1
|
Tian T, Yu Q, Yang D, Zhang X, Zhang C, Li J, Luo T, Zhang K, Lv X, Wang Y, Wang H, Li H. Endothelial α 1-adrenergic receptor activation improves cardiac function in septic mice via PKC-ERK/p38MAPK signaling pathway. Int Immunopharmacol 2024; 141:112937. [PMID: 39182270 DOI: 10.1016/j.intimp.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Cardiomyopathy is particularly common in septic patients. Our previous studies have shown that activation of the alpha 1 adrenergic receptor (α1-AR) on cardiomyocytes inhibits sepsis-induced myocardial dysfunction. However, the role of cardiac endothelial α1-AR in septic cardiomyopathy has not been determined. Here, we identified α1-AR expression in mouse and human endothelial cells and showed that activation of α1-AR with phenylephrine (PE) improved cardiac function and survival by preventing cardiac endothelial injury in septic mice. Mechanistically, activating α1-AR with PE decreased the expression of ICAM-1, VCAM-1, iNOS, E-selectin, and p-p38MAPK, while promoting PKC and ERK1/2 phosphorylation in LPS-treated endothelial cells. These effects were abolished by a PKC inhibitor or α1-AR antagonist. PE also reduced p65 nuclear translocation, but this suppression is not blocked by PKC inhibition. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on p38MAPK phosphorylation. Our results demonstrate that cardiac endothelial α1-AR activation prevents sepsis-induced myocardial dysfunction in mice by inhibiting the endothelial injury via PKC-ERK/p38MAPK signaling pathway and a PKC-independent inhibition of p65 nuclear translocation. These findings offer a new perspective for septic patients with cardiac dysfunction by inhibiting cardiac endothelial cell injury through α1-AR activation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qing Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xue Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianling Li
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Xiujin Z, Lili G, Jing F, Wenhai Y, Sikai L, Wan-Yin S. HOXD9 regulated mitophagy to promote endothelial progenitor cells angiogenesis and deep vein thrombosis recanalization and resolution. Mol Med 2024; 30:84. [PMID: 38867168 PMCID: PMC11167931 DOI: 10.1186/s10020-024-00852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.
Collapse
Affiliation(s)
- Zhang Xiujin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guo Lili
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fan Jing
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Wenhai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liu Sikai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shi Wan-Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
3
|
Priyanka HP, Pratap UP, Nair RS, Vasantharekha R, ThyagaRajan S. Estrogen-receptor status determines differential regulation of α1- and α2-adrenoceptor-mediated cell survival, angiogenesis, and intracellular signaling responses in breast cancer cell lines. Med Oncol 2024; 41:92. [PMID: 38526769 DOI: 10.1007/s12032-024-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024]
Abstract
Psychosocial stress promotes cancer pathogenesis involving angiogenesis through alterations in neuroendocrine-immune functions that may involve adrenoceptor (AR)-dependent signaling mechanisms in the brain, lymphoid organs, and cancerous cells. Various concentrations of α1- and α2- AR-specific agonists and antagonists were incubated in vitro with estrogen receptor-positive (ER +) MCF-7, and ER (-) MDA MB-231 cells to examine the secretions of VEGF-A, VEGF-C, and nitric oxide (NO), and expression of signaling molecules- p-ERK, p-CREB, and p-Akt on the proliferation of breast cancer cell lines. Cellular proliferation, VEGF-A and NO secretion, expression of p-ERK, p-CREB, and p-Akt were enhanced in MCF-7 cells treated with α1-AR agonist while VEGF-C secretion alone was enhanced in MDA MB-231 cells. Treatment of MCF-7 and MDA MB-231 cells with α2- AR agonist similarly enhanced proliferation and decreased NO production and p-CREB expression while VEGF-C secretion was decreased in MCF-7 cells and p-Akt expression was decreased in MDA MB-231 cells. α1-AR inhibition reversed cellular proliferation and VEGF-A secretion by MCF-7 cells while α2-AR inhibition reversed the proliferation of MCF-7 and MDA MB-231 cells and VEGF-C secretion by MCF-7 cells. Taken together, breast cancer pathogenesis may be influenced by distinct α-AR-mediated signaling mechanisms on angiogenesis and lymphangiogenesis that are dependent on estrogen receptor status.
Collapse
Grants
- BT/PR9199/Med/30/12/2007 Department of Bio-Technology, Government of India, New Delhi.
- BT/PR9199/Med/30/12/2007 Department of Bio-Technology, Government of India, New Delhi.
- BT/PR9199/Med/30/12/2007 Department of Bio-Technology, Government of India, New Delhi.
- BT/PR9199/Med/30/12/2007 Department of Bio-Technology, Government of India, New Delhi.
- BT/PR9199/Med/30/12/2007 Department of Bio-Technology, Government of India, New Delhi.
Collapse
Affiliation(s)
- Hannah P Priyanka
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rahul S Nair
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Srinivasan ThyagaRajan
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
6
|
Horie H, Hisatome I, Kurata Y, Yamamoto Y, Notsu T, Adachi M, Li P, Kuwabara M, Sakaguchi T, Kinugasa Y, Miake J, Koba S, Tsuneto M, Shirayoshi Y, Ninomiya H, Ito S, Kitakaze M, Yamamoto K, Yoshikawa Y, Nishimura M. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats. Hypertens Res 2021; 45:283-291. [PMID: 34853408 DOI: 10.1038/s41440-021-00802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Collapse
Affiliation(s)
- Hiromu Horie
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Maaya Adachi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Peili Li
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - Takuki Sakaguchi
- Division of Medical Education, Department of Medical Education, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiharu Kinugasa
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasushi Yoshikawa
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
7
|
Magdy Beshbishy A, Oti VB, Hussein DE, Rehan IF, Adeyemi OS, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Abouelezz K, Hetta HF, Cruz-Martins N, Batiha GES. Factors Behind the Higher COVID-19 Risk in Diabetes: A Critical Review. Front Public Health 2021; 9:591982. [PMID: 34307267 PMCID: PMC8292635 DOI: 10.3389/fpubh.2021.591982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus (DM) and coronavirus disease 2019 (COVID-19) are public health issues worldwide, and their comorbidities trigger the progress to severe disease and even death in such patients. Globally, DM has affected an estimated 9.3% adults, and as of April 18, 2021, the World Health Organization (WHO) has confirmed 141,727,940 COVID-19 confirmed cases. The virus is spread via droplets, aerosols, and direct touch with others. Numerous predictive factors have been linked to COVID-19 severity, including impaired immune response and increased inflammatory response, among others. Angiotensin receptor blockers and angiotensin converting enzyme 2 have also been identified as playing a boosting role in both susceptibility and severity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, in DM patients, both their control and management during this pandemic is herculean as the restriction periods have markedly hampered the maintenance of means to control glycemia, hypertension, and neuroendocrine and kidney diseases. In addition, as a result of the underlyin cardio-metabolic and immunological disorders, DM patients are at a higher risk of developing the severe form of COVID-19 despite other comorbidities, such as hypertension, also potentially boosting the development of higher COVID-19 severity. However, even in non-DM patients, SARS-CoV-2 may also cause transient hyperglycemia through induction of insulin resistance and/or pancreatic β-cell injury. Therefore, a strict glucose monitoring of DM patients with COVID-19 is mandatory to prevent life-threatening complications.
Collapse
Affiliation(s)
- Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Victor B. Oti
- Department of Microbiology, Nasarawa State University, Keffi, Nigeria
| | - Diaa E. Hussein
- Researcher, Department of Food Hygiene, Agricultural Research Center, Animal Health Research Institute, Port of Alexandria, Egypt
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofa University, Shebin Alkom, Egypt
| | - Oluyomi S. Adeyemi
- Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Khaled Abouelezz
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
8
|
The Role of Adrenoceptors in the Retina. Cells 2020; 9:cells9122594. [PMID: 33287335 PMCID: PMC7761662 DOI: 10.3390/cells9122594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.
Collapse
|
9
|
Rolle IG, Crivellari I, Zanello A, Mazzega E, Dalla E, Bulfoni M, Avolio E, Battistella A, Lazzarino M, Cellot A, Cervellin C, Sponga S, Livi U, Finato N, Sinagra G, Aleksova A, Cesselli D, Beltrami AP. Heart failure impairs the mechanotransduction properties of human cardiac pericytes. J Mol Cell Cardiol 2020; 151:15-30. [PMID: 33159916 DOI: 10.1016/j.yjmcc.2020.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
The prominent impact that coronary microcirculation disease (CMD) exerts on heart failure symptoms and prognosis, even in the presence of macrovascular atherosclerosis, has been recently acknowledged. Experimental delivery of pericytes in non-revascularized myocardial infarction improves cardiac function by stimulating angiogenesis and myocardial perfusion. Aim of this work is to verify if pericytes (Pc) residing in ischemic failing human hearts display altered mechano-transduction properties and to assess which alterations of the mechano-sensing machinery are associated with the observed impaired response to mechanical cues. RESULTS: Microvascular rarefaction and defects of YAP/TAZ activation characterize failing human hearts. Although both donor (D-) and explanted (E-) heart derived cardiac Pc support angiogenesis, D-Pc exert this effect significantly better than E-Pc. The latter are characterized by reduced focal adhesion density, decreased activation of the focal adhesion kinase (FAK)/ Crk-associated substrate (CAS) pathway, low expression of caveolin-1, and defective transduction of extracellular stiffness into cytoskeletal stiffening, together with an impaired response to both fibronectin and lysophosphatidic acid. Importantly, Mitogen-activated protein kinase kinase inhibition restores YAP/TAZ nuclear translocation. CONCLUSION: Heart failure impairs Pc mechano-transduction properties, but this defect could be reversed pharmacologically.
