1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing Glioblastoma Therapy: Learning From the Past and Innovations for the Future. Cancer Lett 2025:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/ multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Yang Y, Yamane S, Harada N, Ikeguchi-Ogura E, Yamamoto K, Wada N, Fauzi M, Murakami T, Yabe D, Hayashi Y, Inagaki N. Voltage-gated calcium channel α 2δ-1 subunit is involved in the regulation of glucose-stimulated GLP-1 secretion in mice. Am J Physiol Gastrointest Liver Physiol 2025; 328:G243-G251. [PMID: 39918794 DOI: 10.1152/ajpgi.00279.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin produced by enteroendocrine preproglucagon (PPG)-expressing cells in response to nutrient ingestion that potentiates insulin secretion. The voltage-gated Ca2+ channel has been reported previously to be involved in glucose-stimulated GLP-1 secretion; in this study, we show that PPG-cells in upper and lower small intestine substantially express the voltage-gated Ca2+ channel α2δ-1 subunit (CaVα2δ-1). In vitro experiments using NCI-H716 cells demonstrate that inhibition of CaVα2δ-1 by gabapentin (GBP), an inhibitory ligand of the α2δ subunit, attenuates glucose-stimulated intracellular calcium elevation and reduces GLP-1 secretion. In addition, systemic administration of gabapentin significantly reduces glucose-stimulated GLP-1 secretion without affecting blood glucose levels in wild-type mice. Furthermore, knockout mice of intestine-specific Cacna2d1, a gene encoding CaVα2δ-1, exhibit reduced GLP-1 secretion in response to oral glucose administration regardless of sex. These results demonstrate that CaVα2δ-1 expressed in PPG-cells plays an important role in glucose-stimulated GLP-1 secretion and represents a potential target in the treatment of diabetes and obesity.NEW & NOTEWORTHY In this study, we establish high expression of the voltage-gated Ca2+ channel α2δ-1 subunit (CaVα2δ-1) subunit in enteroendocrine glucagon-like peptide-1 (GLP-1) producing cells and elucidate its role in GLP-1 secretion, providing a more detailed understanding of the mechanism of GLP-1 secretion.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology and Metabolism, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Eri Ikeguchi-Ogura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kana Yamamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Wada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Medical Research Institute Kitano Hospital, P.I.I.F. Tazuke-kofukai, Osaka, Japan
| |
Collapse
|
3
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Kutzsche J, Guzman GA, Willuweit A, Kletke O, Wollert E, Gering I, Jürgens D, Breitkreutz J, Stark H, Beck-Sickinger AG, Klöcker N, Hidalgo P, Willbold D. An orally available Ca v2.2 calcium channel inhibitor for the treatment of neuropathic pain. Br J Pharmacol 2024; 181:1734-1756. [PMID: 38157867 DOI: 10.1111/bph.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects up to 10% of the global population and is caused by an injury or a disease affecting the somatosensory, peripheral, or central nervous system. NP is characterized by chronic, severe and opioid-resistant properties. Therefore, its clinical management remains very challenging. The N-type voltage-gated calcium channel, Cav2.2, is a validated target for therapeutic intervention in chronic and neuropathic pain. The conotoxin ziconotide (Prialt®) is an FDA-approved drug that blocks Cav2.2 channel but needs to be administered intrathecally. Thus, although being principally efficient, the required application route is very much in disfavour. EXPERIMENTAL APPROACH AND KEY RESULTS Here, we describe an orally available drug candidate, RD2, which competes with ziconotide binding to Cav2.2 at nanomolar concentrations and inhibits Cav2.2 almost completely reversible. Other voltage-gated calcium channel subtypes, like Cav1.2 and Cav3.2, were affected by RD2 only at concentrations higher than 10 μM. Data from sciatic inflammatory neuritis rat model demonstrated the in vivo proof of concept, as low-dose RD2 (5 mg·kg-1) administered orally alleviated neuropathic pain compared with vehicle controls. High-dose RD2 (50 mg·kg-1) was necessary to reduce pain sensation in acute thermal response assessed by the tail flick test. CONCLUSIONS AND IMPLICATIONS Taken together, these results demonstrate that RD2 has antiallodynic properties. RD2 is orally available, which is the most convenient application form for patients and caregivers. The surprising and novel result from standard receptor screens opens the room for further optimization into new promising drug candidates, which address an unmet medical need.
Collapse
Affiliation(s)
- Janine Kutzsche
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Olaf Kletke
- Institute of Neuro- und Sensory Physiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Esther Wollert
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar Jürgens
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Nikolaj Klöcker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing 1, Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Zainal Abidin SA, Liew AKY, Othman I, Shaikh F. Animal Venoms as Potential Source of Anticonvulsants. F1000Res 2024; 13:225. [PMID: 38919947 PMCID: PMC11196940 DOI: 10.12688/f1000research.147027.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.
Collapse
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Anthony Kin Yip Liew
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Iekhsan Othman
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia
| |
Collapse
|
7
|
Fogel EL, Easler JJ, Yuan Y, Yadav D, Conwell DL, Vege SS, Han SY, Park W, Patrick V, White FA. Safety, Tolerability, and Dose-Limiting Toxicity of Lacosamide in Patients With Painful Chronic Pancreatitis: Protocol for a Phase 1 Clinical Trial to Determine Safety and Identify Side Effects. JMIR Res Protoc 2024; 13:e50513. [PMID: 38451604 PMCID: PMC10958339 DOI: 10.2196/50513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Chronic abdominal pain is the hallmark symptom of chronic pancreatitis (CP), with 50% to 80% of patients seeking medical attention for pain control. Although several management options are available, outcomes are often disappointing, and opioids remain a mainstay of therapy. Opioid-induced hyperalgesia is a phenomenon resulting in dose escalation, which may occur partly because of the effects of opioids on voltage-gated sodium channels associated with pain. Preclinical observations demonstrate that the combination of an opioid and the antiseizure drug lacosamide diminishes opioid-induced hyperalgesia and improves pain control. OBJECTIVE In this phase 1 trial, we aim to determine the safety, tolerability, and dose-limiting toxicity of adding lacosamide to opioids for the treatment of painful CP and assess the feasibility of performance of a pilot study of adding lacosamide to opioid therapy in patients with CP. As an exploratory aim, we will assess the efficacy of adding lacosamide to opioid therapy in patients with painful CP. METHODS Using the Bayesian optimal interval design, we will conduct a dose-escalation trial of adding lacosamide to opioid therapy in patients with painful CP enrolled in cohorts of size 3. The initial dose will be 50 mg taken orally twice a day, followed by incremental increases to a maximum dose of 400 mg/day, with lacosamide administered for 7 days at each dose level. Adverse events will be documented according to Common Terminology Criteria for Adverse Events (version 5.0). RESULTS As of December 2023, we have currently enrolled 6 participants. The minimum number of participants to be enrolled is 12 with a maximum of 24. We expect to publish the results by March 2025. CONCLUSIONS This trial will test the feasibility of the study design and provide reassurance regarding the tolerability and safety of opioids in treating painful CP. It is anticipated that lacosamide will prove to be safe and well tolerated, supporting a subsequent phase 2 trial assessing the efficacy of lacosamide+opioid therapy in patients with painful CP, and that lacosamide combined with opiates will lower the opioid dose necessary for pain relief and improve the safety profile of opioid use in treating painful CP. TRIAL REGISTRATION Clinicaltrials.gov NCT05603702; https://clinicaltrials.gov/study/NCT05603702. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/50513.
