1
|
Wang Z, Xu T, Sun Y, Zhang X, Wang X. AMPK/PGC-1α and p53 modulate VDAC1 expression mediated by reduced ATP level and metabolic oxidative stress in neuronal cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:162-173. [PMID: 38298056 PMCID: PMC10984866 DOI: 10.3724/abbs.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 02/02/2024] Open
Abstract
Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.
Collapse
Affiliation(s)
- Zhitong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Department of PharmacyPeking University Third HospitalInstitute for Drug EvaluationPeking University Health Science CenterTherapeutic Drug Monitoring and Clinical Toxicology CenterPeking UniversityBeijing100191China
| | - Tingting Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
2
|
Balakrishnan P, Arasu A, Velusamy T. Targeting altered calcium homeostasis and uncoupling protein-2 promotes sensitivity in drug-resistant breast cancer cells. J Biochem Mol Toxicol 2024; 38:e23575. [PMID: 37920924 DOI: 10.1002/jbt.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Metastatic breast cancer has the highest mortality rate among women owing to its poor clinical outcomes. Metastatic tumors pose challenges for treatment through conventional surgery or radiotherapy because of their diverse organ localization and resistance to various cytotoxic agents. Chemoresistance is a significant obstacle to effective breast cancer treatment owing to cancer's heterogeneous nature. Abnormalities in intracellular calcium signaling, coupled with altered mitochondrial metabolism, play a significant role in facilitating drug resistance and contribute to therapy resistance. Uncoupling protein-2 (UCP2) is considered as a marker of chemoresistance and is believed to play a major role in promoting metabolic shifts and tumor metastasis. In this context, it is imperative to understand the roles of altered calcium signaling and metabolic switching in the development of chemotherapeutic resistance. This study investigates the roles of UCP2 and intracellular calcium signaling (Ca2+ ) in promoting chemoresistance against cisplatin. Additionally, we explored the effectiveness of combining genipin (GP, a compound that reverses UCP2-mediated chemoresistance) and thapsigargin (TG, a calcium signaling modulator) in treating highly metastatic breast cancers. Our findings indicate that both aberrant Ca2+ signaling and metabolic shifts in cancer cells contribute to developing drug-resistant phenotypes, and the combination treatment of GP and TG significantly enhances drug sensitivity in these cells. Collectively, our study underscores the potential of these drug combinations as an effective approach to overcome drug resistance in chemoresistant cancers.
Collapse
Affiliation(s)
- Pavithra Balakrishnan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Ashok Arasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Lorenzo-Anota HY, Reyes-Ruiz A, Calvillo-Rodríguez KM, Mendoza-Reveles R, Urdaneta-Peinado AP, Alvarez-Valadez KM, Martínez-Torres AC, Rodríguez-Padilla C. IMMUNEPOTENT CRP increases intracellular calcium through ER-calcium channels, leading to ROS production and cell death in breast cancer and leukemic cell lines. EXCLI JOURNAL 2023; 22:352-366. [PMID: 37223080 PMCID: PMC10201010 DOI: 10.17179/excli2022-5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 05/25/2023]
Abstract
IMMUNEPOTENT CRP (ICRP) is an immunotherapy that induces cell death in cancer cell lines. However, the molecular mechanisms of death are not completely elucidated. Here, we evaluated the implication of intracellular Ca2+ augmentation in the cell death induced by ICRP on T-ALL and breast cancer cell lines. Cell death induction and the molecular characteristics of cell death were evaluated in T-ALL and breast cancer cell lines by assessing autophagosome formation, ROS production, loss of mitochondrial membrane potential, ER stress and intracellular Ca2+ levels. We assessed the involvement of extracellular Ca2+, and the implication of the ER-receptors, IP3R and RyR, in the cell death induced by ICRP, by using an extracellular calcium chelator and pharmacological inhibitors. Our results show that ICRP increases intracellular Ca2+ levels as the first step of the cell death mechanism that provokes ROS production and loss of mitochondrial membrane potential. In addition, blocking the IP3 and ryanodine receptors inhibited ER-Ca2+ release, ROS production and ICRP-induced cell death. Taken together our results demonstrate that ICRP triggers intracellular Ca2+-increase leading to different regulated cell death modalities in T-ALL and breast cancer cell lines. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Helen Y. Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- Tecnológico de Monterrey, The Institute for Obesity Research, Monterrey, México
| | - Alejandra Reyes-Ruiz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Kenny M. Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Rodolfo Mendoza-Reveles
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Andrea P. Urdaneta-Peinado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Karla M. Alvarez-Valadez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
- LONGEVEDEN S.A. de C.V
| |
Collapse
|
4
|
Kim DS, Pessah IN, Santana CM, Purnell BS, Li R, Buchanan GF, Rumbeiha WK. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol Sci 2023; 192:kfad022. [PMID: 36882182 PMCID: PMC10109532 DOI: 10.1093/toxsci/kfad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Cristina M Santana
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
- MRIGlobal, Kansas City, Missouri 64110, USA
| | - Benton S Purnell
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
- Department of Nerosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Rui Li
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Gordon F Buchanan
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
5
|
Cappabianca L, Sebastiano M, Ruggieri M, Sbaffone M, Zelli V, Farina AR, Mackay AR. Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells. Int J Mol Sci 2022; 23:ijms231810895. [PMID: 36142807 PMCID: PMC9503591 DOI: 10.3390/ijms231810895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs.
Collapse
|
6
|
Kouba S, Hague F, Ahidouch A, Ouadid-Ahidouch H. Crosstalk between Ca2+ Signaling and Cancer Stemness: The Link to Cisplatin Resistance. Int J Mol Sci 2022; 23:ijms231810687. [PMID: 36142596 PMCID: PMC9503744 DOI: 10.3390/ijms231810687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
In the fight against cancer, therapeutic strategies using cisplatin are severely limited by the appearance of a resistant phenotype. While cisplatin is usually efficient at the beginning of the treatment, several patients endure resistance to this agent and face relapse. One of the reasons for this resistant phenotype is the emergence of a cell subpopulation known as cancer stem cells (CSCs). Due to their quiescent phenotype and self-renewal abilities, these cells have recently been recognized as a crucial field of investigation in cancer and treatment resistance. Changes in intracellular calcium (Ca2+) through Ca2+ channel activity are essential for many cellular processes such as proliferation, migration, differentiation, and survival in various cell types. It is now proved that altered Ca2+ signaling is a hallmark of cancer, and several Ca2+ channels have been linked to CSC functions and therapy resistance. Moreover, cisplatin was shown to interfere with Ca2+ homeostasis; thus, it is considered likely that cisplatin-induced aberrant Ca2+ signaling is linked to CSCs biology and, therefore, therapy failure. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to a range of pressures dictates the global degree of cisplatin resistance. However, if we can understand the molecular mechanisms linking Ca2+ to cisplatin-induced resistance and CSC behaviors, alternative and novel therapeutic strategies could be considered. In this review, we examine how cisplatin interferes with Ca2+ homeostasis in tumor cells. We also summarize how cisplatin induces CSC markers in cancer. Finally, we highlight the role of Ca2+ in cancer stemness and focus on how they are involved in cisplatin-induced resistance through the increase of cancer stem cell populations and via specific pathways.
