1
|
Enteric neuroanatomy and smooth muscle activity in the western diamondback rattlesnake (Crotalus atrox). Front Zool 2023; 20:8. [PMID: 36759847 PMCID: PMC9909958 DOI: 10.1186/s12983-023-00484-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) functions are controlled by the enteric nervous system (ENS) in vertebrates, but data on snakes are scarce, as most studies were done in mammals. However, the feeding of many snakes, including Crotalus atrox, is in strong contrast with mammals, as it consumes an immense, intact prey that is forwarded, stored, and processed by the GI tract. We performed immunohistochemistry in different regions of the GI tract to assess the neuronal density and to quantify cholinergic, nitrergic, and VIPergic enteric neurons. We recorded motility patterns and determined the role of different neurotransmitters in the control of motility. Neuroimaging experiments complemented motility findings. RESULTS A well-developed ganglionated myenteric plexus (MP) was found in the oesophagus, stomach, and small and large intestines. In the submucous plexus (SMP) most neurons were scattered individually without forming ganglia. The lowest number of neurons was present in the SMP of the proximal colon, while the highest was in the MP of the oesophagus. The total number of neurons in the ENS was estimated to be approx. 1.5 million. In all regions of the SMP except for the oesophagus more nitric oxide synthase+ than choline-acetyltransferase (ChAT)+ neurons were counted, while in the MP ChAT+ neurons dominated. In the SMP most nerve cells were VIP+, contrary to the MP, where numerous VIP+ nerve fibers but hardly any VIP+ neuronal cell bodies were seen. Regular contractions were observed in muscle strips from the distal stomach, but not from the proximal stomach or the colon. We identified acetylcholine as the main excitatory and nitric oxide as the main inhibitory neurotransmitter. Furthermore, 5-HT and dopamine stimulated, while VIP and the ß-receptor-agonist isoproterenol inhibited motility. ATP had only a minor inhibitory effect. Nerve-evoked contractile responses were sodium-dependent, insensitive to tetrodotoxin (TTX), but sensitive to lidocaine, supported by neuroimaging experiments. CONCLUSIONS The structure of the ENS, and patterns of gastric and colonic contractile activity of Crotalus atrox are strikingly different from mammalian models. However, the main excitatory and inhibitory pathways appear to be conserved. Future studies have to explore how the observed differences are an adaptation to the particular feeding strategy of the snake.
Collapse
|
2
|
King BF. P2X3 receptors participate in purinergic inhibition of gastrointestinal smooth muscle. Auton Neurosci 2021; 234:102830. [PMID: 34116466 DOI: 10.1016/j.autneu.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
The ATP analogue α,β-meATP is a potent relaxant of gastrointestinal smooth muscle, but its molecular target is uncertain inside the gut. α,β-meATP relaxed the carbachol-precontracted guinea-pig taenia coli in a concentration-dependent manner (EC50, 2.0 ± 0.1 μM). A luciferase-based assay confirmed that α,β-meATP solutions were minimally contaminated with ATP. α,β-meATP-evoked relaxations were inhibited by the competitive P2Y1 antagonist MRS2179 (pA2 = 5.36), but also by the competitive P2X3 antagonist, A-317491 (pA2 = 5.51). When MRS2179 and A-317491 were applied together, residual α,β-meATP responses converted from brief to prolonged relaxations. Sodium nitroprusside (a nitric oxide donor) also caused prolonged relaxations. Immunohistochemistry revealed that P2X3 receptors were present in myenteric ganglion cells and their varicose nerve terminals. The amplitude of α,β-meATP responses was not inhibited by TTX (NaV channel blocker) and ωCgTx (N-type CaV channel blocker). However, responses to α,β-meATP were inhibited by TEA (non-selective K+-channel blocker), indicating that relaxations involved opening K+-channels. The findings of this study are consistent with the conclusion that α,β-meATP stimulates Ca2+-permeable P2X3 receptors on varicose nerve terminals to release inhibitory nucleotides: 1) ATP and β-NAD release results in P2Y1-mediated brief relaxations; 2) another released transmitter (possibly NO) results in prolonged relaxations. Prejunctional P2X3 receptors represent a purinergic feed-forward mechanism to augment the action of inhibitory nerves on gut motility. This positive feed-forward mechanism may counter-balance the known negative feedback mechanism caused by adenosine and prejunctional A1 receptors on inhibitory motor nerves.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Research Department of Neuroscience, Pharmacology & Physiology (NPP), Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
4
|
Yang M, Feng Y, Yan S, Wu Z, Xiao X, Sang J, Ye S, Liu F, Cui W. Evans Blue Might Produce Pathologically Activated Neuroprotective Effects via the Inhibition of the P2X4R/p38 Signaling Pathway. Cell Mol Neurobiol 2021; 41:293-307. [PMID: 32382851 PMCID: PMC11448625 DOI: 10.1007/s10571-020-00852-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
The main pathological features of ischemic stroke include neuronal damage and blood-brain barrier (BBB) dysfunction. Previous studies have shown that Evans Blue, a dye used to probe BBB integrity, could enter the brain only during the pathological status of ischemic stroke, indicating the potential pathologically activated therapeutic use of this chemical to treat ischemic stroke. In this study, we have reported that Evans Blue could produce in vitro neuroprotective effects against iodoacetic acid (IAA)-induced hypoxia neuronal death in HT22 cells. We further found that P2X purinoreceptor 4 (P2X4R), a subtype of ATP-gated cation channel, was expressed in HT22 cells. Evans Blue could prevent IAA-induced increase of P2X4R mRNA and protein expression. Interestingly, shRNA of P2X4R could protect against IAA-induced activation of p38, and SB203580, a specific inhibitor of p38, could reverse IAA-induced neurotoxicity, indicating that p38 is a downstream signaling molecule of P2X4R. Molecular docking analysis further demonstrated the possible interaction between Evans Blue and the ATP binding site of P2X4R. Most importantly, pre-treatment of Evans Blue could largely reduce neurological and behavioral abnormity, and decrease brain infarct volume in middle cerebral artery occlusion/reperfusion (MCAO) rats. All these results strongly suggested that Evans Blue could exert neuroprotective effects via inhibiting the P2X4R/p38 pathway, possibly by acting on the ATP binding site of P2X4R, indicating that Evans Blue might be further developed as a pathologically activated therapeutic drug against ischemic stroke.
Collapse
Affiliation(s)
- Mengxiang Yang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yi Feng
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Zhuoying Wu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiao Xiao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shazhou Ye
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
- Department of Physiology, Medical School, Ningbo University, Zhejiang, China.
| |
Collapse
|
5
|
Pauwelyn V, Lefebvre RA. 5-HT 4 receptors facilitate cholinergic neurotransmission throughout the murine gastrointestinal tract. Neurogastroenterol Motil 2017; 29. [PMID: 28332745 DOI: 10.1111/nmo.13064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the gastrointestinal tract of several species, facilitating 5-HT4 receptors were proposed on myenteric cholinergic neurons innervating smooth muscle by in vitro study of the effect of the selective 5-HT4 receptor agonist prucalopride on submaximal cholinergic contractions. This was not yet established in the murine gastrointestinal tract. METHODS In circular smooth muscle strips from murine fundus, jejunum and colon, contractions were induced by electrical field stimulation in the presence of guanethidine, L-NAME and for colon also MRS 2500. Submaximal contractions were induced to study the influence of prucalopride. KEY RESULTS Electrical field stimulation at reduced voltage induced reproducible submaximal neurogenic and cholinergic contractions as the contractions were abolished by tetrodotoxin and atropine. Hexamethonium had no systematic inhibitory effect but mecamylamine reduced the responses, suggesting that part of the cholinergic response is due to activation of preganglionic neurons. Prucalopride concentration-dependently increased the submaximal cholinergic contractions in the three tissue types, reaching maximum from 0.03 μmol/L onwards. The facilitation in the different series with 0.03 μmol/L prucalopride ranged from 41% to 104%, 30% to 76% and 24% to 74% in fundus, jejunum, and colon, respectively. The effect of 0.03 μmol/L prucalopride was concentration-dependently inhibited by GR 113808. CONCLUSIONS & INFERENCES In the murine gastrointestinal tract, activation of 5-HT4 receptors with prucalopride enhances cholinergic contractions, illustrating facilitation of myenteric cholinergic neurotransmission. The degree of enhancement with prucalopride is of similar magnitude as previously reported in other species, but the effective concentrations are lower than those needed in the gastrointestinal tract of other species.