Collapse
Affiliation(s)
- Evan L Fogel
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Jeffrey J Easler
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Darwin L Conwell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Samuel Y Han
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Walter Park
- Department of Medicine, Stanford University Medical Center, Stanford, CA, United States
| | - Vanessa Patrick
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Fletcher A White
- Department of Anesthesia, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
8
|
Singh R, Ambasta S, Bais PS, Azim A, Kumar S, Upreti B, Singh S, Mishra P. Role of Gabapentin in Traumatic Brain Injury: A Prospective Comparative Study. Indian J Crit Care Med 2024; 28:120-125. [PMID: 38323259 PMCID: PMC10839922 DOI: 10.5005/jp-journals-10071-24634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of mortality among young individuals, accounting for 65% of deaths in road traffic accidents. Paroxysmal sympathetic hyperactivity (PSH) is a common syndrome associated with TBI. This study represents the first prospective investigation aimed at assessing the impact of gabapentin on TBI patients, focusing on the prevention of secondary brain injury and brain edema while enhancing the Glasgow Coma Scale (GCS). Materials and methods The study was conducted from September 2019 to July 2021 after receiving ethical committee approval. It included adult ICU patients (≥18 years) with moderate and severe GCS. Patients below 18 years, death within 48 hours, non-consenting, pregnant females, and individuals allergic to gabapentin were excluded from the study. Patients were randomly allocated in two groups: study group received 300 mg of gabapentin orally twice daily and control group received multivitamin tablets twice daily. The treatment period spanned 2 weeks. Follow-up occurred in the ICU and continued for up to 3 months post-discharge, including telephonic conversations. Results About 60 patients were involved for analysis. Significant differences were found in GCS change from admission to discharge, Glasgow Outcome Scale (GOS) at 30 and 90 days, PSH episodes, and sedation bolus per day. Glasgow Coma Scale change was 53% in the study group compared with 25% in the control group (p = 0.009). Mortality was significantly lower in the study group. Glasgow Outcome Scale change between 30 and 90 days showed a 25% improvement in cases and no change in controls (p = 0.001). Conclusion This pioneering study underscores the potential of gabapentin in managing traumatic brain injuries. How to cite this article Singh R, Ambasta S, Bais PS, Azim A, Kumar S, Upreti B, et al. Role of Gabapentin in Traumatic Brain Injury: A Prospective Comparative Study. Indian J Crit Care Med 2024;28(2):120-125.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Suruchi Ambasta
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Prateek Singh Bais
- Department of Anaesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sanjeev Kumar
- Department of Anaesthesiology and Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Bhawesh Upreti
- Department of Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Siddharth Singh
- Department of Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Prabhakar Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Caparaso SM, Redwine AL, Wachs RA. Engineering a multicompartment in vitro model for dorsal root ganglia phenotypic assessment. J Biomed Mater Res B Appl Biomater 2023; 111:1903-1920. [PMID: 37326300 PMCID: PMC10527728 DOI: 10.1002/jbm.b.35294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Despite the significant global prevalence of chronic pain, current methods to identify pain therapeutics often fail translation to the clinic. Phenotypic screening platforms rely on modeling and assessing key pathologies relevant to chronic pain, improving predictive capability. Patients with chronic pain often present with sensitization of primary sensory neurons (that extend from dorsal root ganglia [DRG]). During neuronal sensitization, painful nociceptors display lowered stimulation thresholds. To model neuronal excitability, it is necessary to maintain three key anatomical features of DRGs to have a physiologically relevant platform: (1) isolation between DRG cell bodies and neurons, (2) 3D platform to preserve cell-cell and cell-matrix interactions, and (3) presence of native non-neuronal support cells, including Schwann cells and satellite glial cells. Currently, no culture platforms maintain the three anatomical features of DRGs. Herein, we demonstrate an engineered 3D multicompartment device that isolates DRG cell bodies and neurites and maintains native support cells. We observed neurite growth into isolated compartments from the DRG using two formulations of collagen, hyaluronic acid, and laminin-based hydrogels. Further, we characterized the rheological, gelation and diffusivity properties of the two hydrogel formulations and found the mechanical properties mimic native neuronal tissue. Importantly, we successfully limited fluidic diffusion between the DRG and neurite compartment for up to 72 h, suggesting physiological relevance. Lastly, we developed a platform with the capability of phenotypic assessment of neuronal excitability using calcium imaging. Ultimately, our culture platform can screen neuronal excitability, providing a more translational and predictive system to identify novel pain therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Sydney M. Caparaso
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| | - Adan L. Redwine
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| |
Collapse
|
10
|
Di Cesare F, Negro V, Ravasio G, Villa R, Draghi S, Cagnardi P. Gabapentin: Clinical Use and Pharmacokinetics in Dogs, Cats, and Horses. Animals (Basel) 2023; 13:2045. [PMID: 37370556 DOI: 10.3390/ani13122045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Gabapentin is an anticonvulsant drug, which presents an established clinical efficacy in human patients for the management of refractory partial seizures, secondarily generalized tonic-clonic seizures, and for the control of chronic neuropathic pain. Gabapentin was synthesized as a structural analogue of the inhibitory neurotransmitter GABA, with GABA-mimetic effects, able to cross the blood-brain barrier. In veterinary medicine, is extra-label used in combination with other treatments to control seizures when other drugs are no longer effective or become toxic or for neuropathic pain treatment and anxiety. This review aimed to clarify gabapentin use and pharmacokinetic aspects to promote conscious use in dogs, cats, and horses. In dogs, gabapentin was beneficial in the treatment of epilepsy, as well as chronic, neuropathic, and post-operative pain, as well as anxiety. In cats, it showed efficacy in post-ovariohysterectomy-related pain and in anxiety management. In horses, gabapentin has been administered as an analgesic for chronic pain management. In conclusion, when used in combination with other drugs, gabapentin can be considered an interesting therapeutic option for the treatment of neuropathic diseases and analgesia in postoperative and chronic pain. However, despite its beneficial use in different clinical settings, further trials and pharmacokinetic studies are needed for the definition of an effective dosage regimen through proper pharmacokinetic/pharmacodynamic correlation in dogs, cats, and horses.
Collapse
Affiliation(s)
- Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Viviana Negro
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Roberto Villa
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Petra Cagnardi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
11
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
12
|
Pregabalin for chemotherapy-induced neuropathy: background and rationale for further study. Support Care Cancer 2022; 30:8845-8853. [PMID: 35953729 DOI: 10.1007/s00520-022-07317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced neuropathy is difficult to manage, and the pain associated with neuropathy is poorly responsive to gabapentin in a randomized trial. Duloxetine is the only drug that has been found to be effective in reducing pain from chemotherapy neuropathy. In this qualitative review, the use of pregabalin for chemotherapy-induced neuropathy is discussed including the rationale and pharmacological reasons why pregabalin should be considered in a large, randomized placebo-controlled trial.
Collapse
|
13
|
Weng HJ, Pham QTT, Chang CW, Tsai TF. Druggable Targets and Compounds with Both Antinociceptive and Antipruritic Effects. Pharmaceuticals (Basel) 2022; 15:892. [PMID: 35890193 PMCID: PMC9318852 DOI: 10.3390/ph15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Pain and itch are both important manifestations of various disorders, such as herpes zoster, atopic dermatitis, and psoriasis. Growing evidence suggests that both sensations have shared mediators, overlapping neural circuitry, and similarities in sensitization processes. In fact, pain and itch coexist in some disorders. Determining pharmaceutical agents and targets for treating pain and itch concurrently is of scientific and clinical relevance. Here we review the neurobiology of pain and itch and discuss the pharmaceutical targets as well as novel compounds effective for the concurrent treatment of these sensations.
