1
|
Cheng W, Wei B, Liu W, Jin L, Guo S, Ding M, Liu Y, Fan H, Li R, Zhang X, He X, Li X, Duan C. p97 inhibits integrated stress response-induced neuronal apoptosis after subarachnoid hemorrhage in mice by enhancing proteasome function. Exp Neurol 2024; 377:114778. [PMID: 38609045 DOI: 10.1016/j.expneurol.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Neuronal apoptosis is a common pathological change in early brain injury after subarachnoid hemorrhage (SAH), and it is closely associated with neurological deficits. According to previous research, p97 exhibits a remarkable anti-cardiomyocyte apoptosis effect. p97 is a critical molecule in the growth and development of the nervous system. However, it remains unknown whether p97 can exert an anti-neuronal apoptosis effect in SAH. In the present study, we examined the role of p97 in neuronal apoptosis induced after SAH and investigated the underlying mechanism. We established an in vivo SAH mice model and overexpressed the p97 protein through transfection of the mouse cerebral cortex. We analyzed the protective effect of p97 on neurons and evaluated short-term and long-term neurobehavior in mice after SAH. p97 was found to be significantly downregulated in the cerebral cortex of the affected side in mice after SAH. The site showing reduced p97 expression also exhibited a high level of neuronal apoptosis. Adeno-associated virus-mediated overexpression of p97 significantly reduced the extent of neuronal apoptosis, improved early and long-term neurological function, and repaired the neuronal damage in the long term. These neuroprotective effects were accompanied by enhanced proteasome function and inhibition of the integrated stress response (ISR) apoptotic pathway involving eIF2α/CHOP. The administration of the p97 inhibitor NMS-873 induced a contradictory effect. Subsequently, we observed that inhibiting the function of the proteasome with the proteasome inhibitor PS-341 blocked the anti-neuronal apoptosis effect of p97 and enhanced the activation of the ISR apoptotic pathway. However, the detrimental effects of NMS-873 and PS-341 in mice with SAH were mitigated by the administration of the ISR inhibitor ISRIB. These results suggest that p97 can promote neuronal survival and improve neurological function in mice after SAH. The anti-neuronal apoptosis effect of p97 is achieved by enhancing proteasome function and inhibiting the overactivation of the ISR apoptotic pathway.
Collapse
Affiliation(s)
- Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxiang Ding
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Arıcı A, Erdemir F. A Determination of p97/VCP (Valosin Containing Protein) and SVIP (Small VCP Interacting Protein) Expression Patterns in Human Testis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1079. [PMID: 37374283 DOI: 10.3390/medicina59061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: The ubiquitin proteosome system (UPS) is a non-lysosomal pathway that functions in all eukaryotes. The transport of polyubiquitinated proteins to proteosomes takes place via the p97/Valosin-containing protein (VCP) chaperone protein. The p97/VCP binds to polyubiquitinated proteins, allowing these proteins to reach the proteasome and, thus, their destruction. In the case of p97/VCP deficiency, ubiquitinated proteins accumulate in the cell cytoplasm, and their subsequent failure to break down produces various pathological conditions. Small VCP interacting protein (SVIP) and p97/VCP proteins have not been studied in human testicular tissues from different postnatal periods. Therefore, in our study, we aimed to examine the expression of SVIP and p97/VCP in postnatal human testicular tissues. Our study aimed to contribute to further studies on the use of these proteins as testicular cell biomarkers in cases of unexplained male infertility. Materials and Methods: Immunohistochemical studies with the aim of determining the expression of p97/VCP and SVIP proteins in neonatal, prepubertal, pubertal, adult, and geriatric human testis tissues were performed. Results: In testicular sections obtained from a neonatal group, p97/VCP and SVIP were localized in different testicular and interstitial cells, and the lowest expression was observed in this group. While the expressions of these proteins were low in the neonatal period, they increased gradually in the prepubertal, pubertal and adult periods. The expression of p97/VCP and SVIP, which peaked in adulthood, showed a significant decrease in the geriatric period. Conclusions: As a result, the expression of p97/VCP and SVIP correlated with the increase in age, but it decreased significantly in older groups.