Collapse
Affiliation(s)
- Sana Kouba
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Ahmed Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Département de Biologie, Faculté des Sciences, Université Ibn Zohr, Agadir 81016, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
- Correspondence:
| |
Collapse
|
7
|
Li RY, Zheng ZY, Li ZM, Heng JH, Zheng YQ, Deng DX, Xu XE, Liao LD, Lin W, Xu HY, Huang HC, Li EM, Xu LY. Cisplatin-induced pyroptosis is mediated via the CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME axis in esophageal cancer. Chem Biol Interact 2022; 361:109967. [PMID: 35525317 DOI: 10.1016/j.cbi.2022.109967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
Esophageal cancer is the seventh most common cancer globally. Chemotherapy resistance remains a significant challenge in the treatment of esophageal cancer patients. Cisplatin can damage tumor cells by inducing pyroptosis. However, the underlying molecular mechanisms remain unclear. In this work, we aim to investigate pyroptosis-dependent molecular mechanisms underlying cisplatin sensitivity and find potential biomarkers to predict response to cisplatin-based chemotherapy for esophageal cancer patients. Pyroptosis-associated proteins were screened via proteomics for esophageal cancer (n = 124) and bioinformatics analysis. We observed that high calpain-1 (CAPN1) and calpain-2 (CAPN2) expression were associated with favorable clinical outcomes and prolonged survival in esophageal cancer patients. We employed immunohistochemistry to evaluate the expression of CAPN1 and CAPN2 in pretreatment tumor biopsies from 108 patients with esophageal cancer who received concurrent chemoradiotherapy (CCRT). These results suggested that esophageal cancer patients with high expression of both CAPN1 and CAPN2 are likely to experience a complete response to CCRT and have significantly better survival. Western blotting, LDH release, calpain activity and cell viability assays indicated that cisplatin could activate calpain activity, while calpain inhibition or knockout suppressed cisplatin-induced pyroptosis. Mechanistically, we uncovered a novel mechanism whereby cisplatin induced pyroptosis via activation of a CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME signaling axis in esophageal cancer cells. Collectively, this study is the first to explore the effects of calpain on cisplatin-induced pyroptosis in esophageal cancer cells. Further, our findings also imply that the combination of CAPN1 and CAPN2 could be considered as a promising biomarker of cisplatin sensitivity and prognosis in patients with esophageal cancer, providing a possibility to guide individualized treatment.
Collapse
Affiliation(s)
- Rong-Yao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jing-Hua Heng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wan Lin
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hong-Yao Xu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
8
|
Rakoczy RJ, Schiebrel CM, Wyatt CN. Acute Oxygen-Sensing via Mitochondria-Generated Temperature Transients in Rat Carotid Body Type I Cells. Front Physiol 2022; 13:874039. [PMID: 35510145 PMCID: PMC9060449 DOI: 10.3389/fphys.2022.874039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
The Carotid Bodies (CB) are peripheral chemoreceptors that detect changes in arterial oxygenation and, via afferent inputs to the brainstem, correct the pattern of breathing to restore blood gas homeostasis. Herein, preliminary evidence is presented supporting a novel oxygen-sensing hypothesis which suggests CB Type I cell “hypoxic signaling” may in part be mediated by mitochondria-generated thermal transients in TASK-channel-containing microdomains. Distances were measured between antibody-labeled mitochondria and TASK-potassium channels in primary rat CB Type I cells. Sub-micron distance measurements (TASK-1: 0.33 ± 0.04 µm, n = 47 vs TASK-3: 0.32 ± 0.03 µm, n = 54) provided evidence for CB Type I cell oxygen-sensing microdomains. A temperature-sensitive dye (ERthermAC) indicated that inhibition of mitochondrial activity in isolated cells caused a rapid and reversible inhibition of mitochondrial thermogenesis and thus temperature in these microdomains. Whole-cell perforated-patch current-clamp electrophysiological recordings demonstrated sensitivity of resting membrane potential (Vm) to temperature: lowering bath temperature from 37°C to 24°C induced consistent and reversible depolarizations (Vm at 37°C: 48.4 ± 4.11 mV vs 24°C: 31.0 ± 5.69 mV; n = 5; p < 0.01). These data suggest that hypoxic inhibition of mitochondrial thermogenesis may play an important role in oxygen chemotransduction in the CB. A reduction in temperature within cellular microdomains will inhibit plasma membrane ion channels, influence the balance of cellular phosphorylation–dephosphorylation, and may extend the half-life of reactive oxygen species. The characterization of a thermosensory chemotransduction mechanism, that may also be used by other oxygen-sensitive cell types and may impact multiple other chemotransduction mechanisms is critical if we are to fully understand how the CBs, and potentially other oxygen-sensitive cells, respond to hypoxia.
Collapse
|
9
|
Cui XZ, Zheng MX, Yang SY, Bai R, Zhang L. Roles of calpain in the apoptosis of Eimeria tenella host cells at the middle and late developmental stages. Parasitol Res 2022; 121:1639-1649. [PMID: 35412077 DOI: 10.1007/s00436-022-07496-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the role of calpain in Eimeria tenella-induced host cell apoptosis. Chick embryo cecal epithelial cell culture technology, flow cytometry, enzyme-linked immunosorbent assays, and fluorescence quantitative PCR were used to detect the E. tenella host cell apoptotic rate, Bax and Bid expression levels, and calpain activity. The results demonstrated that Bax, Bid, and calpain levels were upregulated and apoptosis was increased following E. tenella infection at 24-120 h. Calpain levels were reduced by pharmacological inhibition of calpain using SJA6017 or by blocking Ca2+ entry into the cell using BAPTA/AM at 24-120 h. The mRNA and protein levels of Bax and Bid, the E. tenella infection rate, and the early apoptotic and late apoptotic (necrosis) rates were decreased by using SJA6017 at 24-120 h. These results indicated that E. tenella-promoted host cell apoptosis is regulated by calpain via Bid and Bax at 24-120 h. Thus, manipulation of calpain levels could be used to manage E. tenella infection in chickens in the middle and late developmental stages.
Collapse
Affiliation(s)
- Xiao-Zhen Cui
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| | - Ming-Xue Zheng
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China.
| | - Shi-Yu Yang
- Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London, NW3 2PF, UK
| | - Rui Bai
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| | - Li Zhang
- College of Animal Medicine, Shanxi Agriculture University, Taiyuan, Shanxi Province, 030036, People's Republic of China
| |
Collapse
|
10
|
iRhom pseudoproteases regulate ER stress-induced cell death through IP 3 receptors and BCL-2. Nat Commun 2022; 13:1257. [PMID: 35273168 PMCID: PMC8913617 DOI: 10.1038/s41467-022-28930-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The folding capacity of membrane and secretory proteins in the endoplasmic reticulum (ER) can be challenged by physiological and pathological perturbations, causing ER stress. If unresolved, this leads to cell death. We report a role for iRhom pseudoproteases in controlling apoptosis due to persistent ER stress. Loss of iRhoms causes cells to be resistant to ER stress-induced apoptosis. iRhom1 and iRhom2 interact with IP3 receptors, critical mediators of intracellular Ca2+ signalling, and regulate ER stress-induced transport of Ca2+ into mitochondria, a primary trigger of mitochondrial membrane depolarisation and cell death. iRhoms also bind to the anti-apoptotic regulator BCL-2, attenuating the inhibitory interaction between BCL-2 and IP3 receptors, which promotes ER Ca2+ release. The discovery of the participation of iRhoms in the control of ER stress-induced cell death further extends their potential pathological significance to include diseases dependent on protein misfolding and aggregation. Cells that cannot cope with persistent endoplasmic reticulum stress will die. Here, the authors show that iRhom pseudoproteases regulate cell death by modulating the ability of BCL-2 to inhibit calcium flow through IP3R channels.