Collapse
Affiliation(s)
- Hao-Jui Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Quoc Thao Trang Pham
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Chia-Wei Chang
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
14
|
Aljassem A, Hall LM, Spickler M, Menkes DL. A Practical Approach to the Treatment of Painful Polyneuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Mariani JJ, Pavlicova M, Basaraba C, Mamczur-Fuller A, Brooks DJ, Bisaga A, Carpenter KM, Nunes EV, Levin FR. Pilot randomized placebo-controlled clinical trial of high-dose gabapentin for alcohol use disorder. Alcohol Clin Exp Res 2021; 45:1639-1652. [PMID: 34120336 DOI: 10.1111/acer.14648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite advances in the development of pharmacotherapy for alcohol use disorder (AUD), there remains a need for medications that can be administered to actively drinking outpatients to promote a reduction in harmful alcohol consumption. The primary aim of this pilot study was to determine whether high-dose gabapentin (3600 mg/daily) is more effective than placebo in reducing harmful alcohol consumption in outpatients with AUD. METHODS Forty patients (27 men) who met DSM-IV-TR criteria for alcohol dependence and reporting at least 4 heavy drinking days (HDD) per week were recruited at a single site. Participants were actively drinking at study entry and received double-blind gabapentin (3600 mg/day; n = 19) or placebo (n = 20) for 8 weeks. Study medication was titrated over 5 days and administered in three divided doses (1200 mg three times per day). The proportion of HDD (primary outcome) and percent days abstinent (PDA; secondary outcome) were analyzed using generalized longitudinal mixed models with the predictors being study arm, week, study arm by week interaction, and corresponding baseline drinking measure. RESULTS There was a significant interaction between study arm and week for the proportion of HDD per week, F (7, 215) = 3.33, p = 0.002 . There was also a significant interaction between study arm and week for PDA per week, F (7, 215) = 3.11, p = 0.004. The overall retention rate was 67.5% with no significant difference in time-to-dropout between treatment groups. There were no serious adverse events. No participants were removed from the trial due to the development of moderate-to-severe alcohol withdrawal (CIWA-Ar ≥ 13). CONCLUSIONS Gabapentin treatment rapidly titrated to a dosage of 3600 mg/day is associated with a reduction in the proportion of HDD per week and an increase in PDA per week in actively drinking outpatients with AUD. High-dose gabapentin is potentially a feasible approach to treating AUD and deserving of further study.
Collapse
Affiliation(s)
- John J Mariani
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Cale Basaraba
- Mental Health Data Science Division, New York State Psychiatric Institute, New York, NY, USA
| | | | - Daniel J Brooks
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA
| | - Adam Bisaga
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth M Carpenter
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Edward V Nunes
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Frances R Levin
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Özgün A, Garipcan B. Magnetic field-induced Ca 2+ intake by mesenchymal stem cells is mediated by intracellular Zn 2+ and accompanied by a Zn 2+ influx. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119062. [PMID: 34033861 DOI: 10.1016/j.bbamcr.2021.119062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/21/2023]
Abstract
Chronic exposure to magnetic fields (MFs) has a diverse range of effects on biological systems but definitive molecular mechanisms of the interaction remain largely unknown. One of the most frequently reported effects of MF exposure is an elevated concentration of intracellular Ca2+ through disputed pathways. Other prominent effects include increased oxidative stress and upregulation of neural markers through EGFR activation in stem cells. Further characterization of cascades triggered by MF exposure is hindered by the phenotype diversity of biological models used in the literature. In an attempt to reveal more mechanistic data in this field, we combined the most commonly used biological model and MF parameters with the most commonly reported effects of MFs. Based on clues from the pathways previously defined as sensitive to MFs (EGFR and Zn2+-binding enzymes), the roles of different types of channels (voltage gated Ca2+ channels, NMDA receptors, TRP channels) were inquired in the effects of 50 Hz MFs on bone marrow-derived mesenchymal stem cells. We report that, an influx of Zn2+ accompanies MF-induced Ca2+ intake, which is only attenuated by the broad-range inhibitor of TRP channels and store-operated Ca2+ entry (SOCE), 2-Aminoethoxydiphenyl borate (2-APB) among other blockers (memantine, nifedipine, ethosuximide and gabapentin). Interestingly, cation influx completely disappears when intracellular Zn2+ is chelated. Our results rule out voltage gated Ca2+ channels as a gateway to MF-induced Ca2+ intake and suggest Zn2+-related channels as a new focus in the field.
Collapse
Affiliation(s)
- Alp Özgün
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
17
|
Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain 2021; 161:2179-2190. [PMID: 32379223 DOI: 10.1097/j.pain.0000000000001905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.
Collapse
|
18
|
Gabapentin attenuates somatic signs of precipitated THC withdrawal in mice. Neuropharmacology 2021; 190:108554. [PMID: 33845073 DOI: 10.1016/j.neuropharm.2021.108554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022]
Abstract
Cannabis is the most frequently used federally illicit substance in the United States. However, there are currently no FDA-approved pharmacotherapies to mitigate the withdrawal symptoms associated with cessation in heavy users. A promising, readily available, non-cannabinoid therapy are the gabapentinoids. Although currently approved for epilepsy and neuropathic pain, gabapentinoids are increasingly used for their "off-label" efficacy in treating various psychiatric conditions and substance abuse. Gabapentin (GBP) synergizes with cannabinoid agonism in neuropathic pain models, substitutes for Δ9-tetrahydrocannabinol (THC) in drug discrimination procedures, and reduced withdrawal symptoms in an outpatient clinical trial. However, there are limited data on the biological plausibility of the therapeutic action of gabapentinoids in cannabinoid withdrawal in preclinical models. The purpose of the current study was to determine the efficacy of GBP on attenuating THC withdrawal in mice, using an array of tests targeting withdrawal-induced and withdrawal-suppressed behaviors. Separate cohorts of male and female mice were administered THC (10 mg/kg, s.c.) or vehicle for 5.5 days, and withdrawal was precipitated by the CB1 antagonist rimonabant (2 or 3 mg/kg, i.p.) on the sixth day. GBP (≥10 mg/kg) reduced somatic signs of withdrawal (i.e., paw tremors and head twitches), but had no effect in locomotor activity or conditioned place preference. GBP (50 mg/kg) also restored withdrawal-suppressed responding on a progressive ratio reinforcement schedule. However, GBP (50 mg/kg) had no effect in withdrawal-suppressed marble burying or tail suspension struggling and did not normalize the stress response induced by THC withdrawal, as indicated by plasma corticosterone. These data suggest gabapentin may be effective at treating cannabinoid withdrawal symptoms including somatic and affective symptoms but may act independently of endocrine stress activation.
