects of rice on cell and animal models of different conditions such as hyperlipidemia, diabetes, and hypertension and the possible mechanisms. Finally, we have emphasized the effects of UHHPBR in human cases with rare conditions such as osteoporosis and brain cognition - two age-related degenerative diseases of the elderly population.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan.,Departmnet of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Bangladesh
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | | |
Collapse
|
41
|
Tadokoro K, Morihara R, Ohta Y, Hishikawa N, Kawano S, Sasaki R, Matsumoto N, Nomura E, Nakano Y, Takahashi Y, Takemoto M, Yamashita T, Ueno S, Wakutani Y, Takao Y, Morimoto N, Kutoku Y, Sunada Y, Taomoto K, Manabe Y, Deguchi K, Higashi Y, Inufusa H, You F, Yoshikawa T, von Greiffenclau MM, Abe K. Clinical Benefits of Antioxidative Supplement Twendee X for Mild Cognitive Impairment: A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Prospective Interventional Study. J Alzheimers Dis 2020; 71:1063-1069. [PMID: 31476161 DOI: 10.3233/jad-190644] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress is part of the entire pathological process that underlies the development of Alzheimer's disease (AD), including the mild cognitive impairment (MCI) stage. Twendee X (TwX) is a supplement containing a strong antioxidative mix of eight antioxidants, which has been shown to have a clinical and therapeutic benefit in AD model mice. Here, we conducted a multicenter, randomized, double-blind, and placebo-controlled prospective interventional study to evaluate the efficacy of TwX in mitigating MCI. The primary outcomes were differences in Mini-Mental State Examination (MMSE) and Hasegawa Dementia Scale-revised (HDS-R) scores between baseline and six months for placebo and TwX groups. Seventy-eight subjects with MCI were randomized into placebo (n = 37) and TwX (n = 41) groups. MMSE scores at six months differed significantly between the TwX and placebo groups (p = 0.018), and HDS-R scores for the TwX group exhibited a significant improvement at six months relative to baseline (p = 0.025). The TwX group did not show any change in affective or activities of daily living scores at six months. The present study indicates that strong antioxidative supplement TwX is clinical beneficial for cognitive function in subjects with MCI.
Collapse
Affiliation(s)
- Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoko Kawano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Setsuko Ueno
- Department of Neurology, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Yosuke Wakutani
- Department of Neurology, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Yoshiki Takao
- Department of Neurology, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Yumiko Kutoku
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Katsushi Taomoto
- Department of Neurosurgery, Ohnishi Neurological Center, Akashi, Japan
| | - Yasuhiro Manabe
- Department of Neurology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, Okayama, Japan
| | - Yasuto Higashi
- Department of Neurology, Himeji Central Hospital, Himeji, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Fukka You
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu, Japan
| | | | | | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Calvo-Flores Guzmán B, Elizabeth Chaffey T, Hansika Palpagama T, Waters S, Boix J, Tate WP, Peppercorn K, Dragunow M, Waldvogel HJ, Faull RLM, Kwakowsky A. The Interplay Between Beta-Amyloid 1-42 (Aβ 1-42)-Induced Hippocampal Inflammatory Response, p-tau, Vascular Pathology, and Their Synergistic Contributions to Neuronal Death and Behavioral Deficits. Front Mol Neurosci 2020; 13:522073. [PMID: 33224025 PMCID: PMC7667153 DOI: 10.3389/fnmol.2020.552073] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common chronic neurodegenerative disorder, has complex neuropathology. The principal neuropathological hallmarks of the disease are the deposition of extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) comprised of hyperphosphorylated tau (p-tau) protein. These changes occur with neuroinflammation, a compromised blood-brain barrier (BBB) integrity, and neuronal synaptic dysfunction, all of which ultimately lead to neuronal cell loss and cognitive deficits in AD. Aβ1-42 was stereotaxically administered bilaterally into the CA1 region of the hippocampi of 18-month-old male C57BL/6 mice. This study aimed to characterize, utilizing immunohistochemistry and behavioral testing, the spatial and temporal effects of Aβ1-42 on a broad set of parameters characteristic of AD: p-tau, neuroinflammation, vascular pathology, pyramidal cell survival, and behavior. Three days after Aβ1-42 injection and before significant neuronal cell loss was detected, acute neuroinflammatory and vascular responses were observed. These responses included the up-regulation of glial fibrillary acidic protein (GFAP), cell adhesion molecule-1 (PECAM-1, also known as CD31), fibrinogen labeling, and an increased number of activated astrocytes and microglia in the CA1 region of the hippocampus. From day 7, there was significant pyramidal cell loss in the CA1 region of the hippocampus, and by 30 days, significant localized up-regulation of p-tau, GFAP, Iba-1, CD31, and alpha-smooth muscle actin (α-SMA) in the Aβ1-42-injected mice compared with controls. These molecular changes in Aβ1-42-injected mice were accompanied by cognitive deterioration, as demonstrated by long-term spatial memory impairment. This study is reporting a comprehensive examination of a complex set of parameters associated with intrahippocampal administration of Aβ1-42 in mice, their spatiotemporal interactions and combined contribution to the disease progression. We show that a single Aβ injection can reproduce aspects of the inflammatory, vascular, and p-tau induced pathology occurring in the AD human brain that lead to cognitive deficits.