Collapse
Affiliation(s)
- Akgül Arıcı
- Department of Medical Pathology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| | - Fikret Erdemir
- Department of Urology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| |
Collapse
|
5
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Kon T, Mori F, Kinoshita I, Nakamura T, Nishijima H, Suzuki C, Goto S, Kijima H, Tomiyama M, Wakabayashi K. An autopsy case of amyotrophic lateral sclerosis with striatonigral and pallidoluysian degeneration and cat's-eye-shaped neuronal nuclear inclusions. Neuropathology 2022; 42:329-338. [PMID: 35775096 DOI: 10.1111/neup.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
We report the case of a Japanese woman with sporadic amyotrophic lateral sclerosis (ALS) of 28 months' duration who died at the age of 66 years. Postmortem examination revealed moderate loss of neurons and phosphorylated TDP-43 (p-TDP-43)-immunoreactive neuronal and glial cytoplasmic inclusions in the upper and lower motor neurons. Additionally, marked neuronal loss was observed in the neostriatum, globus pallidum, subthalamic nucleus, and substantia nigra. p-TDP-43-immunoreactive inclusions were frequently found in these areas. Neuronal loss and TDP-43 pathology in the motor, striatonigral, and pallidoluysian systems were predominant on the right side. Moreover, p-TDP-43-immunoreactive cat's-eye-shaped neuronal nuclear inclusions (NNIs) were observed in the affected lesions. NNIs in the striatonigral system were also positive for valosin-containing protein (VCP). We diagnosed the patient as having ALS with striatonigral and pallidoluysian degeneration. Patients with ALS rarely experience pallido-nigro-luysian degeneration. To our best knowledge, only one case of ALS combined with striatonigral and pallidoluysian degeneration has been reported. Neuronal loss in the striatonigral and/or pallidoluysian systems has also been reported in patients with ALS with multisystem degeneration accompanied by long-term use of an artificial respirator. Based on these findings, a possibility of an extremely rare subtype of ALS demonstrating selective loss of neurons in the striatonigral and pallidoluysian systems exists; another possibility is that this type could be an early stage or forme fruste of ALS with multisystem degeneration. Although VCP-positive cat's-eye-shaped NNIs have been reported in spinocerebellar ataxia type-2 cases, our case report presents VCP-positive NNIs in a patient with ALS for the first time.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
7
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
8
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
9
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
10
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|
11
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
12
|
Yu G, Bai Y, Li K, Amarasinghe O, Jiang W, Zhang ZY. Cryo-electron microscopy structures of VCP/p97 reveal a new mechanism of oligomerization regulation. iScience 2021; 24:103310. [PMID: 34765927 PMCID: PMC8571493 DOI: 10.1016/j.isci.2021.103310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
VCP/p97 is an evolutionarily conserved AAA+ ATPase important for cellular homeostasis. Previous studies suggest that VCP predominantly exists as a homohexamer. Here, we performed structural and biochemical characterization of VCP dodecamer, an understudied state of VCP. The structure revealed an apo nucleotide status that has rarely been captured, a tail-to-tail assembly of two hexamers, and the up-elevated N-terminal domains akin to that seen in the ATP-bound hexamer. Further analyses elucidated a nucleotide status-dependent dodecamerization mechanism, where nucleotide dissociation from the D2 AAA domains induces and promotes VCP dodecamerization. In contrast, nucleotide-free D1 AAA domains are associated with the up-rotation of N-terminal domains, which may prime D1 for ATP binding. These results therefore reveal new nucleotide status-dictated intra- and interhexamer conformational changes and suggest that modulation of D2 domain nucleotide occupancy may serve as a mechanism in controlling VCP oligomeric states.
Collapse
Affiliation(s)
- Guimei Yu
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Ovini Amarasinghe
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Li XJ, Zhang YY, Fu YH, Zhang H, Li HX, Li QF, Li HL, Tan RK, Jiang CX, Jiang W, Li ZX, Luo C, Lu BX, Dang YJ. Gossypol, a novel modulator of VCP, induces autophagic degradation of mutant huntingtin by promoting the formation of VCP/p97-LC3-mHTT complex. Acta Pharmacol Sin 2021; 42:1556-1566. [PMID: 33495516 PMCID: PMC8463700 DOI: 10.1038/s41401-020-00605-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 μM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-jing Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yuan-yuan Zhang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yu-hua Fu
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Hao Zhang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - He-xuan Li
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Quan-fu Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Hai-ling Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Ren-ke Tan
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Chen-xiao Jiang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Wei Jiang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Zeng-xia Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Cheng Luo
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Bo-xun Lu
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong-jun Dang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| |
Collapse
|
14
|
Ogor P, Yoshida T, Koike M, Kakizuka A. VCP relocalization limits mitochondrial activity, GSH depletion and ferroptosis during starvation in PC3 prostate cancer cells. Genes Cells 2021; 26:570-582. [PMID: 34033175 DOI: 10.1111/gtc.12872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
During periods of crisis, cells must compensate to survive. To this end, cells may need to alter the subcellular localization of crucial proteins. Here, we show that during starvation, VCP, the most abundant soluble ATPase, relocalizes and forms aggregate-like structures at perinuclear regions in PC3 prostate cancer cells. This movement is associated with a lowered metabolic state, in which mitochondrial activity and ROS production are reduced. VCP appears to explicitly sense glutamine levels, as removal of glutamine from complete medium triggered VCP relocalization and its addition to starvation media blunted VCP relocalization. Cells cultured in Gln(+) starvation media exhibited uniformly distributed VCP in the cytoplasm (free VCP) and underwent ferroptotic cell death, which was associated with a decrease in GSH levels. Moreover, the addition of a VCP inhibitor, CB-5083, in starvation media prevented VCP relocalization and triggered ferroptotic cell death. Likewise, expression of GFP-fused VCP proteins, irrespective of ATPase activities, displayed free VCP and triggered cell death during starvation. These results indicate that free VCP is essential for the maintenance of mitochondrial function and that PC3 cells employ a strategy of VCP self-aggregation to suppress mitochondrial activity in order to escape cell death during starvation, a novel VCP-mediated survival mechanism.
Collapse
Affiliation(s)
- Promise Ogor
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoki Yoshida
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaaki Koike
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nat Chem Biol 2021; 17:448-455. [PMID: 33510452 DOI: 10.1038/s41589-020-00726-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Autophagy is an essential cellular process that removes harmful protein species, and autophagy upregulation may be able to protect against neurodegeneration and various pathogens. Here, we have identified the essential protein VCP/p97 (VCP, valosin-containing protein) as a novel regulator of autophagosome biogenesis, where VCP regulates autophagy induction in two ways, both dependent on Beclin-1. Utilizing small-molecule inhibitors of VCP ATPase activity, we show that VCP stabilizes Beclin-1 levels by promoting the deubiquitinase activity of ataxin-3 towards Beclin-1. VCP also regulates the assembly and activity of the Beclin-1-containing phosphatidylinositol-3-kinase (PI3K) complex I, thus regulating the production of PI(3)P, a key signaling lipid responsible for the recruitment of downstream autophagy factors. A decreased level of VCP, or inhibition of its ATPase activity, impairs starvation-induced production of PI(3)P and limits downstream recruitment of WIPI2, ATG16L and LC3, thereby decreasing autophagosome formation, illustrating an important role for VCP in early autophagy initiation.