Collapse
Affiliation(s)
- V Pauwelyn
- Department of Pharmacology - Heymans Institute, Ghent University, Ghent, Belgium
| | - R A Lefebvre
- Department of Pharmacology - Heymans Institute, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
7
|
Rodriguez-Tapia ES, Naidoo V, DeVries M, Perez-Medina A, Galligan JJ. R-Type Ca 2+ channels couple to inhibitory neurotransmission to the longitudinal muscle in the guinea-pig ileum. Exp Physiol 2017; 102:299-313. [PMID: 28008669 DOI: 10.1113/ep086027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Subtypes of enteric neurons are coded by the neurotransmitters they synthesize, but it is not known whether enteric neuron subtypes might also be coded by other proteins, including calcium channel subtypes controlling neurotransmitter release. What is the main finding and its importance? Our data indicate that guinea-pig ileum myenteric neuron subtypes may be coded by calcium channel subtypes. We found that R-type calcium channels are expressed by inhibitory but not excitatory longitudinal muscle motoneurons. R-Type calcium channels are also not expressed by circular muscle inhibitory motoneurons. Calcium channel subtype-selective antagonists could be used to target subtypes of neurons to treat gastrointestinal motility disorders. There is evidence that R-type Ca2+ channels contribute to synaptic transmission in the myenteric plexus. It is unknown whether R-type Ca2+ channels contribute to neuromuscular transmission. We measured the effects of the nitric oxide synthase inhibitor nitro-l-arginine (NLA), Ca2+ channel blockers and apamin (SK channel blocker) on neurogenic relaxations and contractions of the guinea-pig ileum longitudinal muscle-myenteric plexus (LMMP) in vitro. We used intracellular recordings to measure inhibitory junction potentials. Immunohistochemical techniques localized R-type Ca2+ channel protein in the LMMP and circular muscle. Cadmium chloride (pan-Ca2+ channel blocker) blocked and NLA and NiCl2 (R-type Ca2+ channel blocker) reduced neurogenic relaxations in a non-additive manner. Nickel chloride did not alter neurogenic cholinergic contractions, but it potentiated neurogenic non-cholinergic contractions. Relaxations were inhibited by apamin, NiCl2 and NLA and were blocked by combined application of these drugs. Relaxations were reduced by NiCl2 or ω-conotoxin (N-type Ca2+ channel blocker) and were blocked by combined application of these drugs. Longitudinal muscle inhibitory junction potentials were inhibited by NiCl2 but not MRS 2179 (P2Y1 receptor antagonist). Circular muscle inhibitory junction potentials were blocked by apamin, MRS 2179, ω-conotoxin and CdCl2 but not NiCl2 . We conclude that neuronal R-type Ca2+ channels contribute to inhibitory neurotransmission to longitudinal muscle but less so or not all in the circular muscle of the guinea-pig ileum.
Collapse
Affiliation(s)
| | - Vinogran Naidoo
- The Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew DeVries
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alberto Perez-Medina
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - James J Galligan
- The Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
King BF. Purinergic signalling in the enteric nervous system (An overview of current perspectives). Auton Neurosci 2015; 191:141-7. [PMID: 26049261 DOI: 10.1016/j.autneu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Department of Neuroscience, Physiology and Pharmacology (NPP), Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
| |
Collapse
|
9
|
Abstract
The role of adenosine 5'-triphosphate (ATP) as a major intracellular energy source is well-established. In addition, ATP and related nucleotides have widespread extracellular actions via the ionotropic P2X (ligand-gated cation channels) and metabotropic P2Y (G protein-coupled) receptors. Numerous experimental techniques, including myography, electrophysiology and biochemical measurement of neurotransmitter release, have been used to show that ATP has several major roles as a neurotransmitter in peripheral nerves. When released from enteric nerves of the gastrointestinal tract it acts as an inhibitory neurotransmitter, mediating descending muscle relaxation during peristalsis. ATP is also an excitatory cotransmitter in autonomic nerves; 1) It is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle preparations, such as the vas deferens and most arteries. When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to evoke depolarisation, Ca(2+) influx, Ca(2+) sensitisation and contraction. 2) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder and again acts at postjunctional P2X1 receptors, and possibly also a P2X1+4 heteromer, to elicit smooth muscle contraction. In both cases the neurotransmitter actions of ATP are terminated by dephosphorylation by extracellular, membrane-bound enzymes and soluble nucleotidases released from postganglionic nerves. There are indications of an increased contribution of ATP to control of blood pressure in hypertension, but further research is needed to clarify this possibility. More promising is the upregulation of P2X receptors in dysfunctional bladder, including interstitial cystitis, idiopathic detrusor instability and overactive bladder syndrome. Consequently, these roles of ATP are of great therapeutic interest and are increasingly being targeted by pharmaceutical companies.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
10
|
Liu YM, Kong M, Jin Z, Gao MM, Qu Y, Zheng ZB. Expression of the P2Y2 receptor in the terminal rectum of fetal rats with anorectal malformation. Int J Clin Exp Med 2015; 8:1669-1676. [PMID: 25932095 PMCID: PMC4402742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The expression and distribution of a subtype of purine receptors (P2Y2) in the terminal rectum of fetal rats with anorectal malformations (ARM) were examined to investigate their possible impact on the development of the enteric nervous system (ENS). METHODS Pregnant Sprague-Dawley rats were randomly divided into a control group (5 rats) and an experimental group (20 rats). The experimental group was treated with ethylene thiourea (ETU). On gestational day 20, the intrauterine fetal rats were collected from both groups of pregnant rats. Sagittal sections of the pelvic perinea were stained with HE. P2Y2 protein and mRNA expression in the terminal recta of the fetal rats in the control group, the ARM group, and the ETU-treated group that exhibited no malformations (the ETU group) were detected by immunohistochemistry, western blot, and qRT-PCR. RESULTS The fetal rats in the control group showed normal position of the anal opening, with no malformation. The incidence of ARM was 89.2% for the fetal rats in the experimental group. The immunohistochemistry results showed that P2Y2 was expressed in the cytoplasm of the cells in the terminal rectum submucosa and myenteric plexus of the fetus rats in the control group, the ETU group, and the ARM group. The average integrated optical density (IOD) value for the ARM group was significantly lower than the IOD value for the control and ETU groups (186.48 ± 23.03 vs. 493.18 ± 19.70; 186.48 ± 23.03 vs. 479.48 ± 41.71, P<0.01), while the IOD value for the ETU group was comparable to the control group IOD (493.18 ± 19.70 vs. 479.48 ± 41.71, P = 0.360). The western blot and qRT-PCR results showed that the P2Y2 protein and mRNA expressions were significantly lower in the terminal rectum of the fetal rats in the ARM group than in the control and ETU groups (0.28 ± 0.08 vs. 0.51 ± 0.10, 0.28 ± 0.08 vs. 0.48 ± 0.12; 48.91 ± 12.17 vs. 98.03 ± 15.68, 48.91 ± 12.17 vs. 92.53 ± 10.43; P<0.01), while the P2Y2 protein and mRNA levels in the control group were comparable to the ETU group (0.51 ± 0.10 vs. 0.48 ± 0.12, P = 0.494; 98.03 ± 15.68 vs. 92.53 ± 10.43, P = 0.058). CONCLUSION P2Y2 may participate in and affect the development of ENS in the terminal rectum of fetal rats with ARM.
Collapse
Affiliation(s)
- Yuan-Mei Liu
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| | - Meng Kong
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| | - Zhu Jin
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| | - Ming-Mei Gao
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| | - Yan Qu
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| | - Ze-Bing Zheng
- Department of Pediatric General Thoracic Urology Surgery, The Affiliated Hospital of Zunyi Medical College Zunyi 563003, China
| |
Collapse
|
11
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
12
|
Jiménez M, Clavé P, Accarino A, Gallego D. Purinergic neuromuscular transmission in the gastrointestinal tract; functional basis for future clinical and pharmacological studies. Br J Pharmacol 2014; 171:4360-75. [PMID: 24910216 DOI: 10.1111/bph.12802] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 12/13/2022] Open
Abstract
Nerve-mediated relaxation is necessary for the correct accomplishment of gastrointestinal (GI) motility. In the GI tract, NO and a purine are probably released by the same inhibitory motor neuron as inhibitory co-transmitters. The P2Y1 receptor has been recently identified as the receptor responsible for purinergic smooth muscle hyperpolarization and relaxation in the human gut. This finding has been confirmed in P2Y1 -deficient mice where purinergic neurotransmission is absent and transit time impaired. However, the mechanisms responsible for nerve-mediated relaxation, including the identification of the purinergic neurotransmitter(s) itself, are still debatable. Possibly different mechanisms of nerve-mediated relaxation are present in the GI tract. Functional demonstration of purinergic neuromuscular transmission has not been correlated with structural studies. Labelling of purinergic neurons is still experimental and is not performed in routine pathology studies from human samples, even when possible neuromuscular impairment is suspected. Accordingly, the contribution of purinergic neurotransmission in neuromuscular diseases affecting GI motility is not known. In this review, we have focused on the physiological mechanisms responsible for nerve-mediated purinergic relaxation providing the functional basis for possible future clinical and pharmacological studies on GI motility targeting purine receptors.
Collapse
Affiliation(s)
- Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Martínez-Cutillas M, Gil V, Gallego D, Mañé N, Clavé P, Martín MT, Jiménez M. α,β-meATP mimics the effects of the purinergic neurotransmitter in the human and rat colon. Eur J Pharmacol 2014; 740:442-54. [PMID: 24998877 DOI: 10.1016/j.ejphar.2014.06.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023]
Abstract
The purine receptor involved in inhibitory responses in the gastrointestinal tract has been recently identified. P2Y1 receptor activation mediates the fast component of the inhibitory junction potential (IJPf) and the non-nitrergic relaxation. The aim of the present work has been to investigate which purinergic agonist better mimics endogenous responses. We used different agonist and antagonist of P2 receptors. Contractility and microelectrode experiments were used to compare the effects of exogenously added purines and electrical field stimulation (EFS)-induced nerve mediated effects in rat and human colonic strips. In rat colon, the IJPf and EFS-induced inhibition of contractions were concentration-dependently inhibited by the P2Y1 antagonist MRS2500 but not by iso-PPADS or NF023 (P2X antagonists) up to 1 μM. In samples from human colon, EFS-induced inhibition of contractions was inhibited by either MRS2500 or apamin (1 μM) but not by iso-PPADS. In both species, α,β-meATP, a stable analog of ATP, caused inhibition of spontaneous contractions. α,β-meATP effect was concentration-dependent (EC50: 2.7 μM rat, 4.4 μM human) and was antagonized by either MRS2500 or apamin but unaffected by P2X antagonists. ATP, ADP, β-NAD and ADP-ribose inhibited spontaneous contractions but did not show the same sensitivity profile to purine receptor antagonists as EFS-induced inhibition of contractions. The effect of α,β-meATP is due to P2Y1 receptor activation leading the opening of sKca channels. Accordingly, α,β-meATP mimics the endogenous purinergic mediator. In contrast, exogenously added putative neurotransmitters do not exactly mimic the endogenous mediator. Quick degradation by ecto-nuclease or different distribution of receptors (junctionally vs extrajunctionally) might explain these results.