Collapse
|
11
|
Eroglu E, Unel CC, Harmanci N, Erol K, Ari NS, Ozatik O. 2-Aminoethoxydiphenyl borate ameliorates functional and structural abnormalities in cisplatin-induced peripheral neuropathy. J Trace Elem Med Biol 2022; 70:126909. [PMID: 34902678 DOI: 10.1016/j.jtemb.2021.126909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022]
Abstract
AIM OF THE STUDY Cisplatin is a platinum-derived chemotherapeutic agent commonly used in the treatment of various tumors. Ototoxicity, nephrotoxicity, and peripheral neuropathy are the most common side effects of this drug. 2-Aminoethoxydiphenyl borate (2-APB), boron- containing compound, has some protective effects against various tissue damage. The present study aimed to investigate the potential protective effects of 2-APB on in vitro and in vivo cisplatin-induced neurotoxicity. MATERIALS AND METHODS MTT assay was used to determine cell viability in DRG cells. Peripheral neuropathy was induced in forty male Sprague-Dawley rats (200-250g) by administering cisplatin (3 mg/kg/week) intraperitoneally (i.p) for five weeks. 2-APB (2, 4, and 8 mg/kg, i.p) was administered. Mechanical allodynia, thermal hyperalgesia, cold allodynia, mechanical stimuli, motor coordination, and locomotor activity tests were performed. DRG cells and sciatic nerves were analyzed histologically. NGF, BDNF, TNF-α, GSH, MDA, and LDH levels were investigated in rat DRG tissue homogenates. RESULTS Our results revealed that 2-APB ameliorated cisplatin-induced neurotoxicity by improving mechanical and cold allodynia and motor coordination impairment. It also reduced cisplatin-induced structural toxicity in peripheral tissues. CONCLUSION These findings demonstrated that 2-APB could be considered as a potential therapeutic strategy for the treatment of cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Ezgi Eroglu
- Department of Pharmacology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey; Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nusin Harmanci
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey; Department of Medical Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Neziha Senem Ari
- Department of Histology and Embryology, Evliya Celebi Education and Research Hospital, Kutahya Health Sciences University, Kutahya, Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
12
|
Aryal SP, Xia M, Adindu E, Davis C, Ortinski PI, Richards CI. ER-GCaMP6f: An Endoplasmic Reticulum-Targeted Genetic Probe to Measure Calcium Activity in Astrocytic Processes. Anal Chem 2022; 94:2099-2108. [PMID: 35061939 PMCID: PMC9047445 DOI: 10.1021/acs.analchem.1c04321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ca2+ is a major second messenger involved in cellular and subcellular signaling in a wide range of cells, including astrocytes, which use calcium ions to communicate with other cells in the brain. Even though a variety of genetically encoded Ca2+ indicators have been developed to study astrocyte calcium signaling, understanding the dynamics of endoplasmic reticulum calcium signaling is greatly limited by the currently available tools. To address this, we developed an endoplasmic reticulum-targeted calcium indicator, ER-GCaMP6f, which is anchored to the cytosolic side of the organelle and measures signaling that occurs in close proximity to the endoplasmic reticulum of astrocytes. Using a combination of confocal and super-resolution microscopy techniques, we demonstrate the localization of the indicator in the endoplasmic reticulum in both cell soma and processes of astrocytes. Combining ER-GCaMP6f with total internal reflection fluorescence microscopy, we show that Ca2+ fluctuations in small astrocytic processes can be detected, which are otherwise not observable with existing indicators and standard wide-field and confocal techniques. We also compared the ER-GCaMP6f indicator against currently used plasma membrane-tethered and cytosolic GCaMP6f indicators. ER-GCaMP6f identifies dynamics in calcium signaling of endoplasmic reticulum resident receptors that are missed by plasma membrane-anchored indicators. We also generated an adeno-associated virus (AAV5) and demonstrate that ER-GCaMP6f can be expressed in vivo and by measured calcium activity in brain slices. ER-GCaMP6f provides a powerful tool to study calcium signaling in close proximity to the endoplasmic reticulum in astrocyte cell soma and processes both in culture and in brain slices.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ebubechi Adindu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Caroline Davis
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
13
|
Guidarelli A, Catalani A, Spina A, Varone E, Fumagalli S, Zito E, Fiorani M, Cantoni O. Functional organization of the endoplasmic reticulum dictates the susceptibility of target cells to arsenite-induced mitochondrial superoxide formation, mitochondrial dysfunction and apoptosis. Food Chem Toxicol 2021; 156:112523. [PMID: 34453993 DOI: 10.1016/j.fct.2021.112523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 01/28/2023]
Abstract
Arsenite induces many critical effects associated with the formation of reactive oxygen species (ROS) through different mechanisms. We focused on Ca2+-dependent mitochondrial superoxide (mitoO2-.) formation and addressed questions on the effects of low concentrations of arsenite on the mobilization of the cation from the endoplasmic reticulum and the resulting mitochondrial accumulation. Using various differentiated and undifferentiated cell types uniquely expressing the inositol-1, 4, 5-triphosphate receptor (IP3R), or both the IP3R and the ryanodine receptor (RyR), we determined that expression of this second Ca2+ channel is an absolute requirement for mitoO2-. formation and for the ensuing mitochondrial dysfunction and downstream apoptosis. In arsenite-treated cells, RyR was recruited after IP3R stimulation and agonist studies provided an indirect indication for a close apposition between RyR and mitochondria. It was also interesting to observe that arsenite fails to promote mitochondrial Ca2+ accumulation, mitoO2-. formation and mitochondrial toxicity in RyR-devoid cells, in which the IP3R is in close contact with the mitochondria. We therefore conclude that low dose arsenite-induced mitoO2- formation, and the resulting mitochondrial dysfunction and toxicity, are prerequisite of cell types expressing the RyR in close apposition with mitochondria.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessia Catalani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
14
|
Leo M, Schmitt LI, Steffen R, Kutritz A, Kleinschnitz C, Hagenacker T. Modulation of Glutamate Transporter EAAT1 and Inward-Rectifier Potassium Channel K ir4.1 Expression in Cultured Spinal Cord Astrocytes by Platinum-Based Chemotherapeutics. Int J Mol Sci 2021; 22:6300. [PMID: 34208258 PMCID: PMC8230757 DOI: 10.3390/ijms22126300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Platinum-based chemotherapeutics still play an essential role in cancer treatment. Despite their high effectiveness, severe side effects such as chemotherapy-induced neuropathy (CIPN) occur frequently. The pathophysiology of CIPN by platinum-based chemotherapeutics is not fully understood yet, but primarily the disturbance of dorsal root ganglion cells is discussed. However, there is increasing evidence of central nervous system involvement with activation of spinal cord astrocytes after treatment with chemotherapeutics. We investigated the influence of cis- or oxaliplatin on the functionality of cultured rat spinal cord astrocytes by using immunocytochemistry and patch-clamp electrophysiology. Cis- or oxaliplatin activated spinal astrocytes and led to downregulation of the excitatory amino acid transporter 1 (EAAT1) expression. Furthermore, the expression and function of potassium channel Kir4.1 were modulated. Pre-exposure to a specific Kir4.1 blocker in control astrocytes led to a reduced immune reactivity (IR) of EAAT1 and a nearly complete block of the current density. When spinal astrocytes were pre-exposed to antibiotic minocycline, all effects of cis- or oxaliplatin were abolished. Taken together, the modulation of Kir4.1 and EAAT1 proteins in astrocytes could be linked to the direct impact of cis- or oxaliplatin, identifying spinal astrocytes as a potential target in the prevention and treatment of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany; (L.-I.S.); (R.S.); (A.K.); (C.K.); (T.H.)
