1
|
McLeod F, McDermott E, Mak S, Walsh D, Turnbull M, LeBeau FEN, Jackson A, Trevelyan AJ, Clowry GJ. AAV8 vector induced gliosis following neuronal transgene expression. Front Neurosci 2024; 18:1287228. [PMID: 38495109 PMCID: PMC10944330 DOI: 10.3389/fnins.2024.1287228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Expression of light sensitive ion channels by selected neurons has been achieved by viral mediated transduction with gene constructs, but for this to have therapeutic uses, for instance in treating epilepsy, any adverse effects of viral infection on the cerebral cortex needs to be evaluated. Here, we assessed the impact of adeno-associated virus 8 (AAV8) carrying DNA code for a soma targeting light activated chloride channel/FusionRed (FR) construct under the CKIIa promoter. Methods Viral constructs were harvested from transfected HEK293 cells in vitro and purified. To test functionality of the opsin, cultured rodent neurons were transduced and the light response of transduced neurons was assayed using whole-cell patch-clamp recordings. In vivo expression was confirmed by immunofluorescence for FR. Unilateral intracranial injections of the viral construct were made into the mouse neocortex and non-invasive fluorescence imaging of FR expression made over 1-4 weeks post-injection using an IVIS Spectrum system. Sections were also prepared from injected mouse cortex for immunofluorescence staining of FR, alongside glial and neuronal marker proteins. Results In vitro, cortical neurons were successfully transduced, showing appropriate physiological responses to light stimulation. Following injections in vivo, transduction was progressively established around a focal injection site over a 4-week period with spread of transduction proportional to the concentration of virus introduced. Elevated GFAP immunoreactivity, a marker for reactive astrocytes, was detected near injection sites associated with, and proportional to, local FR expression. Similarly, we observed reactive microglia around FR expressing cells. However, we found that the numbers of NeuN+ neurons were conserved close to the injection site, indicating that there was little or no neuronal loss. In control mice, injected with saline only, astrocytosis and microgliosis was limited to the immediate vicinity of the injection site. Injections of opsin negative viral constructs resulted in comparable levels of astrocytic reaction as seen with opsin positive constructs. Discussion We conclude that introduction of an AAV8 vector transducing expression of a transgene under a neuron specific promotor evokes a mild inflammatory reaction in cortical tissue without causing extensive short-term neuronal loss. The expression of an opsin in addition to a fluorescent protein does not significantly increase neuroinflammation.
Collapse
Affiliation(s)
- Faye McLeod
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Elaine McDermott
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Shermin Mak
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Darren Walsh
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Mark Turnbull
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Fiona E N LeBeau
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Andrew Jackson
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Andrew J Trevelyan
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| | - Gavin J Clowry
- Centre for Transformative Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
3
|
Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis 2021; 36:45-52. [PMID: 33201426 DOI: 10.1007/s11011-020-00630-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) diseases are some of the most difficult to treat because the blood-brain barrier (BBB) almost entirely limits the passage of many therapeutic drugs into the CNS. Gene therapy based on the adeno-associated virus (AAV) vector has the potential to overcome this problem. For example, an AAV serotype AAV9 has been widely studied for its ability to cross the BBB to transduce astrocytes, but its efficiency is limited. The emergence of AAV directed evolution technology provides a solution, and the variants derived from AAV9 directed evolution have been shown to have significantly higher crossing efficiency than AAV9. However, the mechanisms by which AAV crosses the BBB are still unclear. In this review, we focus on recent advances in crossing the blood-brain barrier with AAV vectors. We first review the AAV serotypes that can be applied to treating CNS diseases. Recent progress in possible AAV crossing the BBB and transduction mechanisms are then summarized. Finally, the methods to improve the AAV transduction efficiency are discussed.
