1
|
Antonelli R, Forconi V, Molesti E, Semplici C, Piu P, Altamura M, Dapporto F, Temperton N, Montomoli E, Manenti A. A validated and standardized pseudotyped microneutralization assay as a safe and powerful tool to measure LASSA virus neutralising antibodies for vaccine development and comparison. F1000Res 2024; 13:534. [PMID: 39512237 PMCID: PMC11541077 DOI: 10.12688/f1000research.149578.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Background Over the past few decades, World Health Organization (WHO) has made massive efforts to promote the development of a vaccine against Lassa virus (LASV), one of the top ten priority pathogens for research and development under the WHO R&D Blueprint for Emerging Infections. To date, several vaccines are at different stages of development. In this scenario, a validated and standardised assay to measure LASV neutralising antibodies is urgently needed for vaccine development and comparison. Methods The neutralisation assay remains the gold standard for determining antibody efficacy. Here we have proposed a safe and validated pseudotyped neutralisation assay for LASV, taking advantage of the development of the first WHO International Standard and Reference Panel for Anti-Lassa Fever (NIBSC code 21/332). Results and Conclusions The proposed results demonstrate that the pseudotyped luciferase neutralisation assay is a specific serological test for the measurement of LASV neutralising antibodies without cross-reacting with standard sera specific for heterologous viral infections. In addition, the assay is accurate, precise, and linear according to criteria and statistical analyses defined and accepted by international guidelines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy,, University of Kent and Greenwich at Medway, Chatham, Kent, UK
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | |
Collapse
|
2
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 2024; 57:2061-2076.e11. [PMID: 39013466 PMCID: PMC11390330 DOI: 10.1016/j.immuni.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Eilon-Ashkenazy M, Cohen-Dvashi H, Borni S, Shaked R, Calinsky R, Levy Y, Diskin R. The structure of the Lujo virus spike complex. Nat Commun 2024; 15:7175. [PMID: 39169025 PMCID: PMC11339409 DOI: 10.1038/s41467-024-51606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Lujo virus (LUJV) is a human pathogen that was the cause of a deadly hemorrhagic fever outbreak in Africa. LUJV is a divergent member of the Arenaviridae with some similarities to both the "Old World" and "New World" serogroups, but it uses a cell-entry receptor, neuropilin-2 (NRP2), that is distinct from the receptors of OW and NW viruses. Though the receptor binding domain of LUJV has been characterized structurally, the overall organization of the trimeric spike complex and how NRP2 is recognized in this context were unknown. Here, we present the structure of the membrane-embedded LUJV spike complex determined by cryo-electron microscopy. Analysis of the structure suggested that a single NRP2 molecule is bound at the apex of the trimeric spike and that multiple subunits of the trimer contact the receptor. The binding of NRP2 involves an intriguing arginine-methionine interaction, which we analyzed using quantum mechanical modeling methods. We compare the LUJV spike structure with the only other available structure of a complete arenaviral spike, which is the Lassa virus. The similarities and differences between them shed light on Arenavirus evolution, inform vaccine design, and provide information that will be useful in combating future Arenavirus outbreaks.
Collapse
Affiliation(s)
- Maayan Eilon-Ashkenazy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Borni
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shaked
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Calinsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Prins RC, Billerbeck S. The signal peptide of yeast killer toxin K2 confers producer self-protection and allows conversion into a modular toxin-immunity system. Cell Rep 2024; 43:114449. [PMID: 38985680 DOI: 10.1016/j.celrep.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Some microbial toxins also target the producer species itself, necessitating a means of self-protection. The M2 double-stranded RNA (dsRNA) killer virus in Saccharomyces cerevisiae contains a single open reading frame (ORF) encoding both the secreted pore-forming toxin K2 as well as a cognate immunity factor. Here, we show that expression of a 49-amino acid N-terminal peptide from the K2 precursor is both necessary and sufficient for immunity. This immunity peptide simultaneously functions as a signal peptide for toxin secretion and protects the cell against the cytotoxic K2 α subunit. The K2 toxin and immunity factor can be functionally separated into two ORFs, yielding a modular toxin-immunity system. This case further shows how a (signal) peptide can carry the potential for providing cellular protection against an antimicrobial toxin.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
5
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antigenic variability of Lassa virus glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579020. [PMID: 38370709 PMCID: PMC10871245 DOI: 10.1101/2024.02.05.579020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R. Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G. Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A. Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead contact
| |
Collapse
|
6
|
Gorman J, Cheung CSF, Duan Z, Ou L, Wang M, Chen X, Cheng C, Biju A, Sun Y, Wang P, Yang Y, Zhang B, Boyington JC, Bylund T, Charaf S, Chen SJ, Du H, Henry AR, Liu T, Sarfo EK, Schramm CA, Shen CH, Stephens T, Teng IT, Todd JP, Tsybovsky Y, Verardi R, Wang D, Wang S, Wang Z, Zheng CY, Zhou T, Douek DC, Mascola JR, Ho DD, Ho M, Kwong PD. Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability. Nat Commun 2024; 15:285. [PMID: 38177144 PMCID: PMC10767048 DOI: 10.1038/s41467-023-44534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Zhijian Duan
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaping Sun
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Charaf
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haijuan Du
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danyi Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
8
|
Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep 2023; 42:112524. [PMID: 37209096 PMCID: PMC10242449 DOI: 10.1016/j.celrep.2023.112524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.
Collapse
Affiliation(s)
- Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Dong S, Mao W, Liu Y, Jia X, Zhang Y, Zhou M, Hou Y, Xiao G, Wang W. Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion. Virol Sin 2023:S1995-820X(23)00030-5. [PMID: 37059226 DOI: 10.1016/j.virs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
The Lassa virus is endemic in West Africa and causes severe hemorrhagic Lassa fever in humans. The glycoprotein complex (GPC) of LASV is highly glycosylation-modified, with 11 N-glycosylation sites. All 11 N-linked glycan chains play critical roles in GPC cleavage, folding, receptor binding, membrane fusion, and immune evasion. In this study, we focused on the first glycosylation site because its deletion mutant (N79Q) results in an unexpected enhanced membrane fusion, whereas it exerts little effect on GPC expression, cleavage, and receptor binding. Meanwhile, the pseudotype virus bearing GPCN79Q was more sensitive to the neutralizing antibody 37.7H and was attenuated in virulence. Exploring the biological functions of the key glycosylation site on LASV GPC will help elucidate the mechanism of LASV infection and provide strategies for the development of attenuated vaccines against LASV infection.