Collapse
Affiliation(s)
- Míriam Martínez-Cutillas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Gil
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Noemí Mañé
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Gastroenterologia Dr Vilardell and Department of Surgery, Hospital de Mataró, Mataró, Barcelona, Spain
| | - María Teresa Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
14
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
15
|
Nishiyama K, Azuma YT, Shintaku K, Yoshida N, Nakajima H, Takeuchi T. Evidence that Nitric Oxide Is a Non-Adrenergic Non-Cholinergic Inhibitory Neurotransmitter in the Circular Muscle of the Mouse Distal Colon: A Study on the Mechanism of Nitric Oxide-Induced Relaxation. Pharmacology 2014; 94:99-108. [DOI: 10.1159/000363191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
16
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
MacMillan D, Kennedy C, McCarron JG. ATP inhibits Ins(1,4,5)P3-evoked Ca2+ release in smooth muscle via P2Y1 receptors. J Cell Sci 2012; 125:5151-8. [PMID: 22899721 PMCID: PMC5704898 DOI: 10.1242/jcs.108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenosine 5′-triphosphate (ATP) mediates a variety of biological functions following nerve-evoked release, via activation of either G-protein-coupled P2Y- or ligand-gated P2X receptors. In smooth muscle, ATP, acting via P2Y receptors (P2YR), may act as an inhibitory neurotransmitter. The underlying mechanism(s) remain unclear, but have been proposed to involve the production of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] by phospholipase C (PLC), to evoke Ca2+ release from the internal store and stimulation of Ca2+-activated potassium (KCa) channels to cause membrane hyperpolarization. This mechanism requires Ca2+ release from the store. However, in the present study, ATP evoked transient Ca2+ increases in only ~10% of voltage-clamped single smooth muscle cells. These results do not support activation of KCa as the major mechanism underlying inhibition of smooth muscle activity. Interestingly, ATP inhibited Ins(1,4,5)P3-evoked Ca2+ release in cells that did not show a Ca2+ rise in response to purinergic activation. The reduction in Ins(1,4,5)P3-evoked Ca2+ release was not mimicked by adenosine and therefore, cannot be explained by hydrolysis of ATP to adenosine. The reduction in Ins(1,4,5)P3-evoked Ca2+ release was, however, also observed with its primary metabolite, ADP, and blocked by the P2Y1R antagonist, MRS2179, and the G protein inhibitor, GDPβS, but not by PLC inhibition. The present study demonstrates a novel inhibitory effect of P2Y1R activation on Ins(1,4,5)P3-evoked Ca2+ release, such that purinergic stimulation acts to prevent Ins(1,4,5)P3-mediated increases in excitability in smooth muscle and promote relaxation.
Collapse
Affiliation(s)
- D MacMillan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | | | | |
Collapse
|
18
|
Lentle RG, De Loubens C, Hulls C, Janssen PWM, Golding MD, Chambers JP. A comparison of the organization of longitudinal and circular contractions during pendular and segmental activity in the duodenum of the rat and guinea pig. Neurogastroenterol Motil 2012; 24:686-95, e298. [PMID: 22540972 DOI: 10.1111/j.1365-2982.2012.01923.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Little is known of the spatiotemporal organization of pendular duodenal contractions. METHODS We used longitudinal and radial spatiotemporal mapping to examine and compare pendular and segmental contractile activity in the proximal duodenum of the rat and guinea pig when the lumen was perfused with saline or micellar decanoic acid. KEY RESULTS Isolated phasic longitudinal contractions occurred along the rat duodenum with a frequency of 36 ± 2 cpm and strain rate amplitude of 26.8 ± 8.0% s(-1). These contractions occurred at fixed locations along the duodenum forming columns on the longitudinal strain rate map. The strain rate activity had local maxima at 4-6 points spaced at 7.7 ± 4.0 mm intervals along the duodenum and were uncoordinated between neighboring domains. Similarly disposed, less distinct, longitudinal contractions occurred in the guinea pig duodenum at a frequency of 25.2 ± 6.6 cpm with amplitude 6.8 ± 3.6% s(-1) but these were generally accompanied by numerous circular contractions that were distributed over 4-5 fixed locations and occurred with a frequency of 9 ± 3 cpm. Isolated static circular muscle contractions also occurred but at a lower rate in the rat than the guinea pig. Both types of contractions propagated after dosage with tetrodotoxin, lidocaine, atropine, or apamin. CONCLUSIONS & INFERENCES Localized contractions during segmental and pendular activity had some features of the spike patches that are normally associated with slow wave propagation. However, the commencement of propagation following administration of neural blocking agents and cholinergic inhibitors indicates their localization is maintained by inhibitory elements of the enteric nervous system.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Gallego D, Gil V, Aleu J, Martinez-Cutillas M, Clavé P, Jimenez M. Pharmacological characterization of purinergic inhibitory neuromuscular transmission in the human colon. Neurogastroenterol Motil 2011; 23:792-e338. [PMID: 21585621 DOI: 10.1111/j.1365-2982.2011.01725.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND In the present study, we further characterize the purinergic receptors mediating the inhibitory junction potential (IJP) and smooth muscle relaxation in the human colon using a new, potent and selective agonist (MRS2365), and antagonists (MR2279 and MRS2500) of the P2Y(1) receptor. The P2Y(12) antagonist AR-C66096 was tested as well. Using this pharmacological approach, we tested whether β-nicotinamide adenine dinucleotide (β-NAD) fulfilled the criteria to be considered an inhibitory neurotransmitter in the human colon. METHODS We carried out muscle bath and microelectrode experiments on circular strips from the human colon and calcium imaging recordings on HEK293 cells, which constitutively express the human P2Y(1) receptor. KEY RESULTS Both the fast component of IJP and non-nitrergic relaxation was concentration-dependently inhibited by MRS2279 and MRS2500. This antagonism was confirmed in HEK293 cells. However, AR-C66096 did not modify either inhibitory response. Adenosine 5'-Ο-2-thiodiphosphate and MRS2365 caused a smooth muscle hyperpolarization and transient inhibition of spontaneous motility that was antagonized by MRS2279 and MRS2500. β-Nicotinamide adenine dinucleotide inhibited the spontaneous motility (IC(50) = 3.3 mmol L(-1) ). Nevertheless, this effect was not antagonized by high concentrations of P2Y(1) antagonists. CONCLUSIONS & INFERENCES Inhibitory purinergic neuromuscular transmission in the human colon was pharmacologically assessed by the use of new P2Y(1) receptor antagonists MRS2179, MRS2279, and MRS2500. The rank order of potency of the P2Y(1) antagonists is MRS2500 > MRS2279 > MRS2179. We found that β-NAD partially fulfills the criteria to be considered an inhibitory neurotransmitter in the human colon, but the relative contribution of each purine (ATP/ADP vsβ-NAD) requires further studies.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN. β-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 2011; 140:608-617.e6. [PMID: 20875415 PMCID: PMC3031738 DOI: 10.1053/j.gastro.2010.09.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/03/2010] [Accepted: 09/17/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS An important component of enteric inhibitory neurotransmission is mediated by a purine neurotransmitter, such as adenosine 5'-triphosphate (ATP), binding to P2Y1 receptors and activating small conductance K(+) channels. In murine colon β-nicotinamide adenine dinucleotide (β-NAD) is released with ATP and mimics the pharmacology of inhibitory neurotransmission better than ATP. Here β-NAD and ATP were compared as possible inhibitory neurotransmitters in human and monkey colons. METHODS A small-volume superfusion assay and high-pressure liquid chromatography with fluorescence detection were used to evaluate spontaneous and nerve-evoked overflow of β-NAD, ATP, and metabolites. Postjunctional responses to nerve stimulation, β-NAD and ATP were compared using intracellular membrane potential and force measurements. Effects of β-NAD on smooth muscle cells (SMCs) were recorded by patch clamp. P2Y receptor transcripts were assayed by reverse transcription polymerase chain reaction. RESULTS In contrast to ATP, overflow of β-NAD evoked by electrical field stimulation correlated with stimulation frequency and was diminished by the neurotoxins, tetrodotoxin, and ω-conotoxin GVIA. Inhibitory junction potentials and responses to exogenous β-NAD, but not ATP, were blocked by P2Y receptor antagonists suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS), 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate (MRS 2179), and (1R,2S,4S,5S)-4-[2-Iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS 2500). β-NAD activated nonselective cation currents in SMCs, but failed to activate outward currents. CONCLUSIONS β-NAD meets the criteria for a neurotransmitter better than ATP in human and monkey colons and therefore may contribute to neural regulation of colonic motility. SMCs are unlikely targets for inhibitory purine neurotransmitters because dominant responses of SMCs were activation of net inward, rather than outward, current.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | - Laura Dwyer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557
| | | |
Collapse
|
22
|
Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. ACTA ACUST UNITED AC 2010; 72:107-15. [PMID: 20009347 DOI: 10.1679/aohc.72.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the gastrointestinal musculature, interstitial cells of Cajal (ICC) distribute and regulate the gastrointestinal motility. Another type of mesenchymal cell, known as the fibroblast-like cell (FLC), has also been reported to be juxtaposed to the ICC. In this study, we examined the immunohistochemical properties of FLC in the murine gastrointestinal musculature using antibodies to small conductance Ca(2+)-activated K(+) channel 3 (SK3), platelet-derived growth factor receptor alpha (PDGFRalpha), and CD34. SK3-immunopositive (SK3-ip) cells were observed in the musculature throughout the gastrointestinal tract. These SK3-ip cells were distinct from the ICC that were identified by c-Kit immunoreactivity. In the muscular layers, SK3-ip cells were bipolar in shape and were associated with the intramuscular ICC and nerve fiber bundles. In the myenteric layer multipolar-shaped SK3-ip cells encompassed the myenteric ganglia. SK3-ip cells in the subserosal plane formed a cellular network with their ramified processes. The distribution pattern of the SK3-ip cells in the ICC-deficient W(v)/W(v) mutant mice was similar to that in normal mice. We also demonstrated that SK3-ip cells showed the intense PDGFRalpha immunoreactivity that was previously examined in FLC. However, CD34 immunoreactivity, one of the markers of human FLC, was not observed in SK3-ip cells with the exception of subserosal FLC. Thus, our observations indicate that SK3- and PDGFRalpha-double immunopositive cells are FLC in the murine gastrointestinal musculature and behave as a basic cellular element throughout the gastrointestinal musculature.