Collapse
Affiliation(s)
| | | | - Andrea Zanello
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Mazzega
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Michela Bulfoni
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Avolio
- Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | | | | | - Alice Cellot
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | | | - Sandro Sponga
- Department of Cardiothoracic Surgery, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Ugolino Livi
- Department of Medicine (DAME), University of Udine, Udine, Italy; Department of Cardiothoracic Surgery, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Nicoletta Finato
- Department of Medicine (DAME), University of Udine, Udine, Italy; Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Daniela Cesselli
- Department of Medicine (DAME), University of Udine, Udine, Italy; Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | | |
Collapse
|
10
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:biomedicines8080277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
- Correspondence:
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
11
|
Kaur K, Singh N, Dhawan RK. Potential role of EphrinA2 receptors in postconditioning induced cardioprotection in rats. Eur J Pharmacol 2020; 883:173231. [PMID: 32589885 DOI: 10.1016/j.ejphar.2020.173231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
EphA2 receptor has emerged as a novel cardioprotective target against myocardial infarction by preserving cardiac function, limiting infarct size and inflammation and enhancing cell survival via elevating phosphorylated Akt protein levels. However, the role of Eph receptors in postconditioning remains to be elucidated. Thus, the present study was designed to explore the role of EphA2 receptors in cardioprotective mechanism of postconditioning by employing Doxazosin as EphA2 receptor agonist, Lithocholic acid as antagonist and Wortmannin as specific phosphoinositide 3-kinase (PI3K) inhibitor. In Langendorff perfused isolated rat hearts, exposure of ischemia for 30 min succeeded by reperfusion for 2 h produced cardiac damage as determined by increase in size of infarct, LVDP, liberation of LDH and CK in effluent from coronary arteries. The reperfused hearts were homogenized and tissue concentrations of TBARs, reduced GSH and Catalase were determined. A marked rise in infarct size, liberation of LDH and CK in effluent and TBARs in myocardial tissue was observed in ischemic and reperfused hearts. Ischemic postconditioning comprising of 6 alternate episodes of 10 s ischemia and 10 s reperfusion and pharmacological post-conditioning by Doxazosin infusion for 5 min Before reperfusion confers significant protection against myocardial injury as manifested by remarkably decreased infarct size, levels of LDH, CK and tissue TBARs along with increase in GSH and Catalase activity. Pre-treatment of EphA2 antagonist, Lithocholic acid and PI3K inhibitor, Wortmannin attenuated the cardioprotective effect of postconditioning. Our results suggest that EphA2 receptors may be involved in postconditioning mediated cardioprotection probably through PI3K/Akt pathway.
Collapse
Affiliation(s)
- Kamaldeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India; Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Ravi K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| |
Collapse
|
12
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
13
|
Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome. Sci Rep 2020; 10:889. [PMID: 31965005 PMCID: PMC6972706 DOI: 10.1038/s41598-020-57803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26–28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3–4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative stress were comparable to wild-type. CD mice showed greater contractions to KCl. However, α1-adrenergic contractions to phenylephrine, but not with a thromboxane analogue, were compromised. Decreased phenylephrine responses were not affected by selective inducible NOS blockade with 1400 W, but were prevented by the non-selective NOS inhibitor L-NAME and the selective neuronal NOS inhibitor SMTC. Consistently, CD mice showed increased neuronal NOS expression in aortas. Overall, aortic stenosis in CD mice coexists with excessive nNOS-derived NO signaling that compromises ascending aorta α1-adrenergic contractions. We suggest that increased neuronal NOS signaling may act as a physiological ‘brake’ against the detrimental effects of stenosis.
Collapse
|
14
|
Rezq S, Nasr AM, Shaheen A, Elshazly SM. Doxazosin down-regulates sodium-glucose cotransporter-2 and exerts a renoprotective effect in rat models of acute renal injury. Basic Clin Pharmacol Toxicol 2019; 126:413-423. [PMID: 31788938 DOI: 10.1111/bcpt.13371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) is known to be involved in the progression of acute renal injury (ARI) and is regulated by different mediators in the kidneys including extracellular signal-regulated kinase (ERK), hypoxia-inducible factor 1 alpha (HIF1α) and prostaglandin E2 (PGE2). In the present study, we investigated the possible protective effect of doxazosin on renal ischaemia/reperfusion (IR) and glycerol-induced ARI by determining its effect on SGLT2 via modifying ERK-HIF1α pathway and/or PGE2. Rats were divided into control, sham or IR where the rats received the vehicle, doxazosin (8 mg/kg) or the SGLT2 inhibitor, dapagliflozin (10 mg/kg) for 3 days followed by 45 minutes bilateral renal ischaemia then 24 hours reperfusion. Another group of rats received the vehicle, doxazosin or dapagliflozin for three days followed by injection of 50% glycerol (8 mL/kg, IM) or saline. Kidney function tests, systolic blood pressure (SBP), oxidative stress markers (malondialdehyde [MDA] and NADPH oxidase), nitric oxide (NO), inducible nitric oxide synthase (iNOS), HIF1α, ERK phosphorylation and PGE2 levels were determined. Additionally, renal sections were used for immunological expression of SGLT2. ARI rats showed significantly increased SBP; worsened kidney function tests; increased oxidative stress, iNOS, NO, HIF1α levels; and decreased PGE2 and ERK phosphorylation along with up-regulated SGLT2. Doxazosin treatment protected against the kidney damage and attenuated the associated biochemical changes. Doxazosin has a direct renoprotective effect possibly by down-regulating SGLT2.
Collapse
Affiliation(s)
- Samar Rezq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed M Nasr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Aya Shaheen
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
de Carvalho EF, Gadelha KKL, de Oliveira DMN, Lima-Silva K, Batista-Lima FJ, de Brito TS, Paula SM, da Silva MTB, Dos Santos AA, Magalhães PJC. Neryl butyrate induces contractile effects on isolated preparations of rat aorta. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:43-55. [PMID: 31420719 DOI: 10.1007/s00210-019-01709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Neryl butyrate is a constituent of volatile oils obtained from aromatic plants. Aliphatic organic compound analogues chemically close to neryl butyrate possess vasodilator properties in rat aorta. To evaluate whether neryl butyrate has relaxing properties, this study tested its effects on isolated rat aorta. Unlike the analogues, neryl butyrate did not show relaxant profile in aortic rings precontracted with phenylephrine, but induced a contraction when it stimulated aortic rings under resting tonus. The contractile effect augmented in endothelium-denuded aortic rings. Treatment of endothelium-intact preparations with the nitric oxide synthase inhibitor L-NAME or the guanylyl cyclase inhibitor ODQ also augmented the contractile effect of neryl butyrate. Such phenomenon was absent in the presence of the cyclooxygenase inhibitor indomethacin. Contractile responses decreased in the presence of verapamil, a L-type Ca2+ channel blocker, or when Ca2+ was removed from the extracellular solution. Antagonists of α-adrenergic receptors (prazosin and yohimbine), but not the thromboxane-prostanoid receptor seratrodast, reversed the contraction induced by neryl butyrate. The α1A selective antagonist RS-17053 antagonized the neryl butyrate-induced contraction. The contraction caused by neryl butyrate was decreased by inhibiting the phospholipase C or the rho-associated kinase with U-73122 or Y-27632, respectively. Injected intravenously to awake rats, neryl butyrate induced arterial hypotension and bradycardia. Decreased frequency was also present in isolated right atrium preparations. In conclusion, the contractile effects of neryl butyrate were inhibited by α-adrenergic antagonists, indicating the involvement of α-adrenoceptors in the mechanism of action. In vivo, neryl butyrate caused hypotension, suggesting that other systemic influence than vasoconstriction may occur.