| | | | | | | | | | | |
Collapse
|
15
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
16
|
Hodeify R, Siddiqui SS, Matar R, Vazhappilly CG, Merheb M, Al Zouabi H, Marton J. Modulation of calcium-binding proteins expression and cisplatin chemosensitivity by calcium chelation in human breast cancer MCF-7 cells. Heliyon 2021; 7:e06041. [PMID: 33532651 PMCID: PMC7829211 DOI: 10.1016/j.heliyon.2021.e06041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (CDDP) is currently one of the most effective FDA-approved treatments for breast cancer. Previous studies have shown that CDDP-induced cell death in human breast cancer (MCF-7) cells is associated with disruption of calcium homeostasis. However, whether the sensitivity of breast cancer cells to cisplatin is associated with dysregulation of the expression of calcium-binding proteins (CaBPs) remains unknown. In this study, we evaluated the effect of the intracellular calcium chelator (BAPTA-AM) on viability of MCF-7 cells in the presence of toxic and sub-toxic doses of cisplatin. Furthermore, this study assessed the expression of CaBPs, calmodulin, S100A8, and S100A14 in MCF-7 cells treated with cisplatin. Cell viability was determined using MTT-based in vitro toxicity assay. Intracellular calcium imaging was done using Fluo-4 AM, a cell-permeant fluorescent calcium indicator. Expression of CaBPs was tested using real-time quantitative PCR. Exposure of cells to increasing amounts of CDDP correlated with increasing fluorescence of the intracellular calcium indicator, Fluo-4 AM. Conversely, treating cells with cisplatin significantly decreased mRNA levels of calmodulin, S100A8, and S100A14. Treatment of the cells with calcium chelator, BAPTA-AM, significantly enhanced the cytotoxic effects of sub-toxic dose of cisplatin. Our results indicated a statistically significant negative correlation between calmodulin, S100A8, and S100A14 expression and sensitivity of breast cancer cells to a sub-toxic dose of cisplatin. We propose that modulating the activity of calcium-binding proteins, calmodulin, S100A8, and S100A14, could be used to increase cisplatin efficacy, lowering its treatment dosage while maintaining its chemotherapeutic value.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
17
|
Sadiq Z, Varghese E, Büsselberg D. Cisplatin's dual-effect on the circadian clock triggers proliferation and apoptosis. Neurobiol Sleep Circadian Rhythms 2020; 9:100054. [PMID: 33364523 PMCID: PMC7752721 DOI: 10.1016/j.nbscr.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/16/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock, which generates the internal daily rhythm largely mediated through release of melatonin, can be disrupted in various ways. Multiple factors result in a disruption of the circadian cycle in the clinical context, of interest are anti-cancer drugs such as cisplatin. Cisplatin modulates the circadian clock through two mechanisms: 1) the circadian clock control of DNA excision repair and 2) the effect of circadian clock disruption on apoptosis. Cisplatin can stimulate multiple classified molecules, including DNA repair factors, DNA damage recognition factors and transcription factors in drug resistance and cisplatin-induced signal transduction. These factors interact with each other and can be transformed by DNA damage. Hence, these molecular interactions are intimately involved in cell proliferation and damage-induced apoptosis. Cisplatin has a dual-effect on circadian genes: upregulation of CLOCK expression causes an increase in proliferation but upregulation of BMAL1 expression causes an increase in apoptosis. Therefore, the interference of circadian genes by cisplatin can have multiple, opposing effects on apoptosis and cell proliferation, which may have unintended pro-cancer effects. Melatonin and intracellular Ca2+ also have a dual-effect on cell proliferation and apoptosis and can disrupt circadian rhythms. Cisplatin has a dual-effect on components of the circadian clock, increasing or decreasing cell proliferation and apoptosis. DNA excision repair and apoptosis are controlled by circadian rhythms. When cisplatin is combined with other agents, the effects are enhanced. These findings provide clinicians with the prospect to create effective chrono-cisplatin regimens for patients.
Collapse
Affiliation(s)
- Zuhair Sadiq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| |
Collapse
|
18
|
Leo M, Schmitt LI, Küsterarent P, Kutritz A, Rassaf T, Kleinschnitz C, Hendgen-Cotta UB, Hagenacker T. Platinum-Based Drugs Cause Mitochondrial Dysfunction in Cultured Dorsal Root Ganglion Neurons. Int J Mol Sci 2020; 21:ijms21228636. [PMID: 33207782 PMCID: PMC7698191 DOI: 10.3390/ijms21228636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin and oxaliplatin are treatment options for a variety of cancer types. While highly efficient in killing cancer cells, both chemotherapeutics cause severe side effects, e.g., peripheral neuropathies. Using a cell viability assay, a mitochondrial stress assay, and live-cell imaging, the effects of cis- or oxaliplatin on the mitochondrial function, reactive oxygen species (ROS) production, and mitochondrial and cytosolic calcium concentration of transient receptor potential ankyrin 1 (TRPA1)- or vanilloid 1 (TRPV1)-positive dorsal root ganglion (DRG) neurons of adult Wistar rats were determined. Mitochondrial functions were impaired after exposure to cis- or oxaliplatin by mitochondrial respiratory chain complex I-III inhibition. The basal respiration, spare respiratory capacity, and the adenosine triphosphate (ATP)-linked respiration were decreased after exposure to 10 µM cis- or oxaliplatin. The ROS production showed an immediate increase, and after reaching the peak, ROS production dropped. Calcium imaging showed an increase in the cytosolic calcium concentration during exposure to 10 µM cis- or oxaliplatin in TRPA1- or TRPV1-positive DRG neurons while the mitochondrial calcium concentration continuously decreased. Our data demonstrate a significant effect of cis- and oxaliplatin on mitochondrial function as an early event of platinum-based drug exposure, suggesting mitochondria as a potential target for preventing chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
- Correspondence:
| | - Linda-Isabell Schmitt
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
| | - Patricia Küsterarent
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
| | - Andrea Kutritz
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, CardioScienceLabs, University Medicine Essen, Medical Faculty, 45147 Essen, Germany; (T.R.); (U.B.H.-C.)
| | - Christoph Kleinschnitz
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
| | - Ulrike B. Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, CardioScienceLabs, University Medicine Essen, Medical Faculty, 45147 Essen, Germany; (T.R.); (U.B.H.-C.)
| | - Tim Hagenacker
- Department of Neurology, NeuroScienceLab, Medical Faculty, University Medicine Essen, 45147 Essen, Germany; (L.-I.S.); (P.K.); (A.K.); (C.K.); (T.H.)
| |
Collapse
|
19
|
[Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cell Mol Neurobiol 2020; 41:563-587. [PMID: 32430779 DOI: 10.1007/s10571-020-00873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.
Collapse
|
20
|
Miodragović Ð, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV. Beyond Cisplatin: Combination Therapy with Arsenic Trioxide. Inorganica Chim Acta 2019; 496:119030. [PMID: 32863421 PMCID: PMC7453736 DOI: 10.1016/j.ica.2019.119030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United States
| | - Elden P Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Varghese E, Samuel SM, Sadiq Z, Kubatka P, Liskova A, Benacka J, Pazinka P, Kruzliak P, Büsselberg D. Anti-Cancer Agents in Proliferation and Cell Death: The Calcium Connection. Int J Mol Sci 2019; 20:E3017. [PMID: 31226817 PMCID: PMC6627763 DOI: 10.3390/ijms20123017] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) signaling and the modulation of intracellular calcium ([Ca2+]i) levels play critical roles in several key processes that regulate cellular survival, growth, differentiation, metabolism, and death in normal cells. On the other hand, aberrant Ca2+-signaling and loss of [Ca2+]i homeostasis contributes to tumor initiation proliferation, angiogenesis, and other key processes that support tumor progression in several different cancers. Currently, chemically and functionally distinct drugs are used as chemotherapeutic agents in the treatment and management of cancer among which certain anti-cancer drugs reportedly suppress pro-survival signals and activate pro-apoptotic signaling through modulation of Ca2+-signaling-dependent mechanisms. Most importantly, the modulation of [Ca2+]i levels via the endoplasmic reticulum-mitochondrial axis and corresponding action of channels and pumps within the plasma membrane play an important role in the survival and death of cancer cells. The endoplasmic reticulum-mitochondrial axis is of prime importance when considering Ca2+-signaling-dependent anti-cancer drug targets. This review discusses how calcium signaling is targeted by anti-cancer drugs and highlights the role of calcium signaling in epigenetic modification and the Warburg effect in tumorigenesis.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar.
| | - Zuhair Sadiq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology and Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Jozef Benacka
- Faculty Health and Social Work, Trnava University, 918 43 Trnava, Slovakia.
| | - Peter Pazinka
- Department of Surgery, Faculty of Medicine, Pavol Jozef Safarik University and Louise Pasteur University Hospital, 04022 Kosice, Slovakia.
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polni 553/3, 63900 Brno, Czech Republic.