Collapse
Affiliation(s)
- Satoshi Iino
- Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui, Japan.
| | | |
Collapse
|
23
|
Grasa L, Gil V, Gallego D, Martín MT, Jiménez M. P2Y(1) receptors mediate inhibitory neuromuscular transmission in the rat colon. Br J Pharmacol 2010; 158:1641-52. [PMID: 19906120 DOI: 10.1111/j.1476-5381.2009.00454.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibitory junction potentials (IJP) are responsible for smooth muscle relaxation in the gastrointestinal tract. The aim of this study was to pharmacologically characterize the neurotransmitters [nitric oxide (NO) and adenosine triphosphate (ATP)] and receptors involved at the inhibitory neuromuscular junctions in the rat colon using newly available P2Y(1) antagonists. EXPERIMENTAL APPROACH Organ bath and microelectrode recordings were used to evaluate the effect of drugs on spontaneous mechanical activity and resting membrane potential. IJP and mechanical relaxation were studied using electrical field stimulation (EFS). KEY RESULTS N(omega)-nitro-L-arginine (L-NNA) inhibited the slow component of the IJP and partially inhibited the mechanical relaxation induced by EFS. MRS2179, MRS2500 and MRS2279, all selective P2Y(1) receptor antagonists, inhibited the fast component of the IJP without having a major effect on the relaxation induced by EFS. The combination of both L-NNA and P2Y(1) antagonists inhibited the fast and the slow components of the IJP and completely blocked the mechanical relaxation induced by EFS. Sodium nitroprusside caused smooth muscle hyperpolarization and cessation of spontaneous motility that was prevented by oxadiazolo[4,3-alpha]quinoxalin-1-one. Adenosine 5'-O-2-thiodiphosphate, a preferential P2Y agonist, hyperpolarized smooth muscle cells and decreased spontaneous motility. This effect was inhibited by P2Y(1) antagonists. CONCLUSIONS AND IMPLICATIONS The co-transmission process in the rat colon involves ATP and NO. P2Y(1) receptors mediate the fast IJP and NO the slow IJP. The rank order of potency of the P2Y(1) receptor antagonists is MRS2500 greater than MRS2279 greater than MRS2179. P2Y(1) receptors might be potential pharmacological targets for the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- Laura Grasa
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
24
|
Baldassano S, Zizzo MG, Serio R, Mulè F. Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum. Br J Pharmacol 2009; 158:243-51. [PMID: 19466981 DOI: 10.1111/j.1476-5381.2009.00260.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it is well accepted that cannabinoids modulate intestinal motility by reducing cholinergic neurotransmission mediated by CB(1) receptors, it is not known whether the endocannabinoids are involved in more complex circuits and if they interact with other systems. The aim of the present study was to examine possible interactions between cannabinoid CB(1) receptors and purines in the control of spontaneous contractility of longitudinal muscle in mouse ileum. EXPERIMENTAL APPROACH The mechanical activity of longitudinally oriented ileal segments from mice was recorded as isometric contractions. KEY RESULTS The selective CB(1) receptor agonist, N-(2-chloroethyl)5,8,11,14-eicosaetraenamide (ACEA) reduced, concentration dependently, spontaneous contractions in mouse ileum. This effect was almost abolished by tetrodotoxin (TTX) or atropine. Inhibition by ACEA was not affected by theophylline (P1 receptor antagonist) or by P2Y receptor desensitization with adenosine 5'[beta-thio]diphosphate trilithium salt, but was significantly reversed by pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) (P2 receptor antagonist), by P2X receptor desensitization with alpha,beta-methyleneadenosine 5'-triphosphate lithium salt (alpha,beta-MeATP) or by 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino) bis(1,3,5-naphthalenetrisulphonic acid)] (P2X receptor antagonist). Contractile responses to alpha,beta-MeATP (P2X receptor agonist) were virtually abolished by TTX or atropine, suggesting that they were mediated by acetylcholine released from neurones, and significantly reduced by ACEA. CONCLUSION AND IMPLICATIONS In mouse ileum, activation of CB(1) receptors, apart from reducing acetylcholine release from cholinergic nerves, was able to modulate negatively, endogenous purinergic effects, mediated by P2X receptors, on cholinergic neurons. Our study provides evidence for a role of cannabinoids in the modulation of interneuronal purinergic transmission.
Collapse
Affiliation(s)
- S Baldassano
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | | | |
Collapse
|
25
|
Van Op den Bosch J, Torfs P, De Winter BY, De Man JG, Pelckmans PA, Van Marck E, Grundy D, Van Nassauw L, Timmermans JP. Effect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine. J Cell Mol Med 2009; 13:3283-95. [PMID: 19426160 PMCID: PMC4516485 DOI: 10.1111/j.1582-4934.2009.00760.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The recently suggested pivotal role of somatostatin (SOM) receptor 4 (SSTR4) in inflammation and nociception in several non-intestinal organs and in gastrointestinal (GI) physiology, necessitates exploration of the role of SSTR4 in GI pathophysiology. Therefore, the role of SSTR4 in GI activity was explored by investigating the effects of SSTR4 deficiency on intestinal motility, smooth muscle contractility and on the expression of SSTRs and neuropeptides in the healthy and Schistosoma mansoni-infected murine small intestine. Functional experiments revealed no differences in intestinal motility or smooth muscle cell contractility between wild-type and SSTR4 knockout (SSTR4–/–) mice in physiological conditions. As revealed by multiple immunofluorescent labellings, RT-PCR and quantitative real time RT-PCR (qPCR), genetic deficiency of SSTR4 considerably altered the expression of SOM and SSTRs in non-inflamed and inflamed conditions, affecting both extrinsic and intrinsic components of the intestinal innervation, along with SSTR expression in several non-neuronal cell types. Moreover, substance P and calcitonin gene-related peptide expression were significantly elevated in SSTR4–/– mice, confirming the modulatory role of SSTR4 on intestinal pro-inflammatory neuropeptide expression. These data suggest that SSTR4 plays a previously unexpected modulatory role in the regulation of intestinal SSTR expression. Moreover, in addition to the recently described inhibitory effects of SSTR4 on the neuronal release of pro-inflammatory peptides, SSTR4 appears also to be involved in the neuronal expression of both pro- and anti-inflammatory peptides in the murine small intestine.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zizzo MG, Bonomo A, Belluardo N, Mulè F, Serio R. A1 receptors mediate adenosine inhibitory effects in mouse ileum via activation of potassium channels. Life Sci 2009; 84:772-8. [DOI: 10.1016/j.lfs.2009.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/17/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
27
|
Leng Y, Yamamoto T, Kadowaki M. Alteration of cholinergic, purinergic and sensory neurotransmission in the mouse colon of food allergy model. Neurosci Lett 2008; 445:195-8. [PMID: 18804146 DOI: 10.1016/j.neulet.2008.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/28/2022]
Abstract
It is well known that intestinal anaphylaxis results in a disturbed intestinal motility. It is hypothesized that the chronic intestinal anaphylaxis-induced changes in the enteric neuronal circuitry cause intestinal motor malfunctions. However, detailed mechanisms largely remain unclear. The aim of this study was to investigate the pathophysiological role of ATP, which acts as a non-cholinergic neurotransmitter and a neuroimmune modulator, in a disturbed intestinal motility of food allergy (FA). The FA mice developed allergic diarrhea accompanied with chronic inflammation and mast cell hyperplasia in the colon. The excised proximal colons (PCs) were suspended in the longitudinal direction in organ baths. In the PCs precontracted by KCl (50 mM), contractile responses to exogenous ATP (1 mM) were significantly (P < 0.01) higher in FA mice (34.2% of KCl-induced precontractions) as compared to control mice (17.2%). Pretreatment with P2 purinoceptor antagonists [suramin and PPADs] significantly (P < 0.01) reduced the ATP-evoked contractions to 7.7% and 1.5% in FA and control PCs, respectively. Furthermore, in the presence of inhibitors of cholinergic nerves and capsaicin-sensitive sensory nerves the electrical field stimulation (EFS; 10Hz)-evoked contractions were significantly (P < 0.05) higher in FA mice (65.8% of EFS-evoked maximum contractions, n = 6) than those in control mice (47.9%, n = 6). In addition, cumulative application of suramin and PPADs further inhibited EFS-induced contractions by 21.7% in FA mice (n = 6, P < 0.01) and 8.7% in control mice (n = 6, P < 0.05). Thus, the present study suggests that the sustained alteration in cholinergic, purinergic and sensory neurotransmission contribute to the disturbed motility during the chronic intestinal anaphylaxis.