Collapse
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tessa Elizabeth Chaffey
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani Hansika Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah Waters
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jordi Boix
- Centre for Brain Research, NeuroDiscovery Behavioural Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Warren Perry Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K. Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways. J Diet Suppl 2020; 18:655-681. [PMID: 33962540 DOI: 10.1080/19390211.2020.1830223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p < 0.01) improved SK-N-SH viability (+57%) and inhibited reactive oxygen species (-31%) in the presence of LPS. VCO (especially 10 g/kg) also significantly (p < 0.05) enhanced spatial memory of LPS-challenged rats. Brain homogenate of VCO-fed rats was presented with increased acetylcholine (+33%) and reduced acetylcholinesterase (-43%). The upregulated antioxidants may have reduced neuroinflammation [malondialdehyde (-51%), nitric oxide (-49%), Cox-2 (-64%) and iNos (-63%)] through upregulation of IL-10 (+30%) and downregulation of IL-1β (-65%) and Interferon-γ (-25%). There was also reduced expression of Bace-1 (-77%). VCO-induced neuroprotection, which was comparable to α-T, could be mediated, in part, through inflammatory, cholinergic and amyloidogenic pathways.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, Perlis, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
44
|
Kudoh C, Hori T, Yasaki S, Ubagai R, Tabira T. Effects of Ferulic Acid and Angelica archangelica Extract (Feru-guard ®) on Mild Cognitive Impairment: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Prospective Trial. J Alzheimers Dis Rep 2020; 4:393-398. [PMID: 33163900 PMCID: PMC7592837 DOI: 10.3233/adr-200211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We conducted a multicenter, randomized, double-blind, placebo-controlled prospective trial examining a supplement containing ferulic acid and Angelica archangelica extract (Feru-guard ®) for mild cognitive impairment (MCI). In the intention-to-treat population, Mini-Mental State Examination (MMSE) scores were significantly better at 24 weeks (p = 0.041) in the active group. In the per protocol population, MMSE was significantly better in the active group at 24 weeks (p = 0.008), and mixed effect models for repeated measures (MMRM) showed significant difference (p = 0.016). ADAS-Jcog was significantly better at 24 (p = 0.035) and 48 weeks (p = 0.015) in the active group, and MMRM was significant (p = 0.031). Thus, Feru-guard ® may be useful for MCI.