Collapse
Affiliation(s)
| | | | | | - Karine Lima-Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Suliana Mesquita Paula
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Pedro Jorge Caldas Magalhães
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil. .,Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, R. Cel. Nunes de Melo 1315, Centro de Biomedicina, Rodolfo Teófilo, Fortaleza, CE, 60.430-270, Brazil.
| |
Collapse
|
16
|
Frisbee JC, Lewis MT, Kasper JD, Chantler PD, Wiseman RW. Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. J Appl Physiol (1985) 2018; 126:626-637. [PMID: 30571284 DOI: 10.1152/japplphysiol.00751.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite extensive investigation into the impact of metabolic disease on vascular function and, by extension, tissue perfusion and organ function, interpreting results for specific risk factors can be complicated by the additional risks present in most models. To specifically determine the impact of type 2 diabetes without obesity on skeletal muscle microvascular structure/function and on active hyperemia with elevated metabolic demand, we used 17-wk-old Goto-Kakizaki (GK) rats to study microvascular function at multiple levels of resolution. Gracilis muscle arterioles demonstrated blunted dilation to acetylcholine (both ex vivo proximal and in situ distal arterioles) and elevated shear (distal arterioles only). All other alterations to reactivity appeared to reflect compromised endothelial function associated with increased thromboxane (Tx)A2 production and oxidant stress/inflammation rather than alterations to vascular smooth muscle function. Structural changes to the microcirculation of GK rats were confined to reduced microvessel density of ~12%, with no evidence for altered vascular wall mechanics. Active hyperemia with either field stimulation of in situ cremaster muscle or electrical stimulation via the sciatic nerve for in situ gastrocnemius muscle was blunted in GK rats, primarily because of blunted functional dilation of skeletal muscle arterioles. The blunted active hyperemia was associated with impaired oxygen uptake (V̇o2) across the muscle and accelerated muscle fatigue. Acute interventions to reduce oxidant stress (TEMPOL) and TxA2 action (SQ-29548) or production (dazmegrel) improved muscle perfusion, V̇o2, and muscle performance. These results suggest that type 2 diabetes mellitus in GK rats impairs skeletal muscle arteriolar function apparently early in the progression of the disease and potentially via an increased reactive oxygen species/inflammation-induced TxA2 production/action on network function as a major contributing mechanism. NEW & NOTEWORTHY The impact of type 2 diabetes mellitus on vascular structure/function remains an area lacking clarity. Using diabetic Goto-Kakizaki rats before the development of other risk factors, we determined alterations to vascular structure/function and skeletal muscle active hyperemia. Type 2 diabetes mellitus reduced arteriolar endothelium-dependent dilation associated with increased thromboxane A2 generation. Although modest microvascular rarefaction was evident, there were no other alterations to vascular structure/function. Skeletal muscle active hyperemia was blunted, although it improved after antioxidant or anti-thromboxane A2 treatment.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, Western University , London, Ontario , Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
17
|
Parathyroid Hormone Causes Endothelial Dysfunction by Inducing Mitochondrial ROS and Specific Oxidative Signal Transduction Modifications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9582319. [PMID: 30662585 PMCID: PMC6313989 DOI: 10.1155/2018/9582319] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023]
Abstract
Vitamin D deficiency contributes to cardiovascular risk (CVR), with hyperparathyroidism advocated as a putative mechanism. Indeed, mounting evidence supports the hypothesis that parathyroid hormone (PTH) impairs endothelial function, even though mechanisms are not fully elucidated. The present study was designed to verify in vitro the ability of sustained exposure to PTH to cause endothelial dysfunction, exploring the underlying mechanisms. In bovine aortic endothelial cells (BAECs), we evaluated the effects of PTH exposure (0.1 nM–24 hours) on both endothelial response to vasodilators, such as bradykinin (Bk (30 nM)) and acetylcholine (Ach (1 μM)), and angiogenic competence. Pretreatment with PTH impaired endothelial response to Bk but not to Ach, in terms of cytosolic calcium fluxes and NO production. In order to explore the underlying mechanisms, we assessed the production of total and mitochondrial ROS (tROS and mROS, respectively) in response to PTH (at 1 and 3 hours). PTH increased ROS generation, to an extent high enough to determine oxidation of Bk receptor B2. Conversely, the oxidation levels of M1 and M3 Ach receptors were not affected by PTH. A mROS selective scavenger (MitoTEMPO (5 μM)) restored the endothelial responsiveness to Bk while the well-known antioxidant properties of vitamin D (100 nM) failed to counteract PTH-mediated oxidative stress. PTH determined mitochondrial calcium fluxes ([Ca2+]mt) and the mitochondrial calcium uniporter inhibitor Ru360 (10 μM) reduced mROS production and prevented the PTH-mediated endothelial dysfunction. Angiogenic competence was evaluated as tubular formations in the endothelial Matrigel assay and showed a significant impairment in PTH-pretreated cells (0.1 nM–24 hours), despite the increase in VEGF transcriptional levels. VEGFR2 oxidation occurred in response to PTH, suggesting that even the impairment of angiogenesis was due to the ROS surge. These results indicate that PTH affects endothelial function through ROS production, driven by mitochondrial calcium overload. PTH-induced oxidative stress might act as signaling modifiers, altering specific pathways (Bk and VEGF) and preserving others (Ach).
Collapse
|
18
|
Is there a Chance to Promote Arteriogenesis by DPP4 Inhibitors Even in Type 2 Diabetes? A Critical Review. Cells 2018; 7:cells7100181. [PMID: 30360455 PMCID: PMC6210696 DOI: 10.3390/cells7100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the prevailing cause of death not only in industrialized countries, but even worldwide. Type 2 diabetes mellitus (type 2 DM) and hyperlipidemia, a metabolic disorder that is often associated with diabetes, are major risk factors for developing CVD. Recently, clinical trials proved the safety of gliptins in treating patients with type 2 DM. Gliptins are dipeptidyl-peptidase 4 (DPP4/CD26) inhibitors, which stabilize glucagon-like peptide-1 (GLP-1), thereby increasing the bioavailability of insulin. Moreover, blocking DPP4 results in increased levels of stromal cell derived factor 1 (SDF-1). SDF-1 has been shown in pre-clinical animal studies to improve heart function and survival after myocardial infarction, and to promote arteriogenesis, the growth of natural bypasses, compensating for the function of an occluded artery. Clinical trials, however, failed to demonstrate a superiority of gliptins compared to placebo treated type 2 DM patients in terms of cardiovascular (CV) outcomes. This review highlights the function of DPP4 inhibitors in type 2 DM, and in treating cardiovascular diseases, with special emphasis on arteriogenesis. It critically addresses the potency of currently available gliptins and gives rise to hope by pointing out the most relevant questions that need to be resolved.
Collapse
|
19
|
Kotańska M, Kulig K, Marcinkowska M, Bednarski M, Malawska K, Zaręba P. Metabolic benefits of 1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one: a non-selective α-adrenoceptor antagonist. J Endocrinol Invest 2018; 41:609-619. [PMID: 29110282 PMCID: PMC5902538 DOI: 10.1007/s40618-017-0779-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α1-adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α2-adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. METHODS The α1- and α2-adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. RESULTS The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α1B and α2A-adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. CONCLUSION Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α2A-adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland.
| | - Katarzyna Kulig
- Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Marcinkowska
- Chair of Pharmaceutical Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Katarzyna Malawska
- Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Paula Zaręba
- Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
20
|
Ajam T, Ajam S, Devaraj S, Mohammed K, Sawada S, Kamalesh M. Effect of carvedilol vs metoprolol succinate on mortality in heart failure with reduced ejection fraction. Am Heart J 2018; 199:1-6. [PMID: 29754646 DOI: 10.1016/j.ahj.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Beta blocker therapy is indicated in all patients with heart failure with reduced ejection fraction (HFrEF) as per current guidelines. The relative benefit of carvedilol to metoprolol succinate remains unknown. This study aimed to compare survival benefit of carvedilol to metoprolol succinate. METHODS The VA's databases were queried to identify 114,745 patients diagnosed with HFrEF from 2007 to 2015 who were prescribed carvedilol and metoprolol succinate. The study estimated the survival probability and hazard ratio by comparing the carvedilol and metoprolol patients using propensity score matching with replacement techniques on observed covariates. Sub-group analyses were performed separately for men, women, elderly, duration of therapy of more than 3 months, and diabetic patients. RESULTS A total of 43,941 metoprolol patients were matched with as many carvedilol patients. The adjusted hazard ratio of mortality for metoprolol succinate compared to carvedilol was 1.069 (95% CI: 1.046-1.092, P value: < .001). At six years, the survival probability was higher in the carvedilol group compared to the metoprolol succinate group (55.6% vs 49.2%, P value < .001). The sub-group analyses show that the results hold true separately for male, over or under 65 years old, therapy duration more than three months and non-diabetic patients. CONCLUSION Patients with HFrEF taking carvedilol had improved survival as compared to metoprolol succinate. The data supports the need for furthering testing to determine optimal choice of beta blockers in patients with heart failure with reduced ejection fraction.