Collapse
Affiliation(s)
- Yuxin Leng
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | |
Collapse
|
28
|
Gallego D, Gil V, Aleu J, Aulí M, Clavé P, Jiménez M. Purinergic and nitrergic junction potential in the human colon. Am J Physiol Gastrointest Liver Physiol 2008; 295:G522-33. [PMID: 18599588 DOI: 10.1152/ajpgi.00510.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 microM), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 microM), was able to cause a sustained relaxation. NG-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy-N6-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) (10 microM), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 microM). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 microM), MRS 2179 (1 microM), and NF023 (10 microM). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO).
Collapse
Affiliation(s)
- Diana Gallego
- Department of Cell Biology, Physiology and Immunology, Edifici V, Universitat Autònoma de Barcelona 08193, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Zizzo MG, Mulè F, Serio R. Activation of P2Y receptors by ATP and by its analogue, ADPbetaS, triggers two calcium signal pathways in the longitudinal muscle of mouse distal colon. Eur J Pharmacol 2008; 595:84-9. [PMID: 18713670 DOI: 10.1016/j.ejphar.2008.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/07/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022]
Abstract
Our previous research showed that ATP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS) induce contractile effects in the longitudinal muscle of mouse distal colon via activation of P2Y receptors which are not P2Y(1) or P2Y(12) subtypes. This study investigated the nature of the P2Y receptor subtype(s) and the mechanisms leading to the intracellular calcium concentration increase necessary to trigger muscular contraction. Motor responses of mouse colonic longitudinal muscle to P2Y receptor agonists were examined in vitro as changes in isometric tension. ATP or ADPbetaS induced muscular contraction, which was not affected by P2Y(11) or P2Y(13) selective antagonists. Calcium-free solution or the calcium channel blocker, nifedipine, failed to modify the contractile responses to ATP or ADPbetaS, which were virtually abolished by depletion of calcium intracellular stores after repetitive addition of carbachol in calcium-free medium with addition of cyclopiazonic acid. Neomycin or U-73122, phospholipase C inhibitors, or 2-aminoethoxy-diphenylborate (2-APB), membrane-permeant IP(3) receptor inhibitor reduced the response to ATP, whilst ryanodine or ruthenium red, inhibiting calcium release from ryanodine-sensitive stores, abolished the response to ADPbetaS. Responses to maximally effective concentrations of ATP and ADPbetaS were not fully additive. Desensitisation with ADPbetaS antagonized the contractile effects of ATP, as desensitisation with ATP antagonized the response to ADPbetaS. In the longitudinal muscle of mouse distal colon, ATP and ADPbetaS induce muscular contraction via a P2Y receptor, coupled to differential signal pathways leading to intracellular calcium increase.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | |
Collapse
|
30
|
de Man JG, Boeckx S, Anguille S, de Winter BY, de Schepper HU, Herman AG, Pelckmans PA. Functional study on TRPV1-mediated signalling in the mouse small intestine: involvement of tachykinin receptors. Neurogastroenterol Motil 2008; 20:546-56. [PMID: 18194153 DOI: 10.1111/j.1365-2982.2007.01064.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Afferent nerves in the gut not only signal to the central nervous system but also provide a local efferent-like effect. This effect can modulate intestinal motility and secretion and is postulated to involve the transient receptor potential of the vanilloid type 1 (TRPV1). By using selective TRPV1 agonist and antagonists, we studied the efferent-like effect of afferent nerves in the isolated mouse jejunum. Mouse jejunal muscle strips were mounted in organ baths for isometric tension recordings. Jejunal strips contracted to the TRPV1 agonist capsaicin. Contractions to capsaicin showed rapid tachyphylaxis and were insensitive to tetrodotoxin, hexamethonium, atropine or L-nitroarginine. Capsaicin did not affect contractions to electrical stimulation of enteric motor nerves and carbachol. Tachykinin NK1, NK2 and NK3 receptor blockade by RP67580, nepadutant plus SR-142801 reduced contractions to capsaicin to a similar degree as contractions to substance P. The effect of the TRPV1 antagonists capsazepine, SB-366791, iodo-resiniferatoxin (iodo-RTX) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC) was studied. Capsazepine inhibited contractions not only to capsaicin but also those to carbachol. SB-366791 reduced contractions both to capsaicin and carbachol. Iodo-RTX partially inhibited the contractions to capsaicin without affecting contractions to carbachol. BCTC concentration-dependently inhibited and at the highest concentration used, abolished the contractions to capsaicin without affecting those to carbachol. From these results, we conclude that activation of TRPV1 in the mouse intestine induces a contraction that is mediated by tachykinins most likely released from afferent nerves. The TRPV1-mediated contraction does not involve activation of intrinsic enteric motor nerves. Of the TRPV1 antagonists tested, BCTC combined strong TRPV1 antagonism with TRPV1 selectivity.
Collapse
Affiliation(s)
- J G de Man
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
McDonnell B, Hamilton R, Fong M, Ward SM, Keef KD. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1041-51. [PMID: 18308858 DOI: 10.1152/ajpgi.00356.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.
Collapse
Affiliation(s)
- Bronagh McDonnell
- Dept. of Physiology and Cell Biology, Univ. of Nevada, Reno, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
32
|
Gallego D, Vanden Berghe P, Farré R, Tack J, Jiménez M. P2Y1 receptors mediate inhibitory neuromuscular transmission and enteric neuronal activation in small intestine. Neurogastroenterol Motil 2008; 20:159-68. [PMID: 17971025 DOI: 10.1111/j.1365-2982.2007.01004.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that adenosine 5'-triphosphate or a related purine plays a crucial role in smooth muscle relaxation and enteric synaptic neurotransmission. Accordingly, the aim of the present work is to investigate the role P2Y(1) receptors in purinergic inhibitory neurotransmission (pig ileum) and enteric neuronal activation in the small intestine (guinea-pig ileum). Using contractility measurements, micro-electrode recordings and Ca(2+) imaging we found that (i) adenosine 5'-Omicron-2-thiodiphosphate (ADPbetaS) (10 micromol L(-1)) caused smooth muscle relaxation and hyperpolarization that was antagonized by MRS2179 (10 micromol L(-1)) a P2Y(1) receptor antagonist and apamin (1 micromol L(-1)); (ii) electrical field stimulation (EFS) caused a non-nitrergic inhibitory junction potential (IJP) and relaxation that was antagonized by MRS2179 (10 micromol L(-1)); (iii) P2Y(1) receptors were immunolocalized in smooth muscle cells and enteric neurons; (i.v.) superfusion of ADPbetaS (1 micromol L(-1)) induced Ca(2+) transients in myenteric neurons that were inhibited by MRS2179 (1 micromol L(-1)), but not by tetrodotoxin (1 micromol L(-1)); and (v) EFS induced calcium transients were partially inhibited by MRS2179 (1 micromol L(-1)). We conclude that in the small intestine purinergic neuromuscular transmission responsible for the IJP and non-nitrergic relaxation is mediated by P2Y(1) receptors located in smooth muscle cells. Functional P2Y(1) receptors are also present in guinea-pig myenteric neurons. Therefore, P2Y(1) receptors might be an important pharmacological target to modulate gastrointestinal functions.