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, 65692 Brno, Czech Republic.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar.
| |
Collapse
|
22
|
Store-Operated Calcium Entry Contributes to Cisplatin-Induced Cell Death in Non-Small Cell Lung Carcinoma. Cancers (Basel) 2019; 11:cancers11030430. [PMID: 30917547 PMCID: PMC6468672 DOI: 10.3390/cancers11030430] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (CDDP) is one of the principal chemotherapeutic agents used for the first-line treatment of many malignancies, including non-small cell lung carcinoma (NSCLC). Despite its use for over 40 years, its mechanism of action is not yet fully understood. Store-operated calcium entry (SOCE), the main pathway allowing Ca2+ entry in non-excitable cells, is involved in tumorogenesis, cancer progression and chemoresistance. It has become an attractive target in cancer treatment. In this study, we showed that siRNA-mediated depletion of stromal interaction molecule 1 (STIM1) and transient receptor potential channel 1 (TRPC1), two players of the store-operated calcium entry, dramatically reduced CDDP cytotoxicity in NSCLC cells. This was associated with an inhibition of the DNA damage response (DDR) triggered by CDDP. Moreover, STIM1 depletion also reduced CDDP-dependent oxidative stress. In parallel, SOCE activation induced Ca2+ entry into the mitochondria, a major source of reactive oxygen species (ROS) within the cell. This effect was highly decreased in STIM1-depleted cells. We then conclude that mitochondrial Ca2+ peak associated to the SOCE contributes to CDDP-induced ROS production, DDR and subsequent apoptosis. To the best of our knowledge, this is the first time that it is shown that Ca2+ signalling constitutes an initial step in CDDP-induced apoptosis.
Collapse
|
23
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
24
|
Tadini-Buoninsegni F, Sordi G, Smeazzetto S, Natile G, Arnesano F. Effect of cisplatin on the transport activity of P II-type ATPases. Metallomics 2018. [PMID: 28636017 DOI: 10.1039/c7mt00100b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+,K+-ATPase. Cisplatin-induced inhibition of Na+,K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+,K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+,K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+,K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+,K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+,K+-ATPase do not perform ATP-dependent cisplatin displacement.
Collapse
|
25
|
Schmitt LI, Leo M, Kleinschnitz C, Hagenacker T. Oxaliplatin Modulates the Characteristics of Voltage-Gated Calcium Channels and Action Potentials in Small Dorsal Root Ganglion Neurons of Rats. Mol Neurobiol 2018; 55:8842-8855. [DOI: 10.1007/s12035-018-1029-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
26
|
Leo M, Schmitt LI, Jastrow H, Thomale J, Kleinschnitz C, Hagenacker T. Cisplatin alters the function and expression of N-type voltage-gated calcium channels in the absence of morphological damage of sensory neurons. Mol Pain 2017; 13:1744806917746565. [PMID: 29166837 PMCID: PMC5731623 DOI: 10.1177/1744806917746565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platinum-based chemotherapeutic agents, such as cisplatin, are still frequently used for treating various types of cancer. Besides its high effectiveness, cisplatin has several serious side effects. One of the most common side effects is dorsal root ganglion (DRG) neurotoxicity. However, the mechanisms underlying this neurotoxicity are still unclear and controversially discussed. Cisplatin-mediated modulation of voltage-gated calcium channels (VGCCs) in the DRG neurons has been shown to alter intracellular calcium homeostasis, a process critical for the induction of neurotoxicity. Using the whole-cell patch-clamp technique, immunostaining, behavioural experiments and electron microscopy (EM) of rat DRGs, we here demonstrate that cisplatin-induced neurotoxicity is due to functional alteration of VGCC, but not due to morphological damage. In vitro application of cisplatin (0.5 µM) increased N-type VGCC currents (ICa(V)) in small DRG neurons. Repetitive in vivo administration of cisplatin (1.5 mg/kg, cumulative 12 mg/kg) increased the protein level of N-type VGCC over 26 days, with the protein level being increased for at least 14 days after the final cisplatin administration. Behavioural studies revealed that N-type VGCCs are crucial for inducing symptoms of cisplatin-related neuropathic pain, such as thermal and mechanical hyperalgesia. EM and histology showed no evidence of any structural damage, apoptosis or necrosis in DRG cells after cisplatin exposure for 26 days. Furthermore, no nuclear DNA damage in sensory neurons was observed. Here, we provide evidence for a mainly functionally driven induction of neuropathic pain by cisplatin.
Collapse
Affiliation(s)
- Markus Leo
- 1 Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Holger Jastrow
- 2 Institute of Anatomy, University Hospital Essen, Essen, Germany
| | - Jürgen Thomale
- 3 Institute for Cell Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Tim Hagenacker
- 1 Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
27
|
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma. Oncotarget 2017; 8:22876-22893. [PMID: 28206967 PMCID: PMC5410270 DOI: 10.18632/oncotarget.15283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.
Collapse
|
28
|
Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget 2017; 8:99825-99840. [PMID: 29245943 PMCID: PMC5725134 DOI: 10.18632/oncotarget.21076] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cisplatin (CDDP) and its derivatives are first line anti-cancer drugs for ovarian cancer (OVCA). However, chemoresistance due to high incidence of p53 mutations leads to poor clinical prognosis. Saikosaponin-d (Ssd), a saponin from a herbal plant extract, has been shown to induce cell death and sensitize chemoresistant cells to chemotherapeutic agents. Here, we demonstrated that Ssd sensitized chemoresistant OVCA cells with either p53-wt, -mutant and -null to CDDP. The action of Ssd appears to be through induction of mitochondrial fragmentation and G2/M arrest. Ssd is mediated via calcium signaling, up-regulation of the mitochondrial fission proteins Dynamin-related protein 1 (Drp1) and optic atrophy 1 (Opa1), and loss in mitochondrial membrane potential (MMP). Moreover, in the presence of CDDP, Ssd also down-regulates protein phosphatase magnesium-dependent 1 D (PPM1D) and increases the phosphorylation of checkpoint protein kinases (Chk) 1, cell division cycle 25c (Cdc25c) and Cyclin dependent kinase 1 (Cdk1). Our findings suggest that Ssd could sensitize OVCA to CDDP independent of the p53 status through multiple signaling pathways. They support the notion that Ssd may be a novel adjuvant for the treatment of chemoresistant OVCA.
Collapse
|
29
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
30
|
Zhong W, Picca AJ, Lee AS, Darmani NA. Ca2+ signaling and emesis: Recent progress and new perspectives. Auton Neurosci 2017; 202:18-27. [DOI: 10.1016/j.autneu.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
|
31
|
Leo M, Schmitt LI, Erkel M, Melnikova M, Thomale J, Hagenacker T. Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp Neurol 2016; 288:62-74. [PMID: 27823926 DOI: 10.1016/j.expneurol.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cisplatin is important in the treatment of various types of cancer. Although it is highly effective, it also has severe side effects, with neurotoxicity in dorsal root ganglion (DRG) neurons being one of the most common. The key mechanisms of neurotoxicity are still controversially discussed; however, disturbances of the calcium homeostasis in DRG neurons have been suggested to mediate cisplatin neurotoxicity. By using the whole-cell patch-clamp technique, immunostaining and behavioral experiments with Sprague-Dawley rats, we examined the influence of short- and long-term exposure to cisplatin on voltage-gated calcium channel (VGCC) currents (ICa(V)) in small DRG neurons. In vitro exposure to cisplatin reduced ICa(V) in a concentration-dependent manner (0.01-50μM; 13.8-77.3%; IC50 5.07μM). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While the ICa(V) of P/Q-, L- and T-type VGCCs were reduced, ICa(V) of N-type VGCCs were increased by 30.3% during depolarization to 0mV. Exposure of DRG neurons to cisplatin (0.5 or 5μM) for 24-48h in vitro significantly increased a CaMK II-mediated ICa(V) current density. Immunostaining and western blot analysis revealed an increase of N-type VGCC protein level in DRG neurons 24h after cisplatin exposure. Cisplatin-mediated activation of caspase-3 was prevented by inhibition of N-type VGCCs using Ɯ-conotoxin MVIIA. Behavioral experiments showed that Ɯ-conotoxin MVIIA treatment prevented neuropathic syndromes in vivo by inhibiting upregulation of the N-type protein level. Here we show evidence for the first time for a crucial role of N-type VGCC in the genesis of cisplatin-induced polyneuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Martin Erkel
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| |
Collapse
|
32
|
Xie Q, Su J, Jiao B, Shen L, Ma L, Qu X, Yu C, Jiang X, Xu Y, Sun L. ABT737 reverses cisplatin resistance by regulating ER-mitochondria Ca2+ signal transduction in human ovarian cancer cells. Int J Oncol 2016; 49:2507-2519. [DOI: 10.3892/ijo.2016.3733] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/07/2016] [Indexed: 11/05/2022] Open
|
33
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y, Li Z. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells. Aging Dis 2016; 7:254-66. [PMID: 27330840 PMCID: PMC4898922 DOI: 10.14336/ad.2016.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.