Collapse
|
16
|
Li XQ, Ren J, Wang Y, Su JY, Zhu YM, Chen CG, Long WG, Jiang Q, Li J. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol (Dordr) 2021; 44:135-150. [PMID: 32936421 DOI: 10.1007/s13402-020-00557-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Paclitaxel is an anticancer drug for the treatment of non-small cell lung cancer (NSCLC). However, drug-resistance remains a major problem. Honokiol is a natural component which has been found to exhibit anti-tumor activity. Paclitaxel and honokiol have been reported to be able to induce paraptosis. The aim of this study was to investigate whether honokiol can reverse paclitaxel resistance by inducing paraptosis in NSCLC cells. METHODS NSCLC cell lines H1650 (paclitaxel-sensitive), H1299 and H1650/PTX (intrinsic and acquired paclitaxel-resistant, respectively) were used to assess the cytotoxic effects of paclitaxel and honokiol. Light and transmission electron microscopy were performed to detect cytoplasmic vacuolation. In vitro cell viability and clonogenic survival assays, as well as in vivo xenograft assays were conducted to test synergistic killing effects of paclitaxel and honokiol on NSCLC cells. Western blotting, flow cytometry and immunofluorescence were performed to evaluate paraptosis-regulating mechanisms. RESULTS We found that combination treatment with paclitaxel and honokiol synergistically killed H1650, H1299 and H1650/PTX cells by inducing paraptosis, which is characterized by cytoplasmic vacuolation. Moreover, paclitaxel/honokiol treatment resulted in a significant growth delay in H1299 xenograft tumors that showed extensive cytoplasmic vacuolation. Mechanistically, proteasomal inhibition-mediated endoplasmic reticulum (ER) stress and unfolded protein responses leading to ER dilation, and the disruption of intracellular Ca2+ homeostasis and mitochondrial Ca2+ overload resulting in mitochondrial disfunction, were found to be involved in paclitaxel/honokiol-induced paraptosis. Cellular protein light chain 3 (LC3) may play an important role in paclitaxel/honokiol induced cytoplasmic vacuolation and NSCLC cell death. CONCLUSIONS Combination of honokiol and paclitaxel may represent a novel strategy for the treatment of paclitaxel-resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Qin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Jing Ren
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yi Wang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yu-Min Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Chen-Guo Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Wei-Guo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Qian Jiang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
17
|
Aarum J, Cabrera CP, Jones TA, Rajendran S, Adiutori R, Giovannoni G, Barnes MR, Malaspina A, Sheer D. Enzymatic degradation of RNA causes widespread protein aggregation in cell and tissue lysates. EMBO Rep 2020; 21:e49585. [PMID: 32945072 PMCID: PMC7534620 DOI: 10.15252/embr.201949585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA‐binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single‐stranded pyrimidine‐rich bulges or loops surrounded by double‐stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one‐to‐one protein‐nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble.
Collapse
Affiliation(s)
- Johan Aarum
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Barts and The London NIHR Cardiovascular Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Tania A Jones
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Shiron Rajendran
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Rocco Adiutori
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Michael R Barnes
- Barts and The London NIHR Cardiovascular Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Malaspina
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Denise Sheer
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Cayli S, Sahin C, Sanci TO, Nakkas H. Inhibition of p97/VCP function leads to defective autophagosome maturation, cell cycle arrest and apoptosis in mouse Sertoli cells. Theriogenology 2020; 158:196-206. [PMID: 32966945 DOI: 10.1016/j.theriogenology.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p97/valosin-containing protein (VCP) is expressed in many cells and plays critical functions in a broad range of diverse cellular processes. Because it is expressed in the mouse testes, predominantly in Sertoli cells, and is known to play a critical role in autophagy and apoptosis in different cell types, we set out to investigate its function in autophagosome maturation, apoptosis and cell cycle arrest in a mouse Sertoli cell line. To study the mechanism of p97/VCP action, p97/VCP siRNA and a specific p97/VCP inhibitor, N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), were used in the mouse 15P1 Sertoli cell line. Loss of p97/VCP activity due to DBeQ exposure and silencing of p97/VCP (siVCP) expression results in autophagosome (LC3 and p62) accumulation in the cytoplasm of Sertoli cells. The coexpression of autophagosomal and lysosomal markers (LAMP1 and LAMP2) was reduced in cells in which p97/VCP expression had been inactivated. To better understand in which step of autophagy p97/VCP functions, the interaction between autophagosomal and autolysosomal markers was studied by coimmunoprecipitation and colocalization experiments. The interaction between autophagosomal markers and lysosomal markers decreased in siVCP-expressing and DBeQ-exposed cells. Moreover, the expression of siVCP and DBeQ exposure caused cytoplasmic vacuolation, induced caspase 3-7-mediated cell death and decreased cell cycle progression in mouse Sertoli cells. Taken together, the results show that p97/VCP is essential for autophagosome maturation and cell survival in mouse Sertoli cells. When these functions are prevented, impaired autophagy and apoptosis may have a detrimental effect on germ cells and cause male infertility.