Collapse
Affiliation(s)
- Dan Liu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| | - Mingyang Zhu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yuqian Zhang
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yong Diao
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
5
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. J Pharmacol Exp Ther 2020; 374:354-365. [PMID: 32561686 PMCID: PMC7430450 DOI: 10.1124/jpet.119.264127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 11/22/2022] Open
Abstract
The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Takahisa Kanekiyo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| |
Collapse
|
6
|
Pedrera M, Macchi F, McLean RK, Franceschi V, Thakur N, Russo L, Medfai L, Todd S, Tchilian EZ, Audonnet JC, Chappell K, Isaacs A, Watterson D, Young PR, Marsh GA, Bailey D, Graham SP, Donofrio G. Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines (Basel) 2020; 8:vaccines8010115. [PMID: 32131403 PMCID: PMC7157636 DOI: 10.3390/vaccines8010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) is an emergent pathogen capable of causing acute respiratory illness and fatal encephalitis in pigs and humans. A high fatality rate and broad host tropism makes NiV a serious public and animal health concern. There is therefore an urgent need for a NiV vaccines to protect animals and humans. In this study we investigated the immunogenicity of bovine herpesvirus (BoHV-4) vectors expressing either NiV attachment (G) or fusion (F) glycoproteins, BoHV-4-A-CMV-NiV-GΔTK or BoHV-4-A-CMV-NiV-FΔTK, respectively in pigs. The vaccines were benchmarked against a canarypox (ALVAC) vector expressing NiV G, previously demonstrated to induce protective immunity in pigs. Both BoHV-4 vectors induced robust antigen-specific antibody responses. BoHV-4-A-CMV-NiV-GΔTK stimulated NiV-neutralizing antibody titers comparable to ALVAC NiV G and greater than those induced by BoHV-4-A-CMV-NiV-FΔTK. In contrast, only BoHV-4-A-CMV-NiV-FΔTK immunized pigs had antibodies capable of significantly neutralizing NiV G and F-mediated cell fusion. All three vectored vaccines evoked antigen-specific CD4 and CD8 T cell responses, which were particularly strong in BoHV-4-A-CMV-NiV-GΔTK immunized pigs and to a lesser extent BoHV-4-A-CMV-NiV-FΔTK. These findings emphasize the potential of BoHV-4 vectors for inducing antibody and cell-mediated immunity in pigs and provide a solid basis for the further evaluation of these vectored NiV vaccine candidates.
Collapse
Affiliation(s)
- Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Francesca Macchi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Rebecca K. McLean
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Valentina Franceschi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Luca Russo
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Lobna Medfai
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Shawn Todd
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Elma Z. Tchilian
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Jean-Christophe Audonnet
- Boehringer Ingelheim Animal Health, Bâtiment 700 R&D, 813 Cours du 3ème Millénaire, 69800 Saint Priest, France;
| | - Keith Chappell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- Correspondence: (S.P.G.); (G.D.)
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
- Correspondence: (S.P.G.); (G.D.)
| |
Collapse
|
7
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 2019; 14:6497-6517. [PMID: 31616141 PMCID: PMC6699367 DOI: 10.2147/ijn.s215941] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background The potential of gene therapy for treatment of neurological disorders can be explored using designed lipid-based nanoparticles such as liposomes, which have demonstrated ability to deliver nucleic acid to brain cells. We synthesized liposomes conjugated to cell-penetrating peptides (CPPs) (vascular endothelial-cadherin-derived peptide [pVec], pentapeptide QLPVM and HIV-1 trans-activating protein [TAT]) and transferrin (Tf) ligand, and examined the influence of surface modifications on the liposome delivery capacity and transfection efficiency of encapsulated plasmid DNA. The design of liposomes was based on targeting molecular recognition of transferrin receptor overexpressed on the blood–brain barrier (BBB) with enhanced internalization ability of CPPs. Methods CPP-Tf-liposomes were characterized by particle size distribution, zeta potential, protection of encapsulated plasmid DNA, uptake mechanisms and transfection efficiencies. An in vitro triple co-culture BBB model selected the liposomal formulations that were able to cross the in vitro BBB and subsequently, transfect primary neuronal cells. The in vivo biodistribution and biocompatibility of selected formulations were also investigated in mice. Results Liposomal formulations were able to protect the encapsulated plasmid DNA against enzymatic degradation and presented low hemolytic potential and low cytotoxicity at 100 nM phospholipid concentration. Cellular internalization of nanoparticles occurred via multiple endocytosis pathways. CPP-Tf-conjugated liposomes mediated robust transfection of brain endothelial (bEnd.3), primary glial and primary neuronal cells. Liposomes modified with Tf and TAT demonstrated superior ability to cross the barrier layer and subsequently, transfect neuronal cells compared to other formulations. Quantification of fluorescently labeled liposomes and in vivo imaging demonstrated that this system could efficiently overcome the BBB and penetrate the brain of mice (7.7% penetration of injected dose). Conclusion In vitro screening platforms are important tools to enhance the success of brain-targeted gene delivery systems. The potential of TAT-Tf-liposomes as efficient brain-targeted gene carriers in vitro and in vivo was suggested to be related to the presence of selected moieties on the nanoparticle surface.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
8
|
Noroozian Z, Xhima K, Huang Y, Kaspar BK, Kügler S, Hynynen K, Aubert I. MRI-Guided Focused Ultrasound for Targeted Delivery of rAAV to the Brain. Methods Mol Biol 2019; 1950:177-197. [PMID: 30783974 DOI: 10.1007/978-1-4939-9139-6_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions. Systemic administration of rAAVs at the time of sonication with focused ultrasound (FUS) facilitates the passage of rAAVs through the BBB and into the brain parenchyma. We and others have demonstrated that FUS-mediated rAAV delivery to the brain results in efficient transduction and transgene expression in vivo. Using this approach, the dose of intravenously injected rAAV variants that can cross the BBB can be reduced by 100 times, achieving significant transgene expression in the brain parenchyma with reduced peripheral transduction. Moreover, this strategy can be used to deliver rAAV variants that do not cross the BBB from the blood to selected brain regions. Here, we provide a detailed protocol for FUS-induced BBB permeability for targeted rAAV delivery to the brain of adult mice and rats.