Collapse
|
19
|
González-Sanmiguel J, Burgos CF, Bascuñán D, Fernández-Pérez EJ, Riffo-Lepe N, Boopathi S, Fernández-Pérez A, Bobadilla-Azócar C, González W, Figueroa M, Vicente B, Aguayo LG. Gabapentin Inhibits Multiple Steps in the Amyloid Beta Toxicity Cascade. ACS Chem Neurosci 2020; 11:3064-3076. [PMID: 32886489 DOI: 10.1021/acschemneuro.0c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligomeric β-amyloid peptide (Aβ) is one of the main neurotoxic agents of Alzheimer's disease (AD). Oligomers associate to neuronal membranes, forming "pore-like" structures that cause intracellular calcium and neurotransmitter dyshomeostasis, leading to synaptic failure and death. Through molecular screening targeting the C terminal region of Aβ, a region involved in the toxic properties of the peptide, we detected an FDA approved compound, gabapentin (GBP), with neuroprotective effects against Aβ toxicity. At micromolar concentrations, GBP antagonized peptide aggregation over time and reduced the Aβ absorbance plateau to 28% of control. In addition, GBP decreased Aβ association to membranes by almost half, and the effects of Aβ on intracellular calcium in hippocampal neurons were antagonized without causing effects on its own. Finally, we found that GBP was able to block the synaptotoxicity induced by Aβ in hippocampal neurons, increasing post-synaptic currents from 1.7 ± 0.9 to 4.2 ± 0.7 fC and mean relative fluorescence intensity values of SV2, a synaptic protein, from 0.7 ± 0.09 to 1.00 ± 0.08. The results show that GBP can interfere with Aβ-induced toxicity by blocking multiple steps, resulting in neuroprotection, which justifies advancing toward additional animal and human studies.
Collapse
Affiliation(s)
- Juliana González-Sanmiguel
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos F. Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Eduardo J. Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Nicolás Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Subramanian Boopathi
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
| | | | - Catalina Bobadilla-Azócar
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Wendy González
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Universidad de Concepción, Concepción 4030000, Chile
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| | - Luis G. Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| |
Collapse
|
20
|
Kiani MH, Shayesteh AA, Ahmadzadeh A. An investigation into the effect of gabapentin capsules on the reduction of nausea and vomiting after chemotherapy in cancerous patients under platinum-based treatment. J Family Med Prim Care 2019; 8:2003-2007. [PMID: 31334170 PMCID: PMC6618183 DOI: 10.4103/jfmpc.jfmpc_212_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction and Objective: Chemotherapy-induced nausea and vomiting (CINV) is a condition that occur in most patients. This study aimed to investigate the effect of gabapentin capsules on the reduction of chemotherapy-induced nausea and vomiting in patients admitted in the hematological ward for adult patients with platinum-based treatment. Materials and Methods: The present study was a randomized clinical trial, which consisted of a control group and an experimental one. The study population consisted of 126 women and men with colonic and gastric cancer who were admitted to Ahwaz Shafa Hospital of adult hematology ward. Of these, 120 subjects were eligible to enter the study. Immediately after chemotherapy, gabapentin capsules were taken. Up to 72 hours later, nausea and vomiting were compared. Descriptive statistics was used to investigate the demographic characteristics. Paired t-test, independent t-test and ANOVA were used to compare the results. Results: The results showed that most of the patients had gastric cancer in the experimental (70%) and control group (66.66%). The results also showed that chemotherapy-induced nausea and vomiting in gabapentin recipient group was different from the placebo group. Accordingly, chemotherapy induced nausea and vomiting in gabapentin group was lower than the placebo group. Conclusion: Post-operative nausea and vomiting is an unpleasant experience. Today, the patients find it worse than pain, and they believe it is hard to afford the cost of treatment. Gabapentin seems to be a good drug for reducing nausea and vomiting.
Collapse
Affiliation(s)
- Maziar Hasanzadeh Kiani
- Department of Internal Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Department of Gastroenterology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Department of Hematology-Oncology, Shafa Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Kjær Petersen K, Lunn TH, Husted H, Hansen LT, Simonsen O, Laursen MB, Kehlet H, Arendt-Nielsen L. The influence of pre- and perioperative administration of gabapentin on pain 3-4 years after total knee arthroplasty. Scand J Pain 2019; 18:237-245. [PMID: 29794296 DOI: 10.1515/sjpain-2018-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Approximately 20% of patients having total knee arthroplasty (TKA) will experience chronic postoperative pain. Recently, preoperative pain facilitation has been associated with chronic pain after TKA, and gabapentin has been shown to decrease pain facilitation. The current study is a secondary follow-up of a primary RCT investigating the effect of gabapentin on acute postoperative pain after TKA and exploring the effect of pre- and perioperative administration of gabapentin on chronic postoperative pain and psychological state 3-4 years after TKA. METHODS Patients scheduled for TKA were randomized to either gabapentin 1,300 mg/day, gabapentin 900 mg/day, or placebo daily from 2-h before and 6 days after operation. Pre- and 3-4 years postoperatively pain scores related to pain while walking, at rest, when flexing the hip or the knee were collected. At the same time, the pain catastrophizing scale (PCS) and hospital anxiety and depression scale subscales for anxiety (HADS-A) and depression (HADS-D) were collected. RESULTS Lower postoperative pain while walking, flexing the hip, and at rest were found compared with preoperative scores (p<0.03), but these were not associated with gabapentin treatment (p>0.19). Significantly lower postoperative PCS and HADS-A scores were seen compared with preoperative scores (p<0.001), but these were not associated with gabapentin treatment (p>0.55). CONCLUSIONS The current study found that pre- and perioperative administrations of gabapentin do not influence the pain or psychological state 3-4 years after TKA. IMPLICATIONS The current study does not support that short-term pre- and perioperative use of gabapentin can reduce the development of chronic postoperative pain after TKA.
Collapse
Affiliation(s)
- Kristian Kjær Petersen
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7 D3, DK-9220 Aalborg, Denmark, Phone: +45 9940 7529, Fax: +45 9815 4008
| | - Troels Haxholdt Lunn
- The Lundbeck Centre for Fast-track Hip and Knee Arthroplasty, Copenhagen, Denmark.,Department of Anesthesiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henrik Husted
- The Lundbeck Centre for Fast-track Hip and Knee Arthroplasty, Copenhagen, Denmark.,Department of Orthopedic Surgery, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lars Tambour Hansen
- The Lundbeck Centre for Fast-track Hip and Knee Arthroplasty, Copenhagen, Denmark.,Department of Orthopedic Surgery, South of Denmark University Hospital, Grindsted, Denmark
| | - Ole Simonsen
- Department of Orthopedic Surgery, Aalborg University Hospital, Farsø, Denmark
| | - Mogens Berg Laursen
- The Lundbeck Centre for Fast-track Hip and Knee Arthroplasty, Copenhagen, Denmark.,Department of Orthopedic Surgery, Aalborg University Hospital, Farsø, Denmark
| | - Henrik Kehlet
- The Lundbeck Centre for Fast-track Hip and Knee Arthroplasty, Copenhagen, Denmark.,Section of Surgical Pathophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Arendt-Nielsen
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
Black BJ, Atmaramani R, Plagens S, Campbell ZT, Dussor G, Price TJ, Pancrazio JJ. Emerging neurotechnology for antinoceptive mechanisms and therapeutics discovery. Biosens Bioelectron 2018; 126:679-689. [PMID: 30544081 DOI: 10.1016/j.bios.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
| | - Rahul Atmaramani
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Sarah Plagens
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
23
|
Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther 2018; 192:42-64. [PMID: 29909236 DOI: 10.1016/j.pharmthera.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory pain is the most common type of pain that is treated clinically. The use of currently available treatments (classic analgesics - NSAIDs, paracetamol and opioids) is limited by insufficient efficacy and/or side effects/tolerance development. Antiepileptic drugs (AEDs) are widely used in neuropathic pain treatment, but there is substantial preclinical evidence on their efficacy against inflammatory pain, too. In this review we focus on gabapentinoids (gabapentin and pregabalin) and dibenzazepine AEDs (carbamazepine, oxcarbazepine, and recently introduced eslicarbazepine acetate) and their potential for relieving inflammatory pain. In models of somatic, visceral and trigeminal inflammatory pain, that have a translational value for inflammatory conditions in locomotor system, viscera and head/face, AEDs have demonstrated analgesic activity. This activity was mostly consistent, dependent on the dose and largely independent on the site of inflammation and method of its induction, nociceptive stimuli, species, specific drug used, its route of administration and dosing schedule. AEDs exerted comparable efficacy with classic analgesics. Effective doses of AEDs are lower than toxic doses in animals and, when expressed as equivalent human doses, they are largely overlapping with AEDs doses already used in humans for treating epilepsy/neuropathic pain. The main mechanism of antinociceptive/antihyperalgesic action of gabapentinoids in inflammatory pain models seems to be α2δ-dependent suppression of voltage-gated calcium channels in primary sensory neurons that leads to reduced release of neurotransmitters in the spinal/medullar dorsal horn. The suppression of NMDA receptors via co-agonist binding site primarily at spinal sites, activation of various types of K+ channels at spinal and peripheral sites, and activation of noradrenergic and serotonergic descending pain modulatory pathways may also contribute. Inhibition of voltage-gated sodium channels along the pain pathway is probably the main mechanism of antinociceptive/antihyperalgesic effects of dibenzazepines. The recruitment of peripheral adrenergic and purinergic mechanisms and central GABAergic mechanisms may also contribute. When co-administered with classic/other alternative analgesics, AEDs exerted synergistic/additive interactions. Reviewed data could serve as a basis for clinical studies on the efficacy/safety of AEDs as analgesics/adjuvants in patients with inflammatory pain, and contribute to the improvement of the treatment of various inflammatory pain states.