Collapse
Affiliation(s)
- Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenting Mao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Hochman J, Braitbard O. Life after Cleavage: The Story of a β-Retroviral (MMTV) Signal Peptide-From Murine Lymphoma to Human Breast Cancer. Viruses 2022; 14:v14112435. [PMID: 36366533 PMCID: PMC9694287 DOI: 10.3390/v14112435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence in recent years supports an association of the betaretrovirus mouse mammary tumor virus (MMTV) with human breast cancer. This is an issue that still raises heated controversy. We have come to address this association using the signal peptide p14 of the MMTV envelope precursor protein as a key element of our strategy. In addition to its signal peptide function, p14 has some significant post endoplasmic reticulum (ER)-targeting characteristics: (1) it localizes to nucleoli where it binds key proteins (RPL5 and B23) involved (among other activities) in the regulation of nucleolar stress response, ribosome biogenesis and p53 stabilization; (2) p14 is a nuclear export factor; (3) it is expressed on the cell surface of infected cells, and as such, is amenable to, and successfully used, in preventive vaccination against experimental tumors that harbor MMTV; (4) the growth of such tumors is impaired in vivo using a combination of monoclonal anti-p14 antibodies or adoptive T-cell transfer treatments; (5) p14 is a phospho-protein endogenously phosphorylated by two different serine kinases. The phosphorylation status of the two sites determines whether p14 will function in an oncogenic or tumor-suppressing capacity; (6) transcriptional activation of genes (RPL5, ErbB4) correlates with the oncogenic potential of MMTV; (7) finally, polyclonal anti-p14 antibodies have been applied in immune histochemistry analyses of breast cancer cases using formalin fixed paraffin-embedded sections, supporting the associations of MMTV with the disease. Taken together, the above findings constitute a road map towards the diagnosis and possible prevention and treatment of MMTV-associated breast cancer.
Collapse
Affiliation(s)
- Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: ; Tel.: +972-54-441-4370
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Bioinformatics, The Faculty of Life and Health Sciences, Jerusalem College of Technology, Jerusalem 9372115, Israel
| |
Collapse
|
11
|
Enriquez AS, Buck TK, Li H, Norris MJ, Moon-Walker A, Zandonatti MA, Harkins SS, Robinson JE, Branco LM, Garry RF, Saphire EO, Hastie KM. Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies. Cell Rep 2022; 39:110841. [PMID: 35613585 PMCID: PMC9258627 DOI: 10.1016/j.celrep.2022.110841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines. Enriquez et al. present two structures of GPC-A antibody Fab fragments bound to Lassa virus glycoprotein. Complementary biochemical analyses illuminate mechanistic differences between pan-Lassa 25.10C and lineage-specific 36.1F. 25.10C inhibits two steps of Lassa virus infection, LAMP1 binding and membrane fusion, while 36.1F only blocks LAMP1.
Collapse
Affiliation(s)
| | - Tierra K Buck
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Alex Moon-Walker
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Program in Virology, Harvard University, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | | | | | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Robert F Garry
- Zalgen Labs, LLC, Germantown, MD 20876, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
12
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
13
|
Katz M, Weinstein J, Eilon-Ashkenazy M, Gehring K, Cohen-Dvashi H, Elad N, Fleishman SJ, Diskin R. Structure and receptor recognition by the Lassa virus spike complex. Nature 2022; 603:174-179. [PMID: 35173332 DOI: 10.1038/s41586-022-04429-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 01/23/2023]
Abstract
Lassa virus (LASV) is a human pathogen, causing substantial morbidity and mortality1,2. Similar to other Arenaviridae, it presents a class-I spike complex on its surface that facilitates cell entry. The virus's cellular receptor is matriglycan, a linear carbohydrate that is present on α-dystroglycan3,4, but the molecular mechanism that LASV uses to recognize this glycan is unknown. In addition, LASV and other arenaviruses have a unique signal peptide that forms an integral and functionally important part of the mature spike5-8; yet the structure, function and topology of the signal peptide in the membrane remain uncertain9-11. Here we solve the structure of a complete native LASV spike complex, finding that the signal peptide crosses the membrane once and that its amino terminus is located in the extracellular region. Together with a double-sided domain-switching mechanism, the signal peptide helps to stabilize the spike complex in its native conformation. This structure reveals that the LASV spike complex is preloaded with matriglycan, suggesting the mechanism of binding and rationalizing receptor recognition by α-dystroglycan-tropic arenaviruses. This discovery further informs us about the mechanism of viral egress and may facilitate the rational design of novel therapeutics that exploit this binding site.
Collapse
Affiliation(s)
- Michael Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Eilon-Ashkenazy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Katrin Gehring
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
15
|
Petti LM, Koleske BN, DiMaio D. Activation of the PDGF β Receptor by a Persistent Artificial Signal Peptide. J Mol Biol 2021; 433:167223. [PMID: 34474086 DOI: 10.1016/j.jmb.2021.167223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Most eukaryotic transmembrane and secreted proteins contain N-terminal signal peptides that mediate insertion of the nascent translation products into the membrane of the endoplasmic reticulum. After membrane insertion, signal peptides typically are cleaved from the mature protein and degraded. Here, we tested whether a small hydrophobic protein selected for growth promoting activity in mammalian cells retained transforming activity while also acting as a signal peptide. We replaced the signal peptide of the PDGF β receptor (PDGFβR) with a previously described 29-residue artificial transmembrane protein named 9C3 that can activate the PDGFβR in trans. We showed that a modified version of 9C3 at the N-terminus of the PDGFβR can function as a signal peptide, as assessed by its ability to support high level expression, glycosylation, and cell surface localization of the PDGFβR. The 9C3 signal peptide retains its ability to interact with the transmembrane domain of the PDGFβR and cause receptor activation and cell proliferation. Cleavage of the 9C3 signal peptide from the mature receptor is not required for these activities. However, signal peptide cleavage does occur in some molecules, and the cleaved signal peptide can persist in cells and activate a co-expressed PDGFβR in trans. Our finding that a hydrophobic sequence can display signal peptide and transforming activity suggest that some naturally occurring signal peptides may also display additional biological activities by interacting with the transmembrane domains of target proteins.