Collapse
Affiliation(s)
- D Gallego
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
De Schepper HU, De Man JG, Ruyssers NE, Deiteren A, Van Nassauw L, Timmermans JP, Martinet W, Herman AG, Pelckmans PA, De Winter BY. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. Am J Physiol Gastrointest Liver Physiol 2008; 294:G245-53. [PMID: 17991707 DOI: 10.1152/ajpgi.00351.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Gastroenterology, Faculty of Medicine, Univ. of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium )
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2007; 4:197-212. [PMID: 18368521 DOI: 10.1007/s11302-007-9081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 02/08/2023] Open
Abstract
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,
| |
Collapse
|
35
|
Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM. Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 2007; 104:16359-64. [PMID: 17913880 PMCID: PMC2042211 DOI: 10.1073/pnas.0705510104] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peripheral inhibitory nerves are physiological regulators of the contractile behavior of visceral smooth muscles. One of the transmitters responsible for inhibitory neurotransmission has been reputed to be a purine, possibly ATP. However, the exact identity of this substance has never been verified. Here we show that beta-nicotinamide adenine dinucleotide (beta-NAD), an inhibitory neurotransmitter candidate, is released by stimulation of enteric nerves in gastrointestinal muscles, and the pharmacological profile of beta-NAD mimics the endogenous neurotransmitter better than ATP. Levels of beta-NAD in superfusates of muscles after nerve stimulation exceed ATP by at least 30-fold; unlike ATP, the release of beta-NAD depends on the frequency of nerve stimulation. beta-NAD is released from enteric neurons, and release was blocked by tetrodotoxin or omega-conotoxin GVIA. beta-NAD is an agonist for P2Y1 receptors, as demonstrated by receptor-mediated responses in HEK293 cells expressing P2Y1 receptors. Exogenous beta-NAD mimics the effects of the enteric inhibitory neurotransmitter. Responses to beta-NAD and inhibitory junction potentials are blocked by the P2Y1-selective antagonist, MRS2179, and the nonselective P2 receptor antagonists, pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid and suramin. Responses to ATP are not blocked by these P2Y receptor inhibitors. The expression of CD38 in gastrointestinal muscles, and specifically in interstitial cells of Cajal, provides a means of transmitter disposal after stimulation. beta-NAD meets the traditional criteria for a neurotransmitter that contributes to enteric inhibitory regulation of visceral smooth muscles.
Collapse
Affiliation(s)
| | - Sung Jin Hwang
- *Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; and
| | - Xuemei Hao
- Department of Neuroscience, Center for Molecular Neurobiology, and
| | - Hui Chen
- *Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; and
| | - Michael X. Zhu
- Department of Neuroscience, Center for Molecular Neurobiology, and
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210
| | - Sean M. Ward
- *Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; and
| | - Kenton M. Sanders
- *Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Van Crombruggen K, Van Nassauw L, Timmermans JP, Lefebvre RA. Inhibitory purinergic P2 receptor characterisation in rat distal colon. Neuropharmacology 2007; 53:257-71. [PMID: 17612577 DOI: 10.1016/j.neuropharm.2007.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to characterise the P2 receptors involved in purinergic relaxant responses in rat distal colon circular muscle. Concentration-response curves for purinergic agonists were constructed on methacholine-precontracted circular muscle strips of rat distal colon in the absence and presence of the nerve blocker TTX and the ecto-nucleotidase inhibitor ARL67156. The effects of the P2 receptor antagonists RB2, PPADS, suramin, MRS2179 and NF279, the NO-synthase inhibitor L-NAME and the small conductance K(+) channel blocker apamin were investigated. The localisation of the different P2 receptors was examined immunocytochemically. Immunocytochemistry demonstrated the expression of P2Y(1), P2Y(6) and P2X(1) receptors on smooth muscle cells and P2Y(2), P2Y(12), P2X(2) and P2X(3) receptors in the myenteric plexus; almost a quarter of the P2Y(2)-immunopositive neurons co-expressed nNOS. The P2X-selective agonist alphabetameATP and the P2Y-selective agonist ADPbetaS were the most potent relaxants; their effects were abolished by apamin. The effect of ADPbetaS was antagonised by the P2Y(1)-selective antagonist MRS2179 pointing to interaction with the muscular P2Y(1)-receptors. The relaxant effect of alphabetameATP was partially reduced by TTX and concentration-dependently antagonised by PPADS, suramin, RB2 and the P2X(1)-selective antagonist NF279; this correlates with an interaction with neuronal P2X(3) and muscular P2X(1) receptors. UTP was the least potent agonist; its effect was markedly increased by ARL67156, nearly abolished by TTX and reduced by L-NAME. This points to interaction with the neuronal P2Y(2)-receptors inducing relaxation, at least partially, by NO release.
Collapse
Affiliation(s)
- K Van Crombruggen
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | | | | | | |
Collapse
|
37
|
Gwynne RM, Bornstein JC. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1162-72. [PMID: 17218474 DOI: 10.1152/ajpgi.00441.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms underlying nutrient-induced segmentation within the gut are not well understood. We have shown that decanoic acid and some amino acids induce neurally dependent segmentation in guinea pig small intestine in vitro. This study examined the neural mechanisms underlying segmentation in the circular muscle and whether the timing of segmentation contractions also depends on slow waves. Decanoic acid (1 mM) was infused into the lumen of guinea pig duodenum and jejunum. Video imaging was used to monitor intestinal diameter as a function of both longitudinal position and time. Circular muscle electrical activity was recorded by using suction electrodes. Recordings from sites of segmenting contractions showed they are always associated with excitatory junction potentials leading to action potentials. Recordings from sites oral and anal to segmenting contractions revealed inhibitory junction potentials that were time locked to those contractions. Slow waves were never observed underlying segmenting contractions. In paralyzed preparations, intracellular recording revealed that slow-wave frequency was highly consistent at 19.5 (SD 1.4) cycles per minute (c/min) in duodenum and 16.6 (SD 1.1) c/min in jejunum. By contrast, the frequencies of segmenting contractions varied widely (duodenum: 3.6-28.8 c/min, median 10.8 c/min; jejunum: 3.0-27.0 c/min, median 7.8 c/min) and sometimes exceeded slow-wave frequencies for that region. Thus nutrient-induced segmentation contractions in guinea pig small intestine do not depend on slow-wave activity. Rather they result from a neural circuit producing rhythmic localized activity in excitatory motor neurons, while simultaneously activating surrounding inhibitory motor neurons.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Vic 3010, Australia.
| | | |
Collapse
|
38
|
Zizzo MG, Mulè F, Serio R. Evidence that ATP or a related purine is an excitatory neurotransmitter in the longitudinal muscle of mouse distal colon. Br J Pharmacol 2007; 151:73-81. [PMID: 17351663 PMCID: PMC2012975 DOI: 10.1038/sj.bjp.0707188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE This study analysed the contribution of the purinergic system to enteric neurotransmission in the longitudinal muscle of mouse distal colon. EXPERIMENTAL APPROACH Motor responses to exogenous ATP and to nerve stimulation in vitro were assessed as changes in isometric tension. KEY RESULTS ATP induced a concentration-dependent contraction, reduced by 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzene disulphonic acid (PPADS), suramin, P2Y purinoreceptor desensitisation with adenosine 5'-O-2-thiodiphosphate (ADPbetaS), and atropine, but unaffected by P2X purinoceptor desensitisation with alpha,beta-methylene ATP (alpha,beta-meATP) and by 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propyl ester (MRS 2395), a P2Y(12) selective antagonist. The response to ATP was increased by 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS 2179), a P2Y(1) selective antagonist, tetrodotoxin (TTX) or N(omega)-nitro-L-arginine methyl ester (L-NAME). ADPbetaS, a P2Y-purinergic agonist, induced muscular contraction, with the same pharmacological profile as the ATP-induced contraction. ADP, a natural ligand for P2Y(1) receptors, induced muscular relaxation, antagonized by MRS 2179 and by TTX or L-NAME. Nerve stimulation elicited a transient nitrergic relaxation, followed by contraction. Contractile responses was reduced by atropine, PPADS, suramin, P2Y purinoceptor desensitisation, but not by P2X purinoceptor desensitisation, MRS 2179 or MRS 2395. None of the purinergic antagonists modified the nerve-evoked relaxation. CONCLUSIONS AND IMPLICATIONS In the longitudinal muscle of mouse distal colon, ATP, through ADPbetaS-sensitive P2Y purinoceptors, contributed to the excitatory neurotransmission acting directly on smooth muscle and indirectly via activation of cholinergic neurons. Moreover, P2Y1 purinoceptors appear to be located on nitrergic inhibitory neurons. This study provides new insights into the role of purines in the mechanism inducing intestinal transit in mouse colon.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze Palermo, Italia
| | - F Mulè
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze Palermo, Italia
| | - R Serio
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze Palermo, Italia
- Author for correspondence:
| |
Collapse
|
39
|
De Man JG, De Winter BY, Herman AG, Pelckmans PA. Study on the cyclic GMP-dependency of relaxations to endogenous and exogenous nitric oxide in the mouse gastrointestinal tract. Br J Pharmacol 2006; 150:88-96. [PMID: 17115067 PMCID: PMC2013844 DOI: 10.1038/sj.bjp.0706964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE cGMP mediates nitrergic relaxations of intestinal smooth muscle, but several studies have indicated that cGMP-independent mechanisms may also be involved. We addressed this contention by studying the effect of ODQ and ns2028, specific inhibitors of soluble guanylate cyclase, on nitrergic relaxations of the mouse gut. EXPERIMENTAL APPROACH Mouse gastric fundus and small intestinal muscle preparations were mounted in organ baths to study relaxations to exogenous NO, NO donors and electrical field stimulation (EFS) of enteric nerves. KEY RESULTS In gastric fundus longitudinal muscle strips, ODQ and NS2028 abolished the L-nitroarginine-sensitive relaxations to EFS and the relaxations to NO and NO donors, glyceryl trinitrate (GTN), SIN-1 and sodium nitroprusside (SNP). EFS of intestinal segments and muscle strips showed L-nitroarginine-resistant relaxations, which were abolished by the purinoceptor blocker suramin. In the presence of suramin, ODQ and NS2028 abolished all relaxations to EFS in intestinal segments and strips. ODQ and NS2028 abolished the relaxations to exogenous NO and to the NO donors GTN, SIN-1 and SNP in circular and longitudinal intestinal muscle strips. Intestinal segments showed residual relaxations to NO and GTN. CONCLUSIONS AND IMPLICATIONS Our results indicate that relaxations to endogenous NO in the mouse gastric fundus and small intestine are completely dependent on cGMP. ODQ and NS2028 incompletely blocked nitrergic relaxations to exogenous NO in intact intestinal segments. However, it is unlikely that this is due to the involvement of cGMP-independent pathways because ODQ and NS2028 abolished all relaxations to endogenous and exogenous NO in intestinal muscle strips.