Collapse
Affiliation(s)
- Liwei Ma
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Hongjun Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China; 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| | - Chunyan Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Jing Su
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Qi Xie
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Lu Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yang Yu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Shibing Liu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Songyan Li
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Ye Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Zhixin Li
- 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
34
|
Zhang Y, Ren H, Lu X, He D, Han Y, Wang H, Zeng C, Shi W. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells. J Am Heart Assoc 2016; 5:e002448. [PMID: 27107134 PMCID: PMC4843542 DOI: 10.1161/jaha.115.002448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/14/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. CONCLUSIONS Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Essential Hypertension
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Immunoblotting
- Intracellular Fluid/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Piperazines/pharmacology
- RNA/genetics
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Real-Time Polymerase Chain Reaction
- Receptor, Insulin/biosynthesis
- Receptor, Insulin/genetics
- Receptors, Dopamine D4/drug effects
- Receptors, Dopamine D4/metabolism
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
35
|
Filipović NR, Bjelogrlić S, Todorović TR, Blagojević VA, Muller CD, Marinković A, Vujčić M, Janović B, Malešević AS, Begović N, Senćanski M, Minić DM. Ni(ii) complex with bishydrazone ligand: synthesis, characterization, DNA binding studies and pro-apoptotic and pro-differentiation induction in human cancerous cell lines. RSC Adv 2016. [DOI: 10.1039/c6ra24604d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new Ni(ii) complex, [Ni(L)(H2O)] (1), with diethyl 3,3′-(2,2′-(1,1′-(pyridine-2,6-diyl)bis(ethan-1-yl-1-ylidene))bis(hydrazin-1-yl-2-ylidene))bis(3-oxopropanoate) ligand (H2L) was synthesized as a potential chemotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | - Christian D. Muller
- Institut Pluridisciplinaire Hubert Curien
- UMR 7178 CNRS Université de Strasbourg
- 67401 Illkirch
- France
| | | | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Barbara Janović
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Nebojša Begović
- Institute of General and Physical Chemistry
- 11000 Belgrade
- Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research
- Institute of Nuclear Sciences ”Vinča”
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Dragica M. Minić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
36
|
Abstract
Platinum resistance has long been a major issue in the treatment of various cancers. We previously reported that enhanced annexin A4 (ANXA4) expression, a Ca2+-regulated phospholipid-binding protein, induces chemoresistance to platinum-based drugs. In this study, we investigated the role of annexin repeats, a conserved structure of all the annexin family, responsible for platinum-resistance as well as the effect of knockdown of ANXA4. ANXA4 knockdown increased sensitivity to platinum-based drugs both in vitro and in vivo. To identify the domain responsible for chemoresistance, ANXA4 deletion mutants were constructed by deleting annexin repeats one by one from the C terminus. Platinum resistance was induced both in vitro and in vivo in cells expressing either full-length ANXA4 or the deletion mutants, containing at least one intact annexin repeat. However, cells expressing the mutant without any calcium-binding sites in the annexin repeated sequence, which is essential for ANXA4 translocation from the cytosol to plasma membrane, failed to acquire platinum resistance. After cisplatin treatment, the intracellular chloride ion concentration, whose channel is partly regulated by ANXA4, significantly increased in the platinum-resistant cells. These findings indicate that the calcium-binding site in the annexin repeat induces chemoresistance to the platinum-based drug by elevating the intracellular chloride concentration.
Collapse
|
37
|
Bernocchi G, Fanizzi FP, De Pascali SA, Piccolini VM, Gasperini C, Insolia V, Bottone MG. Neurotoxic Effects of Platinum Compounds: Studies in vivo on Intracellular Calcium Homeostasis in the Immature Central Nervous System. TOXICS 2015; 3:224-248. [PMID: 29056659 PMCID: PMC5634691 DOI: 10.3390/toxics3020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 02/08/2023]
Abstract
Platinum compounds cause significant clinical neurotoxicity. Several studies highlight neurological complications especially in paediatric oncology patients with Central Nervous System (CNS) and non-CNS malignancies. To understand the toxicity mechanisms of platinum drugs at cellular and molecular levels in the immature brain, which appears more vulnerable to injury than in the adult one, we compared the effects in vivo of the most used platinum compounds, i.e., cisdichlorodiammineplatinum (cisplatin, cisPt), and the new [Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcacDMS). As models of developing brain areas, we have chosen the cerebellum and hippocampus dentate gyrus. Both areas show the neurogenesis events, from proliferation to differentiation and synaptogenesis, and therefore allow comparing the action of platinum compounds with DNA and non-DNA targets. Here, we focused on the changes in the intracellular calcium homeostasis within CNS architecture, using two immunohistochemical markers, the calcium buffer protein Calbindin and Plasma Membrane Calcium ATPase. From the comparison of the cisPt and PtAcacDMS effects, it emerges how essential the equilibrium and synergy between CB and PMCA1 is or how important the presence of at least one of them is to warrant the morphology and function of nervous tissue and limit neuroarchitecture damages, depending on the peculiar and intrinsic properties of the developing CNS areas.
Collapse
Affiliation(s)
- Graziella Bernocchi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Francesco P Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, via provinciale Lecce-Monteroni centro Ecotekne, 73100 Lecce, Italy.
| | - Sandra A De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, via provinciale Lecce-Monteroni centro Ecotekne, 73100 Lecce, Italy.
| | - Valeria M Piccolini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Caterina Gasperini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Violetta Insolia
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Maria Grazia Bottone
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
38
|
Satheesh NJ, Büsselberg D. The role of intracellular calcium for the development and treatment of neuroblastoma. Cancers (Basel) 2015; 7:823-48. [PMID: 26010602 PMCID: PMC4491686 DOI: 10.3390/cancers7020811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is the second most common paediatric cancer. It developsfrom undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, theaetiology behind the development of neuroblastoma is still not fully understood. Intracellularcalcium ([Ca2+]i) is a secondary messenger which regulates numerous cellular processesand, therefore, its concentration is tightly regulated. This review focuses on the role of[Ca2+]i in differentiation, apoptosis and proliferation in neuroblastoma. It describes themechanisms by which [Ca2+]i is regulated and how it modulates intracellular pathways.Furthermore, the importance of [Ca2+]i for the function of anti-cancer drugs is illuminatedin this review as [Ca2+]i could be a target to improve the outcome of anti-cancer treatmentin neuroblastoma. Overall, modulations of [Ca2+]i could be a key target to induce apoptosisin cancer cells leading to a more efficient and effective treatment of neuroblastoma.
Collapse
Affiliation(s)
- Noothan Jyothi Satheesh
- Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha, Qatar.