Collapse
|
24
|
Senderovich H, Jeyapragasan G. Is there a role for combined use of gabapentin and pregabalin in pain control? Too good to be true? Curr Med Res Opin 2018; 34:677-682. [PMID: 29023146 DOI: 10.1080/03007995.2017.1391756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gabapentin (Neurontin 1 ) and pregabalin (Lyrica 2 ) are first- and second-generation α2δ ligands, respectively, and are both approved for use as adjunctive therapy in pain control. Although they do not bind to gamma-aminobutyric acid (GABA) receptors they have been successfully used to treat neuropathic pain conditions. Their mechanism of action is not yet fully understood, but research has demonstrated promising results. Despite their similarities, they have been used in combination in both clinical and research situations, and have been noted to have a synergistic effect in pain control without concern for clinically significant pharmacokinetic interactions. This combined approach can be made use of to reduce the dose of an individual agent, its side effects, and to enhance therapeutic response compared to a single agent. Pharmacokinetics, drug interactions, and adverse reaction to combinations have to be taken into consideration before combination therapy with gabapentin and pregabalin is proposed as first-line treatment in refractory pain situations and in patients with low levels of tolerance for an individual agent.
Collapse
Affiliation(s)
- Helen Senderovich
- a University of Toronto , Department of Family and Community Medicine, Division of Palliative Care , Toronto , Ontario , Canada
| | | |
Collapse
|
25
|
|
26
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
27
|
Blum K, Gold M, Modestino EJ, Baron D, Boyett B, Siwicki D, Lott L, Podesta A, Roy AK, Hauser M, Downs BW, Badgaiyan RD. Would induction of dopamine homeostasis via coupling genetic addiction risk score (GARS®) and pro-dopamine regulation benefit benzodiazepine use disorder (BUD)? ACTA ACUST UNITED AC 2018; 4. [PMID: 31750006 PMCID: PMC6865059 DOI: 10.15761/jsin.1000196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prescriptions for Benzodiazepines (BZDs) have risen continually. According to national statistics, the combination of BZDs with opioids has increased since 1999. BZDs (sometimes called “benzos”) work to calm or sedate a person by raising the level of the inhibitory neurotransmitter GABA in the brain. In terms of neurochemistry, BZDs act at the GABAA receptors to inhibit excitatory neurons, reducing VTA glutaminergic drive to reduce dopamine release at the Nucleus accumbens. Benzodiazepine Use Disorder (BUD) is very difficult to treat, partly because BZDs are used to reduce anxiety which paradoxically induces hypodopaminergia. Considering this, we are proposing a paradigm shift. Instead of simply targeting chloride channel direct GABAA receptors for replacement or substitution therapy, we propose the induction of dopamine homeostasis. Our rationale is supported by the well-established notion that the root cause of drug and non-drug addictions (i.e. Reward Deficiency Syndrome [RDS]), at least in adults, involve dopaminergic dysfunction and heightened stress. This proposition involves coupling the Genetic Addiction Risk Score (GARS) with a subsequent polymorphic matched genetic customized Pro-Dopamine Regulator known as KB220ZPBM (Precision Behavioral Management). Induction of dopamine homeostasis will be clinically beneficial in attempts to combat BUD for at least three reasons: 1) During detoxification of alcoholism, the potential induction of dopamine regulation reduces the need for BZDs; 2) A major reason for BZD abuse is because people want to achieve stress reduction and subsequently, the potential induction of dopamine regulation acts as an anti-stress factor; and 3) BUD and OUD are known to reduce resting state functional connectivity, and as such, potential induction of dopamine regulation enhances resting state functional connectivity. Future randomized placebo-controlled studies will investigate this forward thinking proposed novel modality.
Collapse
Affiliation(s)
- K Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA.,Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA.,Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - M Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA
| | - E J Modestino
- Department of Psychology, Curry College, Milton, MA, USA
| | - D Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - B Boyett
- Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA
| | - D Siwicki
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - L Lott
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - A Podesta
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - A K Roy
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Hauser
- Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA
| | - B W Downs
- Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - R D Badgaiyan
- Department of Psychiatry, Veterans Administration Hospital at San Antonio, San Antonio, TX, USA
| |
Collapse
|
28
|
Effects of anti-epileptic drugs on spreading depolarization-induced epileptiform activity in mouse hippocampal slices. Sci Rep 2017; 7:11884. [PMID: 28928441 PMCID: PMC5605655 DOI: 10.1038/s41598-017-12346-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Epilepsy and spreading depolarization (SD) are both episodic brain disorders and often exist together in the same individual. In CA1 pyramidal neurons of mouse hippocampal slices, induction of SD evoked epileptiform activities, including the ictal-like bursts, which occurred during the repolarizing phase of SD, and the subsequent generation of paroxysmal depolarization shifts (PDSs), which are characterized by mild depolarization plateau with overriding spikes. The duration of the ictal-like activity was correlated with both the recovery time and the depolarization potential of SD, whereas the parameters of PDSs were not significantly correlated with the parameters of SD. Moreover, we systematically evaluated the effects of multiple anti-epileptic drugs (AEDs) on SD-induced epileptiform activity. Among the drugs that are known to inhibit voltage-gated sodium channels, carbamazepine, phenytoin, valproate, lamotrigine, and zonisamide reduced the frequency of PDSs and the overriding firing bursts in 20–25 min after the induction of SD. The GABA uptake inhibitor tiagabine exhibited moderate effects and partially limited the incidence of PDSs after SD. AEDs including gabapentin, levetiracetam, ethosuximide, felbamate, and vigabatrin, had no significant effect on SD-induced epileptic activity. Taken together, these results demonstrate the effects of AEDs on SD and the related epileptiform activity at the cellular level.