Collapse
Affiliation(s)
- Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey.
| | - Cansu Sahin
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| | - Tuba Ozdemir Sanci
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| | - Hilal Nakkas
- Ankara Yıldırım Beyazıt University, Medical Faculty, Dept. of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
19
|
Jung H, Seo SB. Histone lysine demethylase 3B (KDM3B) regulates the propagation of autophagy via transcriptional activation of autophagy-related genes. PLoS One 2020; 15:e0236403. [PMID: 32716961 PMCID: PMC7384621 DOI: 10.1371/journal.pone.0236403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a self-degradative physiological process, is critical for homeostasis maintenance and energy source balancing in response to various stresses, including nutrient deprivation. It is a highly conserved catabolic process in eukaryotes and is indispensable for cell survival as it involves degradation of unessential or excessive components and their subsequent recycling as building blocks for the synthesis of necessary molecules. Although the dysregulation of autophagy has been reported to broadly contribute to various diseases, including cancers and neurodegenerative diseases, the molecular mechanisms underlying the epigenetic regulation of autophagy are poorly elucidated. Here, we report that the level of lysine demethylase 3B (KDM3B) increases in nutrient-deprived HCT116 cells, a colorectal carcinoma cell line, resulting in transcriptional activation of the autophagy-inducing genes. KDM3B was found to enhance the transcription by demethylating H3K9me2 on the promoter of these genes. Furthermore, we observed that the depletion of KDM3B inhibited the autophagic flux in HCT116 cells. Collectively, these data suggested the critical role of KDM3B in the regulation of autophagy-related genes via H3K9me2 demethylation and induction of autophagy in nutrient-starved HCT116 cells.
Collapse
Affiliation(s)
- Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
21
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
22
|
Gonzalez AE, Wang X. Drosophila VCP/p97 Mediates Dynein-Dependent Retrograde Mitochondrial Motility in Axons. Front Cell Dev Biol 2020; 8:256. [PMID: 32373611 PMCID: PMC7186335 DOI: 10.3389/fcell.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Valosin-containing protein (VCP), also called p97, is an evolutionarily conserved and ubiquitously expressed ATPase with diverse cellular functions. Dominant mutations in VCP are found in a late-onset multisystem degenerative proteinopathy. The neurological manifestations of the disorder include frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In these patients, long motor neuron axons could be particularly susceptible to defects in axonal transport. However, whether VCP has a physiological function in maintaining axonal transport and whether this role is impaired by disease-causing mutations remains elusive. Here, by employing live-imaging methods in Drosophila larval axons and performing genetic interaction experiments, we discover that VCP regulates the axonal transport of mitochondria. Downregulation of VCP enhances the retrograde transport of mitochondria and reduces the density of mitochondria in larval axons. This unidirectional motility phenotype is rescued by removing one copy of the retrograde motor dynein heavy chain (DHC), or elevating Miro which facilitates anterograde mitochondrial movement by interacting with the anterograde motor kinesin heavy chain (KHC). Importantly, Miro upregulation also significantly improves ATP production of VCP mutant larvae. We investigate human VCP pathogenic mutations in our fly system. We find that expressing these mutations affects mitochondrial transport in the same way as knocking down VCP. Our results reveal a new role of VCP in mediating axonal mitochondrial transport, and provide evidence implicating impaired mitochondrial motility in the pathophysiology of VCP-relevant neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashley E Gonzalez
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Xinnan Wang
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Kwon M, Jang M, Kim GH, Oh T, Ryoo IJ, Ryu HW, Oh SR, Kim BY, Jang JH, Ko SK, Ahn JS. Kushenol E inhibits autophagy and impairs lysosomal positioning via VCP/p97 inhibition. Biochem Pharmacol 2020; 175:113861. [PMID: 32081789 DOI: 10.1016/j.bcp.2020.113861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023]
Abstract
Autophagy plays a major role in cell survival and has therefore been exploited as an important strategy in cancer therapy. In this study, we evaluated the autophagy-regulatory effects of kushenol E (KE), a bi-prenylated flavonoid isolated from Sophora flavescens and found that KE increased LC3B-II levels while inducing the formation of autophagic vacuoles and immature autophagosomes in HeLa and HCT116 cells. Transmission electron microscopy images revealed that KE treatment generates immature autophagosomes. Furthermore, KE inhibited autophagosome maturation as demonstrated by blocking the degradation of EGFP puncta in HeLa cells stably expressing EGFP-mRFP-LC3B. It also reduced lysosomal activity and cathepsin maturation by disrupting lysosomal positioning, subsequently inducing apoptosis. Further, a combinatorial approach employing cellular thermal shift assays, revealed valosin-containing protein (VCP)/p97 as a potential target protein of KE; the knockdown and overexpression of VCP/p97 confirmed its involvement in regulating lysosomal positioning for autophagy maturation via direct interactions with KE. Thus, KE may possess autophagy-regulating properties mediated by binding to VCP/p97.
Collapse
Affiliation(s)
- Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Taehoon Oh
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea; Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea.
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea.
