1
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Khan D, Fox PL. Aminoacyl-tRNA synthetase interactions in SARS-CoV-2 infection. Biochem Soc Trans 2023; 51:2127-2141. [PMID: 38108455 PMCID: PMC10754286 DOI: 10.1042/bst20230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases. Recent findings have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), utilizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA synthetases interact with a previously unknown RNA-element in the 3'-end of SARS-CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-CoV-2 interactions identified to date, with possible implications for the biology of host aaRSs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
4
|
Zong Y, Yang Y, Zhao J, Li L, Luo D, Hu J, Gao Y, Wei L, Li N, Jiang L. Characterisation of macrophage infiltration and polarisation based on integrated transcriptomic and histological analyses in Primary Sjögren's syndrome. Front Immunol 2023; 14:1292146. [PMID: 38022546 PMCID: PMC10656691 DOI: 10.3389/fimmu.2023.1292146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a progressive inflammatory autoimmune disease. Immune cell infiltration into glandular lobules and ducts and glandular destruction are the pathophysiological hallmarks of pSS. Macrophages are one of the most important cells involved in the induction and regulation of an inflammatory microenvironment. Although studies have reported that an abnormal tissue microenvironment alters the metabolic reprogramming and polarisation status of macrophages, the mechanisms driving macrophage infiltration and polarisation in pSS remain unclear. Methods Immune cell subsets were characterised using the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from patients with pSS (n = 5) and healthy individuals (n = 5) in a public dataset. To evaluate macrophage infiltration and polarisation in target tissues, labial salivary gland biopsy tissues were subjected to histological staining and bulk RNA-seq (pSS samples, n = 24; non-pSS samples, n = 12). RNA-seq data were analysed for the construction of macrophage co-expression modules, enrichment of biological processes and deconvolution-based screening of immune cell types. Results Detailed mapping of PBMCs using scRNA-seq revealed five major immune cell subsets in pSS, namely, T cells, B cells, natural killer (NK) cells, dendritic cells (DCs) and monocyte-macrophages. The monocyte-macrophage subset was large and had strong inflammatory gene signatures. This subset was found to play an important role in the generation of reactive oxygen species and communicate with other innate and adaptive immune cells. Histological staining revealed that the number of tissue-resident macrophages was high in damaged glandular tissues, with the cells persistently surrounding the tissues. Analysis of RNA-seq data using multiple algorithms demonstrated that the high abundance of pro-inflammatory M1 macrophages was accompanied by the high abundance of other infiltrating immune cells, senescence-associated secretory phenotype and evident metabolic reprogramming. Conclusion Macrophages are among the most abundant innate immune cells in PBMCs and glandular tissues in patients with pSS. A bidirectional relationship exists between macrophage polarisation and the inflammatory microenvironment, which may serve as a therapeutic target for pSS.
Collapse
Affiliation(s)
- Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Li N, Zhang G, Liu Y, Sun L, Zhao X, Ding L, Liu Y, Wang M, Ren X. A Natural Self-Assembled Gel-Sponge with Hierarchical Porous Structure for Rapid Hemostasis and Antibacterial. Adv Healthc Mater 2023; 12:e2301465. [PMID: 37449760 DOI: 10.1002/adhm.202301465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Developing hemostatic agents with reliable biosafety and high efficiency has paramount clinical significance for saving lives. Herein, inspired from traditional Chinese medicine, a sponge (BC-S) with hierarchical porous structure is proposed for the treatment of bleeding. The BC-S is prepared by a simple self-assembly method employing Bletilla Striata polysaccharide and quaternary amine alkaloids (QA) from Bletilla Striata and Coptidis Rhizoma. The ideal cation donor encapsulated in the helical structure of BSP enlarges the inter-layer space of sponge by the action of electrostatic repulsion, forming wider channels which can accelerate the diversion speed of absorbed blood. Then, platelets and erythrocytes are trapped tightly in the reticular structure and extruded to deformation, activation. Subsequently, fibrin network forms and reinforces the internal multilayer mesh, blocks the outflow of blood. QA is released from the sponge skeleton mainly driven by a combination of surface erosion and potentially solution diffusion among pore to provide long-term antibacterial activity. Benefiting from the well-designed structure and the effective hemostatic mechanism, the BC-S displays more excellent hemostatic performance in different models in vivo and in vitro compared with typical gelatin hemostatic sponge. This work is expected to boost the development of emerging hemostatic agents.
Collapse
Affiliation(s)
- Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| |
Collapse
|
6
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
7
|
Lee EY, Hwang J, Kim MH. Phosphocode-dependent glutamyl-prolyl-tRNA synthetase 1 signaling in immunity, metabolism, and disease. Exp Mol Med 2023; 55:2116-2126. [PMID: 37779151 PMCID: PMC10618286 DOI: 10.1038/s12276-023-01094-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 10/03/2023] Open
Abstract
Ubiquitously expressed aminoacyl-tRNA synthetases play essential roles in decoding genetic information required for protein synthesis in every living species. Growing evidence suggests that they also function as crossover mediators of multiple biological processes required for homeostasis. In humans, eight cytoplasmic tRNA synthetases form a central machinery called the multi-tRNA synthetase complex (MSC). The formation of MSCs appears to be essential for life, although the role of MSCs remains unclear. Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is the most evolutionarily derived component within the MSC that plays a critical role in immunity and metabolism (beyond its catalytic role in translation) via stimulus-dependent phosphorylation events. This review focuses on the role of EPRS1 signaling in inflammation resolution and metabolic modulation. The involvement of EPRS1 in diseases such as cancer is also discussed.