Collapse
Affiliation(s)
- Lisa M Petti
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
| | - Benjamin N Koleske
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA; Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA; Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024, USA; Department of Therapeutic Radiology, Yale School of Medicine, PO Box 208040, New Haven, CT 06520-8040, USA; Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
16
|
CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses 2021; 13:v13091763. [PMID: 34578344 PMCID: PMC8473031 DOI: 10.3390/v13091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV)—a member of the family Arenaviridae—causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 μM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.
Collapse
|
17
|
Wan W, Zhu S, Li S, Shang W, Zhang R, Li H, Liu W, Xiao G, Peng K, Zhang L. High-Throughput Screening of an FDA-Approved Drug Library Identifies Inhibitors against Arenaviruses and SARS-CoV-2. ACS Infect Dis 2021; 7:1409-1422. [PMID: 33183004 PMCID: PMC7671101 DOI: 10.1021/acsinfecdis.0c00486] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Arenaviruses are a large family of enveloped negative-strand RNA viruses that include several causative agents of severe hemorrhagic fevers. Currently, there are no FDA-licensed drugs to treat arenavirus infection except for the off-labeled use of ribavirin. Here, we performed antiviral drug screening against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) using an FDA-approved drug library. Five drug candidates were identified, including mycophenolic acid, benidipine hydrochloride, clofazimine, dabrafenib, and apatinib, for having strong anti-LCMV effects. Further analysis indicated that benidipine hydrochloride inhibited LCMV membrane fusion, and an adaptive mutation on the LCMV glycoprotein D414 site was found to antagonize the anti-LCMV activity of benidipine hydrochloride. Mycophenolic acid inhibited LCMV replication by depleting GTP production. We also found mycophenolic acid, clofazimine, dabrafenib, and apatinib can inhibit the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Owing to their FDA-approved status, these drug candidates can potentially be used rapidly in the clinical treatment of arenavirus and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Weiwei Wan
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Shenglin Zhu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Shufen Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Weijuan Shang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Ruxue Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Hao Li
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Wei Liu
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Gengfu Xiao
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Ke Peng
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Leike Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| |
Collapse
|
18
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
19
|
Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell 2020; 178:1004-1015.e14. [PMID: 31398326 DOI: 10.1016/j.cell.2019.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.
Collapse
Affiliation(s)
- Kathryn M Hastie
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert W Cross
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Stephanie S Harkins
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle A Zandonatti
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - James E Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Thomas W Geisbert
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Robert F Garry
- Zalgen Labs, Germantown, MD, USA; Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | | | - Erica Ollmann Saphire
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Ibukun FI. Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses 2020; 12:v12040386. [PMID: 32244402 PMCID: PMC7232328 DOI: 10.3390/v12040386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV), which causes considerable morbidity and mortality annually, has a high genetic diversity across West Africa. LASV glycoprotein (GP) expresses this diversity, but most LASV vaccine candidates utilize only the Lineage IV LASV Josiah strain GP antigen as an immunogen and homologous challenge with Lineage IV LASV. In addition to the sequence variation amongst the LASV lineages, these lineages are also distinguished in their presentations. Inter-lineage variations within previously mapped B-cell and T-cell LASV GP epitopes and the breadth of protection in LASV vaccine/challenge studies were examined critically. Multiple alignments of the GP primary sequence of strains from each LASV lineage showed that LASV GP has diverging degrees of amino acid conservation within known epitopes among LASV lineages. Conformational B-cell epitopes spanning different sites in GP subunits were less impacted by LASV diversity. LASV GP diversity should influence the approach used for LASV vaccine design. Expression of LASV GP on viral vectors, especially in its prefusion configuration, has shown potential for protective LASV vaccines that can overcome LASV diversity. Advanced vaccine candidates should demonstrate efficacy against all LASV lineages for evidence of a pan-LASV vaccine.
Collapse
Affiliation(s)
- Francis Ifedayo Ibukun
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| |
Collapse
|
21
|
Identification of Residues in Lassa Virus Glycoprotein Subunit 2 That Are Critical for Protein Function. Pathogens 2018; 8:pathogens8010001. [PMID: 30587764 PMCID: PMC6471855 DOI: 10.3390/pathogens8010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus, endemic to West Africa, capable of causing hemorrhagic fever. Currently, there are no approved vaccines or effective antivirals for LASV. However, thorough understanding of the LASV glycoprotein and entry into host cells could accelerate therapeutic design. LASV entry is a two-step process involving the viral glycoprotein (GP). First, the GP subunit 1 (GP1) binds to the cell surface receptor and the viral particle is engulfed into an endosome. Next, the drop in pH triggers GP rearrangements, which ultimately leads to the GP subunit 2 (GP2) forming a six-helix-bundle (6HB). The process of GP2 forming 6HB fuses the lysosomal membrane with the LASV envelope, allowing the LASV genome to enter the host cell. The aim of this study was to identify residues in GP2 that are crucial for LASV entry. To achieve this, we performed alanine scanning mutagenesis on GP2 residues. We tested these mutant GPs for efficient GP1-GP2 cleavage, cell-to-cell membrane fusion, and transduction into cells expressing α-dystroglycan and secondary LASV receptors. In total, we identified seven GP2 mutants that were cleaved efficiently but were unable to effectively transduce cells: GP-L280A, GP-L285A/I286A, GP-I323A, GP-L394A, GP-I403A, GP-L415A, and GP-R422A. Therefore, the data suggest these residues are critical for GP2 function in LASV entry.