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
24
|
Mishra R, Amanullah A, Upadhyay A, Dhiman R, Dubey AR, Singh S, Prasad A, Mishra A. Ubiquitin ligase LRSAM1 suppresses neurodegenerative diseases linked aberrant proteins induced cell death. Int J Biochem Cell Biol 2020; 120:105697. [PMID: 31982566 DOI: 10.1016/j.biocel.2020.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 12/16/2022]
Abstract
Accumulation of aberrant misfolded proteins is a major hallmark of several neurodegenerative diseases. Intracellular accumulations of such abnormal proteins are selectively cleared by the ubiquitin-proteasome system (UPS). But how the failure of misfolded protein degradation cause proteinopathies is still an unanswered question?. Previous studies have suggested that few selective quality control (QC) E3 ubiquitin ligase from the UPS can selectively target insoluble aggregated proteins for their intracellular degradation. Few reports suggest that lack or aberrant functions of QC E3 ubiquitin ligases can be a possible causative factor of neurodegeneration and aging. Earlier findings indicated that leucine-rich repeat and sterile alpha motif containing-1 (LRSAM1) is associated with Charcot-Marie-Tooth Type 2P (CMT2P) disease in which loss of LRSAM1 function sensitizes peripheral axons for degeneration. Here, our current study for the first time demonstrates that E3 ubiquitin Ligase LRSAM1 is a really interesting new gene (RING) class protein which suppresses the accumulation of misfolded protein aggregates and also alleviates their deleterious cytotoxic effects. We have also observed that LRSAM1 expression is elevated under neurodegenerative stress conditions, and partial depletion of LRSAM1 endogenous levels aggravates mitochondrial abnormalities and severely affects cell survival during proteotoxic insults. Overall, our current finding indicates that LRSAM1 can alleviate cytotoxic insults mediated by a variety of neurodegeneration linked proteotoxic stress events, and most likely LRSAM1 interplay a significant role in between different components of cellular protein quality control mechanism. This study will also allow us to better comprehend the problem of proteinopathies linked with aberrant protein accumulation and open new possibilities to better elucidate the molecular mechanisms involved in the pathologies of neurodegeneration and aging.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Academy of Scientific & Innovative Research (AcSIR), Lucknow, 226031, UP, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
25
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
26
|
Naef V, Mero S, Fichi G, D'Amore A, Ogi A, Gemignani F, Santorelli FM, Marchese M. Swimming in Deep Water: Zebrafish Modeling of Complicated Forms of Hereditary Spastic Paraplegia and Spastic Ataxia. Front Neurosci 2019; 13:1311. [PMID: 31920481 PMCID: PMC6914767 DOI: 10.3389/fnins.2019.01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) and hereditary ataxia (HA) are two groups of disorders characterized, respectively, by progressive dysfunction or degeneration of the pyramidal tracts (HSP) and of the Purkinje cells and spinocerebellar tracts (HA). Although HSP and HA are generally shown to have distinct clinical-genetic profiles, in several cases the clinical presentation, the causative genes, and the cellular pathways and mechanisms involved overlap between the two forms. Genetic analyses in humans in combination with in vitro and in vivo studies using model systems have greatly expanded our knowledge of spinocerebellar degenerative disorders. In this review, we focus on the zebrafish (Danio rerio), a vertebrate model widely used in biomedical research since its overall nervous system organization is similar to that of humans. A critical analysis of the literature suggests that zebrafish could serve as a powerful experimental tool for molecular and genetic dissection of both HA and HSP. The zebrafish, found to be very useful for demonstrating the causal relationship between defect and mutation, also offers a useful platform to exploit for the development of therapies.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | - Serena Mero
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Gianluca Fichi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Struttura Complessa Toscana Sud (Sede Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M. Aleandri, Grosseto, Italy
| | - Angelica D'Amore
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy.,Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Asahi Ogi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | | | - Maria Marchese
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| |
Collapse
|
27
|
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, Sougrat R, Chakrabarti S, Chakrabarti O. Cytosolic aggregates in presence of non‐translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic 2019; 20:943-960. [DOI: 10.1111/tra.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Priyanka Majumder
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Life Sciences, School of Natural SciencesShiv Nadar University Dadri UP India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Buchmann Institute for Molecular Life Sciences Frankfurt Am Main Germany
| | - Debmita Chatterjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Zenia Kaul
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia School of Medicine Charlottesville Virginia
| | - Subhrangshu Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Rachid Sougrat
- Imaging and Characterization Lab4700 King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
28
|
Okazawa H. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
30
|
Ghosh DK, Roy A, Ranjan A. The ATPase VCP/p97 functions as a disaggregase against toxic Huntingtin-exon1 aggregates. FEBS Lett 2018; 592:2680-2692. [PMID: 30069866 DOI: 10.1002/1873-3468.13213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022]
Abstract
Intracellular protein aggregation is characterized by accumulation of misfolded proteins. Chaperones, degradation machineries, and quality-control mechanisms counteract protein aggregation. In this study, we report that the ATPase valosin-containing protein (VCP/p97) acts as a functional disaggregase that disassembles Huntingtin-exon1 aggregates in vitro and in HeLa cells. The N-terminal part of VCP (Cdc48_N domain) interacts with the N-terminal 17-amino acid region of Huntingtin-exon1. We show that VCP has properties of a disaggregase, since it is capable of reducing preformed protein aggregates and displays increased ATPase activity in the presence of protein aggregates. However, VCP shows high divergence/disparity from other disaggregases. Taken together, our studies show the novel function of VCP/p97 as a disaggregase which detangles protein aggregates to probably channelize their degradation.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
31
|
Ristic G, Sutton JR, Libohova K, Todi SV. Toxicity and aggregation of the polyglutamine disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila melanogaster. Neurobiol Dis 2018; 116:78-92. [PMID: 29704548 DOI: 10.1016/j.nbd.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 01/01/2023] Open
Abstract
Among the nine dominantly inherited, age-dependent neurodegenerative diseases caused by abnormal expansion in the polyglutamine (polyQ) repeat of otherwise unrelated proteins is Spinocerebellar Ataxia Type 3 (SCA3). SCA3 is caused by polyQ expansion in the deubiquitinase (DUB), ataxin-3. Molecular sequelae related to SCA3 remain unclear. Here, we sought to understand the role of protein context in SCA3 by focusing on the interaction between this DUB and Valosin-Containing Protein (VCP). VCP is bound directly by ataxin-3 through an arginine-rich area preceding the polyQ repeat. We examined the importance of this interaction in ataxin-3-dependent degeneration in Drosophila melanogaster. Our assays with new isogenic fly lines expressing pathogenic ataxin-3 with an intact or mutated VCP-binding site show that disrupting the ataxin-3-VCP interaction delays the aggregation of the toxic protein in vivo. Importantly, early on flies that express pathogenic ataxin-3 with a mutated VCP-binding site are indistinguishable from flies that do not express any SCA3 protein. Also, reducing levels of VCP through RNA-interference has a similar, protective effect to mutating the VCP-binding site of pathogenic ataxin-3. Based on in vivo pulse-chases, aggregated species of ataxin-3 are highly stable, in a manner independent of VCP-binding. Collectively, our results highlight an important role for the ataxin-3-VCP interaction in SCA3, based on a model that posits a seeding effect from VCP on pathogenic ataxin-3 aggregation and subsequent toxicity.