Collapse
Affiliation(s)
- Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
8
|
Liu X, Han W, Hu X. Post-transcriptional regulation of myeloid cell-mediated inflammatory responses. Adv Immunol 2023; 160:59-82. [PMID: 38042586 DOI: 10.1016/bs.ai.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Myeloid cells, particularly macrophages, act as the frontline responders to infectious agents and initiate inflammation. While the molecular mechanisms driving inflammatory responses have primarily focused on pattern recognition by myeloid cells and subsequent transcriptional events, it is crucial to note that post-transcriptional regulation plays a pivotal role in this process. In addition to the transcriptional regulation of innate immune responses, additional layers of intricate network of post-transcriptional mechanisms critically determine the quantity and duration of key inflammatory products and thus the outcome of immune responses. A multitude of mechanisms governing post-transcriptional regulation in innate immunity have been uncovered, encompassing RNA alternative splicing, mRNA stability, and translational regulation. This review encapsulates the current insights into the post-transcriptional regulation of inflammatory genes within myeloid cells, with particular emphasis on translational regulation during inflammation. While acknowledging the advancements, we also shed light on the existing gaps in immunological research pertaining to post-transcriptional levels and propose perspectives that controlling post-transcriptional process may serve as potential targets for therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Xingxian Liu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, P.R. China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; The State Key Laboratory of Membrane Biology, Beijing, P.R. China.
| |
Collapse
|
9
|
Liang M, Hody C, Yammine V, Soin R, Sun Y, Lin X, Tian X, Meurs R, Perdrau C, Delacourt N, Oumalis M, Andris F, Conrard L, Kruys V, Gueydan C. eIF4EHP promotes Ldh mRNA translation in and fruit fly adaptation to hypoxia. EMBO Rep 2023; 24:e56460. [PMID: 37144276 PMCID: PMC10328074 DOI: 10.15252/embr.202256460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Hypoxia induces profound modifications in the gene expression program of eukaryotic cells due to lowered ATP supply resulting from the blockade of oxidative phosphorylation. One significant consequence of oxygen deprivation is the massive repression of protein synthesis, leaving a limited set of mRNAs to be translated. Drosophila melanogaster is strongly resistant to oxygen fluctuations; however, the mechanisms allowing specific mRNA to be translated into hypoxia are still unknown. Here, we show that Ldh mRNA encoding lactate dehydrogenase is highly translated into hypoxia by a mechanism involving a CA-rich motif present in its 3' untranslated region. Furthermore, we identified the cap-binding protein eIF4EHP as a main factor involved in 3'UTR-dependent translation under hypoxia. In accordance with this observation, we show that eIF4EHP is necessary for Drosophila development under low oxygen concentrations and contributes to Drosophila mobility after hypoxic challenge. Altogether, our data bring new insight into mechanisms contributing to LDH production and Drosophila adaptation to oxygen variations.
Collapse
Affiliation(s)
- Manfei Liang
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
- Present address:
Medical Science and Technology Innovation CenterShandong First Medical UniversityJinanChina
| | - Clara Hody
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Vanessa Yammine
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Yuqiu Sun
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Xing Lin
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Xiaoying Tian
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Romane Meurs
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Camille Perdrau
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Nadège Delacourt
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Marina Oumalis
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Fabienne Andris
- Laboratoire d'Immunobiologie, Faculté des SciencesUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Louise Conrard
- Center of Microscopy and Molecular Imaging (CMMI)Université libre de Bruxelles (ULB)GosseliesBelgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du GèneUniversité libre de Bruxelles (ULB)GosseliesBelgium
| |
Collapse
|
10
|
Khan D, Terenzi F, Liu G, Ghosh PK, Ye F, Nguyen K, China A, Ramachandiran I, Chakraborty S, Stefan J, Khan K, Vasu K, Dong F, Willard B, Karn J, Gack MU, Fox PL. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon. Nat Commun 2023; 14:3385. [PMID: 37296097 PMCID: PMC10250186 DOI: 10.1038/s41467-023-39091-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Shruti Chakraborty
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jennifer Stefan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Franklin Dong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
12
|
Wan G, Chen X, Chen J, Gou R, Wang H, Liu S, Zhang M, Chen H, Wang D, Zhang Q. Endoplasmic reticulum-targeted NIR-II phototherapy combined with inflammatory vascular suppression elicits a synergistic effect against TNBC. Biomater Sci 2023; 11:1876-1894. [PMID: 36692120 DOI: 10.1039/d2bm01823c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recurrence and metastasis are the main reasons for failure in the treatment of triple-negative breast cancer (TNBC). Phototherapy, one of the most well-known potent cancer treatment models is highlighted by ablating primitive tumors with immunogenic cell death (ICD) and is associated with endoplasmic reticulum (ER) stress to elicit long-lasting anti-tumor immunity. However, the provoked inflammatory response after phototherapy will stimulate angiogenesis, which provides nutrition for tumor recurrence. Here, an ER-targeted nanoplatform was constructed based on hollow mesoporous Cu2-XS (HMCu2-XS) nanoparticles to suppress recurrence and metastasis of TNBC by combining photo-ablation and microenvironment remodeling. Profiting from the metal ion coordination and large hollow space, HMCu2-XS can be easily modified with p-toluenesulfonamide for ER-targeting and quantitatively loaded celecoxib (CXB) as a vascular inhibitor, thus obtaining ER-HMCu2-XS/CXB. ER-HMCu2-XS showed great photothermal and photodynamic efficiency for ablating 4T1 tumors and inducing ICD under NIR-II laser irradiation. Compared with non-ER-targeted nanosystems, the ER-targeted nanosystem elicited stronger ICDs and recruited more immune cells. Moreover, the thermal-responsively released CXB successfully inhibited angiogenesis after photothermal therapy. The data showed that the ER-HMCu2-XS/CXB mediated the triplicate therapeutic effect of photo-ablation, immune response activation, and vascular suppression effectively, preventing the recurrence and metastasis of TNBC. In conclusion, this work provides a synergistic strategy to enhance therapeutic outcomes in TNBC.