Collapse
|
21
|
Goyal D, Goyal R. Developmental Maturation and Alpha-1 Adrenergic Receptors-Mediated Gene Expression Changes in Ovine Middle Cerebral Arteries. Sci Rep 2018; 8:1772. [PMID: 29379105 PMCID: PMC5789090 DOI: 10.1038/s41598-018-20210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 11/23/2022] Open
Abstract
The Alpha Adrenergic Signaling Pathway is one of the chief regulators of cerebrovascular tone and cerebral blood flow (CBF), mediating its effects in the arteries through alpha1-adrenergic receptors (Alpha1AR). In the ovine middle cerebral artery (MCA), with development from a fetus to an adult, others and we have shown that Alpha1AR play a key role in contractile responses, vascular development, remodeling, and angiogenesis. Importantly, Alpha1AR play a significant role in CBF autoregulation, which is incompletely developed in a premature fetus as compared to a near-term fetus. However, the mechanistic pathways are not completely known. Thus, we tested the hypothesis that as a function of maturation and in response to Alpha1AR stimulation there is a differential gene expression in the ovine MCA. We conducted microarray analysis on transcripts from MCAs of premature fetuses (96-day), near-term fetuses (145-day), newborn lambs, and non-pregnant adult sheep (2-year) following stimulation of Alpha1AR with phenylephrine (a specific agonist). We observed several genes which belonged to pro-inflammatory and vascular development/angiogenesis pathway significantly altered in all of the four age groups. We also observed age-specific changes in gene expression–mediated by Alpha1AR stimulation in the different developmental age groups. These findings imply complex regulatory mechanisms of cerebrovascular development.
Collapse
Affiliation(s)
- Dipali Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ravi Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Rho JY, Lynch DA, Suh YJ, Nah JW, Zach JA, Schroeder JD, Cox CW, Bowler RP, Fenster BE, Dransfield MT, Wells JM, Hokanson JE, Curran-Everett D, Williams A, Han MK, Crapo JD, Silverman EK. CT measurements of central pulmonary vasculature as predictors of severe exacerbation in COPD. Medicine (Baltimore) 2018; 97:e9542. [PMID: 29504975 PMCID: PMC5779744 DOI: 10.1097/md.0000000000009542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To identify a predictive value for the exacerbation status of chronic obstructive pulmonary disease (COPD) subjects, we evaluated the relationship between pulmonary vascular measurements on chest CT and severe COPD exacerbation.Six hundred three subjects enrolled in the COPDGene population were included and divided into nonexacerbator (n = 313) and severe exacerbator (n = 290) groups, based on whether they had an emergency room visit and/or hospitalization for COPD exacerbation. We measured the diameter of the main pulmonary artery (MPA) and ascending aorta (AA) at 2 different sites of the MPA (the tubular midportion and bifurcation) on both axial images and multiplanar reconstructions. Using multiple logistic regression analyses, we evaluated the relationship between each CT-measured pulmonary vasculature and exacerbation status.Axial and multiplanar MPA to AA diameter ratios (PA:AA ratios) at the tubular midportion and the axial PA:AA ratios at the bifurcation indicated significant association with severe exacerbation. The strongest association was found with the axial PA:mean AA ratio at the bifurcation (adjusted odds ratio [OR] = 12.53, 95% confidence interval [CI] = 2.35-66.74, P = .003) and the axial PA:major AA ratio at the tubular midportion (adjusted OR = 10.72, 95% CI = 1.99-57.86, P = .006). No differences were observed in the MPA diameter. Receiver operating characteristic analysis of these variables indicates that they may serve as a good predictive value for severe exacerbation (area under the curve, 0.77-0.78). The range of cut-off value for PA:AA ratio was 0.8 to 0.87.CT-measured PA:AA ratios at either the bifurcation or the tubular site, measured either on axial or multiplanar images, are useful for identification of the risk of severe exacerbation, and consequently can be helpful in guiding the management of COPD. Although CT measurement was used at the level of pulmonary bifurcation in previous studies, we suggest that future studies should monitor the tubular site of the MPA for maximum diagnostic value of CT in pulmonary hypertension or severe COPD exacerbation, as the tubular site of the MPA remains relatively constant on CT images.
Collapse
Affiliation(s)
- Ji Young Rho
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - Young Ju Suh
- Department of Biomedical Science, School of Medicine, Inha University, Incheon
| | | | - Jordan A. Zach
- Department of Clinical Trials, Kaiser Permanente, Denver
| | | | | | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health
| | | | - Mark T. Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - James M. Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Andre Williams
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, MI
| | - James D. Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
23
|
Methodological Approach to Use Fresh and Cryopreserved Vessels as Tools to Analyze Pharmacological Modulation of the Angiogenic Growth. J Cardiovasc Pharmacol 2017; 68:230-40. [PMID: 27631438 DOI: 10.1097/fjc.0000000000000407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sprouting of new vessels is greatly influenced by the procedure chosen. We sought to optimize the experimental conditions of the angiogenic growth of fresh and cryopreserved vessels cultured in Matrigel with the aim to use this system to analyze the pharmacological modulation of the process. Segments of second-order branches of rat mesenteric resistance arteries, thoracic aorta of rat or mouse, and cryopreserved rat aorta and human femoral arteries were cultured in Matrigel for 7-21 days in different mediums, as well as in the absence of endothelial or adventitia layer. Quantification of the angiogenic growth was performed by either direct measurement of the mean length of the neovessels or by calcein AM staining and determination of fluorescence intensity and area. Fresh and cryopreserved arterial rings incubated in Matrigel exhibited a spontaneous angiogenic response that was strongly accelerated by fetal calf serum. Addition of vascular endothelial growth factor, fibroblast growth factor, endothelial growth factor, or recombinant insulin-like growth factor failed to increase aortic sprouting, unless all were added together. Removal of adventitia, but not the endothelial layer, abrogated the angiogenic response of aortic rings. Determination of the mean neovessel length is an easy and accurate method to quantify the angiogenic growth devoid of confounding factors, such as inclusion of other cellular types surrounding the neovessels. Activity of a α1-adrenoceptor agonist (phenylephrine) and its inhibition by a selective antagonist (prazosin) were analyzed to prove the usefulness of the Matrigel system to evaluate the pharmacological modulation of the angiogenic growth.
Collapse
|
24
|
Drummond PD, Dawson LF, Wood FM, Fear MW. Up-regulation of α 1-adrenoceptors in burn and keloid scars. Burns 2017; 44:582-588. [PMID: 29089212 DOI: 10.1016/j.burns.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/30/2022]
Abstract
Stimulation of α1-adrenoceptors evokes inflammatory cytokine production, boosts neurogenic inflammation and pain, and influences cellular migration and proliferation. Hence, these receptors may play a role both in normal and abnormal wound healing. To investigate this, the distribution of α1-adrenoceptors in skin biopsies of burn scars (N=17), keloid scars (N=12) and unscarred skin (N=17) was assessed using immunohistochemistry. Staining intensity was greater on vascular smooth muscle in burn scars than in unscarred tissue, consistent with heightened expression of α1-adrenoceptors. In addition, expression of α1-adrenoceptors was greater on dermal nerve fibres, blood vessels and fibroblasts in keloid scars than in either burn scars or unscarred skin. These findings suggest that increased vascular expression of α1-adrenoceptors could alter circulatory dynamics both in burn and keloid scars. In addition, the augmented expression of α1-adrenoceptors in keloid tissue may contribute to processes that produce or maintain keloid scars, and might be a source of the uncomfortable sensations often associated with these scars.
Collapse
Affiliation(s)
- Peter D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia.
| | - Linda F Dawson
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia; The Burns Service of Western Australia, WA Dept of Health, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia
| |
Collapse
|
25
|
de Paula TDC, Silva BR, Grando MD, Pernomian L, do Prado AF, Bendhack LM. Relaxation induced by the nitric oxide donor and cyclooxygenase inhibitor NCX2121 in renal hypertensive rat aortas. Eur J Pharm Sci 2017; 107:45-53. [DOI: 10.1016/j.ejps.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
26
|
Arce C, Vicente D, Segura V, Flacco N, Montó F, Almenar L, Agüero J, Rueda J, Jiménez-Altayó F, Vila E, Noguera MA, D'Ocon P, Ivorra MD. Activation of α 1A -adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing. Br J Pharmacol 2017; 174:2015-2030. [PMID: 28369791 DOI: 10.1111/bph.13800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE A NO-mediated desensitization of vasoconstrictor responses evoked by stimulation of α1 -adrenoceptors has been reported in different vessels. We investigated the involvement of each α1 -adrenoceptor subtype and constitutive NOS isoforms and the influence of ageing and hypertension on this process. EXPERIMENTAL APPROACH Wistar and spontaneously hypertensive rats (SHR), 16, 32, 52 and 72 weeks-old, were used to evaluate the desensitization process. Expression of α1 -adrenoceptor subtypes, endothelial NOS (eNOS) and neuronal NOS (nNOS) were determined in rat aorta and left ventricle (LV). Expression levels were also evaluated in LV of a group of heart failure patients with a wide age range. KEY RESULTS Repeated application of phenylephrine decreased subsequent α1 -adrenoceptor-mediated vasoconstriction by increasing nNOS protein expression in aorta, but not in tail or mesenteric resistance arteries, where mRNA levels of nNOS were undetectable. This desensitization process disappeared in the absence of endothelium or in the presence of L-NAME (100 μM), nNOS inhibitors, SMTC (1 μM) and TRIM (100 μM), and 5-methylurapidil (100 nM, α1A -antagonist), but not BMY7378 (10 nM, α1D -antagonist). The α1A /nNOS-mediated desensitization was absent in aged SHR and Wistar animals, where the expression of α1A -adrenoceptors was reduced in aorta and LV. In human LV, a negative correlation was found between age and α1A -adrenoceptor expression. CONCLUSIONS AND IMPLICATIONS The α1A -adrenoceptor subtype, through endothelial nNOS-derived NO, may act as a physiological 'brake' against the detrimental effects of excessive α1 -adrenoceptor-mediated vasoconstriction. Reduced α1A -adrenoceptor- and nNOS-mediated desensitization in aged patients could be involved in the age-dependent elevation of adrenergic activity.