Collapse
Affiliation(s)
- Gorica Ristic
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joanna R Sutton
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Nillegoda NB, Wentink AS, Bukau B. Protein Disaggregation in Multicellular Organisms. Trends Biochem Sci 2018; 43:285-300. [PMID: 29501325 DOI: 10.1016/j.tibs.2018.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Protein aggregates are formed in cells with profoundly perturbed proteostasis, where the generation of misfolded proteins exceeds the cellular refolding and degradative capacity. They are a hallmark of protein conformational disorders and aged and/or environmentally stressed cells. Protein aggregation is a reversible process in vivo, which counteracts proteotoxicities derived from aggregate persistence, but the chaperone machineries involved in protein disaggregation in Metazoa were uncovered only recently. Here we highlight recent advances in the mechanistic understanding of the major protein disaggregation machinery mediated by the Hsp70 chaperone system and discuss emerging alternative disaggregation activities in multicellular organisms.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
33
|
Shinjo SK, Oba-Shinjo SM, Lerario AM, Marie SKN. A Brazilian family with inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia linked to the VCP pGly97Glu mutation. Clin Rheumatol 2017; 37:1129-1136. [DOI: 10.1007/s10067-017-3913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
34
|
Rao MV, Williams DR, Cocklin S, Loll PJ. Interaction between the AAA + ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 2017; 292:18392-18407. [PMID: 28939772 DOI: 10.1074/jbc.m117.806281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Indexed: 12/29/2022] Open
Abstract
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Collapse
Affiliation(s)
- Maya V Rao
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Dewight R Williams
- the LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Patrick J Loll
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
35
|
Polyglutamine expansion diseases: More than simple repeats. J Struct Biol 2017; 201:139-154. [PMID: 28928079 DOI: 10.1016/j.jsb.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein-protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein-protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.
Collapse
|
36
|
Hattori K, Nakadate K, Morii A, Noguchi T, Ogasawara Y, Ishii K. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity. Biochem Biophys Res Commun 2017; 492:218-223. [PMID: 28823918 DOI: 10.1016/j.bbrc.2017.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells.
Collapse
Affiliation(s)
- Kenji Hattori
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuhiko Nakadate
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Akane Morii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takumi Noguchi
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
37
|
Ohoka N, Nagai K, Shibata N, Hattori T, Nara H, Cho N, Naito M. SNIPER(TACC3) induces cytoplasmic vacuolization and sensitizes cancer cells to Bortezomib. Cancer Sci 2017; 108:1032-1041. [PMID: 28192613 PMCID: PMC5448626 DOI: 10.1111/cas.13198] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
We previously developed a hybrid small molecule SNIPER (Specific and Nongenetic IAP‐dependent Protein ERaser) against transforming acidic coiled‐coil‐3 (TACC3), SNIPER(TACC3), that induces proteasomal degradation of TACC3 protein. In this study, we found that SNIPER(TACC3) induces cytoplasmic vacuolization derived from endoplasmic reticulum (ER) and paraptosis‐like cell death selectively in cancer cells. Mechanistic analysis suggests that accumulation of ubiquitylated protein aggregates that requires X‐linked inhibitor of apoptosis protein (XIAP) induces ER stress, which results in ER‐stress responses involving X‐box binding protein‐1 (XBP‐1) and ER‐derived vacuolization in cancer cells. Importantly, inhibition of proteasome enhanced the SNIPER(TACC3)‐induced vacuolization, and the combination treatment of SNIPER(TACC3) and bortezomib exhibited a synergistic anticancer activity in several cancer cell lines. The induction of paraptosis‐like cell death in cancer cells by SNIPER(TACC3) could be applied to treat cancer cells resistant to undergo apoptosis by overexpression of XIAP.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Katsunori Nagai
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Fujisawa, Kanagawa, Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Takayuki Hattori
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Nara
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Fujisawa, Kanagawa, Japan
| | - Nobuo Cho
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd., Fujisawa, Kanagawa, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
38
|
SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78. PLoS One 2017; 12:e0172983. [PMID: 28301499 PMCID: PMC5354272 DOI: 10.1371/journal.pone.0172983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys) at amino acid 342 of the mature protein, resulting in disruption of the 290–342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT]), protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein) interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte–like cell line (AT01). Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.
Collapse
|
39
|
Yeo BK, Yu SW. Valosin-containing protein (VCP): structure, functions, and implications in neurodegenerative diseases. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1259181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
40
|
Lim JJ, Lee Y, Yoon SY, Ly TT, Kang JY, Youn HS, An JY, Lee JG, Park KR, Kim TG, Yang JK, Jun Y, Eom SH. Structural insights into the interaction of human p97 N-terminal domain and SHP motif in Derlin-1 rhomboid pseudoprotease. FEBS Lett 2016; 590:4402-4413. [PMID: 27714797 DOI: 10.1002/1873-3468.12447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 11/08/2022]
Abstract
The interaction of the rhomboid pseudoprotease Derlin-1 and p97 is crucial for the retrotranslocation of polyubiquitinated substrates in the endoplasmic reticulum-associated degradation pathway. We report a 2.25 Å resolution structure of the p97 N-terminal domain (p97N) in complex with the Derlin-1 SHP motif. Remarkably, the SHP motif adopts a short, antiparallel β-strand that interacts with the β-sheet of p97N-a site distinct from that to which most p97 adaptor proteins bind. Mutational and biochemical analyses contributed to defining the specific interaction, demonstrating the importance of a highly conserved binding pocket on p97N and a signature motif on SHP. Our findings may also provide insights into the interactions between other SHP-containing proteins and p97N.