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, POB 24144, Doha, Qatar.
| |
Collapse
|
39
|
Jadhav AD, Yan B, Luo RC, Wei L, Zhen X, Chen CH, Shi P. Photoresponsive microvalve for remote actuation and flow control in microfluidic devices. BIOMICROFLUIDICS 2015; 9:034114. [PMID: 26180571 PMCID: PMC4491018 DOI: 10.1063/1.4923257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/18/2015] [Indexed: 05/05/2023]
Abstract
Microvalves with different actuation methods offer great integrability and flexibility in operation of lab-on-chip devices. In this work, we demonstrate a hydrogel-based and optically controlled modular microvalve that can be easily integrated within a microfluidic device and actuated by an off-chip laser source. The microvalve is based on in-channel trapping of microgel particles, which are composed of poly(N-isopropylacrylamide) and polypyrrole nanoparticles. Upon irradiation by a near-infrared (NIR) laser, the microgel undergoes volumetric change and enables precisely localized fluid on/off switching. The response rate and the "open" duration of the microvalve can be simply controlled by adjusting the laser power and exposure time. We showed that the trapped microgel can be triggered to shrink sufficiently to open a channel within as low as ∼1-2 s; while the microgel swells to re-seal the channel within ∼6-8 s. This is so far one of the fastest optically controlled and hydrogel-based microvalves, thus permitting speedy fluidic switching applications. In this study, we successfully employed this technique to control fluidic interface between laminar flow streams within a Y-junction device. The optically triggered microvalve permits flexible and remote fluidic handling, and enables pulsatile in situ chemical treatment to cell culture in an automatic and programmed manner, which is exemplified by studies of chemotherapeutic drug induced cell apoptosis under different drug treatment strategies. We find that cisplatin induced apoptosis is significantly higher in cancer cells treated with a pulsed dose, as compared to continuous flow with a sustained dose. It is expected that our NIR-controlled valving strategy will provide a simple, versatile, and powerful alternative for liquid handling in microfluidic devices.
Collapse
Affiliation(s)
- Amol D Jadhav
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong 999077, China
| | - Bao Yan
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong 999077, China
| | - Rong-Cong Luo
- Department of Biomedical Engineering, National University of Singapore , Singapore 117575
| | - Li Wei
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong 999077, China
| | - Xu Zhen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Kowloon, Hong Kong 999077, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore , Singapore 117575
| | | |
Collapse
|
40
|
Tamashiro H, Yoshino M. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:97-104. [PMID: 25450564 DOI: 10.1016/j.jinsphys.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29±0.009 Hz (n=43) and an amplitude of 14.6±1.25 mg (n=29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30-50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.
Collapse
Affiliation(s)
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| |
Collapse
|
41
|
Varghese E, Büsselberg D. Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration ([ca2+]I) in mcf-7 breast cancer cells. Cancers (Basel) 2014; 6:2243-58. [PMID: 25383481 PMCID: PMC4276964 DOI: 10.3390/cancers6042243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha, Qatar.
| | - Dietrich Büsselberg
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha, Qatar.
| |
Collapse
|
42
|
Darmani NA, Zhong W, Chebolu S, Vaezi M, Alkam T. Broad-spectrum antiemetic potential of the L-type calcium channel antagonist nifedipine and evidence for its additive antiemetic interaction with the 5-HT(3) receptor antagonist palonosetron in the least shrew (Cryptotis parva). Eur J Pharmacol 2014; 722:2-12. [PMID: 24513517 DOI: 10.1016/j.ejphar.2013.08.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Cisplatin-like chemotherapeutics cause vomiting via release of multiple neurotransmitters (dopamine, serotonin (5-HT), or substance P (SP)) from the gastrointestinal enterochromaffin cells and/or the brainstem via a calcium dependent process. Diverse channels in the plasma membrane allow extracellular Ca(2+) entry into cells for the transmitter release process. Agonists of 5-HT3 receptors increase calcium influx through both 5-HT3 receptors and L-type Ca(2+) channels. We envisaged that L-type calcium agonists such as FPL 64176 should cause vomiting and corresponding antagonists such as nifedipine would behave as broad-spectrum antiemetics. Administration of FPL 64176 did cause vomiting in the least shrew in a dose-dependent fashion. Nifedipine and the 5-HT3 receptor antagonist palonosetron, potently suppressed FPL 64176-induced vomiting, while a combination of ineffective doses of these antagonists was more efficacious. Subsequently, we investigated the broad-spectrum antiemetic potential of nifedipine against diverse emetogens including agonists of serotonergic 5-HT3- (e.g. 5-HT or 2-Me-5-HT), SP tachykinin NK1- (GR73632), dopamine D2- (apomorphine or quinpirole), and cholinergic M1- (McN-A-343) receptors, as well as the non-specific emetogen, cisplatin. Nifedipine by itself suppressed vomiting in a potent and dose-dependent manner caused by the above emetogens except cisplatin. Moreover, low doses of nifedipine potentiated the antiemetic efficacy of non-effective or semi-effective doses of palonosetron against vomiting caused by either 2-Me-5-HT or cisplatin. Thus, our findings demonstrate that activation of L-type calcium channels causes vomiting, whereas blockade of these ion channels by nifedipine-like antagonists not only provides broad-spectrum antiemetic activity but can also potentiate the antiemetic efficacy of well-established antiemetics such as palonosetron. L-type calcium channel antagonists should also provide antiemetic activity against drug-induced vomiting as well as other emetogens including bacterial and viral proteins.
Collapse
|
43
|
Zhong W, Chebolu S, Darmani NA. Broad-spectrum antiemetic efficacy of the l-type calcium channel blocker amlodipine in the least shrew (Cryptotis parva). Pharmacol Biochem Behav 2014; 120:124-32. [DOI: 10.1016/j.pbb.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
44
|
Bechara A, Barbosa CMV, Paredes-Gamero EJ, Garcia DM, Silva LS, Matsuo AL, Nascimento FD, Rodrigues EG, Caires ACF, Smaili SS, Bincoletto C. Palladacycle (BPC) antitumour activity against resistant and metastatic cell lines: the relationship with cytosolic calcium mobilisation and cathepsin B activity. Eur J Med Chem 2014; 79:24-33. [PMID: 24709226 DOI: 10.1016/j.ejmech.2014.03.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The search for new compounds that induce p53-independent apoptosis is the focus of many studies in cancer biology because these compounds could be more specific and would overcome chemotherapy resistance. In this study, we evaluated the in vitro antitumour activity of a Biphosphinic Palladacycle Complex (BPC) and extended preclinical studies to an in vivo model. Saos-2 cells, a p53-null human osteosarcoma drug-resistant cell line, were treated with BPC in the presence or absence of a cathepsin B inhibitor and a calcium chelator (CA074 and BAPTA-AM, respectively), and several parameters related to apoptosis were evaluated. Preclinical studies were performed with mice that were intravenously inoculated with murine melanoma B16F10-Nex2 cells and treated intraperitoneally (i.p.) with BPC (8 mg/kg/day) for ten consecutive days, when lung metastatic nodules were counted. In vitro data show that BPC induces cell death in Saos-2 cells mainly by apoptosis, which was accompanied by the effector caspase-3 activation. These events are most likely related to Bax translocation and increased cytosolic calcium mobilisation, mainly from intracellular compartments. Lysosomal Membrane Permeabilisation (LMP) was also observed after 12 h of BPC exposure. Interestingly, BAPTA-AM and CA074 significantly decreased BPC cytotoxicity, suggesting that both calcium and cathepsin B are required for BPC antitumour activity. In vivo studies demonstrated that BPC protects mice against murine metastatic melanoma. In conclusion, BPC complex is an effective anticancer compound against metastatic murine melanoma. This complex is cytotoxic to the drug-resistant osteosarcoma Saos-2 human tumour cells by inducing apoptosis triggered by calcium signalling and a lysosomal-dependent pathway.