Collapse
Affiliation(s)
- J G De Man
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
40
|
Gallego D, Hernández P, Clavé P, Jiménez M. P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G584-94. [PMID: 16751171 DOI: 10.1152/ajpgi.00474.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Indirect evidence suggests that ATP is a neurotransmitter involved in inhibitory pathways in the neuromuscular junction in the gastrointestinal tract. The aim of this study was to characterize purinergic inhibitory neuromuscular transmission in the human colon. Tissue was obtained from colon resections for neoplasm. Muscle bath, microelectrode experiments, and immunohistochemical techniques were performed. 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) was used as a selective inhibitor of P2Y(1) receptors. We found that 1) ATP (1 mM) and adenosine 5'-beta-2-thiodiphosphate (ADPbetaS) (10 microM), a preferential P2Y agonist, inhibited spontaneous motility and caused smooth muscle hyperpolarization (about -12 mV); 2) MRS 2179 (10 microM) and apamin (1 microM) significantly reduced these effects; 3) both the fast component of the inhibitory junction potential (IJP) and the nonnitrergic relaxation induced by electrical field stimulation were dose dependently inhibited (IC(50) approximately 1 microM) by MRS 2179; 4) ADPbetaS reduced the IJP probably by a desensitization mechanism; 5) apamin (1 microM) reduced the fast component of the IJP (by 30-40%) and the inhibitory effect induced by electrical field stimulation; and 6) P2Y(1) receptors were localized in smooth muscle cells as well as in enteric neurons. These results show that ATP or a related purine is released by enteric inhibitory motoneurons, causing a fast hyperpolarization and smooth muscle relaxation. The high sensitivity of MRS 2179 has revealed, for the first time in the human gastrointestinal tract, that a P2Y(1) receptor present in smooth muscle probably mediates this mechanism through a pathway that partially involves apamin-sensitive calcium-activated potassium channels. P2Y(1) receptors can be an important pharmacological target to modulate smooth muscle excitability.
Collapse
Affiliation(s)
- Diana Gallego
- Dept. of Cell Biology, Physiology, and Immunology, Edifici V, Universidad Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | |
Collapse
|
41
|
Zizzo MG, Mulè F, Serio R. Mechanisms underlying hyperpolarization evoked by P2Y receptor activation in mouse distal colon. Eur J Pharmacol 2006; 544:174-80. [PMID: 16843454 DOI: 10.1016/j.ejphar.2006.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/04/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
In murine colonic circular muscle, ATP mediates fast component of the nerve-evoked inhibitory junction potentials, via activation of P2Y receptors and opening of apamin-sensitive Ca2+-dependent K+ channels. We investigated, using microelectrode recordings, the intracellular events following P2Y-receptor activation by electrical field stimulation or by adenosine 5'-O-2-thiodiphosphate (ADPbetaS), ATP stable analogue. The fast-inhibitory junction potential amplitude was reduced by thapsigargin or ciclopiazonic acid (CPA), sarcoplasmic reticulum Ca2+-ATPase inhibitors, by ryanodine, which inhibits Ca2+ release from ryanodine-sensitive stores, and by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), an adenylyl cyclase inhibitor. Fast-inhibitory junction potentials were enhanced by 2-aminoethoxy-diphenylborate (2-APB), an IP3 receptor inhibitor or by {1-[6((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione} (U-73122), a phospholipase C inhibitor. ADPbetaS induced hyperpolarization that was significantly reduced by apamin, thapsigargin, CPA, ryanodine, 2-APB and SQ 22,536, but it was not modified by U-73122. Forskolin, an adenylyl cyclase activator, induced hyperpolarization that was inhibited by SQ 22,536, apamin or ryanodine. In conclusion, in murine colon, apamin-sensitive hyperpolarization induced by activation of P2Y receptors is mainly mediated by release of Ca2+ from intracellular ryanodine-dependent stores via a mechanism involving adenylyl cyclase.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo--Laboratorio di Fisiologia generale--Università di Palermo--Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
42
|
Zizzo MG, Mulè F, Serio R. Inhibitory responses to exogenous adenosine in murine proximal and distal colon. Br J Pharmacol 2006; 148:956-63. [PMID: 16847444 PMCID: PMC1751921 DOI: 10.1038/sj.bjp.0706808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aims of the present study were firstly, to characterize pharmacologically the subtypes of P(1) purinoreceptors involved in the inhibitory effects induced by exogenous adenosine in longitudinal smooth muscle of mouse colon, and secondly, to examine differences in the function and distribution of these receptors between proximal and distal colon. Adenosine (100 microM-3 mM) caused a concentration-dependent reduction of the amplitude of spontaneous contractions in the proximal colon, and muscular relaxation in the distal colon. In the proximal colon, adenosine effects were antagonized by a selective A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 nM), but were not modified by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 microM) or by 9-chloro-2-(2-furanyl)-5-((phenylacetyl)amino)- [1,2,4]triazolo[1,5-c]quinazoline (MRS 1220, 0.1 microM), selective A(2) and A(3) receptor antagonists, respectively. In the distal colon, adenosine effects were antagonized by DPCPX, DMPX, and by a selective A(2B) receptor antagonist, 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl) xanthine (MRS 1754, 10 microM), but not by 8-(3-chlorostyryl)-caffeine (CSC, 10 microM), a selective A(2A) receptor antagonist, or by MRS 1220. Tetrodotoxin (TTX 1 microM), the nitric oxide (NO) synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM), or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM), an inhibitor of soluble guanylyl cyclase, reduced adenosine effects only in distal colon. In addition, L-NAME induced a further reduction of adenosine relaxation in the presence of DPCPX, but not in the presence of MRS 1754. From these results we conclude that, in the murine proximal colon, adenosine induces inhibitory effects via TTX-insensitive activation of A(1) receptor. In the distal colon, adenosine activates both A(1) and A(2B) receptors, the latter located on enteric inhibitory neurons releasing NO.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rosa Serio
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Author for correspondence:
| |
Collapse
|
43
|
Satoh Y, Okishio Y, Azuma YT, Nakajima H, Hata F, Takeuchi T. Orexin A affects ascending contraction depending on downstream cholinergic neurons and descending relaxation through independent pathways in mouse jejunum. Neuropharmacology 2006; 51:466-73. [PMID: 16762378 DOI: 10.1016/j.neuropharm.2006.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/16/2006] [Accepted: 04/07/2006] [Indexed: 01/06/2023]
Abstract
The involvement of orexin in neural pathways for peristalsis was examined in mouse jejunal segments. Localized distension of the segments using a small balloon resulted in ascending contraction and descending relaxation. Ascending contraction was abolished by atropine and tetrodotoxin. Desensitization to orexin A (OXA) and SB-334867-A, an orexin-1 receptor antagonist, significantly inhibited ascending contraction. Hexamethonium also produced a significant inhibition. Exogenous administration of either OXA or nicotine induced a transient contraction that was completely inhibited by atropine and tetrodotoxin. The OXA-induced contraction was significantly inhibited by hexamethonium and SB-334867-A, whereas the nicotine-induced contraction was not inhibited by SB-334867-A. Descending relaxation was either partially or completely inhibited by l-nitroarginine and tetrodotoxin, respectively. Both SB-334867-A and hexamethonium partially inhibited descending relaxation. A combination of SB-334867-A and hexamethonium had an additive inhibitory effect on descending relaxation. Exogenous OXA, in the presence of atropine, induced a relaxation that was significantly inhibited by both l-nitroarginine and SB-334867-A, but not by hexamethonium. Nicotine in the presence of atropine relaxed the jejunal segment. SB-334867-A, unlike hexamethonium, did not affect nicotine-induced relaxation. These results suggest that OXA plays an important role in the ascending and descending neural reflexes in the mouse jejunum.
Collapse
Affiliation(s)
- Yuji Satoh
- Department of Veterinary Pharmacology, Graduate school of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Sakai 599-9531, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Hussl S, Boehm S. Functions of neuronal P2Y receptors. Pflugers Arch 2006; 452:538-51. [PMID: 16691392 DOI: 10.1007/s00424-006-0063-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 01/05/2023]
Abstract
Within the last 15 years, at least eight different G protein-coupled nucleotide receptors, i.e., P2Y receptors, have been characterized by molecular means. While ionotropic P2X receptors are mainly involved in fast synaptic neurotransmission, P2Y receptors rather mediate slower neuromodulatory effects. This P2Y receptor-dependent neuromodulation relies on changes in synaptic transmission via either pre- or postsynaptic sites of action. At both sites, the regulation of voltage-gated or transmitter-gated ion channels via G protein-linked signaling cascades has been identified as the predominant underlying mechanisms. In addition, neuronal P2Y receptors have been found to be involved in neurotoxic and neurotrophic effects of extracellular adenosine 5-triphosphate. This review provides an overview of the most prominent actions mediated by neuronal P2Y receptors and describes the signaling cascades involved.