Collapse
Affiliation(s)
- Jia Jia Lim
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Youngjin Lee
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - So Young Yoon
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea
| | - Tue Tu Ly
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jung Youn Kang
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Hyung-Seop Youn
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jun Yop An
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jung-Gyu Lee
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Kyoung Ryoung Park
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Tae Gyun Kim
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul, Korea
| | - Youngsoo Jun
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea
| | - Soo Hyun Eom
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Korea.,Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Korea
| |
Collapse
|
41
|
Bayraktar O, Oral O, Kocaturk NM, Akkoc Y, Eberhart K, Kosar A, Gozuacik D. IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation. PLoS One 2016; 11:e0164864. [PMID: 27768726 PMCID: PMC5074563 DOI: 10.1371/journal.pone.0164864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies.
Collapse
Affiliation(s)
- Oznur Bayraktar
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Ozlem Oral
- Sabanci University, Nanotechnology Research and Application Center, Istanbul, 34956, Turkey
| | - Nur Mehpare Kocaturk
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Karin Eberhart
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
| | - Ali Kosar
- Sabanci University, Faculty of Engineering and Natural Sciences, Mechatronics Engineering Program, Istanbul, 34956, Turkey
- Sabanci University, Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Istanbul, 34956, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul, 34956, Turkey
- Sabanci University, Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Istanbul, 34956, Turkey
- * E-mail:
| |
Collapse
|
42
|
Structural insights into the interaction of p97 N-terminus domain and VBM in rhomboid protease, RHBDL4. Biochem J 2016; 473:2863-80. [DOI: 10.1042/bcj20160237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
RHBDL4 is an active rhomboid that specifically recognizes and cleaves atypical, positively charged transmembrane endoplasmic reticulum-associated degradation (ERAD) substrates. Interaction of valosin-containing protein (p97/VCP) and RHBDL4 is crucial to retrotranslocate polyubiquitinated substrates for ERAD pathway. Here, we report the first complex structure of VCP-binding motif (VBM) with p97 N-terminal domain (p97N) at 1.88 Å resolution. Consistent with p97 adaptor proteins including p47-ubiquitin regulatory X (UBX), gp78-VCP-interacting motif (VIM), OTU1-UBX-like element, and FAF1-UBX, RHBDL4 VBM also binds at the interface between the two lobes of p97N. Notably, the RF residues in VBM are involved in the interaction with p97N, showing a similar interaction pattern with that of FPR signature motif in the UBX domain, although the directionality is opposite. Comparison of VBM interaction with VIM of gp78, another α-helical motif that interacts with p97N, revealed that the helix direction is inversed. Nevertheless, the conserved arginine residues in both motifs participate in the majority of the interface via extensive hydrogen bonds and ionic interactions with p97N. We identified novel VBM-binding mode to p97N that involves a combination of two types of p97–cofactor specificities observed in the UBX and VIM interactions. This highlights the induced fit model of p97N interdomain cleft upon cofactor binding to form stable p97–cofactor complexes. Our mutational and biochemical analyses in defining the specific interaction between VBM and p97N have elucidated the importance of the highly conserved VBM, applicable to other VBM-containing proteins. We also showed that RHBDL4, ubiquitins, and p97 co-operate for efficient substrate dislocation.
Collapse
|
43
|
Guo X, Sun X, Hu D, Wang YJ, Fujioka H, Vyas R, Chakrapani S, Joshi AU, Luo Y, Mochly-Rosen D, Qi X. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun 2016; 7:12646. [PMID: 27561680 PMCID: PMC5007466 DOI: 10.1038/ncomms12646] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Mutant Huntingtin (mtHtt) causes neurodegeneration in Huntington's disease (HD) by evoking defects in the mitochondria, but the underlying mechanisms remains elusive. Our proteomic analysis identifies valosin-containing protein (VCP) as an mtHtt-binding protein on the mitochondria. Here we show that VCP is selectively translocated to the mitochondria, where it is bound to mtHtt in various HD models. Mitochondria-accumulated VCP elicits excessive mitophagy, causing neuronal cell death. Blocking mtHtt/VCP mitochondrial interaction with a peptide, HV-3, abolishes VCP translocation to the mitochondria, corrects excessive mitophagy and reduces cell death in HD mouse- and patient-derived cells and HD transgenic mouse brains. Treatment with HV-3 reduces behavioural and neuropathological phenotypes of HD in both fragment- and full-length mtHtt transgenic mice. Our findings demonstrate a causal role of mtHtt-induced VCP mitochondrial accumulation in HD pathogenesis and suggest that the peptide HV-3 might be a useful tool for developing new therapeutics to treat HD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - XiaoYan Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hisashi Fujioka
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Rajan Vyas
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Sudha Chakrapani
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Amit Umesh Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94043, USA
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94043, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
44
|
Hasegawa T, Muraoka Y, Ikeda HO, Tsuruyama T, Kondo M, Terasaki H, Kakizuka A, Yoshimura N. Neuoroprotective efficacies by KUS121, a VCP modulator, on animal models of retinal degeneration. Sci Rep 2016; 6:31184. [PMID: 27503804 PMCID: PMC4977562 DOI: 10.1038/srep31184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of the leading causes of adult blindness and has no established therapy. We have shown that valosin-containing protein (VCP) modulators, Kyoto University Substances (KUSs), ameliorated abnormally low ATP levels by inhibiting the ATPase of VCP, thereby protected several types of cells, including retinal neurons, from cell death-inducing insults. In this study, we found that KUS121, one of the VCP modulators, effectively protects photoreceptors both morphologically and functionally, in two animal models of retinal degeneration, rd12 mice and RP rabbits with a rhodopsin (Pro347Leu) mutation. In rd12 mice, KUS121 suppressed the loss of photoreceptors, not only rods but also cones, as well as the visual function deterioration. Significant protective effects existed even when the medication was started in later stages of the disease. In RP rabbits, KUS121 suppressed thinning of the outer nuclear layer and maintained visual function. In the retinas treated with KUS121, suppression of endoplasmic reticulum stress, activation of mammalian target of rapamycin and suppression of disease-associated apoptosis were evident. The ability of KUS121 to protect photoreceptors, especially cones, even in later stages of the disease may contribute to the preservation of central vision in RP patients, which is important for quality of vision.