Collapse
|
22
|
Structure-Based Classification Defines the Discrete Conformational Classes Adopted by the Arenaviral GP1. J Virol 2018; 93:JVI.01048-18. [PMID: 30305351 PMCID: PMC6288339 DOI: 10.1128/jvi.01048-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023] Open
Abstract
The genetically and geographically diverse group of viruses within the family Arenaviridae includes a number of zoonotic pathogens capable of causing fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed on the arenavirus envelope is a key determinant of species tropism and a primary target of the host humoral immune response. Here, we show that the receptor-binding GP1 subcomponent of the GPC spike from Old World but not New World arenaviruses adopts a distinct, pH-independent conformation in the absence of the cognate GP2. Our analysis provides a structure-based approach to understanding the discrete conformational classes sampled by these therapeutically important targets, informing strategies to develop arenaviral glycoprotein immunogens that resemble GPC as presented on the mature virion surface. The emergence of Old and New World arenaviruses from rodent reservoirs persistently threatens human health. The GP1 subunit of the envelope-displayed arenaviral glycoprotein spike complex (GPC) mediates host cell recognition and is an important determinant of cross-species transmission. Previous structural analyses of Old World arenaviral GP1 glycoproteins, alone and in complex with a cognate GP2 subunit, have revealed that GP1 adopts two distinct conformational states distinguished by differences in the orientations of helical regions of the molecule. Here, through comparative study of the GP1 glycoprotein architectures of Old World Loei River virus and New World Whitewater Arroyo virus, we show that these rearrangements are restricted to Old World arenaviruses and are not induced solely by the pH change that is associated with virus endosomal trafficking. Our structure-based phylogenetic analysis of arenaviral GP1s provides a blueprint for understanding the discrete structural classes adopted by these therapeutically important targets. IMPORTANCE The genetically and geographically diverse group of viruses within the family Arenaviridae includes a number of zoonotic pathogens capable of causing fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed on the arenavirus envelope is a key determinant of species tropism and a primary target of the host humoral immune response. Here, we show that the receptor-binding GP1 subcomponent of the GPC spike from Old World but not New World arenaviruses adopts a distinct, pH-independent conformation in the absence of the cognate GP2. Our analysis provides a structure-based approach to understanding the discrete conformational classes sampled by these therapeutically important targets, informing strategies to develop arenaviral glycoprotein immunogens that resemble GPC as presented on the mature virion surface.
Collapse
|
23
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
24
|
Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J Virol 2018; 92:JVI.00954-18. [PMID: 29899092 PMCID: PMC6069169 DOI: 10.1128/jvi.00954-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/25/2022] Open
Abstract
Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Here, high-throughput screening of an FDA-approved drug library was performed against LASV entry by using pseudotype virus bearing LASV envelope glycoprotein (GPC). Two hit compounds, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both compounds inhibited LASV entry by blocking low-pH-induced membrane fusion. Accordingly, lacidipine showed virucidal effects on the pseudotype virus of LASV. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine. Furthermore, lacidipine showed antiviral activity against LASV, the closely related Mopeia virus (MOPV), and the New World arenavirus Guanarito virus (GTOV). Drug-resistant variants indicated that V36M in the ectodomain of the SSP mutant and V436A in the transmembrane domain of the GP2 mutant conferred GTOV resistance to lacidipine, suggesting the interface between SSP and GP2 is the target of lacidipine. This study shows that lacidipine is a candidate for LASV therapy, reinforcing the notion that the SSP-GP2 interface provides an entry-targeted platform for arenavirus inhibitor design.IMPORTANCE Currently, there is no approved therapy to treat Lassa fever; therefore, repurposing of approved drugs will accelerate the development of a therapeutic stratagem. In this study, we screened an FDA-approved library of drugs and identified two compounds, lacidipine and phenothrin, which inhibited Lassa virus entry by blocking low-pH-induced membrane fusion. Additionally, both compounds extended their inhibition against the entry of Guanarito virus, and the viral targets were identified as the SSP-GP2 interface.
Collapse
|
25
|
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 2018; 92:JVI.00093-18. [PMID: 29875238 DOI: 10.1128/jvi.00093-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Collapse
|
26
|
Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A 2018; 115:7320-7325. [PMID: 29941589 PMCID: PMC6048489 DOI: 10.1073/pnas.1803990115] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lassa virus is an Old World arenavirus endemic to West Africa that causes severe hemorrhagic fever. Vaccine development has focused on the envelope glycoprotein complex (GPC) that extends from the virion envelope. The often inadequate antibody immune response elicited by both vaccine and natural infection has been, in part, attributed to the abundance of N-linked glycosylation on the GPC. Here, using a virus-like-particle system that presents Lassa virus GPC in a native-like context, we determine the composite population of each of the N-linked glycosylation sites presented on the trimeric GPC spike. Our analysis reveals the presence of underprocessed oligomannose-type glycans, which form punctuated clusters that obscure the proteinous surface of both the GP1 attachment and GP2 fusion glycoprotein subunits of the Lassa virus GPC. These oligomannose clusters are seemingly derived as a result of sterically reduced accessibility to glycan processing enzymes, and limited amino acid diversification around these sites supports their role protecting against the humoral immune response. Combined, our data provide a structure-based blueprint for understanding how glycans render the glycoprotein spikes of Lassa virus and other Old World arenaviruses immunologically resistant targets.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Joel D Allen
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Sai Li
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Felipe Moser
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom
- Helsinki Institute of Life Science and Molecular and Integrative Biosciences Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas Strecker
- Institute of Virology, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, OX3 7BN Oxford, United Kingdom;
| | - Max Crispin
- Centre for Biological Sciences and Institute of Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom;
| |
Collapse
|
27
|
Braitbard O, Roniger M, Bar-Sinai A, Rajchman D, Gross T, Abramovitch H, La Ferla M, Franceschi S, Lessi F, Naccarato AG, Mazzanti CM, Bevilacqua G, Hochman J. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2018; 7:21168-80. [PMID: 26934560 PMCID: PMC5008276 DOI: 10.18632/oncotarget.7762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers.