Collapse
Affiliation(s)
- Cristina Arce
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Diana Vicente
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Vanessa Segura
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Nicla Flacco
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Fermi Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Luis Almenar
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Jaime Agüero
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Joaquín Rueda
- Unidad de Insuficiencia Cardiaca y Trasplantes, Servicio de Cardiología, Hospital Universitario La Fe, Valencia, Spain
| | - Francesc Jiménez-Altayó
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Elisabet Vila
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
27
|
Pan L, Liu C, Kong Y, Piao Z, Cheng B. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells. Clin Hemorheol Microcirc 2017; 65:31-41. [PMID: 27314442 DOI: 10.3233/ch-162070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Liangli Pan
- Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Yanan Kong
- Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Biao Cheng
- Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
28
|
Qian X, Li M, Wagner MB, Chen G, Song X. Doxazosin Stimulates Galectin-3 Expression and Collagen Synthesis in HL-1 Cardiomyocytes Independent of Protein Kinase C Pathway. Front Pharmacol 2016; 7:495. [PMID: 28066244 PMCID: PMC5168465 DOI: 10.3389/fphar.2016.00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023] Open
Abstract
Doxazosin, a drug commonly prescribed for hypertension and prostate disease, increases heart failure risk. However, the underlying mechanism remains unclear. Galectin-3 is an important mediator that plays a pathogenic role in cardiac hypertrophy and heart failure. In the present study, we investigated whether doxazosin could stimulate galectin-3 expression and collagen synthesis in cultured HL-1 cardiomyocytes. We found that doxazosin dose-dependently induced galectin-3 protein expression, with a statistically significant increase in expression with a dose as low as 0.01 μM. Doxazosin upregulated collagen I and α-smooth muscle actin (α-SMA) protein levels and also induced apoptotic protein caspase-3 in HL-1 cardiomyocytes. Although we previously reported that activation of protein kinase C (PKC) stimulates galectin-3 expression, blocking the PKC pathway with the PKC inhibitor chelerythrine did not prevent doxazosin-induced galectin-3 and collagen expression. Consistently, doxazosin treatment did not alter total and phosphorylated PKC. These results suggest that doxazosin-stimulated galectin-3 is independent of PKC pathway. To determine if the α1-adrenergic pathway is involved, we pretreated the cells with the irreversible α-adrenergic receptor blocker phenoxybenzamine and found that doxazosin-stimulated galectin-3 and collagen expression was similar to controls, suggesting that doxazosin acts independently of α1-adrenergic receptor blockade. Collectively, we show a novel effect of doxazosin on cardiomycytes by stimulating heart fibrosis factor galectin-3 expression. The mechanism of action of doxazosin is not mediated through either activation of the PKC pathway or antagonism of α1-adrenergic receptors.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical UniversityHarbin, China; Department of Physiology, Emory University, AtlantaGA, USA
| | - Mingyang Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University Harbin, China
| | - Mary B Wagner
- Heart Research and Outcomes Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta GA, USA
| | - Guangping Chen
- Department of Physiology, Emory University, Atlanta GA, USA
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University Harbin, China
| |
Collapse
|
29
|
Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016; 93:65-72. [PMID: 27062709 PMCID: PMC5036981 DOI: 10.1016/j.maturitas.2016.03.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
Both cardiovascular disease and aging are associated with changes in the sympathetic nervous system. Indeed, mounting evidence indicates that adrenergic receptors are functionally involved in numerous processes underlying both aging and cardiovascular disorders, in particular heart failure. This article will review the pathophysiological role of the sympathetic nervous system in heart failure and cardiovascular aging.
Collapse
Affiliation(s)
- Gaetano Santulli
- College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guido Iaccarino
- Division of Internal Medicine, Department of Medicine and Surgery, University of Salerno, Italy.
| |
Collapse
|
30
|
Zhao X, Balaji P, Pachon R, Beniamen DM, Vatner DE, Graham RM, Vatner SF. Overexpression of Cardiomyocyte α1A-Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2451-9. [PMID: 26338300 DOI: 10.1161/atvbaha.115.305919] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Stimulation of cardiac α1A-adrenergic receptors (α1A-AR) has been proposed for treatment of heart failure, since it increases myocardial contractility. We investigated a different mechanism, induction of angiogenesis. APPROACH AND RESULTS Four to 6 weeks after permanent coronary artery occlusion, transgenic rats with cardiomyocyte-specific α1A-adrenergic receptor overexpression had less remodeling than their nontransgenic littermates, with less fibrosis, hypertrophy and lung weight, and preserved left ventricular ejection fraction and wall stress (all P<0.05). Coronary blood flow, measured with microspheres, increased in the infarct zone in transgenic rats compared with nontransgenic littermates (1.4±0.2 versus 0.5±0.08 mL min(-1) g(-1); P<0.05), which is consistent with angiogenesis, as reflected by a 20% increase in capillary density in the zone adjacent to the infarct. The question arose, how does transgenic overexpression of a gene in cardiomyocytes induce angiogenesis? We identified a paracrine mechanism, whereby vascular endothelial growth factor-A mRNA and protein were increased in isolated transgenic cardiomyocytes and also by nontransgenic littermate cardiomyocytes treated with an α1A-agonist, resulting in angiogenesis. Conditioned medium from cultured cardiomyocytes treated with an α1A agonist enhanced human umbilical vein endothelial cell tubule formation, which was blocked by an anti-vascular endothelial growth factor-A antibody. Moreover, improved cardiac function, blood flow, and increased capillary density after chronic coronary artery occlusion in transgenic rats were blocked by either a mitogen ERK kinase (MEK) or a vascular endothelial growth factor-A inhibitor. CONCLUSION Cardiomyocyte-specific overexpression of the α1A-adrenergic receptors resulted in enhanced MEK-dependent cardiomyocyte vascular endothelial growth factor-A expression, which stimulates angiogenesis via a paracrine mechanism involving heterocellular cardiomyocyte/endothelial cell signaling, protecting against remodeling and heart failure after chronic coronary artery occlusion.
Collapse
Affiliation(s)
- Xin Zhao
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Poornima Balaji
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Ronald Pachon
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Daniella M Beniamen
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Dorothy E Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Robert M Graham
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Stephen F Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.).
| |
Collapse
|
31
|
Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS One 2015; 10:e0130477. [PMID: 26110816 PMCID: PMC4481531 DOI: 10.1371/journal.pone.0130477] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/20/2015] [Indexed: 11/25/2022] Open
Abstract
Aims Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. Methods and Results In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. Conclusion These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.
Collapse
|
32
|
Santulli G. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:53-77. [PMID: 26662986 PMCID: PMC4871245 DOI: 10.1007/978-3-319-22380-3_4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)--noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation--distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments.
Collapse
MESH Headings
- Angioplasty
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/metabolism
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Stents/adverse effects
- Vascular Remodeling
Collapse
|
33
|
Ciccarelli M, Rusciano M, Sorriento D, Maione AS, Soprano M, Iaccarino G, Illario M. Messages from the Border: Novel Insights in Signal Transduction Pathways Involved in Tumor Invasion and Metastasis. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.62022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Santulli G, Wronska A, Uryu K, Diacovo TG, Gao M, Marx SO, Kitajewski J, Chilton JM, Akat KM, Tuschl T, Marks AR, Totary-Jain H. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 2014; 124:4102-14. [PMID: 25133430 DOI: 10.1172/jci76069] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27(Kip1) (p27) with target sequences for EC-specific miR-126-3p at the 3' end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS-treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.