Collapse
Affiliation(s)
- Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto university Hospital, Kyoto, 606-8501, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, 514-8607, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies &Solution Oriented Research for Science and Technology, Kyoto, 606-8501, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| |
Collapse
|
45
|
Fu Q, Jiang Y, Zhang D, Liu X, Guo J, Zhao J. Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol Cell Biochem 2016; 418:189-98. [PMID: 27344168 PMCID: PMC4927615 DOI: 10.1007/s11010-016-2746-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023]
Abstract
Valosin-containing protein (VCP) was previously shown to exhibit high expression in colorectal cancer (CRC) tissues as compared with that in normal tissues; however, the role of VCP in human CRC cells has remained to be elucidated. Two colorectal cancer cell lines HCT116 and RKO were used in the experiment. We introduced lentiviral constructs expressing VCP to infect RKO cells and lenti-shRNA targeting VCP into HCT116 cells, respectively. Cell proliferation, invasion, apoptosis, and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry, and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model and lung metastasis model was used to investigate the effects of VCP on the growth and metastasis of CRC cells in vivo. VCP knockdown was shown to inhibit cell proliferation, chemoresistance and invasion, and induce apoptosis in the HCT116 CRC cells, whereas VCP over-expression suppressed apoptosis and chemoresponse, promoted proliferation and invasion of the RKO CRC cells. In addition, in the subcutaneous tumor and lung metastasis mouse model, VCP knockdown in HCT116 cells suppressed carcinogenesis and metastasis in vivo. The findings of the present study indicated that VCP is very important for the proliferation and metastasis of CRC; therefore, targeting VCP and its downstream targets may represent novel therapies for the treatment of CRC.
Collapse
Affiliation(s)
- Qianfeng Fu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yuling Jiang
- Department of Clinical Laborotary, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Daxin Zhang
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Xiuli Liu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Junfeng Guo
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Jinlong Zhao
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
46
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
47
|
Liebl MP, Hoppe T. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin. Am J Physiol Cell Physiol 2016; 311:C166-78. [PMID: 27225656 DOI: 10.1152/ajpcell.00074.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases.
Collapse
Affiliation(s)
- Martina P Liebl
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Nakano N, Ikeda HO, Hasegawa T, Muraoka Y, Iwai S, Tsuruyama T, Nakano M, Fuchigami T, Shudo T, Kakizuka A, Yoshimura N. Neuroprotective effects of VCP modulators in mouse models of glaucoma. Heliyon 2016; 2:e00096. [PMID: 27441270 PMCID: PMC4946081 DOI: 10.1016/j.heliyon.2016.e00096] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/04/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023] Open
Abstract
Glaucoma is a major cause of adult blindness due to gradual death of retinal ganglion cells. Currently, no therapeutics are available for the protection of these cells from the cell death. We have recently succeeded in synthesizing novel compounds, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption by specifically inhibiting the ATPase activities of VCP, a major ATPase in the cell, and we have shown that KUSs could mitigate the disease progression of rd10, a mouse model of retinitis pigmentosa, without any apparent side effects. Here we show that KUSs (e.g. KUS121 and KUS187) can prevent antimycin- and oligomycin-induced ATP depletion, endoplasmic reticulum (ER) stress, and cell death in neuronally differentiated PC12 cells. Furthermore, KUSs manifest significant efficacies on several mouse models of glaucoma. KUS administration prevented or mitigated ER stress and subsequent apoptotic cell death of retinal ganglion cells in an acute injury mouse model of retinal ganglion cell loss, which was induced with N-methyl-D-aspartate. In a mouse model of glaucoma with high intraocular pressure, KUSs prevented the typical glaucoma pathologies, i.e. enlargement of optic disc cupping and thinning of the retinal nerve fiber layer. KUSs also preserved visual functions in GLAST knockout mice, a mouse model for chronic retinal ganglion cell loss. We propose “ATP maintenance” via inhibition of ATPase activities of VCP as a promising new neuroprotective strategy for currently incurable eye diseases, such as glaucoma.
Collapse
Affiliation(s)
- Noriko Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 606-8507, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 606-8507, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masaki Nakano
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto, 606-8501, Japan
| | | | - Toshiyuki Shudo
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto, 606-8501, Japan; Daito Chemix, Ishibashi-cho Fukui-city Fukui 910-3137, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto, 606-8501, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, 606-8507, Kyoto, Japan
| |
Collapse
|
49
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
50
|
Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep 2015; 11:1134-46. [PMID: 25959826 PMCID: PMC9014711 DOI: 10.1016/j.celrep.2015.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer’s disease (AD), Huntingtin (HTT) for Huntington’s disease, Parkin (PARK2) for Parkinson’s disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. Hosp et al. show that quantitative interaction proteomics of neurodegenerative disease proteins captures interactions relevant to pathogenesis. Differential interactome mapping reveals preferential binding of the mitochondrial protein LRPPRC with an early-onset Alzheimer’s disease (AD) variant of APP, potentially contributing to mitochondrial dysfunction observed in AD.
Collapse
|