Collapse
Affiliation(s)
- Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xuheng Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Shuhao Liu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyang Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Dan Wang
- Xuzhou Central Hospital, Xuzhou 221009, China.
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
13
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
14
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
15
|
Zhao L, Yang X, Feng C, Wang Y, Wang Q, Pei J, Wu J, Li S, Zhang H, Cao X. Triple-negative breast cancer cells respond to T cells severely at the alternative splicing layer. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Abstract
The protein-coding regions of mRNAs have the information to make proteins and hence have been at the center of attention for understanding altered protein functions in disease states, including cancer. Indeed, the discovery of genomic alterations and driver mutations that change protein levels and/or activity has been pivotal in our understanding of cancer biology. However, to better understand complex molecular mechanisms that are deregulated in cancers, we also need to look at non-coding parts of mRNAs, including 3'UTRs (untranslated regions), which control mRNA stability, localization, and translation efficiency. Recently, these rather overlooked regions of mRNAs are gaining attention as mounting evidence provides functional links between 3'UTRs, protein functions, and cancer-related molecular mechanisms. Here, roles of 3'UTRs in cancer biology and mechanisms that result in cancer-specific 3'-end isoform variants will be reviewed. An increased appreciation of 3'UTRs may help the discovery of new ways to explain as of yet unknown oncogene activation and tumor suppressor inactivation cases in cancers, and provide new avenues for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences and Cancer Systems Biology Laboratory, Middle East Technical University (METU, ODTU), Dumlupinar Blv No: 1, Universiteler Mah, 06800, Ankara, Turkey.
| |
Collapse
|
17
|
Kumar R, Poria DK, Ray PS. RNA-binding proteins La and HuR cooperatively modulate translation repression of PDCD4 mRNA. J Biol Chem 2021; 296:100154. [PMID: 33288677 PMCID: PMC7949077 DOI: 10.1074/jbc.ra120.014894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
Posttranscriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a proinflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) human antigen R (HuR) in response to lipopolysaccharide stimulation, but the role of other regulatory factors remains unknown. Here, we report that the RBP lupus antigen (La) interacts with the 3'-untranslated region of PDCD4 mRNA and prevents miR-21-mediated translation repression. While lipopolysaccharide causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Dipak Kumar Poria
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
18
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
19
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of essential "housekeeping" enzymes ubiquitous in the three major domains of life. ARSs uniquely connect the essential minimal units of both major oligomer classes-the 3-nucleotide codons of oligonucleotides and the amino acids of proteins. They catalyze the esterification of amino acids to the 3'-end of cognate transfer RNAs (tRNAs) bearing the correct anticodon triplet to ensure accurate transfer of information from mRNA to protein according to the genetic code. As an essential translation factor responsible for the first biochemical reaction in protein biosynthesis, ARSs control protein production by catalyzing aminoacylation, and by editing of mischarged aminoacyl-tRNAs to maintain translational fidelity. In addition to their primary enzymatic activities, many ARSs have noncanonical functions unrelated to their catalytic activity in protein synthesis. Among the ARSs with "moonlighting" activities, several, including GluProRS (or EPRS), LeuRS, LysRS, SerRS, TyrRS, and TrpRS, exhibit cell signaling-related activities that sense environmental signals, regulate gene expression, and modulate cellular functions. ARS signaling functions generally depend on catalytically-inactive, appended domains not present in ancient enzyme forms, and are activated by stimulus-dependent post-translational modification. Activation often results in cellular re-localization and gain of new interacting partners. The newly formed ARS-bearing complexes conduct a host of signal transduction functions, including immune response, mTORC1 pathway signaling, and fibrogenic and angiogenic signaling, among others. Because noncanonical functions of ARSs in signal transduction are uncoupled from canonical aminoacylation functions, function-specific inhibitors can be developed, thus providing promising opportunities and therapeutic targets for treatment of human disease.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine and Department of Biochemistry & Biophysics, The Center for RNA Biology, The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.