Collapse
|
35
|
Lv WW, Qin SN, Chen CQ, Zhang JJ, Ren TS, Xu YN, Zhao QC. Isoindolone derivative QSN-10c induces leukemic cell apoptosis and suppresses angiogenesis via PI3K/AKT signaling pathway inhibition. Acta Pharmacol Sin 2014; 35:625-35. [PMID: 24786233 DOI: 10.1038/aps.2013.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022] Open
Abstract
AIM 2-(4,6-Dimethoxy-1,3-dioxoisoindolin-2-yl) ethyl 2-chloroacetate (QSN-10c) is one of isoindolone derivatives with antiproliferative activity against human umbilical vein endothelial cells (HUVECs). The aim of this study was to investigate its antitumor activity in vitro and anti-angiogenic effects in vitro and in vivo. METHODS K562 leukemic cells and HUVECs were used for in vitro studies. Cell viability was examined using MTT assay. Cell apoptosis and mitochondrial transmembrane potential (Δψm) were detected with flow cytometry. Tube formation and migration of HUVECs were studied using two-dimensional Matrigel assay and wound-healing migration assay, respectively. VEGF levels were analyzed with RT-PCR and Western blotting. A zebrafish embryo model was used for in vivo anti-angiogenic studies. The molecular mechanisms for apoptosis in K562 cells and antiangiogenesis were measured with Western blotting. RESULTS In antitumor activity studies, QSN-10c suppressed the viability of K562 cells and induced apoptosis in dose- and time-dependent manners. Furthermore, QSN-10c dose-dependently decreased the Δψm in K562 cells, increased the release of cytochrome c and the level of Bax, and decreased the level of Bcl-2, suggesting that QSN-10c-induced apoptosis of K562 cells was mediated via the mitochondrial apoptotic pathway. In anti-angiogenic activity studies, QSN-10c suppressed the viability of HUVECs and induced apoptosis in dose dependent manners. QSN-10c treatment did not alter the Δψm in HUVECs, but dose-dependently inhibited the expression of VEGF, inhibited the tube formation and cell migration in vitro, and significantly suppressed the number of ISVs in zebrafish embryos in vivo. Furthermore, QSN-10c dose-dependently suppressed the phosphorylation of AKT and GSK3β in both HUVECs and K562 cells. CONCLUSION QSN-10c is a novel antitumor compound that exerts both antitumor and anti-angiogenic effects via inhibiting the PI3K/AKT/GSK3β signaling pathway.
Collapse
|
36
|
De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 2014; 4:414. [PMID: 24550833 PMCID: PMC3909827 DOI: 10.3389/fphys.2013.00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022] Open
Abstract
Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD.
Collapse
Affiliation(s)
- Chiara De Biase
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Roberta De Rosa
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Rossella Luciano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Stefania De Luca
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Ernesto Capuano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Gennaro Galasso
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| |
Collapse
|
37
|
Ciccarelli M, Sorriento D, Franco A, Fusco A, Giudice CD, Annunziata R, Cipolletta E, Monti MG, Dorn GW, Trimarco B, Iaccarino G. Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species. Arterioscler Thromb Vasc Biol 2013; 33:2415-24. [PMID: 23950144 PMCID: PMC4262246 DOI: 10.1161/atvbaha.113.302262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The role of endothelial G protein-coupled receptor kinase 2 (GRK2) was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2(fl/fl)). APPROACH AND RESULTS Aortas from Tie2-CRE/GRK2(fl/fl) presented functional and structural alterations as compared with control GRK2(fl/fl) mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species was increased, leading to expression of cytokines. Chronic treatment with a reactive oxygen species scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities, and reducing macrophage infiltration. CONCLUSIONS These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial reactive oxygen species production.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Salerno, Italy
- Temple University, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | - Guido Iaccarino
- University of Salerno, Salerno, Italy
- IRCCS “multimedica”, Milan, Italy
| |
Collapse
|
38
|
Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension: molecular insights and pathophysiological mechanisms. High Blood Press Cardiovasc Prev 2013; 20:5-12. [PMID: 23532739 DOI: 10.1007/s40292-013-0001-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022] Open
Abstract
Numerous factors partake in the fine-tuning of arterial blood pressure. The heptahelical G-protein-coupled receptors (GPCRs) represent one of the largest classes of cell-surface receptors. Further, ligands directed at GPCRs account for nearly 30 % of current clinical pharmaceutical agents available. Given the wide variety of GPCRs involved in blood pressure control, it is reasonable to speculate for a potential role of established intermediaries involved in the GPCR desensitization process, like the G-protein-coupled receptor kinases (GRKs), in the regulation of vascular tone. Of the seven mammalian GRKs, GRK2 seems to be the most relevant isoform at the cardiovascular level. This review attempts to assemble the currently available information concerning GRK2 and hypertension, opening new potential fields of translational investigation to treat this vexing disease.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131, Naples, Italy.
| | | | | |
Collapse
|
39
|
Santulli G, Iaccarino G. Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes. IMMUNITY & AGEING 2013; 10:10. [PMID: 23497413 PMCID: PMC3763845 DOI: 10.1186/1742-4933-10-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/10/2013] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a key role in cellular communication, allowing human cells to sense external cues or to talk each other through hormones or neurotransmitters. Research in this field has been recently awarded with the Nobel Prize in chemistry to Robert J. Lefkowitz and Brian K. Kobilka, for their pioneering work on beta adrenergic receptors (βARs), a prototype GPCR. Such receptors, and β2AR in particular, which is extensively distributed throughout the body, are involved in a number of pathophysiological processes. Moreover, a large amount of studies has demonstrated their participation in ageing process. Reciprocally, age-related changes in regulation of receptor responses have been observed in numerous tissues and include modifications of βAR responses. Impaired sympathetic nervous system function has been indeed evoked as at least a partial explanation for several modifications that occur with ageing. This article represents an updated presentation of the current knowledge in the field, summarizing in a systematic way the major findings of research on ageing in several organs and tissues (crime scenes) expressing βARs: heart, vessels, skeletal muscle, respiratory system, brain, immune system, pancreatic islets, liver, kidney and bone.
Collapse
Affiliation(s)
- Gaetano Santulli
- Departments of Translational Medical Sciences and Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
| | | |
Collapse
|
40
|
Galasso G, De Rosa R, Ciccarelli M, Sorriento D, Del Giudice C, Strisciuglio T, De Biase C, Luciano R, Piccolo R, Pierri A, Di Gioia G, Prevete N, Trimarco B, Piscione F, Iaccarino G. β2-Adrenergic receptor stimulation improves endothelial progenitor cell-mediated ischemic neoangiogenesis. Circ Res 2013; 112:1026-34. [PMID: 23418295 DOI: 10.1161/circresaha.111.300152] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Endothelial progenitor cells (EPCs) are present in the systemic circulation and home to sites of ischemic injury where they promote neoangiogenesis. β2-Adrenergic receptor (β2AR) plays a critical role in vascular tone regulation and neoangiogenesis. OBJECTIVE We aimed to evaluate the role of β2AR on EPCs' function. METHODS AND RESULTS We firstly performed in vitro analysis showing the expression of β2AR on EPCs. Stimulation of wild-type EPCs with β-agonist isoproterenol induced a significant increase of Flk-1 expression on EPCs as assessed by fluorescence-activated cell sorter. Moreover, β2AR stimulation induced a significant increase of cell proliferation, improved the EPCs migratory activity, and enhanced the EPCs' ability to promote endothelial cell network formation in vitro. Then, we performed in vivo studies in animals model of hindlimb ischemia. Consistent with our in vitro results, in vivo EPCs' treatment resulted in an improvement of impaired angiogenic phenotype in β2AR KO mice after induction of ischemia, whereas no significant amelioration was observed when β2AR knock out (KO) EPCs were injected. Indeed, wild-type-derived EPCs' injection resulted in a significantly higher blood flow restoration in ischemic hindlimb and higher capillaries density at histological analysis as compared with not treated or β2AR KO EPC-treated mice. CONCLUSIONS The present study provides the first evidence that EPCs express a functional β2AR. Moreover, β2AR stimulation results in EPCs proliferation, migration, and differentiation, enhancing their angiogenic ability, both in vitro and in vivo, leading to an improved response to ischemic injury in animal models of hindlimb ischemia.