Collapse
Affiliation(s)
- Simon Hussl
- Center of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, Vienna, 1090, Austria
| | | |
Collapse
|
45
|
Yeung D, Zablocki K, Lien CF, Jiang T, Arkle S, Brutkowski W, Brown J, Lochmuller H, Simon J, Barnard EA, Górecki DC. Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells. FASEB J 2006; 20:610-20. [PMID: 16581969 DOI: 10.1096/fj.05-4022com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathological cellular hallmarks of Duchenne muscular dystrophy (DMD) include, among others, abnormal calcium homeostasis. Changes in the expression of specific receptors for extracellular ATP in dystrophic muscle have been recently documented: here, we demonstrate that at the earliest, myoblast stage of developing dystrophic muscle a purinergic dystrophic phenotype arises. In myoblasts of a dystrophin-negative muscle cell line established from the mdx mouse model of DMD but not in normal myoblasts, exposure to extracellular ATP triggered a strong increase in cytoplasmic Ca2+ concentrations. Influx of extracellular Ca2+ was stimulated by ATP and BzATP and inhibited by zinc, Coomassie Brilliant Blue-G, and KN-62, demonstrating activation of P2X7 receptors. Significant expression of P2X4 and P2X7 proteins was immunodetected in dystrophic myoblasts. Therefore, full-length dystrophin appears, surprisingly, to play an important role in myoblasts in controlling responses to ATP. Our results suggest that altered function of P2X receptors may be an important contributor to pathogenic Ca2+ entry in dystrophic mouse muscle and may have implications for the pathogenesis of muscular dystrophies. Treatments aiming at inhibition of specific ATP receptors could be of a potential therapeutic benefit.
Collapse
Affiliation(s)
- Davy Yeung
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, Portsmouth, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Benkó R, Undi S, Wolf M, Barthó L. Effects of acute administration of and tachyphylaxis to alpha,beta-methylene ATP in the guinea-pig small intestine. Basic Clin Pharmacol Toxicol 2006; 97:369-73. [PMID: 16364052 DOI: 10.1111/j.1742-7843.2005.pto_117.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to assess the acute motility effects and desensitizing activity of the stable ATP analogue and P(2X) purinoceptor agonist alpha,beta-methylene ATP (alpha,beta-meATP) and the effect of alpha,beta-meATP desensitization on nerve-mediated cholinergic responses in the guinea-pig ileum in vitro. It was confirmed that alpha,beta-meATP (1-30 microM) causes neurally-mediated, cholinergic (tetrodotoxin- and atropine-sensitive) longitudinal contractions. These responses were not influenced by the ganglionic blocking drug hexamethonium (50 microM), or a combination of the adrenergic neurone blocking drug guanethidine (3 microM), the opioid receptor antagonist naloxone (0.5 microM) and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 100 microM), but were strongly reduced or abolished by the P2 purinoceptor antagonist PPADS (30 microM) or by tachyphylaxis evoked by 10 microM alpha,beta-meATP. The contractile effect of alpha,beta-meATP (3 microM) was moderately inhibited by 10 microM and strongly suppressed by 30 microM of NF 279, an antagonist predominantly affecting P2X1 purinoceptors, but left uninfluenced by the P2X(5,7) receptor antagonist Brilliant blue G. No relaxant effect of alpha,beta-meATP was detected in the concentration range of 1-30 microM. Tachyphylaxis to alpha,beta-meATP (1-10 microM) caused a moderate inhibition of the cholinergic (atropine-sensitive) contractile response of the ileum to electrical field stimulation (5 Hz for 5 sec.). This reduction was unaltered in the presence of guanethidine, naloxone and L-NOARG. Responses to nicotine (1 or 2 microM) were not reduced by alpha,beta-meATP tachyphylaxis. It is suggested that alpha,beta-meATP-sensitive P(2X) purinoceptors are involved in the prejunctional modulation of cholinergic neurotransmission between the myenteric plexus and longitudinal smooth muscle in the guinea-pig small intestine.
Collapse
Affiliation(s)
- Rita Benkó
- Department of Pharmacology and Pharmacotherapy, Division of Pharmacodynamics, University of Pécs Medical School, Pécs, Hungary
| | | | | | | |
Collapse
|
47
|
Farré R, Aulí M, Lecea B, Martínez E, Clavé P. Pharmacologic characterization of intrinsic mechanisms controlling tone and relaxation of porcine lower esophageal sphincter. J Pharmacol Exp Ther 2006; 316:1238-48. [PMID: 16303917 DOI: 10.1124/jpet.105.094482] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The neurotransmitters mediating relaxation of lower esophageal sphincter (LES) were studied using circular LES strips from adult pigs in organ baths. LES relaxation by sodium nitroprusside (1 nM-3 microM), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP; 1 nM-1 microM), ATP (10 microM-30 mM), and tricarbonyldichlororuthenum dimer (1 microM-1 mM) was unaffected by tetrodotoxin (1 microM) or l-N(G)-nitroarginine methyl ester (l-NAME; 100 microM). Calcitonin gene-related peptide (CGRP; 1 nM-1 microM) did not affect LES tone. ATP relaxation was blocked by 1 microM apamin and the P2Y(1) antagonist MRS 2179 (N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate; 10 microM). Apamin inhibited PACAP relaxation. VIP and PACAP relaxation was blocked by 10 U/ml alpha-chymotrypsin. L-NAME (-62.52 +/- 13.13%) and 1H-[1,2,4]oxadiazole-[4,3-alpha]quinoxalin-1-one (ODQ; 10 microM, -67.67 +/- 6.80%) similarly inhibited electrical LES relaxation, and apamin blocked non-nitrergic relaxation. Nicotine relaxation (100 microM) was inhibited by L-NAME (-60.37 +/- 10.8%) and ODQ (-41.90 +/- 7.89%), and apamin also blocked non-nitrergic relaxation. Non-nitrergic and apamin-sensitive LES relaxation by electrical stimulation or nicotine was strongly inhibited by MRS 2179, slightly inhibited by alpha-chymotrypsin and the P2X(1,2,3) receptor antagonist NF 279 (8,8 cent-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt; 10 microM), and unaffected by tin protoporphyrin IX (100 microM). Porcine LES relaxation after stimulation of intrinsic inhibitory motor neurons is mediated by two main neuromuscular pathways: nitric oxide through guanylate cyclase signaling and apamin-insensitive mechanisms and by non-nitrergic apamin-sensitive neurotransmission mainly mediated by ATP, ADP, or a related purine acting on P2Y1 receptors and a minor contribution of purinergic P2X1,2,3 receptors and PACAP. Nitrergic and purinergic co-transmitters show parallel effects of similar magnitude without major interplay. Our study shows no role for CGRP and only a minor one for VIP and carbon monoxide in porcine LES relaxation.
Collapse
Affiliation(s)
- Ricard Farré
- Fundació de Gastroenterologia Dr. Francisco Vilardell, Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
De Schepper HU, De Winter BY, Seerden TC, Herman AG, Pelckmans PA, De Man JG. Functional characterisation of tachykinin receptors in the circular muscle layer of the mouse ileum. ACTA ACUST UNITED AC 2005; 130:105-15. [PMID: 15935491 DOI: 10.1016/j.regpep.2005.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.
Collapse
Affiliation(s)
- Heiko U De Schepper
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Toda N, Herman AG. Gastrointestinal Function Regulation by Nitrergic Efferent Nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
50
|
Lee HK, Ro S, Keef KD, Kathy KD, Kim YH, Kim HW, Horowitz B, Sanders KM. Differential expression of P2X-purinoceptor subtypes in circular and longitudinal muscle of canine colon. Neurogastroenterol Motil 2005; 17:575-84. [PMID: 16078947 DOI: 10.1111/j.1365-2982.2005.00670.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP) mediates excitatory junction potentials through P2X receptors in many smooth muscles. However, relatively little is known about postjunctional intestinal P2X receptors. We examined the effect of exogenous ATP on circular and longitudinal myocytes of canine colon using the patch clamp technique at 32 degrees C. In both cell types, ATP induced inward currents (I(ATP)) at -70 mV in a concentration-dependent manner. The potency profile of ATP analogues in circular myocytes was: ATP approximately 2-methylthio-ATP > alpha,beta-methylene ATP, and that in longitudinal myocytes was: alpha,beta-methylene ATP approximately ATP > 2-methylthio-ATP. Pretreatment of circular myocytes with alpha,beta-methylene ATP inhibited the response to subsequent ATP, suggesting receptor desensitization. I-V relationships of I(ATP) were linear with inward rectification and E(rev) of -13 mV. I(ATP) at -70 mV was carried predominantly by Na+ as determined by shifts in E(rev) when extracellular Na+ was lowered. In RT-PCR, circular myocytes expressed mRNAs encoding P2X2, 3 and 4, while longitudinal myocytes expressed mRNAs for P2X3 and 5. P2X7 was absent in both cells. Fragments of each subtype were cloned and sequenced. We failed to clone P2X1 and P2X6 genes. Overall, different P2X receptor subtypes are expressed in circular and longitudinal canine colonic myocytes. Their activation produces non-selective cation currents that can depolarize and excite muscles of both layers.
Collapse
Affiliation(s)
- H K Lee
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|