| | - Paul L Fox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
20
|
Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019; 17:1326-1338. [PMID: 31741723 PMCID: PMC6849081 DOI: 10.1016/j.csbj.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Alteration of RNA structure by environmental signals is a fundamental mechanism of gene regulation. For example, the riboswitch is a noncoding RNA regulatory element that binds a small molecule and causes a structural change in the RNA, thereby regulating transcription, splicing, or translation of an mRNA. The role of riboswitches in metabolite sensing and gene regulation in bacteria and other lower species was reported almost two decades ago, but riboswitches have not yet been discovered in mammals. An analog of the riboswitch, the protein-directed RNA switch (PDRS), has been identified as an important regulatory mechanism of gene expression in mammalian cells. RNA-binding proteins and microRNAs are two major executors of PDRS via their interaction with target transcripts in mammals. These protein-RNA interactions influence cellular functions by integrating environmental signals and intracellular pathways from disparate stimuli to modulate stability or translation of specific mRNAs. The discovery of a riboswitch in eukaryotes that is composed of a single class of thiamine pyrophosphate (TPP) suggests that additional ligand-sensing RNAs may be present to control eukaryotic or mammalian gene expression. In this review, we focus on protein-directed RNA switch mechanisms in mammals. We offer perspectives on the potential discovery of mammalian protein-directed and compound-dependent RNA switches that are related to human disease and medicine.
Collapse
Affiliation(s)
- Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States.,The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14586, United States
| |
Collapse
|
21
|
Arif A, Jia J, Willard B, Li X, Fox PL. Multisite Phosphorylation of S6K1 Directs a Kinase Phospho-code that Determines Substrate Selection. Mol Cell 2019; 73:446-457.e6. [PMID: 30612880 PMCID: PMC6415305 DOI: 10.1016/j.molcel.2018.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/16/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Abstract
Multisite phosphorylation of kinases can induce on-off or graded regulation of catalytic activity; however, its influence on substrate specificity remains unclear. Here, we show that multisite phosphorylation of ribosomal protein S6 kinase 1 (S6K1) alters target selection. Agonist-inducible phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) by S6K1 in monocytes and adipocytes requires not only canonical phosphorylation at Thr389 by mTORC1 but also phosphorylation at Ser424 and Ser429 in the C terminus by cyclin-dependent kinase 5 (Cdk5). S6K1 phosphorylation at these additional sites induces a conformational switch and is essential for high-affinity binding and phosphorylation of EPRS, but not canonical S6K1 targets, e.g., ribosomal protein S6. Unbiased proteomic analysis identified additional targets phosphorylated by multisite phosphorylated S6K1 in insulin-stimulated adipocytes-namely, coenzyme A synthase, lipocalin 2, and cortactin. Thus, embedded within S6K1 is a target-selective kinase phospho-code that integrates signals from mTORC1 and Cdk5 to direct an insulin-stimulated, post-translational metabolon determining adipocyte lipid metabolism.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Orthopedics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Jie Jia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, Cai C, Guo AY, Ling J, Diao L, Weinstein JN, Han L. Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers. Commun Biol 2018; 1:234. [PMID: 30588513 PMCID: PMC6303286 DOI: 10.1038/s42003-018-0239-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, 430074 Hubei, People’s Republic of China
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
23
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
24
|
Ni R, Luo L. A noncanonical function of histidyl-tRNA synthetase: inhibition of vascular hyperbranching during zebrafish development. FEBS Open Bio 2018; 8:722-731. [PMID: 29744287 PMCID: PMC5929932 DOI: 10.1002/2211-5463.12420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 11/09/2022] Open
Abstract
Histidyl‐tRNA synthetase (Hars) catalyzes the ligation of histidine residues to cognate tRNA. Here, we demonstrate a noncanonical function of Hars in vascular development in zebrafish. We obtained a novel zebrafish cq34 mutant which exhibited hyperbranching of cranial and intersegmental blood vessels 48 h after fertilization. The gene responsible for this phenotype was identified as hars. We found the increased expression of cdh5 and vegfa in the harscq34 mutant. Knockdown of cdh5 in the mutant reduced disordered connections of the hindbrain capillaries. Inhibition of vascular endothelial growth factor signaling suppressed the abnormal vascular branching observed in the mutant. Moreover, the human HARSmRNA rescued the vascular defects in the cq34 mutant. Thus, the noncanonical function of Hars regulates vascular development, mainly by modulating expression of cdh5 and vegfa.