Collapse
Affiliation(s)
- Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, San Giovanni di Dio and Ruggi D'Aragona Academic Hospital, Cardiology Tower, Room S1, Largo Città d'Ippocrate, 84131 Salerno, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G. CaMK4 Gene Deletion Induces Hypertension. J Am Heart Assoc 2012; 1:e001081. [PMID: 23130158 PMCID: PMC3487344 DOI: 10.1161/jaha.112.001081] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/21/2012] [Indexed: 11/16/2022]
Abstract
Background The expression of calcium/calmodulin-dependent kinase IV (CaMKIV) was hitherto thought to be confined to the nervous system. However, a recent genome-wide analysis indicated an association between hypertension and a single-nucleotide polymorphism (rs10491334) of the human CaMKIV gene (CaMK4), which suggests a role for this kinase in the regulation of vascular tone. Methods and Results To directly assess the role of CaMKIV in hypertension, we characterized the cardiovascular phenotype of CaMK4−/− mice. They displayed a typical hypertensive phenotype, including high blood pressure levels, cardiac hypertrophy, vascular and kidney damage, and reduced tolerance to chronic ischemia and myocardial infarction compared with wild-type littermates. Interestingly, in vitro experiments showed the ability of this kinase to activate endothelial nitric oxide synthase. Eventually, in a population study, we found that the rs10491334 variant associates with a reduction in the expression levels of CaMKIV in lymphocytes from hypertensive patients. Conclusions Taken together, our results provide evidence that CaMKIV plays a pivotal role in blood pressure regulation through the control of endothelial nitric oxide synthase activity. (J Am Heart Assoc. 2012;1:e001081 doi: 10.1161/JAHA.112.001081.)
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Clinical Medicine, Cardiovascular and Immunologic Sciences, "Federico II" University of Naples, Naples, Italy (G.S., E.C., D.S., C.D.G., A.A., B.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Sorriento D, Santulli G, Del Giudice C, Anastasio A, Trimarco B, Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Hypertension 2012; 60:129-36. [PMID: 22665130 DOI: 10.1161/hypertensionaha.111.189605] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recently it has been demonstrated that catecholamines are produced and used by macrophages and mediate immune response. The aim of this study is to verify whether endothelial cells (ECs), which are of myeloid origin, can produce catecholamines. We demonstrated that genes coding for tyrosine hydroxylase, Dopa decarboxylase, dopamine β hydroxylase (DβH), and phenylethanolamine-N-methyl transferase, enzymes involved in the synthesis of catecholamines, are all expressed in basal conditions in bovine aorta ECs, and their expression is enhanced in response to hypoxia. Moreover, hypoxia enhances catecholamine release. To evaluate the signal transduction pathway that regulates catecholamine synthesis in ECs, we overexpressed in bovine aorta ECs either protein kinase A (PKA) or the transcription factor cAMP response element binding, because PKA/cAMP response element binding activation induces tyrosine hydroxylase transcription and activity in response to stress. Both cAMP response element binding and PKA overexpression enhance DβH and phenylethanolamine-N-methyl transferase gene expression and catecholamine release, whereas H89, inhibitor of PKA, exerts the opposite effect, evidencing the role of PKA/cAMP response element binding transduction pathway in the regulation of catecholamine release in bovine aorta ECs. We then evaluated by immunohistochemistry the expression of tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase in femoral arteries from hindlimbs of C57Bl/6 mice 3 days after removal of the common femoral artery to induce chronic ischemia. Ischemia evokes tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase expression in the endothelium. Finally, the pharmacological inhibition of catecholamine release by fusaric acid, an inhibitor of DβH, reduces the ability of ECs to form network-like structures on Matrigel matrix. In conclusion, our study demonstrates for the first time that ECs are able to synthesize and release catecholamines in response to ischemia.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Medicine and Surgery, Università di Salerno, Via Salvador Allende, 84081 Baronissi, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Matarese A, Santulli G. Angiogenesis in chronic obstructive pulmonary disease: a translational appraisal. Transl Med UniSa 2012; 3:49-56. [PMID: 23905052 PMCID: PMC3728789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Angiogenesis is a crucial component of lung pathophysiology, not only in cancer but also in other disorders, such as chronic obstructive pulmonary disease (COPD). In COPD angiogenesis is definitely able to control and orchestrate the progression of airway remodeling. Herein, we provide several remarkable translational aspects of angiogenesis in COPD, exploring both basic and clinical research in this field. Indeed, we present a number of pro- and anti-angiogenic factors, which can be also used as potential biomarkers to monitor disease progression.
Collapse
Affiliation(s)
- Alessandro Matarese
- University of Naples “Federico II”, Naples, Italy,Address correspondence to: ,
| | - Gaetano Santulli
- University of Naples “Federico II”, Naples, Italy,New York Presbyterian Hospital - Columbia University Medical Center, New York NY, USA
| |
Collapse
|
45
|
Santulli G, Lombardi A, Sorriento D, Anastasio A, Del Giudice C, Formisano P, Béguinot F, Trimarco B, Miele C, Iaccarino G. Age-related impairment in insulin release: the essential role of β(2)-adrenergic receptor. Diabetes 2012; 61:692-701. [PMID: 22315324 PMCID: PMC3282797 DOI: 10.2337/db11-1027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, we investigated the significance of β(2)-adrenergic receptor (β(2)AR) in age-related impaired insulin secretion and glucose homeostasis. We characterized the metabolic phenotype of β(2)AR-null C57Bl/6N mice (β(2)AR(-/-)) by performing in vivo and ex vivo experiments. In vitro assays in cultured INS-1E β-cells were carried out in order to clarify the mechanism by which β(2)AR deficiency affects glucose metabolism. Adult β(2)AR(-/-) mice featured glucose intolerance, and pancreatic islets isolated from these animals displayed impaired glucose-induced insulin release, accompanied by reduced expression of peroxisome proliferator-activated receptor (PPAR)γ, pancreatic duodenal homeobox-1 (PDX-1), and GLUT2. Adenovirus-mediated gene transfer of human β(2)AR rescued these defects. Consistent effects were evoked in vitro both upon β(2)AR knockdown and pharmacologic treatment. Interestingly, with aging, wild-type (β(2)AR(+/+)) littermates developed impaired insulin secretion and glucose tolerance. Moreover, islets from 20-month-old β(2)AR(+/+) mice exhibited reduced density of β(2)AR compared with those from younger animals, paralleled by decreased levels of PPARγ, PDX-1, and GLUT2. Overexpression of β(2)AR in aged mice rescued glucose intolerance and insulin release both in vivo and ex vivo, restoring PPARγ/PDX-1/GLUT2 levels. Our data indicate that reduced β(2)AR expression contributes to the age-related decline of glucose tolerance in mice.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
- Columbia-Presbyterian Medical Center, College of Physicians & Surgeons, Columbia University, New York, New York
| | - Angela Lombardi
- Columbia University Medical Center, Columbia University, New York, New York
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Daniela Sorriento
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Antonio Anastasio
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Carmine Del Giudice
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Pietro Formisano
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Francesco Béguinot
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
| | - Bruno Trimarco
- Department of Clinical Medicine, Cardiovascular & Immunologic Sciences, “Federico II” University of Naples, Naples, Italy
| | - Claudia Miele
- Department of Cellular and Molecular Biology and Pathology and Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore,” “Federico II” University of Naples, Naples, Italy
- Corresponding authors: Guido Iaccarino, , and Claudia Miele,
| | - Guido Iaccarino
- School of Medicine, University of Salerno, Salerno, Italy
- Corresponding authors: Guido Iaccarino, , and Claudia Miele,
| |
Collapse
|
46
|
Yoshida H, Itoh S, Hara T, Sasaki Y, Kondo S, Nakagawa T, Asanuma A, Tanabe S. A phosphodiesterase 3 inhibitor, K-134, improves hindlimb skeletal muscle circulation in rat models of peripheral arterial disease. Atherosclerosis 2012; 221:84-90. [PMID: 22269153 DOI: 10.1016/j.atherosclerosis.2011.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cilostazol is a phosphodiesterase (PDE)3 inhibitor used to treat peripheral arterial disease with intermittent claudication, as there is clinical evidence that it improves treadmill exercise capacity. However, details of the mechanism underlying this enhanced walking capacity remain to be elucidated. METHODS Based on the hypothesis that PDE3 inhibitors improve peripheral microcirculation in the hindlimbs via vascular smooth muscle relaxation and antiplatelet effects, we examined the effects of a more potent and selective PDE3 inhibitor, K-134, in rat models of peripheral arterial disease (PAD). RESULTS In a hindlimb ischemia model established by bilateral femoral artery occlusion, oral administration of K-134 for 27 days significantly increased blood flow in hindlimb skeletal muscle after exercise induced by electrical stimulation of the sciatic nerve. Moreover, K-134 enlarged the luminal area of intramuscular arteries and prevented rarefaction of capillary density in the gastrocnemius muscle. These effects were observed without pre-administration on the day following the last administration, suggesting that vasodilatory, antiplatelet and angiogenic activities of K-134 were indirectly responsible for the long-term beneficial effects. In fact, K-134 dose-dependently induced relaxation of rat femoral arteries in vitro, and inhibited rat platelet aggregation ex vivo. Interestingly, in a laurate-induced peripheral vascular injury model, oral administration of K-134 for 6 days prevented progression of hindlimb necrosis. CONCLUSION These findings suggest that the beneficial effects of PDE3 inhibitors on walking capacity are due to increased hindlimb skeletal muscle blood flow via intramuscular artery enlargement, and that K-134 is a promising drug for PAD associated with platelet hyperaggregability.