Collapse
Affiliation(s)
- Alexandre Bechara
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Christiano M V Barbosa
- Departamento de Biofísica, EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Biofísica, EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Luís S Silva
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Elaine G Rodrigues
- Unidade de Oncologia Experimental (UNONEX), EPM, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Antonio C F Caires
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil
| | - Claudia Bincoletto
- Departamento de Farmacologia, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Três de maio, 100 - 2nd Floor, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Al-Taweel N, Varghese E, Florea AM, Büsselberg D. Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca 2+] i) homeostasis. J Toxicol Sci 2014; 39:765-74. [DOI: 10.2131/jts.39.765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich-Heine University Düsseldorf
| | | |
Collapse
|
46
|
Matsuzaki S, Enomoto T, Serada S, Yoshino K, Nagamori S, Morimoto A, Yokoyama T, Kim A, Kimura T, Ueda Y, Fujita M, Fujimoto M, Kanai Y, Kimura T, Naka T. Annexin A4-conferred platinum resistance is mediated by the copper transporter ATP7A. Int J Cancer 2013; 134:1796-809. [PMID: 24150977 DOI: 10.1002/ijc.28526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/26/2013] [Indexed: 11/10/2022]
Abstract
Although platinum drugs are often used for the chemotherapy of human cancers, platinum resistance is a major issue and may preclude their use in some cases. We recently reported that enhanced expression of Annexin A4 (Anx A4) increases chemoresistance to carboplatin through increased extracellular efflux of the drug. However, the precise mechanisms underlying that chemoresistance and the relationship of Anx A4 to platinum resistance in vivo remain unclear. In this report, the in vitro mechanism of platinum resistance induced by Anx A4 was investigated in endometrial carcinoma cells (HEC1 cells) with low expression of Anx A4. Forced expression of Anx A4 in HEC1 cells resulted in chemoresistance to platinum drugs. In addition, HEC1 control cells were compared with Anx A4-overexpressing HEC1 cells in xenografted mice. Significantly greater chemoresistance to cisplatin was observed in vivo in Anx A4-overexpressing xenografted mice. Immunofluorescence analysis revealed that exposure to platinum drugs induced relocation of Anx A4 from the cytoplasm to the cellular membrane, where it became colocalized with ATP7A, a copper transporter also well known as a mechanism of platinum efflux. ATP7A expression suppressed by small interfering RNA had no effect on HEC1 control cells in terms of chemosensitivity to platinum drugs. However, suppression of ATP7A in Anx A4-overexpressing platinum-resistant cells improved chemosensitivity to platinum drugs (but not to 5-fluorouracil) to a level comparable to that of control cells. These results indicate that enhanced expression of Anx A4 confers platinum resistance by promoting efflux of platinum drugs via ATP7A.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Immune Signal, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Platinum drugs and neurotoxicity: effects on intracellular calcium homeostasis. Cell Biol Toxicol 2013; 29:339-53. [DOI: 10.1007/s10565-013-9252-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
48
|
Waissbluth S, Daniel SJ. Cisplatin-induced ototoxicity: transporters playing a role in cisplatin toxicity. Hear Res 2013; 299:37-45. [PMID: 23467171 DOI: 10.1016/j.heares.2013.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/16/2013] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Cisplatin is a potent antineoplastic agent widely used for a variety of cancer types. Unfortunately, its use leads to dose limiting side effects such as ototoxicity. Up to 93% of patients receiving cisplatin chemotherapy will develop progressive and irreversible sensorineural hearing loss which leads to a decreased quality of life in cancer survivors. No treatment is currently available for cisplatin-induced ototoxicity. It appears that cisplatin causes apoptosis by binding DNA, activating the inflammatory cascade as well as generating oxidative stress in the cell. Various studies have aimed to assess the potential protective effects of compounds such as antioxidants, anti-inflammatories, caspase inhibitors, anti-apoptotic agents and calcium channel blockers against the toxicity caused by cisplatin in the inner ear with variable degrees of protection. Nevertheless, the pathophysiology of cisplatin-induced ototoxicity remains unclear. This review summarizes all of the known transporters that could play a role in cisplatin influx, leading to cisplatin-induced ototoxicity. The following were evaluated: copper transporters, organic cation transporters, the transient receptor potential channel family, calcium channels, multidrug resistance associated proteins, mechanotransduction channels and chloride channels.
Collapse
Affiliation(s)
- Sofia Waissbluth
- Department of Otolaryngology, The Montreal Children's Hospital, Quebec, Canada
| | | |
Collapse
|
49
|
Zhu L, Qi XY, Aoudjit L, Mouawad F, Baldwin C, Nattel S, Takano T. Nuclear factor of activated T cells mediates RhoA-induced fibronectin upregulation in glomerular podocytes. Am J Physiol Renal Physiol 2013; 304:F849-62. [PMID: 23389455 DOI: 10.1152/ajprenal.00495.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerulosclerosis is featured by accumulation of the extracellular matrixes in the glomerulus. We showed previously that activation of the small GTPase RhoA in podocytes induces heavy proteinuria and glomerulosclerosis in the mouse. In the current study, we investigated the mechanism by which RhoA stimulates the production of one of the extracellular matrixes, fibronectin, by podocytes, specifically testing the role of nuclear factor of activated T cells (NFAT). Expression of constitutively active RhoA in cultured podocytes activated the fibronectin promoter, upregulated fibronectin protein, and activated NFAT. Expression of constitutively active NFAT in podocytes also activated the fibronectin promoter and upregulated fibronectin protein. RhoA-induced NFAT activation and fibronectin upregulation were both dependent on the calcium/calmodulin pathway and Rho kinase. NFAT activation was also observed in vivo in the rat and mouse models of podocyte injury and proteinuria, and NFAT inhibition ameliorated fibronectin upregulation in the latter. RhoA activation induced a rise of intracellular calcium ion concentration ([Ca(2+)]i), which was at least in part dependent on the transient receptor potential canonical 6 (TRPC6) cation channel. The results indicate that RhoA activates NFAT by inducing a rise of [Ca(2+)]i in podocytes, which in turn contributes to fibronectin upregulation. This pathway may be responsible for the pathogenesis of certain glomerular diseases such as hypertension-mediated glomerulosclerosis.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang L, Jia C, Yu Z, Liu X, Kang L, Cong Y, Shan Y, Zhao Z, Ma B, Cong Y. Pennogenin tetraglycoside induces rat myometrial contraction and MLC20 phosphorylation via PLC-IP(3) and RhoA/Rho kinase signaling pathways. PLoS One 2012; 7:e51536. [PMID: 23251567 PMCID: PMC3520837 DOI: 10.1371/journal.pone.0051536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/08/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Total steroidal saponins extracted from the rhizome of Paris polyphylla Sm. var. yunnanensis (TSSPs) have been widely used in China for the treatment of abnormal uterine bleeding. We previously studied the main active constituents of TSSPs and their structure-activity relationships with respect to rat myometrial contractions. Tg (pennogenin tetraglycoside) was identified as one of the active ingredients in TSSPs able to induce rat myometrial contractions. However, the mechanisms underlying the pharmacological actions on uterine activity have not been described clearly. METHODS Here Tg was screened for effects on contractile activity in isolated uterine strips from estrogen-primed rats and on MLC20 phosphorylation and related signaling pathways in cultured rat myometrial cells as determined by Western blot. Intracellular calcium ([Ca(2+)](i)) was monitored under a confocal microscope using Fluo-4 AM-loaded myometrial cells. RESULTS Tg dose-dependently stimulated rat myometrial contractions as well as MLC20 phosphorylation in vitro, which could be completely suppressed by an inhibitor of myosin light chain kinase (MLCK). Use of Ca(2+) channel blockers and kinase inhibitors demonstrated that Tg-induced myometrial contractions are mediated by activation of the phospholipase C (PLC)-inositol triphosphate (IP3) signaling pathway, resulting in increased MLC20 phosphorylation. Furthermore, Y27632, a specific inhibitor of Rho kinase (ROK), notably suppressed Tg-stimulated myometrial contractions and decreased MLC20 phosphorylation. CONCLUSIONS These data provide evidence that rat myometrial contractility induced by Tg results from enhanced MLC20 phosphorylation, while both PLC-IP3 and RhoA/ROK signaling pathways mediate the process. These mechanisms may be responsible for the therapeutic effects of TSSPs on abnormal uterine bleeding.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Jia
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zuyin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaolan Liu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liping Kang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yajun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhenhu Zhao
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baiping Ma
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail:
| |
Collapse
|