Collapse
Affiliation(s)
- Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Roniger
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Allan Bar-Sinai
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Rajchman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Gross
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hillel Abramovitch
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | - Generoso Bevilacqua
- FPS - Pisa Science Foundation, Pisa, Italy.,Department of Pathology, University of Pisa, Pisa, Italy
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
York J, Nunberg JH. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity. Methods Mol Biol 2018; 1604:157-167. [PMID: 28986831 DOI: 10.1007/978-1-4939-6981-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, University of Montana, Science Complex Room 221, Missoula, MT, 59812, USA
| | - Jack H Nunberg
- Montana Biotechnology Center, University of Montana, Science Complex Room 221, Missoula, MT, 59812, USA.
| |
Collapse
|
29
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Cleavage of the Glycoprotein of Arenaviruses. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7121819 DOI: 10.1007/978-3-319-75474-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arenaviruses are a large family of emerging negative-stranded RNA viruses that include several severe human pathogens causing hemorrhagic fevers with high mortality. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P is a key factor for zoonotic transmission and human disease potential. Apart from being an essential host factor for arenavirus infection, SKI-1/S1P is involved in the regulation of important physiological processes and linked to major human diseases. This chapter provides an overview of the mechanisms of arenavirus GPC processing by SKI-1/S1P including recent findings. We will highlight to what extent the molecular mechanisms of SKI-1/S1P cleavage of viral GPC differ from processing of SKI-1/S1P’s cellular substrates and discuss the implications for virus-host interaction and coevolution. Moreover, we will show how the use of the viral GPC as a “molecular probe” uncovered novel and unusual aspects of SKI-1/S1P biosynthesis and maturation. The crucial role of SKI-1/S1P in arenavirus infection and other major human diseases combined with its nature as an enzyme makes SKI-1/S1P further an attractive target for therapeutic intervention. In the last part, we will therefore cover past and present efforts to identify specific SKI-1/S1P inhibitors.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
30
|
Peña Cárcamo JR, Morell ML, Vázquez CA, Vatansever S, Upadhyay AS, Överby AK, Cordo SM, García CC. The interplay between viperin antiviral activity, lipid droplets and Junín mammarenavirus multiplication. Virology 2018; 514:216-229. [DOI: 10.1016/j.virol.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023]
|
31
|
Epistastic Interactions within the Junín Virus Envelope Glycoprotein Complex Provide an Evolutionary Barrier to Reversion in the Live-Attenuated Candid#1 Vaccine. J Virol 2017; 92:JVI.01682-17. [PMID: 29070682 DOI: 10.1128/jvi.01682-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023] Open
Abstract
The Candid#1 strain of Junín virus was developed using a conventional attenuation strategy of serial passage in nonhost animals and cultured cells. The live-attenuated Candid#1 vaccine is used in Argentina to protect at-risk individuals against Argentine hemorrhagic fever, but it has not been licensed in the United States. Recent studies have revealed that Candid#1 attenuation is entirely dependent on a phenylalanine-to-isoleucine substitution at position 427 in the fusion subunit (GP2) of the viral envelope glycoprotein complex (GPC), thereby raising concerns regarding the potential for reversion to virulence. In this study, we report the identification and characterization of an intragenic epistatic interaction between the attenuating F427I mutation in GP2 and a lysine-to-serine mutation at position 33 in the stable signal peptide (SSP) subunit of GPC, and we demonstrate the utility of this interaction in creating an evolutionary barrier against reversion to the pathogenic genotype. In the presence of the wild-type F427 residue, the K33S mutation abrogates the ability of ectopically expressed GPC to mediate membrane fusion at endosomal pH. This defect is rescued by the attenuating F427I mutation. We show that the recombinant Candid#1 (rCan) virus bearing K33S GPC is viable and retains its attenuated genotype under cell culture conditions that readily select for reversion in the parental rCan virus. If back-mutation to F427 offers an accessible pathway to increase fitness in rCan, reversion in K33S-GPC rCan is likely to be lethal. The epistatic interaction between K33S and F427I thus may minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine.IMPORTANCE The live-attenuated Candid#1 vaccine strain of Junín virus is used to protect against Argentine hemorrhagic fever. Recent findings that a single missense mutation in the viral envelope glycoprotein complex (GPC) is responsible for attenuation raise the prospect of facile reversion to pathogenicity. Here, we characterize a genetic interaction between GPC subunits that evolutionarily forces retention of the attenuating mutation. By incorporating this secondary mutation into Candid#1 GPC, we hope to minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine. A similar approach may guide the design of live-attenuated vaccines against Lassa and other arenaviral hemorrhagic fevers.
Collapse
|
32
|
Assays to Assess Arenaviral Glycoprotein Function. Methods Mol Biol 2017. [PMID: 28986832 DOI: 10.1007/978-1-4939-6981-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Arenaviruses, such as Lassa virus (LASV) and Pichindé virus (PICV), are enveloped viruses with a bi-segmented ambisense RNA genome. The large (L) genomic segment encodes the Z matrix protein and the L RNA-dependent RNA polymerase, whereas the small (S) genomic segment encodes the nucleoprotein (NP) and the glycoprotein precursor complex (GPC). GPC is processed by signal peptidase in the endoplasmic reticulum into the stable signal peptide (SSP) and GP1/GP2, which is further cleaved by the Golgi-resident subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) into the cellular receptor-recognition subunit GP1 and the transmembrane subunit GP2, which helps promote the membrane fusion reaction to allow virus entry into the cell. This article describes assays to assess PICV GPC expression, proteolytic processing, fusion function, and GPC-mediated virus-like particle (VLP) entry into cells under tissue-culture conditions.