Collapse
Affiliation(s)
- Hideo Yoshida
- Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fusco A, Santulli G, Sorriento D, Cipolletta E, Garbi C, Dorn GW, Trimarco B, Feliciello A, Iaccarino G. Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal 2011; 24:468-475. [PMID: 21983013 DOI: 10.1016/j.cellsig.2011.09.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 01/24/2023]
Abstract
Metabolic stimuli such as insulin and insulin like growth factor cause cellular accumulation of G protein coupled receptor kinase 2 (GRK2), which in turn is able to induce insulin resistance. Here we show that in fibroblasts, GRK2 is able to increase ATP cellular content by enhancing mitochondrial biogenesis; also, it antagonizes ATP loss after hypoxia/reperfusion. Interestingly, GRK2 is able to localize in the mitochondrial outer membrane, possibly through one region within the RGS homology domain and one region within the catalytic domain. In vivo, GRK2 removal from the skeletal muscle results in reduced ATP production and impaired tolerance to ischemia. Our data show a novel sub-cellular localization of GRK2 in the mitochondria and an unexpected role in regulating mitochondrial biogenesis and ATP generation.
Collapse
Affiliation(s)
- Anna Fusco
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Daniela Sorriento
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Ersilia Cipolletta
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Corrado Garbi
- Cellular and Molecular Biology and Pathology "Federico II" University, Naples, Italy
| | - Gerald W Dorn
- Internal Medicine, Washington University in St. Louis, MO63110 USA
| | - Bruno Trimarco
- Clinical Medicine, Cardiovascular and Immunological Sciences "Federico II" University, Naples, Italy
| | - Antonio Feliciello
- Cellular and Molecular Biology and Pathology "Federico II" University, Naples, Italy
| | - Guido Iaccarino
- School of Medicine University of Salerno, Baronissi, (Salerno) 84081, Italy.
| |
Collapse
|
48
|
Ciccarelli M, Sorriento D, Cipolletta E, Santulli G, Fusco A, Zhou RH, Eckhart AD, Peppel K, Koch WJ, Trimarco B, Iaccarino G. Impaired neoangiogenesis in β₂-adrenoceptor gene-deficient mice: restoration by intravascular human β₂-adrenoceptor gene transfer and role of NFκB and CREB transcription factors. Br J Pharmacol 2011; 162:712-21. [PMID: 20958287 DOI: 10.1111/j.1476-5381.2010.01078.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE There is much evidence supporting the role of β₂-adrenoceptors (β₂AR) in angiogenesis but the mechanisms underlying their effects have not been elucidated. Hence, we studied post-ischaemic angiogenesis in the hindlimb (HL) of β₂AR knock-out mice (β₂AR-/-) in vivo and explored possible molecular mechanisms in vitro. EXPERIMENTAL APPROACH Femoral artery resection (FAR) was performed in wild-type and β₂AR-/- mice and adaptive responses to chronic HL ischaemia were explored; blood flow was measured by ultrasound and perfusion of dyed beads, bone rarefaction, muscle fibrosis and skin thickness were evaluated by immunoflourescence and morphometric analysis. Intrafemoral delivery of an adenovirus encoding the human β₂AR (ADβ₂AR) was used to reinstate β₂ARs in β₂AR-/- mice. Molecular mechanisms were investigated in mouse-derived aortic endothelial cells (EC) in vitro, focusing on NFκB activation and transcriptional activity. RESULTS Angiogenesis was severely impaired in β₂AR-/- mice subjected to FAR, but was restored by gene therapy with ADβ₂AR. The proangiogenic responses to a variety of stimuli were impaired in β₂AR-/- EC in vitro. Moreover, removal of β₂ARs impaired the activation of NFκB, a transcription factor that promotes angiogenesis; neither isoprenaline (stimulates βARs) nor TNFα induced NFκB activation in β₂AR(-/-) EC. Interestingly, cAMP response element binding protein (CREB), a transcription factor that counter regulates NFκB, was constitutively increased in β₂AR(-/-) ECs. ADβ₂AR administration restored β₂AR membrane density, reduced CREB activity and reinstated the NFκB response to isoprenaline and TNFα. CONCLUSIONS AND IMPLICATIONS Our results suggest that β₂ARs control angiogenesis through the tight regulation of nuclear transcriptional activity.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tokutomi Y, Kataoka K, Yamamoto E, Nakamura T, Fukuda M, Nako H, Toyama K, Dong YF, Ahmed KA, Sawa T, Akaike T, Kim-Mitsuyama S. Vascular responses to 8-nitro-cyclic GMP in non-diabetic and diabetic mice. Br J Pharmacol 2011; 162:1884-93. [PMID: 21232030 DOI: 10.1111/j.1476-5381.2011.01201.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), formed nitric oxide (NO)-dependently, is a physiological second messenger, yet little is known about its role in the pathophysiology of vascular diseases. To study the pharmacological activity of 8-nitro-cGMP in diabetic mice, we compared its effects on vascular reactivity of aortas from non-diabetic and diabetic mice. EXPERIMENTAL APPROACH Vascular tension recording was performed in thoracic aortic rings from wild-type (C57BL/6), non-diabetic db/+ and obese/diabetic db/db mice. Endothelial NO synthase (eNOS) uncoupling and superoxide were tested by Western blot and dihydroethidium fluorescence respectively. KEY RESULTS 8-Nitro-cGMP, at concentrations up to 10 µM, enhanced phenylephrine-induced contractions in aortas from C57BL/6 and db/+ mice, but not from db/db mice. This enhancement was not observed with 8-bromo-cGMP. Pretreatment of aortas from C57BL/6 and db/+ mice with l-NAME (100 µM), superoxide dismutase (100 U·mL(-1) ) or tiron (1 mM), abolished 8-nitro-cGMP-induced enhancement of the phenylephrine contraction. In 8-nitro-cGMP (10 µM)-treated C57BL/6 aortas, eNOS dimer/monomer ratio was significantly decreased and vascular superoxide production increased, suggesting that 8-nitro-cGMP-induced superoxide production via eNOS uncoupling may mediate the enhancement of the phenylephrine contraction. At higher concentrations (>10 µM), 8-nitro-cGMP produced relaxation of the phenylephrine-contracted aortas from C57BL/6, db/+ and db/db mice. The 8-nitro-cGMP-induced relaxation in db/db mouse aortas was found to be resistant to a phosphodiesterase 5 inhibitor, zaprinast (1 µM). CONCLUSIONS AND IMPLICATIONS The vasodilator effect of 8-nitro-cGMP may contribute to amelioration of the vascular endothelial dysfunction in diabetic mice, representing a novel pharmacological approach to prevent the complications associated with diabetes.
Collapse
Affiliation(s)
- Yoshiko Tokutomi
- Department of Pharmacology and Molecular Therapeutics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liao CH, Guh JH, Chueh SC, Yu HJ. Anti-angiogenic effects and mechanism of prazosin. Prostate 2011; 71:976-84. [PMID: 21541974 DOI: 10.1002/pros.21313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 10/26/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alpha1-adrenoceptors antagonists (doxazosin, terazosin, prazosin) are commonly prescribed for benign prostate hyperplasia and hypertension. Doxazosin and terazosin exhibit anti-angiogenic effects and apoptotic activities against multiple cell types and are potential preventive agents for prostate cancer. Prazosin induces apoptosis in three prostate cancer cell lines. We hypothesized that prazosin, a more potent alpha1-adrenoceptor antagonist with a distinct mechanism, exhibits anti-angiogenic activity. METHODS We examined the effect of prazosin on growth and tube formation of human umbilical vascular endothelial cells (HUVECs). We used flow cytometry to assess the effect of prazosin on cell cycle progression and Western blotting to assess its effect on the expression of various apoptotic proteins. RESULTS Prazosin inhibited the growth of HUVEC with an IC(50) of 6.53 µM and suppressed tube formation in a dose-dependent manner. Unlike prostate cancer cells, prazosin did not arrest cell cycle progression at the G2/M checkpoint. We used rhodamine 123 staining to show that prazosin (20 µM) treatment induced a loss of mitochondrial membrane potential by 12 hr. Prazosin treatment of HUVECs resulted in reduced MCL-1 expression, increased Bad, and Bcl-xL expression, cytochrome c release, and induction of apoptosis via the intrinsic apoptosis pathway. Prazosin induced apoptosis in prostate cancer cells and normal HUVEC cells via different mechanisms. CONCLUSIONS These data suggest that prazosin exhibits anti-angiogenic activity and differentially modulates apoptotic pathways depending on the cell type.
Collapse
Affiliation(s)
- Chun-Hou Liao
- Department of Surgery, Fu Jen Catholic University, Taipei, Taiwan
| | | | | | | |
Collapse
|