Collapse
|
29
|
Tae HS, Smith KM, Phillips AM, Boyle KA, Li M, Forster IC, Hatch RJ, Richardson R, Hughes DI, Graham BA, Petrou S, Reid CA. Gabapentin Modulates HCN4 Channel Voltage-Dependence. Front Pharmacol 2017; 8:554. [PMID: 28871229 PMCID: PMC5566583 DOI: 10.3389/fphar.2017.00554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Gabapentin (GBP) is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN) channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+) or calretinin positive (CR+) inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM) caused a hyperpolarizing shift in the voltage of half activation (V1/2) thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.
Collapse
Affiliation(s)
- Han-Shen Tae
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia.,School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Melody Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert Richardson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
30
|
Smith MD, Woodhead JH, Handy LJ, Pruess TH, Vanegas F, Grussendorf E, Grussendorf J, White K, Bulaj KK, Krumin RK, Hunt M, Wilcox KS. Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain. Neurochem Res 2017; 42:1995-2010. [DOI: 10.1007/s11064-017-2286-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
|
31
|
Khuvtsagaan B, Lundeg G. Perioperative gabapentin as a component of multimodal analgesia for postoperative pain after total knee arthroplasty. Anesth Pain Med (Seoul) 2017. [DOI: 10.17085/apm.2017.12.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
| | - Ganbold Lundeg
- Department of Critical Care and Anesthesiology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
32
|
Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain 2017; 157:2068-2080. [PMID: 27168360 DOI: 10.1097/j.pain.0000000000000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
|
33
|
Zhu M, Sun X, Chen X, Xiao H, Duan M, Xu J. Impact of gabapentin on neuronal high voltage-activated Ca 2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation. Exp Ther Med 2017; 13:851-860. [PMID: 28450909 PMCID: PMC5403705 DOI: 10.3892/etm.2017.4071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
The density and properties of ion channels in the injured axon and dorsal root ganglion (DRG) neuronal soma membrane change following nerve injury, which may result in the development of neuropathic pain. Gabapentin (GBP) is a drug for the first-line treatment of neuropathic pain. One of its therapeutic targets is the voltage-activated calcium channel (VACC). In the present study, the whole-cell patch clamp technique was used to examine the changes of high voltage-activated Ca2+ (HVA-Ca2+) channels in DRG neurons from sham and neuropathic rats in the absence and presence of GBP. The results demonstrated a reduction in peak current density and the ‘window current’ between activation and inactivation in adjacent and axotomized neurons from rats that had undergone L5 spinal nerve ligation, thus attenuating the total inward Ca2+ current. Following the use of the specific channel blockers nifedipine, ω-conotoxin MVIIC and ω-conotoxin MVIIA, increased HVA-Ca2+ channels as well as an increased proportion of N-type Ca2+ currents were observed in axotomized neurons. GBP inhibited HVA calcium channel currents in a dose-dependent manner. The activation and steady-state inactivation curves for HVA channels were shifted in a hyperpolarizing direction by 100 µmol/l GBP. Following the application of GBP, a reduction in the ‘window current’ was observed in control and axotomized neurons, whereas the ‘window current’ was unchanged in adjacent neurons. This indicates that the inhibitory effects of GBP may be dependent on particular neuropathological or inflammatory conditions. The proportion of N-type Ca2+ currents and sensitivity to GBP were increased in axotomized neurons, which indicated the involvement of N-type Ca2+ currents in the inhibitory effect of GBP.
Collapse
Affiliation(s)
- Minmin Zhu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Anaesthesiology, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaodi Sun
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaodong Chen
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Hang Xiao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Manlin Duan
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianguo Xu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
34
|
Kim TY, Niimi K, Takahashi E. Analysis of the protective effects of the α 2 /δ subunit of voltage-gated Ca 2+ channels in brain injury. Brain Res 2017; 1655:138-144. [DOI: 10.1016/j.brainres.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
|
35
|
N- and L-type calcium channels blocker cilnidipine ameliorates neuropathic pain. Eur J Pharmacol 2016; 793:66-75. [PMID: 27823932 DOI: 10.1016/j.ejphar.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 11/21/2022]
Abstract
Cilnidipine is a dihydropyridine derivative that inhibits N-type and L-type voltage-gated Ca2+ channels (VDCCs). We recently reported that a selective N-type VDCC blocker attenuated the spinal long-term potentiation (LTP) of C-fiber-evoked field potentials recorded in the spinal dorsal horn of rats, which served as a model for examining synaptic function during central pain sensitization. In this study, we investigated the effects of cilnidipine on the changes related to neuropathic pain induced by nerve injury. Mechanical allodynia and hyperalgesia were evaluated by von Frey test and pin prick test, respectively. Spinal LTP of C-fiber-evoked field potentials were evaluated by in vivo electrophysiology. Intrathecally administrated cilnidipine attenuated mechanical allodynia and hyperalgesia in the spared nerve injury mouse model. Using in vivo electrophysiology in rats, cilnidipine (10µm) administered spinally inhibited the induction and maintenance of high-frequency stimulation-induced LTP of C-fiber-evoked field potentials, while basal C-fiber-evoked field potentials in naïve rats were unaffected. The basal C-fiber-evoked field potentials in nerve-injured rats were strongly inhibited by cilnidipine. Treatment with a specific N-type VDCC blocker, ω-conotoxin GVIA, which reportedly attenuates C-fiber-evoked field potentials both before and after the induction of LTP, attenuated mechanical allodynia and hyperalgesia in nerve-injured mice. By contrast, an L-type VDCC blocker, nicardipine attenuated only mechanical hyperalgesia, but not mechanical allodynia in nerve-injured mice, and also attenuated the established LTP of C-fiber-evoked field potentials in rats. These results suggested that N-type and L-type VDCC blockers may effectively alleviate the hyperalgesia and allodynia associated with neuropathic pain without affecting normal pain perception.
Collapse
|
36
|
Lempel AA, Coll L, Schinder AF, Uchitel OD, Piriz J. Chronic pregabalin treatment decreases excitability of dentate gyrus and accelerates maturation of adult-born granule cells. J Neurochem 2016; 140:257-267. [PMID: 27419661 DOI: 10.1111/jnc.13740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Pregabalin (PGB) is extensively prescribed to treat neurological and neuropsychiatrical conditions such as neuropathic pain, anxiety disorders, and epilepsy. Although PGB is known to bind selectively to the α2δ subunit of voltage-gated calcium channels, there is little understanding about how it exerts its therapeutic effects. In this article, we analyzed the effects of an in vivo chronic treatment with PGB over the physiology of dentate gyrus granule cells (DGGCs) using ex vivo electrophysiological and morphological analysis in adult mice. We found that PGB decreases neuronal excitability of DGGCs. In addition, PGB accelerates maturation of adult-born DGGCs, an effect that would modify dentate gyrus plasticity. Together, these findings suggest that PGB reduces activity in the dentate gyrus and modulates overall network plasticity, which might contribute to its therapeutic effects. Cover Image for this issue: doi: 10.1111/jnc.13783.
Collapse
Affiliation(s)
- Augusto Abel Lempel
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Lucia Coll
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Alejandro F Schinder
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA - CONICET), Buenos Aires, Argentina
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Joaquin Piriz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina.,Instituto de Fisiología y Biofísica "Houssay" (IFIBIO "Houssay", UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL, Grabowska U, Classon B, Edenius C, Malcangio M, Lindström E. Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain. J Pharmacol Exp Ther 2016; 358:387-96. [PMID: 27335437 DOI: 10.1124/jpet.116.232926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/20/2016] [Indexed: 03/08/2025] Open
Abstract
Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.