Collapse
Affiliation(s)
- Chiaki Kudoh
- Kudoh Clinic for Neurosurgery & Neurology, Ota-ku, Tokyo, Japan
| | - Tomokatsu Hori
- Moriyama Neurological Center Hospital, Edogawa-ku, Tokyo, Japan
| | - Shunji Yasaki
- Department of Neurology, Shin-Yurigaoka General Hospital, Furusawa, Aso-ku, Kawasaki, Japan
| | - Ryu Ubagai
- Moriyama Neurological Center Hospital, Edogawa-ku, Tokyo, Japan
| | - Takeshi Tabira
- Kudoh Clinic for Neurosurgery & Neurology, Ota-ku, Tokyo, Japan.,Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Işık M, Beydemir Ş. The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. J Biomol Struct Dyn 2020; 39:6515-6523. [DOI: 10.1080/07391102.2020.1801509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
46
|
Han B, Hara T, Joh T. Antioxidant Activity and Ferulic Acid Content of Brown Rice Koji and Brown Rice Shio-Koji Prepared Using Three Species of Koji Molds. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Baoxiang Han
- Graduate School of Science and Technology, Niigata University
| | | | - Toshio Joh
- Faculty of Agriculture, Niigata University
| |
Collapse
|
47
|
Lorigooini Z, Nouri A, Mottaghinia F, Balali-Dehkordi S, Bijad E, Dehkordi SH, Soltani A, Amini-Khoei H. Ferulic acid through mitigation of NMDA receptor pathway exerts anxiolytic-like effect in mouse model of maternal separation stress. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2019-0263/jbcpp-2019-0263.xml. [PMID: 32374285 DOI: 10.1515/jbcpp-2019-0263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/24/2020] [Indexed: 11/15/2022]
Abstract
Background Experiencing early-life stress plays an important role in the pathophysiology of anxiety disorders. Ferulic acid is a phenolic compound found in some plants which has several pharmacological properties. N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of mood disorders. In this study we aimed to assess the anxiolytic-like effect of ferulic acid in a mouse model of maternal separation (MS) stress by focusing on the possible involvement of NMDA receptors. Methods Mice were treated with ferulic acid (5 and 40 mg/kg) alone and in combination with NMDA receptor agonist/antagonist. Valid behavioral tests were performed, including open field test (OFT) and elevated plus maze test (EPM), while quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of NMDA subunits (GluN2A and GluN2B) in the hippocampus. Results Findings showed that treatment of MS mice with ferulic acid increased the time spent in the central zone of the OFT and increased both open arm time and the percent of open arm entries in the EPM. Ferulic acid reduced the expression of NMDA receptor subunit genes. We showed that administration of NMDA receptor agonist (NMDA) and antagonist (ketamine) exerted anxiogenic and anxiolytic-like effects, correspondingly. Results showed that co-administration of a sub-effective dose of ferulic acid plus ketamine potentiated the anxiolytic-like effect of ferulic acid. Furthermore, co-administration of an effective dose of ferulic acid plus NMDA receptor agonist (NMDA) attenuated the anxiolytic-like effect of ferulic acid. Conclusions In deduction, our findings showed that NMDA, partially at least, is involved in the anxiolytic-like effect of ferulic acid in the OFT and EPM tests.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Faezeh Mottaghinia
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
48
|
Shariare MH, Rahman M, Lubna SR, Roy RS, Abedin J, Marzan AL, Altamimi MA, Ahamad SR, Ahmad A, Alanazi FK, Kazi M. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model. Sci Rep 2020; 10:6938. [PMID: 32332809 PMCID: PMC7181877 DOI: 10.1038/s41598-020-63894-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (Alzheimer’s, Parkinson’s etc.) causes brain cell damage leading to dementia. The major restriction remains in delivering drug to the central nervous system is blood brain barrier (BBB). The aim of this study was to develop a liposomal drug delivery system of Aphanamixis polystachya leaf extract for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. In this study GC-MS analysis is used to determine major constituents of Aphanamixis polystachya leaf extract. Liposomal batches of Aphanamixis polystachya leaf extract was prepared using design of experiment (DoE) and characterized using Malvern zetasizer, transmission electron microscopy (TEM), and FT-IR. Stability study of blank and leaf extract loaded liposome were performed in gastric media. In-vivo neurobehavioral and anti-inflammatory studies were performed on mice and rat model respectively. GC-MS data showed that major constituents of Aphanamixis polystachya leaf extract are 2-Pentanone, different acids (Octadec-9-enoic acid, 5-Hydroxypipeloic acid etc.), and Beta-Elemene etc. Malvern Zetasizer and TEM data showed that liposome batches of Aphanamixis polystachya leaf extract were in the range of 120 - 180 nm. Interactions between process parameters and material attributes found to have more impact on the average particle size and polydispersity of liposome batches compared to the impact of each parameter in isolation. Stability studies data suggest that blank and leaf extract loaded liposomes were stable at gastric conditions after 4 hours. In-vivo neurobehavioural study data indicated that significant improvement in the memory function, locomotor activity and ambulatory performance of dementia induced mice was observed for the liposomal batches compared to merely A. polystachya leaf extract.