Collapse
Affiliation(s)
- Rui Ni
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education Laboratory of Molecular Developmental Biology School of Life Sciences Southwest University Chongqing China
| |
Collapse
|
25
|
Aryal B, Rao VA. Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue. PLoS One 2018; 13:e0194164. [PMID: 29596499 PMCID: PMC5875748 DOI: 10.1371/journal.pone.0194164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Protein carbonylation is an irreversible post-translational modification induced by severe oxidative stress. Reactive oxygen species (ROS) are constantly produced in cells and play important roles in both cancer progression and cancer suppression. ROS levels can be higher in tumor compared to surrounding healthy tissue but ROS-induced specific protein carbonylation and its unique role in cancer progression or suppression is poorly understood. In this study, we utilized previously validated ELISA and western blot methods to analyze the total and specific protein carbonylation in flash-frozen human breast cancer and matched adjacent healthy tissue to compare relative total, and specific protein carbonylation. Mass spectrometry, two-color western, and immunoprecipitation methods were used to identify and confirm the specifically carbonylated proteins in breast tumor tissue. Superoxide dismutase (SOD) activity was measured as an indicator of antioxidant activity, and LC3-II protein level was analyzed for autophagy by western blot. Findings were further confirmed using the immortalized MDA-MB-231 and MDA-MB-468 breast cancer and MCF-12A noncancerous human epithelial breast cell lines. Our results indicate that tumor tissue has greater total protein carbonylation, lower SOD1 and SOD2 protein levels, lower total SOD activity, and higher LC3-II levels compared to adjacent healthy tissue. We identified and confirmed three specific proteins of interest; filamin A, heat shock protein 90β (HSP90β), and bifunctional glutamate/proline-tRNA ligase (EPRS), that were selectively carbonylated in tumor tissue compared to matched adjacent healthy tissue. Correspondingly, compared to noncancerous MCF-12A epithelial cells, MDA-MB-231 cancer cells exhibited an increase in filamin A and EPRS protein carbonylation, decreased total SOD activity, and increased autophagy, but not increased HSP90β protein carbonylation. Identification of selectively carbonylated proteins and defining their roles in cancer progression may promote the development of targeted therapeutic approaches toward mitigating oxidative damage of these proteins.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Katsyv I, Wang M, Song WM, Zhou X, Zhao Y, Park S, Zhu J, Zhang B, Irie HY. EPRS is a critical regulator of cell proliferation and estrogen signaling in ER+ breast cancer. Oncotarget 2018; 7:69592-69605. [PMID: 27612429 PMCID: PMC5342500 DOI: 10.18632/oncotarget.11870] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Aminoacyl tRNA synthetases (ARSs) are a class of enzymes with well-conserved housekeeping functions in cellular translation. Recent evidence suggests that ARS genes may participate in a wide array of cellular processes, and may contribute to the pathology of autoimmune disease, cancer, and other diseases. Several studies have suggested a role for the glutamyl prolyl tRNA synthetase (EPRS) in breast cancers, although none has identified any underlying mechanism about how EPRS contributes to carcinogenesis. In this study, we identified EPRS as upregulated in estrogen receptor positive (ER+) human breast tumors in the TCGA and METABRIC cohorts, with copy number gains in nearly 50% of samples in both datasets. EPRS expression is associated with reduced overall survival in patients with ER+ tumors in TCGA and METABRIC datasets. EPRS expression was also associated with reduced distant relapse-free survival in patients treated with adjuvant tamoxifen monotherapy for five years, and EPRS-correlated genes were highly enriched for genes predictive of a poor response to tamoxifen. We demonstrated the necessity of EPRS for proliferation of tamoxifen-resistant ER+ breast cancer, but not ER- breast cancer cells. Transcriptomic profiling showed that EPRS regulated cell cycle and estrogen response genes. Finally, we constructed a causal gene network based on over 2500 ER+ breast tumor samples to build up an EPRS-estrogen signaling pathway. EPRS and its regulated estrogenic gene network may offer a promising alternative approach to target ER+ breast cancers that are refractory to current anti-estrogens.
Collapse
Affiliation(s)
- Igor Katsyv
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won Min Song
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongzhong Zhao
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sun Park
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Zhu
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Bisogno LS, Keene JD. RNA regulons in cancer and inflammation. Curr Opin Genet Dev 2017; 48:97-103. [PMID: 29175729 DOI: 10.1016/j.gde.2017.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Gene expression is the fundamental driving force that coordinates normal cellular processes and adapts to dysfunctional conditions such as oncogenic development and progression. While transcription is the basal process of gene expression, RNA transcripts are both the templates that encode proteins as well as perform functions that directly regulate diverse cellular processes. All levels of gene expression require coordination to optimize available resources, but how global gene expression drives cancers or responds to disrupting oncogenic mutations is not understood. Post-transcriptional coordination is controlled by RNA regulons that are governed by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that bind and regulate multiple overlapping groups of functionally related RNAs. RNA regulons have been demonstrated to affect many biological functions and diseases, and many examples are known to regulate protein production in cancer and immune cells. In this review, we discuss RNA regulons demonstrated to coordinate global post-transcriptional mechanisms in carcinogenesis and inflammation.
Collapse
Affiliation(s)
- Laura Simone Bisogno
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Jack Donald Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
28
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Arif A, Terenzi F, Potdar AA, Jia J, Sacks J, China A, Halawani D, Vasu K, Li X, Brown JM, Chen J, Kozma SC, Thomas G, Fox PL. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 2017; 542:357-361. [PMID: 28178239 PMCID: PMC5480610 DOI: 10.1038/nature21380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Arnab China
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Kommireddy Vasu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Sara C Kozma
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - George Thomas
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain.,Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The objective of this literature review is to determine whether there are indications that microvascular complications occur in diabetic bone. Evidence definitively linking diabetic skeletal fragility with microvascular complications in bone remains elusive. RECENT FINDINGS Circumstantial evidence, some recent and some lost to time, suggests that atherosclerotic vascular diseases such as peripheral arterial disease cause poor blood perfusion of bone and subsequent hypoxia and contribute to low bone density and high cortical porosity, patterns similar to some recently observed in diabetic subjects. Evidence also exists to suggest that potentially anti-angiogenic conditions, such as impaired vascular endothelial growth factor (VEGF) signaling, predominate in diabetic bone. Microvascular complications may contribute, in part, to diabetic skeletal fragility but data supporting this interpretation are primarily circumstantial at this time. This review highlights gaps in our knowledge and hopefully spurs further discussions and research on this topic.