Collapse
Affiliation(s)
- Ellen Hewitt
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Thomas Pitcher
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Biljana Rizoska
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Karin Tunblad
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Ian Henderson
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Britt-Louise Sahlberg
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Urszula Grabowska
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Björn Classon
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Charlotte Edenius
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Marzia Malcangio
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Erik Lindström
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| |
Collapse
|
38
|
Wolff M, Czorlich P, Nagaraj C, Schnöbel-Ehehalt R, Li Y, Kwapiszewska G, Olschewski H, Heschl S, Olschewski A. Amitriptyline and carbamazepine utilize voltage-gated ion channel suppression to impair excitability of sensory dorsal horn neurons in thin tissue slice: An in vitro study. Neurosci Res 2016; 109:16-27. [DOI: 10.1016/j.neures.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/27/2022]
|
39
|
Brooks MR, Golianu B. Perioperative management in children with chronic pain. Paediatr Anaesth 2016; 26:794-806. [PMID: 27370517 DOI: 10.1111/pan.12948] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Abstract
Children with chronic pain often undergo surgery and effective perioperative management of their pain can be challenging. Identification of the pediatric chronic pain patient preoperatively and development of a perioperative pain plan may help ensure a safer and more comfortable perioperative course. Successful management usually requires multiple different classes of analgesics, regional anesthesia, and adjunctive nonpharmacological therapies. Neuropathic and oncological pain can be especially difficult to treat and usually requires an individualized approach.
Collapse
Affiliation(s)
- Meredith R Brooks
- Department of Anesthesiology, Cook Children's Hospital, Fort Worth, TX, USA
| | - Brenda Golianu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Alles SRA, Smith PA. The Anti-Allodynic Gabapentinoids: Myths, Paradoxes, and Acute Effects. Neuroscientist 2016; 23:40-55. [PMID: 27118808 DOI: 10.1177/1073858416628793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gabapentinoids (pregabalin and gabapentin) are first line treatments for neuropathic pain. They exert their actions by binding to the α2δ accessory subunits of voltage-gated Ca2+ channels. Because these subunits interact with critical aspects of the neurotransmitter release process, gabapentinoid binding prevents transmission in nociceptive pathways. Gabapentinoids also reduce plasma membrane expression of voltage-gated Ca2+ channels but this may have little direct bearing on their therapeutic actions. In animal models of neuropathic pain, gabapentinoids exert an anti-allodynic action within 30 minutes but most of their in vitro effects are 30-fold slower, taking at least 17 hours to develop. This difference may relate to increased levels of α2δ expression in the injured nervous system. Thus, in situations where α2δ is experimentally upregulated in vitro, gabapentinoids act within minutes to interrupt trafficking of α2δ subunits to the plasma membrane within nerve terminals. When α2δ is not up-regulated, gabapentinoids act slowly to interrupt trafficking of α2δ protein from cell bodies to nerve terminals. This improved understanding of the mechanism of gabapentinoid action is related to their slowly developing actions in neuropathic pain patients, to the concept that different processes underlie the onset and maintenance of neuropathic pain and to the use of gabapentinoids in management of postsurgical pain.
Collapse
Affiliation(s)
- Sascha R A Alles
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Smith
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
42
|
Newberry K, Wang S, Hoque N, Kiss L, Ahlijanian MK, Herrington J, Graef JD. Development of a spontaneously active dorsal root ganglia assay using multiwell multielectrode arrays. J Neurophysiol 2016; 115:3217-28. [PMID: 27052585 DOI: 10.1152/jn.01122.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na(+) and Ca(2+) channel blockers, as well as enhanced with K(+) channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain.
Collapse
Affiliation(s)
- Kim Newberry
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| | - Shuya Wang
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| | - Nina Hoque
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| | - Laszlo Kiss
- Leads Discovery and Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut
| | - Michael K Ahlijanian
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| | - James Herrington
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| | - John D Graef
- Genetically Defined Diseases, Bristol-Myers Squibb Company, Wallingford, Connecticut; and
| |
Collapse
|
43
|
Mariani JJ, Malcolm RJ, Mamczur AK, Choi JC, Brady R, Nunes E, Levin FR. Pilot trial of gabapentin for the treatment of benzodiazepine abuse or dependence in methadone maintenance patients. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:333-40. [PMID: 26962719 DOI: 10.3109/00952990.2015.1125493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Benzodiazepine use disorders are a common clinical problem among methadone maintenance treatment patients and have adverse effects on clinical outcomes. OBJECTIVES To evaluate gabapentin for the outpatient treatment of benzodiazepine abuse or dependence in methadone maintenance patients. METHODS Participants (n = 19) using benzodiazepines at least 4 days per week were enrolled into an 8-week randomized double-blind placebo-controlled outpatient pilot trial. All participants received a manual-guided supportive psychotherapy aimed to promote abstinence. Study medication was titrated over a 2-week period to a maximum dose of gabapentin 1200 mg or placebo three times a day. Benzodiazepine use was assessed using urine toxicology confirmed self-report. Benzodiazepines were not provided as part of study participation; participants were provided guidance to gradually reduce benzodiazepine intake. RESULTS Sixteen participants had post-randomization data for analysis. Retention at week eight was 50%. The mean dose of gabapentin achieved by titration was 2666 mg/day (SD = ± 1446). There were no significant between group differences on benzodiazepine use outcomes (amount benzodiazepine per day [Mann-Whitney U = 27, p = 0.745], abstinent days per week [U = 28, p = 0.811]) and Clinical Instrument Withdrawal Assessment (CIWA)-benzodiazepines scale (U = 29.0, p = 0.913). One participant in the gabapentin group discontinued study medication because of peripheral edema. Two participants in the placebo group requested admission for inpatient detoxification treatment. CONCLUSION In outpatient methadone-maintained patients with benzodiazepine use disorder, gabapentin did significantly decrease benzodiazepine use relative to placebo. The small sample recruited for this trial may have limited the ability to detect a group difference.
Collapse
Affiliation(s)
- John J Mariani
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | | | - Agnieszka K Mamczur
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA
| | - Jean C Choi
- d Division of Biostatistics , New York State Psychiatric Institute , New York , NY , USA
| | | | - Edward Nunes
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Frances R Levin
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| |
Collapse
|
44
|
Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect 2016; 4:e00205. [PMID: 27069626 PMCID: PMC4804325 DOI: 10.1002/prp2.205] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
The gabapentinoid drugs gabapentin and pregabalin are key front‐line therapies for various neuropathies of peripheral and central origin. Originally designed as analogs of GABA, the gabapentinoids bind to the α2δ‐1 and α2δ‐2 auxiliary subunits of calcium channels, though only the former has been implicated in the development of neuropathy in animal models. Transgenic approaches also identify α2δ‐1 as key in mediating the analgesic effects of gabapentinoids, however the precise molecular mechanisms remain unclear. Here we review the current understanding of the pathophysiological role of the α2δ‐1 subunit, the mechanisms of analgesic action of gabapentinoid drugs and implications for efficacy in the clinic. Despite widespread use, the number needed to treat for gabapentin and pregabalin averages from 3 to 8 across neuropathies. The failure to treat large numbers of patients adequately necessitates a novel approach to treatment selection. Stratifying patients by sensory profiles may imply common underlying mechanisms, and a greater understanding of these mechanisms could lead to more direct targeting of gabapentinoids.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT UK
| |
Collapse
|
45
|
Hiranita T. (-)-Trans-Δ 9-Tetrahydrocannabinol-Like Discriminative-Stimulus Effects of Gabapentin in Cannabis Users. ACTA ACUST UNITED AC 2016; 4. [PMID: 27376100 DOI: 10.4172/2329-6488.1000e129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA
| |
Collapse
|
46
|
Ostadhadi S, Kordjazy N, Haj-Mirzaian A, Ameli S, Akhlaghipour G, Dehpour A. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:393-402. [PMID: 26753696 DOI: 10.1007/s00210-015-1203-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/21/2015] [Indexed: 12/24/2022]
Abstract
Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.