Collapse
Affiliation(s)
- Mohammad H Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
| | - Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Shamshad R Lubna
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Reeti S Roy
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Joynal Abedin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Akbar L Marzan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Syed Rizwan Ahamad
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
49
|
Dixit S, Mehra RD, Dhar P. Effect of α-lipoic acid on spatial memory and structural integrity of developing hippocampal neurons in rats subjected to sodium arsenite exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103323. [PMID: 31935550 DOI: 10.1016/j.etap.2020.103323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to arsenic has been reported to affect the nervous system in a number of ways. Various epidemiological studies suggest cognitive impairment in subjects following exposure to environmental arsenic. The goal of the present study was to determine if supplementation of exogenous α-lipoic acid (ALA) could ameliorate sodium arsenite (NaAsO2) induced adverse effects on learning and memory and synaptic connectivity in rat hippocampus. METHODS Accordingly, NaAsO2 alone (1.5/2.0 mg/kg bw) or NaAsO2 along with ALA (70 mg/kg bw) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 4-17 to Wistar rat pups (experimental groups) and the Control groups received either distilled water or no treatment at all. After carrying out Elevated Plus Maze (EPM) and Morris Water Maze (MWM) test, the fresh brain tissues were collected on PND 18 and processed for Golgi Cox staining. RESULTS Observations of MWM test revealed impaired learning and memory in iAs alone treated animals as against those co-exposed to iAs and ALA. In Golgi stained hippocampal sections of iAs alone treated animals, decreased dendritic arborization and reduced number of spines in pyramidal neurons (CA1) and granule cells (DG) was observed whereas neuronal morphology was preserved in the controls and ALA supplemented groups CONCLUSIONS: These observations are suggestive of beneficial effects of ALA on iAs induced effects on learning and memory as well as on hippocampal neuronal morphology.
Collapse
Affiliation(s)
- Shilpi Dixit
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| | - Raj D Mehra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
50
|
Kim B, Shin J, Kim Y, Choi JH. Destruction of ERP responses to deviance in an auditory oddball paradigm in amyloid infusion mice with memory deficits. PLoS One 2020; 15:e0230277. [PMID: 32160242 PMCID: PMC7065782 DOI: 10.1371/journal.pone.0230277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
The amyloid-β (Aβ) oligomer is considered one of the major pathogens responsible for neuronal and synaptic loss in Alzheimer’s disease (AD) brains. Although the neurotoxic mechanisms of Aβ have been widely investigated, experimental evidence for the direct linkage between neural signaling and cognitive impairments in association with peptide oligomers is lacking. Here, we conducted an auditory oddball paradigm utilizing an Aβ-infused Alzheimer’s disease mouse model and interpreted the results based on Y-maze behavioral tests. We acutely injected Aβ oligomers into the intracerebroventricular brain region of normal mice to induce Aβ-associated cognitive impairments. During the auditory oddball paradigm, electroencephalograms (EEG) were recorded from frontal and parietal cortex of Aβ-infused and control mice. The event-related potentials (ERPs) elicited by auditory stimuli showed no significant difference in Aβ-infused mice compared to control mice. On the other hand, the differential ERP signature elicited by oddball sound stimuli was destructed in the Aβ-infused mice group. We noticed that ERP traces to standard and deviant tones were not significantly different in the Aβ group, while the control group showed differences in the amplitude of ERP components. In particular, the difference in the first negative component (N1) between standard and deviant tone, which indexes the sensory memory system, was significantly reduced in the parietal cortex of Aβ-infused mice. These findings demonstrate the direct influence of Aβ oligomers on the functional integrity of cortical areas in vivo. Furthermore, the N1 amplitude difference may provide a potential marker of sensory memory deficits in a mouse model of AD and yield additional targets for drug assessment in AD.
Collapse
Affiliation(s)
- Bowon Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
- Integrated Science and Engineering Division, Yonsei University, Incheon, Republic of Korea
- * E-mail: (YK); (JHC)
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- * E-mail: (YK); (JHC)
| |
Collapse
|