Collapse
Affiliation(s)
- Roberto Jose Fajardo
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio, Med 518C, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
31
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
32
|
Arif A, Jia J, Halawani D, Fox PL. Experimental approaches for investigation of aminoacyl tRNA synthetase phosphorylation. Methods 2016; 113:72-82. [PMID: 27729295 DOI: 10.1016/j.ymeth.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
33
|
Abstract
In multicellular organisms, the epithelia is a contact surface with the surrounding environment and is exposed to a variety of adverse biotic (pathogenic) and abiotic (chemical) factors. Multi-layered pathways that operate on different time scales have evolved to preserve cellular integrity and elicit stress-specific response. Several stress-response programs are activated until a complete elimination of the stress is achieved. The innate immune response, which is triggered by pathogenic invasion, is rather harmful when active over a prolonged time, thus the response follows characteristic oscillatory trajectories. Here, we review different translation programs that function to precisely fine-tune the time at which various components of the innate immune response dwell between active and inactive. We discuss how different pro-inflammatory pathways are co-ordinated to temporally offset single reactions and to achieve an optimal balance between fighting pathogens and being less harmful for healthy cells.
Collapse
|
34
|
Hsu CH, Hsu CW, Hsueh C, Wang CL, Wu YC, Wu CC, Liu CC, Yu JS, Chang YS, Yu CJ. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol Cell Proteomics 2016; 15:2396-410. [PMID: 27161446 DOI: 10.1074/mcp.m115.057026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Both diagnostic and prognostic biomarkers are urgently needed to increase patient survival. In this study, we identified/quantified 1763 proteins from paired adenocarcinoma (ADC) tissues with different extents of lymph node (LN) involvement using an iTRAQ-based quantitative proteomic analysis. Based on a bioinformatics analysis and literature search, we selected six candidates (ERO1L, PABPC4, RCC1, RPS25, NARS, and TARS) from a set of 133 proteins that presented a 1.5-fold increase in expression in ADC tumors without LN metastasis compared with adjacent normal tissues. These six proteins were further verified using immunohistochemical staining and Western blot analyses. The protein levels of these six candidates were higher in tumor tissues compared with adjacent normal tissues. The ERO1L and NARS levels were positively associated with LN metastasis. Importantly, ERO1L overexpression in patients with early-stage ADC was positively correlated with poor survival, suggesting that ERO1L overexpression in primary sites of early-stage cancer tissues indicates a high risk for cancer micrometastasis. Moreover, we found that knockdown of either ERO1L or NARS reduced the viability and migration ability of ADC cells. Our results collectively provide a potential biomarker data set for ADC diagnosis/prognosis and reveal novel roles of ERO1L and NARS in ADC progression.
Collapse
Affiliation(s)
| | - Chia-Wei Hsu
- ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen Hsueh
- ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; **Department of Pathology
| | - Chih-Liang Wang
- ⦀School of Medicine, College of Medicine, ‡‡Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine
| | | | - Chih-Ching Wu
- §Department of Medical Biotechnology and Laboratory Science, and ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; §§§Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | | | - Jau-Song Yu
- From the ‡Graduate Institute of Biomedical Sciences, ¶Department of Cell and Molecular Biology, Chang Gung University, Tao-Yuan, Taiwan; ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- From the ‡Graduate Institute of Biomedical Sciences, ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- From the ‡Graduate Institute of Biomedical Sciences, ¶Department of Cell and Molecular Biology, Chang Gung University, Tao-Yuan, Taiwan; ‖Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; ‡‡Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine,
| |
Collapse
|
35
|
Cao Z, Wang H, Mao X, Luo L. Noncanonical function of threonyl-tRNA synthetase regulates vascular development in zebrafish. Biochem Biophys Res Commun 2016; 473:67-72. [DOI: 10.1016/j.bbrc.2016.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 01/09/2023]
|
36
|
Calderone V, Gallego J, Fernandez-Miranda G, Garcia-Pras E, Maillo C, Berzigotti A, Mejias M, Bava FA, Angulo-Urarte A, Graupera M, Navarro P, Bosch J, Fernandez M, Mendez R. Sequential Functions of CPEB1 and CPEB4 Regulate Pathologic Expression of Vascular Endothelial Growth Factor and Angiogenesis in Chronic Liver Disease. Gastroenterology 2016; 150:982-97.e30. [PMID: 26627607 DOI: 10.1053/j.gastro.2015.11.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Vittorio Calderone
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gallego
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Gonzalo Fernandez-Miranda
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Garcia-Pras
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Carlos Maillo
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annalisa Berzigotti
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Marc Mejias
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Felice-Alessio Bava
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ana Angulo-Urarte
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jaime Bosch
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernandez
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain.
| | - Raul Mendez
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
37
|
Castranova D, Davis AE, Lo BD, Miller MF, Paukstelis PJ, Swift MR, Pham VN, Torres-Vázquez J, Bell K, Shaw KM, Kamei M, Weinstein BM. Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway. Arterioscler Thromb Vasc Biol 2016; 36:655-62. [PMID: 26821951 DOI: 10.1161/atvbaha.115.307087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.