Collapse
Affiliation(s)
- Sattar Ostadhadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Ameli
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnoosh Akhlaghipour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Carrasco M, Rao SC, Bearer CF, Sundararajan S. Neonatal Gabapentin Withdrawal Syndrome. Pediatr Neurol 2015; 53:445-7. [PMID: 26278632 DOI: 10.1016/j.pediatrneurol.2015.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Gabapentin, an anticonvulsant, neuroleptic, and pain medication, is widely used in both adults and children for management of epilepsy, bipolar illness, and neuropathic pain. Gabapentin use has also been recommended for hyperemesis gravidarum and restless leg syndrome in pregnant mothers. OBJECTIVE Although gabapentin use is deemed safe during pregnancy, no clinical reports of gabapentin withdrawal syndrome in a neonate have been described. RESULTS We present a newborn who showed signs of withdrawal after prolonged in utero exposure to gabapentin. CLINICAL IMPLICATIONS Clinicians should be aware of possible withdrawal symptoms from drugs such as gabapentin, administered to mothers during pregnancy. We also encourage the gradual tapering of gabapentin in neonates over weeks to months similar to the adult population.
Collapse
Affiliation(s)
- Melisa Carrasco
- Department of Pediatrics, Children's Hospital, University of Maryland, Baltimore, Maryland
| | - Sanjai C Rao
- Department of Neurology, University of Maryland, Baltimore, Maryland
| | - Cynthia F Bearer
- Division of Neonatology, Children's Hospital, University of Maryland, Baltimore, Maryland
| | - Sripriya Sundararajan
- Division of Neonatology, Children's Hospital, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
48
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 772] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
49
|
Matsumoto A, Arisaka H, Hosokawa Y, Sakuraba S, Sugita T, Umezawa N, Kaku Y, Yoshida KI, Kuwana SI. Effect of carbamazepine and gabapentin on excitability in the trigeminal subnucleus caudalis of neonatal rats using a voltage-sensitive dye imaging technique. Biol Res 2015. [PMID: 26195075 PMCID: PMC4508818 DOI: 10.1186/s40659-015-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The antiepileptic drugs
carbamazepine and gabapentin are effective in treating neuropathic pain and trigeminal neuralgia. In the present study, to analyze the effects of carbamazepine and gabapentin on neuronal excitation in the spinal trigeminal subnucleus caudalis (Sp5c) in the medulla oblongata, we recorded temporal changes in nociceptive afferent activity in the Sp5c of trigeminal nerve-attached brainstem slices of neonatal rats using a voltage-sensitive dye imaging technique. Results Electrical stimulation of the trigeminal nerve rootlet evoked changes in the fluorescence intensity of dye in the Sp5c. The optical signals were composed of two phases, a fast component with a sharp peak followed by a long-lasting component with a period of more than 500 ms. This evoked excitation was not influenced by administration of carbamazepine (10, 100 and 1,000 μM) or gabapentin (1 and 10 μM), but was increased by administration of 100 μM gabapentin. This evoked excitation was increased further in low Mg2+ (0.8 mM) conditions, and this effect of low Mg2+ concentration was antagonized by 30 μM DL-2-amino-5-phosphonopentanoic acid (AP5), a N-methyl-d-aspartate (NMDA) receptor blocker. The increased excitation in low Mg2+ conditions was also antagonized by carbamazepine (1,000 μM) and gabapentin (100 μM). Conclusion Carbamazepine and gabapentin did not decrease electrically evoked excitation in the Sp5c in control conditions. Further excitation in low Mg2+ conditions was antagonized by the NMDA receptor blocker AP5. Carbamazepine and gabapentin had similar effects to AP5 on evoked excitation in the Sp5c in low Mg2+ conditions. Thus, we concluded that carbamazepine and gabapentin may act by blocking NMDA receptors in the Sp5c, which contributes to its anti-hypersensitivity in neuropathic pain.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Hirofumi Arisaka
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Yuki Hosokawa
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0375, Japan.
| | - Shigeki Sakuraba
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Takeo Sugita
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Nobuo Umezawa
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Yuki Kaku
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Inashiki-gun, Ibaraki, 300-0394, Japan.
| | - Kazu-ichi Yoshida
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Shun-ichi Kuwana
- Faculty of Health Sciences, Uekusa Gakuen University, Ogura-cho, Wakaba-ku, Chiba, 264-0007, Japan.
| |
Collapse
|
50
|
François-Moutal L, Wang Y, Moutal A, Cottier KE, Melemedjian OK, Yang X, Wang Y, Ju W, Largent-Milnes TM, Khanna M, Vanderah TW, Khanna R. A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. Pain 2015; 156:1247-1264. [PMID: 25782368 PMCID: PMC5766324 DOI: 10.1097/j.pain.0000000000000147] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting proteins within the N-type voltage-gated calcium channel (CaV2.2) complex has proven to be an effective strategy for developing novel pain therapeutics. We describe a novel peptide aptamer derived from the collapsin response mediator protein 2 (CRMP2), a CaV2.2-regulatory protein. Addition of a 14-carbon myristate group to the peptide (myr-tat-CBD3) tethered it to the membrane of primary sensory neurons near surface CaV2.2. Pull-down studies demonstrated that myr-tat-CBD3 peptide interfered with the CRMP2-CaV2.2 interaction. Quantitative confocal immunofluorescence revealed a pronounced reduction of CaV2.2 trafficking after myr-tat-CBD3 treatment and increased efficiency in disrupting CRMP2-CaV2.2 colocalization compared with peptide tat-CBD3. Consequently, myr-tat-CBD3 inhibited depolarization-induced calcium influx in sensory neurons. Voltage clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after myr-tat-CBD3 exposure. Current clamp electrophysiology experiments demonstrated a reduction in excitability of small-diameter dorsal root ganglion neurons after exposure to myr-tat-CBD3. Myr-tat-CBD3 was effective in significantly attenuating carrageenan-induced thermal hypersensitivity and reversing thermal hypersensitivity induced by a surgical incision of the plantar surface of the rat hind paw, a model of postoperative pain. These effects are compared with those of tat-CBD3-the nonmyristoylated tat-conjugated CRMP2 peptide as well as scrambled versions of CBD3 and CBD3-lacking control peptides. Our results demonstrate that the myristoyl tag enhances intracellular delivery and local concentration of the CRMP2 peptide aptamer near membrane-delimited calcium channels resulting in pronounced interference with the calcium channel complex, superior suppression of calcium influx, and better antinociceptive potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aptamers, Peptide/genetics
- Aptamers, Peptide/metabolism
- Aptamers, Peptide/therapeutic use
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/metabolism
- Intercellular Signaling Peptides and Proteins
- Male
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/therapeutic use
- Pain, Postoperative/drug therapy
- Pain, Postoperative/genetics
- Pain, Postoperative/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
| | - Yue Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karissa E. Cottier
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Xiaofang Yang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yuying Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Weina Ju
- Department of Pharmacology, Norman Bethune College of Medicine, Changchun, Jilin Province, China
| | | | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|