Collapse
|
33
|
Meyer C, Barniol L, Hiss JA, Przyborski JM. The N-terminal extension of the P. falciparum GBP130 signal peptide is irrelevant for signal sequence function. Int J Med Microbiol 2017; 308:3-12. [PMID: 28750796 DOI: 10.1016/j.ijmm.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022] Open
Abstract
The malaria parasite P. falciparum exports a large number of proteins to its host cell, the mature human erythrocyte. Although the function of the majority of these proteins is not well understood, many exported proteins appear to play a role in modification of the erythrocyte following invasion. Protein export to the erythrocyte is a secretory process that begins with entry to the endoplasmic reticulum. For most exported proteins, this step is mediated by hydrophobic signal peptides found towards the N-terminal end of proteins. The signal peptides present on P. falciparum exported proteins often differ in length from those found in other systems, and generally contain a highly extended N-terminal region. Here we have investigated the function of these extended N-terminal regions, using the exported parasite protein GBP130 as a model. Surprisingly, several deletions of the extended N-terminal regions of the GBP130 signal peptide have no effect on the ability of the signal peptide to direct a fluorescent reporter to the secretory pathway. Addition of the same N-terminal extension to a canonical signal peptide does not affect transport of either soluble or membrane proteins to their correct respective subcellular localisations. Finally, we show that extended signal peptides are able to complement canonical signal peptides in driving protein traffic to the apicoplast of the parasite, and are also functional in a mammalian cell system. Our study is the first detailed analysis of an extended P. falciparum signal peptide and suggests that N-terminal extensions of exported Plasmodium falciparum proteins are not required for entry to the secretory system, and are likely to be involved in other, so far unknown, processes.
Collapse
Affiliation(s)
- Corinna Meyer
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Luis Barniol
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Jan A Hiss
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
34
|
Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis. J Virol 2016; 90:8341-50. [PMID: 27412594 DOI: 10.1128/jvi.01124-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that nonmyristoylated GPC mutants of the Candid #1 strain of Junín virus display a commensurate deficiency in their infectivity, albeit without additional defects in virion assembly and budding. These results suggest that SSP myristoylation may function late in the fusion process to facilitate merging of the viral and cellular membranes. Antiviral agents that target this novel aspect of GPC membrane fusion may be useful in the treatment of arenavirus hemorrhagic fevers.
Collapse
|
35
|
Wang W, Zhou Z, Zhang L, Wang S, Xiao G. Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol Sin 2016; 31:380-394. [PMID: 27562602 DOI: 10.1007/s12250-016-3815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022] Open
Abstract
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein (GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex (GPC) formed by a stable signal peptide (SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown. GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition. Elucidating the molecular mechanisms underlining the structure-function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure-function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
36
|
Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein. J Virol 2016; 90:6799-807. [PMID: 27194767 DOI: 10.1128/jvi.00597-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the arenavirus envelope glycoprotein (GPC) have recently been identified and shown to block GPC-mediated fusion of the viral and cellular endosomal membranes, thereby preventing virus entry into the host cell. Genetic studies suggest that these inhibitors act through a unique pH-sensing intersubunit interface in GPC, but atomic-level structural information is unavailable. In this report, we utilize novel photoreactive fusion inhibitors and photoaffinity labeling to obtain direct physical evidence for inhibitor binding at this critical interface in Lassa virus GPC. Future identification of modified residues at the inhibitor-binding site will help elucidate the molecular basis for fusion activation and its inhibition and guide the development of effective therapies to treat arenaviral hemorrhagic fevers.
Collapse
|
37
|
Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Nat Struct Mol Biol 2016; 23:513-521. [PMID: 27111888 PMCID: PMC4945123 DOI: 10.1038/nsmb.3210] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Abstract
Arenaviruses exist worldwide and can cause hemorrhagic fever and neurologic disease. A single glycoprotein expressed on the viral surface mediates entry into target cells. This glycoprotein, termed GPC, contains a membrane-associated signal peptide, a receptor-binding subunit termed GP1 and a fusion-mediating subunit termed GP2. Although GPC is a critical target of antibodies and vaccines, the structure of the metastable GP1-GP2 prefusion complex has remained elusive for all arenaviruses. Here we describe the crystal structure of the fully glycosylated prefusion GP1-GP2 complex of the prototypic arenavirus LCMV at 3.5 Å. This structure reveals the conformational changes that the arenavirus glycoprotein must undergo to cause fusion and illustrates the fusion regions and potential oligomeric states.
Collapse
|
38
|
Li S, Sun Z, Pryce R, Parsy ML, Fehling SK, Schlie K, Siebert CA, Garten W, Bowden TA, Strecker T, Huiskonen JT. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog 2016; 12:e1005418. [PMID: 26849049 PMCID: PMC4743923 DOI: 10.1371/journal.ppat.1005418] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.
Collapse
Affiliation(s)
- Sai Li
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Zhaoyang Sun
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Marie-Laure Parsy
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah K. Fehling
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Katrin Schlie
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - C. Alistair Siebert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Wolfgang Garten
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas Strecker
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany
| | - Juha T. Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Jae LT, Brummelkamp TR. Emerging intracellular receptors for hemorrhagic fever viruses. Trends Microbiol 2015; 23:392-400. [PMID: 26004032 DOI: 10.1016/j.tim.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism.