Collapse
Affiliation(s)
- Daniel Castranova
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Andrew E Davis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brigid D Lo
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Mayumi F Miller
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Paul J Paukstelis
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Matthew R Swift
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Van N Pham
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Jesús Torres-Vázquez
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kameha Bell
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Kenna M Shaw
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Makoto Kamei
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.)
| | - Brant M Weinstein
- From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park (P.J.P.).
| |
Collapse
|
38
|
Abstract
Among the multiple modes of regulation of gene expression, translational control is arguably the least investigated and understood, and its role in vascular biology and pathobiology is not an exception. Here, we review recent studies that have revealed exciting translational regulatory phenomena and mechanisms involving novel RNA binding proteins and microRNA machinery in vascular biology. From these studies, the importance of translational regulation in angiogenesis, atherosclerosis, and blood pressure maintenance is beginning to emerge. We believe that the recent development of powerful techniques such as ribosome profiling and translating ribosome affinity purification (TRAP) will motivate and facilitate additional research in these areas.
Collapse
|
39
|
Shin C, Hwang GS, Ahn HC, Kim S, Kim KS. (1)H, (13)C and (15)N resonance assignment of WHEP domains of human glutamyl-prolyl tRNA synthetase. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:25-30. [PMID: 24378977 DOI: 10.1007/s12104-013-9538-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Human bifunctional glutamyl-prolyl tRNA synthetase (EPRS) contains three WHEP domains (R123) linking two catalytic domains. These three WHEP domains have been shown to be involved in protein-protein and protein-nucleic acid interactions. In translational control of gene expression, R12 repeats is known to interact with 3'UTR element in mRNAs of inflammatory gene for translational control mechanisms. While, R23 repeats interacts with NSAP1, which inhibits mRNA binding. Here we present the NMR chemical shift assignments for R12 (128 amino acids) as a 14 kDa recombinant protein and whole WHEP domains R123 (208 amino acids) as a 21 kDa recombinant protein. 97% of backbone and 98% of side-chain assignments have been completed in R12 analysis and 93 and 92% of backbone and side-chain, respectively, assignments have been completed in R123 analysis based upon triple-resonance experiments.
Collapse
Affiliation(s)
- ChinHo Shin
- University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Taejon, 305-333, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Identification of a gamma interferon-activated inhibitor of translation-like RNA motif at the 3' end of the transmissible gastroenteritis coronavirus genome modulating innate immune response. mBio 2015; 6:e00105. [PMID: 25759500 PMCID: PMC4453530 DOI: 10.1128/mbio.00105-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A 32-nucleotide (nt) RNA motif located at the 3′ end of the transmissible gastroenteritis coronavirus (TGEV) genome was found to specifically interact with the host proteins glutamyl-prolyl-tRNA synthetase (EPRS) and arginyl-tRNA synthetase (RRS). This RNA motif has high homology in sequence and secondary structure with the gamma interferon-activated inhibitor of translation (GAIT) element, which is located at the 3′ end of several mRNAs encoding proinflammatory proteins. The GAIT element is involved in the translation silencing of these mRNAs through its interaction with the GAIT complex (EPRS, heterogeneous nuclear ribonucleoprotein Q, ribosomal protein L13a, and glyceraldehyde 3-phosphate dehydrogenase) to favor the resolution of inflammation. Interestingly, we showed that the viral RNA motif bound the GAIT complex and inhibited the in vitro translation of a chimeric mRNA containing this RNA motif. To our knowledge, this is the first GAIT-like motif described in a positive RNA virus. To test the functional role of the GAIT-like RNA motif during TGEV infection, a recombinant coronavirus harboring mutations in this motif was engineered and characterized. Mutations of the GAIT-like RNA motif did not affect virus growth in cell cultures. However, an exacerbated innate immune response, mediated by the melanoma differentiation-associated gene 5 (MDA5) pathway, was observed in cells infected with the mutant virus compared with the response observed in cells infected with the parental virus. Furthermore, the mutant virus was more sensitive to beta interferon than the parental virus. All together, these data strongly suggested that the viral GAIT-like RNA motif modulates the host innate immune response. The innate immune response is the first line of antiviral defense that culminates with the synthesis of interferon and proinflammatory cytokines to limit virus replication. Coronaviruses encode several proteins that interfere with the innate immune response at different levels, but to date, no viral RNA counteracting antiviral response has been described. In this work, we have characterized a 32-nt RNA motif located at the 3′ end of the TGEV genome that specifically interacted with EPRS and RRS. This RNA motif presented high homology with the GAIT element, involved in the modulation of the inflammatory response. Moreover, the disruption of the viral GAIT-like RNA motif led to an exacerbated innate immune response triggered by MDA5, indicating that the GAIT-like RNA motif counteracts the host innate immune response. These novel findings may be of relevance for other coronaviruses and could serve as the basis for the development of novel antiviral strategies.
Collapse
|
41
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Regulation of angiogenesis by aminoacyl-tRNA synthetases. Int J Mol Sci 2014; 15:23725-48. [PMID: 25535072 PMCID: PMC4284789 DOI: 10.3390/ijms151223725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.