Collapse
Affiliation(s)
- Lucas T Jae
- Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, CX, 1066 The Netherlands
| | - Thijn R Brummelkamp
- Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, CX, 1066 The Netherlands.
| |
Collapse
|
40
|
Rutz C, Klein W, Schülein R. N-Terminal Signal Peptides of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:267-87. [DOI: 10.1016/bs.pmbts.2015.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Abstract
The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. Several members of the Arenaviridae family are neglected human pathogens capable of causing illness ranging from a nondescript flu-like syndrome to fulminant hemorrhagic fever. Infections by arenaviruses are mediated by attachment of the virus glycoprotein to receptors on host cells and virion internalization by fusion within an acidified endosome. SSP plays a critical role in the fusion of the virus with the host cell membrane. Within infected cells, the retained glycoprotein SSP plays a neglected yet essential role in glycoprotein biosynthesis. Without this 6-kDa polypeptide, the glycoprotein precursor is retained within the endoplasmic reticulum, and trafficking to the plasma membrane where SSP, GP1, and GP2 localize for glycoprotein assembly into infectious virions is inhibited. To investigate SSP contributions to glycoprotein maturation and function, we created an SSP-tagged glycoprotein to directly detect and manipulate this subunit. This resource will aid future studies to identify host factors that mediate glycoprotein maturation.
Collapse
|
42
|
Veit M, Matczuk AK, Sinhadri BC, Krause E, Thaa B. Membrane proteins of arterivirus particles: structure, topology, processing and function. Virus Res 2014; 194:16-36. [PMID: 25278143 PMCID: PMC7172906 DOI: 10.1016/j.virusres.2014.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Arteriviruses are important pathogens in veterinary medicine. We review the structure and processing of their membrane proteins. Some features are unique from a cell biological point of view. New data on this topic are also presented. We speculate on the role of the membrane proteins during virus entry and budding.
Arteriviruses, such as equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV), are important pathogens in veterinary medicine. Despite their limited genome size, arterivirus particles contain a multitude of membrane proteins, the Gp5/M and the Gp2/3/4 complex, the small and hydrophobic E protein and the ORF5a protein. Their function during virus entry and budding is understood only incompletely. We summarize current knowledge of their primary structure, membrane topology, (co-translational) processing and intracellular targeting to membranes of the exocytic pathway, which are the budding site. We profoundly describe experimental data that led to widely believed conceptions about the function of these proteins and also report new results about processing steps for each glycoprotein. Further, we depict the location and characteristics of epitopes in the membrane proteins since the late appearance of neutralizing antibodies may lead to persistence, a characteristic hallmark of arterivirus infection. Some molecular features of the arteriviral proteins are rare or even unique from a cell biological point of view, particularly the prevention of signal peptide cleavage by co-translational glycosylation, discovered in EAV-Gp3, and the efficient use of overlapping sequons for glycosylation. This article reviews the molecular mechanisms of these cellular processes. Based on this, we present hypotheses on the structure and variability of arteriviral membrane proteins and their role during virus entry and budding.
Collapse
Affiliation(s)
- Michael Veit
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany.
| | | | | | - Eberhard Krause
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Bastian Thaa
- Institut für Virologie, Veterinärmedizin, Freie Universität Berlin, Germany
| |
Collapse
|
43
|
Evolution of recombinant lymphocytic choriomeningitis virus/Lassa virus in vivo highlights the importance of the GPC cytosolic tail in viral fitness. J Virol 2014; 88:8340-8. [PMID: 24829355 DOI: 10.1128/jvi.00236-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A key characteristic of arenaviruses is their ability to establish persistent infection in their natural host. Different factors like host age, viral dose strain, and route of infection may contribute to the establishment of persistence. However, the molecular mechanisms governing persistence are not fully understood. Here, we describe gain-of-function mutations of lymphocytic choriomeningitis virus (LCMV) expressing Lassa virus (LASV) GP, which can prolong viremia in mice depending on the sequences in the GP-2 cytoplasmic tail. The initial mutant variant (rLCMV/LASV mut GP) carried a point mutation in the cytosolic tail of the LASV glycoprotein GP corresponding to a K461G substitution. Unlike what occurred with the original rLCMV/LASV wild-type (wt) GP, infection of C57BL/6 mice with the mutated recombinant virus led to a detectable viremia of 2 weeks' duration. Further replacement of the entire sequence of the cytosolic tail from LASV to LCMV GP resulted in increased viral titers and delayed clearance of the viruses. Biosynthesis and cell surface localization of LASV wt and mut GPs were comparable. IMPORTANCE Starting from an emerging virus in a wild-type mouse, we engineered a panel of chimeric Lassa/lymphocytic choriomeningitis viruses. Mutants carrying a viral envelope with the cytosolic tail from the closely related mouse-adapted LCMV were able to achieve a productive viral infection lasting up to 27 days in wild-type mice. Biochemical assays showed a comparable biosynthesis and cell surface localization of LASV wt and mut GPs. These recombinant chimeric viruses could allow the study of immune responses and antivirals targeting the LASV GP.
Collapse
|
44
|
Patterson M, Grant A, Paessler S. Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol 2014; 5:82-90. [PMID: 24636947 DOI: 10.1016/j.coviro.2014.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/02/2014] [Accepted: 02/17/2014] [Indexed: 01/26/2023]
Abstract
The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks.
Collapse
Affiliation(s)
- Michael Patterson
- Galveston National Laboratory, Department of Pathology, Sealy Vaccine Center, University of Texas Medical Branch, 301 University Blvd, GNL, Galveston, TX 77555-0609, United States
| | - Ashley Grant
- Galveston National Laboratory, Department of Pathology, Sealy Vaccine Center, University of Texas Medical Branch, 301 University Blvd, GNL, Galveston, TX 77555-0609, United States
| | - Slobodan Paessler
- Galveston National Laboratory, Department of Pathology, Sealy Vaccine Center, University of Texas Medical Branch, 301 University Blvd, GNL, Galveston, TX 77555-0609, United States.
| |
Collapse
|
45
|
Patterson M, Seregin A, Huang C, Kolokoltsova O, Smith J, Miller M, Smith J, Yun N, Poussard A, Grant A, Tigabu B, Walker A, Paessler S. Rescue of a recombinant Machupo virus from cloned cDNAs and in vivo characterization in interferon (αβ/γ) receptor double knockout mice. J Virol 2014; 88:1914-23. [PMID: 24284323 PMCID: PMC3911560 DOI: 10.1128/jvi.02925-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022] Open
Abstract
Machupo virus (MACV) is the etiological agent of Bolivian hemorrhagic fever (BHF), a reemerging and neglected tropical disease associated with high mortality. The prototypical strain of MACV, Carvallo, was isolated from a human patient in 1963, but minimal in vitro and in vivo characterization has been reported. To this end, we utilized reverse genetics to rescue a pathogenic MACV from cloned cDNAs. The recombinant MACV (rMACV) had in vitro growth properties similar to those of the parental MACV. Both viruses caused similar disease development in alpha/beta and gamma interferon receptor knockout mice, including neurological disease development and high mortality. In addition, we have identified a novel murine model with mortality and neurological disease similar to BHF disease reported in humans and nonhuman primates.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Arenaviruses, New World/genetics
- Base Sequence
- Cell Line
- Chlorocebus aethiops
- Cricetinae
- DNA Primers/genetics
- DNA, Complementary/genetics
- Disease Models, Animal
- Hemorrhagic Fever, American/genetics
- Histological Techniques
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Plasmids/genetics
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Reverse Genetics/methods
- Sequence Analysis, RNA
- Vero Cells
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Michael Patterson
- Galveston National Laboratory, Department of Pathology, Sealy Vaccine Center, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McLay L, Liang Y, Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol 2014; 95:1-15. [PMID: 24068704 PMCID: PMC4093776 DOI: 10.1099/vir.0.057000-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.
Collapse
MESH Headings
- Animals
- Arenaviridae Infections/immunology
- Arenaviridae Infections/pathology
- Arenaviridae Infections/virology
- Arenaviruses, New World/classification
- Arenaviruses, New World/genetics
- Arenaviruses, New World/immunology
- Arenaviruses, New World/pathogenicity
- Arenaviruses, Old World/classification
- Arenaviruses, Old World/genetics
- Arenaviruses, Old World/immunology
- Arenaviruses, Old World/pathogenicity
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
Collapse
Affiliation(s)
- Lisa McLay
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
47
|
Sepúlveda CS, García CC, Levingston Macleod JM, López N, Damonte EB. Targeting of arenavirus RNA synthesis by a carboxamide-derivatized aromatic disulfide with virucidal activity. PLoS One 2013; 8:e81251. [PMID: 24278404 PMCID: PMC3835668 DOI: 10.1371/journal.pone.0081251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37°C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed.
Collapse
Affiliation(s)
- Claudia S. Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C. García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jesica M. Levingston Macleod
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Buenos Aires, Argentina
| | - Nora López
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol 2013; 87:13070-5. [PMID: 24049182 PMCID: PMC3838125 DOI: 10.1128/jvi.02298-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanarito virus (GTOV) is an emergent and deadly pathogen. We present the crystal structure of the glycosylated GTOV fusion glycoprotein to 4.1-Å resolution in the postfusion conformation. Our structure reveals a classical six-helix bundle and presents direct verification that New World arenaviruses exhibit class I viral membrane fusion machinery. The structure provides visualization of an N-linked glycocalyx coat, and consideration of glycan dynamics reveals extensive coverage of the underlying protein surface, following virus-host membrane fusion.
Collapse
|
49
|
Pasquato A, Burri DJ, Kunz S. Current drug discovery strategies against arenavirus infections. Expert Rev Anti Infect Ther 2013; 10:1297-309. [PMID: 23241187 DOI: 10.1586/eri.12.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arenaviruses are a large group of emerging viruses including several causative agents of severe hemorrhagic fevers with high mortality in man. Considering the number of people affected and the currently limited therapeutic options, novel efficacious therapeutics against arenaviruses are urgently needed. Over the past decade, significant advances in knowledge about the basic virology of arenaviruses have been accompanied by the development of novel therapeutics targeting different steps of the arenaviral life cycle. High-throughput, small-molecule screens identified potent and broadly active inhibitors of arenavirus entry that were instrumental for the dissection of unique features of arenavirus fusion. Novel inhibitors of arenavirus replication have been successfully tested in animal models and hold promise for application in humans. Late in the arenavirus life cycle, the proteolytic processing of the arenavirus envelope glycoprotein precursor and cellular factors critically involved virion assembly and budding provide further promising 'druggable' targets for novel therapeutics to combat human arenavirus infection.
Collapse
Affiliation(s)
- Antonella Pasquato
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Pasquato A, Ramos da Palma J, Galan C, Seidah NG, Kunz S. Viral envelope glycoprotein processing by proprotein convertases. Antiviral Res 2013; 99:49-60. [PMID: 23611717 DOI: 10.1016/j.antiviral.2013.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 01/03/2023]
Abstract
The proprotein convertases (PCs) are a family of nine mammalian enzymes that play key roles in the maintenance of cell homeostasis by activating or inactivating proteins via limited proteolysis under temporal and spatial control. A wide range of pathogens, including major human pathogenic viruses can hijack cellular PCs for their own purposes. In particular, productive infection with many enveloped viruses critically depends on the processing of their fusion-active viral envelope glycoproteins by cellular PCs. Based on their crucial role in virus-host interaction, PCs can be important determinants for viral pathogenesis and represent promising targets of therapeutic antiviral intervention. In the present review we will cover basic aspects and recent developments of PC-mediated maturation of viral envelope glycoproteins of selected medically important viruses. The molecular mechanisms underlying the recognition of PCs by viral glycoproteins will be described, including recent findings demonstrating differential PC-recognition of viral and cellular substrates. We will further discuss a possible scenario how viruses during co-evolution with their hosts adapted their glycoproteins to modulate the activity of cellular PCs for their own benefit and discuss the consequences for virus-host interaction and pathogenesis. Particular attention will be given to past and current efforts to evaluate cellular PCs as targets for antiviral therapeutic intervention, with emphasis on emerging highly pathogenic viruses for which no efficacious drugs or vaccines are currently available.
Collapse
Affiliation(s)
- Antonella Pasquato
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011, Switzerland.
| | | | | | | | | |
Collapse
|