Collapse
|
43
|
Association of aminoacyl-tRNA synthetases gene polymorphisms with the risk of congenital heart disease in the Chinese Han population. PLoS One 2014; 9:e110072. [PMID: 25310850 PMCID: PMC4195700 DOI: 10.1371/journal.pone.0110072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/06/2014] [Indexed: 11/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are in charge of cellular protein synthesis and have additional domains that function in a versatile manner beyond translation. Eight core ARSs (EPRS, MRS, QRS, RRS, IRS, LRS, KRS, DRS) combined with three nonenzymatic components form a complex known as multisynthetase complex (MSC).We hypothesize that the single-nucleotide polymorphisms (SNPs) of the eight core ARS coding genes might influence the susceptibility of sporadic congenital heart disease (CHD). Thus, we conducted a case-control study of 984 CHD cases and 2953 non-CHD controls in the Chinese Han population to evaluate the associations of 16 potentially functional SNPs within the eight ARS coding genes with the risk of CHD. We observed significant associations with the risk of CHD for rs1061248 [G/A; odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.81–0.99; P = 3.81×10−2], rs2230301 [A/C; OR = 0.73, 95%CI = 0.60–0.90, P = 3.81×10−2], rs1061160 [G/A; OR = 1.18, 95%CI = 1.06–1.31; P = 3.53×10−3] and rs5030754 [G/A; OR = 1.39, 95%CI = 1.11–1.75; P = 4.47×10−3] of EPRS gene. After multiple comparisons, rs1061248 conferred no predisposition to CHD. Additionally, a combined analysis showed a significant dosage-response effect of CHD risk among individuals carrying the different number of risk alleles (Ptrend = 5.00×10−4). Compared with individuals with “0–2” risk allele, those carrying “3”, “4” or “5 or more” risk alleles had a 0.97-, 1.25- or 1.38-fold increased risk of CHD, respectively. These findings indicate that genetic variants of the EPRS gene may influence the individual susceptibility to CHD in the Chinese Han population.
Collapse
|
44
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
45
|
Ray PS, Fox PL. Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 2014; 9:e98493. [PMID: 24968216 PMCID: PMC4072531 DOI: 10.1371/journal.pone.0098493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023] Open
Abstract
Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Cellular and Molecular Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, Unites States of America
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, Unites States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Yao P, Potdar AA, Ray PS, Eswarappa SM, Flagg AC, Willard B, Fox PL. The HILDA complex coordinates a conditional switch in the 3'-untranslated region of the VEGFA mRNA. PLoS Biol 2013; 11:e1001635. [PMID: 23976881 PMCID: PMC3747992 DOI: 10.1371/journal.pbio.1001635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3'UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L-DRBP76-hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr(359), inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3'UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, "flipping" the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Alka A. Potdar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Partho Sarothi Ray
- Department of Biology, Indian Institute of Science Education and Research, Kolkata, India
| | - Sandeepa M. Eswarappa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrew C. Flagg
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 2013; 41:7997-8010. [PMID: 23851566 PMCID: PMC3783158 DOI: 10.1093/nar/gkt539] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular Endothelial Growth Factor A (VEGF-A) is a potent secreted mitogen crucial for physiological and pathological angiogenesis. Post-transcriptional regulation of VEGF-A occurs at multiple levels. Firstly, alternative splicing gives rise to different transcript variants encoding diverse isoforms that exhibit distinct biological properties with regard to receptor binding and extra-cellular localization. Secondly, VEGF-A mRNA stability is regulated by effectors such as hypoxia or growth factors through the binding of stabilizing and destabilizing proteins at AU-rich elements located in the 3′-untranslated region. Thirdly, translation of VEGF-A mRNA is a controlled process involving alternative initiation codons, internal ribosome entry sites (IRESs), an upstream open reading frame (uORF), miRNA targeting and a riboswitch in the 3′ untranslated region. These different levels of regulation cooperate for the crucial fine-tuning of the expression of VEGF-A variants. This review will be focused on our current knowledge of the complex post-transcriptional regulatory switches that modulate the cellular VEGF-A level, a paradigmatic model of post-transcriptional regulation.
Collapse
Affiliation(s)
- Tania Arcondéguy
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse Cedex 4, France and Université Toulouse III Paul-Sabatier, 118 Route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|
49
|
Zhang T, Sentman CL. Mouse Tumor Vasculature Expresses NKG2D Ligands and Can Be Targeted by Chimeric NKG2D-Modified T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2455-63. [DOI: 10.4049/jimmunol.1201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Stahlhut C, Suárez Y, Lu J, Mishima Y, Giraldez AJ. miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 2013; 139:4356-64. [PMID: 23132244 DOI: 10.1242/dev.083774] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular communication across tissues is an essential process during embryonic development. Secreted factors with potent morphogenetic activity are key elements of this cross-talk, and precise regulation of their expression is required to elicit appropriate physiological responses. MicroRNAs (miRNAs) are versatile post-transcriptional modulators of gene expression. However, the large number of putative targets for each miRNA hinders the identification of physiologically relevant miRNA-target interactions. Here we show that miR-1 and miR-206 negatively regulate angiogenesis during zebrafish development. Using target protectors, our results indicate that miR-1/206 directly regulate the levels of Vascular endothelial growth factor A (VegfA) in muscle, controlling the strength of angiogenic signaling to the endothelium. Conversely, reducing the levels of VegfAa, but not VegfAb, rescued the increase in angiogenesis observed when miR-1/206 were knocked down. These findings uncover a novel function for miR-1/206 in the control of developmental angiogenesis through the regulation of VegfA, and identify a key role for miRNAs as regulators of cross-tissue signaling.
Collapse
Affiliation(s)
- Carlos Stahlhut
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|