Collapse
Affiliation(s)
- Zeinab Noroozian
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kristiana Xhima
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuexi Huang
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabelle Aubert
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120:63-80. [PMID: 26905292 PMCID: PMC5929167 DOI: 10.1016/j.neuropharm.2016.02.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Neurological disorders - disorders of the brain, spine and associated nerves - are a leading contributor to global disease burden with a shockingly large associated economic cost. Various treatment approaches - pharmaceutical medication, device-based therapy, physiotherapy, surgical intervention, among others - have been explored to alleviate the resulting extent of human suffering. In recent years, gene therapy using viral vectors - encoding a therapeutic gene or inhibitory RNA into a "gutted" viral capsid and supplying it to the nervous system - has emerged as a clinically viable option for therapy of brain disorders. In this Review, we provide an overview of the current state and advances in the field of viral vector-mediated gene therapy for neurological disorders. Vector tools and delivery methods have evolved considerably over recent years, with the goal of providing greater and safer genetic access to the central nervous system. Better etiological understanding of brain disorders has concurrently led to identification of improved therapeutic targets. We focus on the vector technology, as well as preclinical and clinical progress made thus far for brain cancer and various neurodegenerative and neurometabolic disorders, and point out the challenges and limitations that accompany this new medical modality. Finally, we explore the directions that neurological gene therapy is likely to evolve towards in the future. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eloise Hudry
- Alzheimer's Disease Research Unit, Harvard Medical School & Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Casey A Maguire
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Venault A, Huang YC, Lo JW, Chou CJ, Chinnathambi A, Higuchi A, Chen WS, Chen WY, Chang Y. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. J Mater Chem B 2017; 5:4732-4744. [PMID: 32264316 DOI: 10.1039/c7tb01046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although PEGylated polyplexes for gene delivery are widespread, there is a need for an in-depth investigation of the role of the PEGylation degree on the delivery efficiency of the systems. For this, a low-toxicity series of polymers for gene delivery were designed via Michael addition of poly(ethylene glycol)methyl ether methacrylate (PEGMA) onto branched polyethylenimine PEI. The goal was to finely tune the PEGylation degree in order to determine the system offering the best compromise between low cytotoxicity and high transfection efficiency under both in vitro and in vivo conditions. From dynamic light scattering tests, zeta potential measurements and gel retardation assay, it was found that nanoparticle assembly of PEI-g-PEGMA and DNA exhibited stable complex formation when the PEGylation degree was below 2.9%. In addition, complexes formed from polymers with a PEGylation degree of at least 1.67% (from PEI-g-PEGMA-6 to PEI-g-PEGMA-18) all showed very low hemolysis activity. Transfection efficiencies of the prepared complexes were determined using the pEGFP-C3 vector and β-galactosidase. Complexes made of PEI-g-PEGMA-6 and PEI-g-PEGMA-10 at a polymer nitrogen/DNA phosphorus weight ratio (Wn/Wp) of 5 led to the best transfection efficiencies. Moreover, PEGylation ensured low cytotoxicity of the complexes in particular at high Wn/Wp ratios. In vivo tests in a mouse model confirmed the in vitro results obtained for PEI-g-PEGMA-6-based complexes, at all Wn/Wp ratios tested, but also showed that a high PEGylation degree (5.2% for PEI-g-PEGMA-18), though inefficient in vitro could still lead to successful delivery in vivo, due to a prolonged contact time between the complex and the cells, and to the change in the biological environment. Overall, provided a fine tuning of the grafting density of PEGMA onto PEI and the polymer nitrogen/DNA phosphorus weight ratio, our results prove that PEI-g-PEGMA polymers constitute an efficient platform for successful in vitro and in vivo gene delivery, and ensure low cytotoxicity and prolonged cell viability.
Collapse
Affiliation(s)
- A Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu SH, Liao ZX, D Rizak J, Zheng N, Zhang LH, Tang H, He XB, Wu Y, He XP, Yang MF, Li ZH, Qin DD, Hu XT. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey ( Macaca mulatta) brains. Zool Res 2017; 38:88-95. [PMID: 28409504 PMCID: PMC5396031 DOI: 10.24272/j.issn.2095-8137.2017.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 02/05/2023] Open
Abstract
Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca2+/calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.
Collapse
Affiliation(s)
- Shi-Hao Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Zhi-Xing Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Joshua D Rizak
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Na Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Lin-Heng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Hen Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xiao-Bin He
- Center for Excellence in Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan Hubei 430071, Chin
| | - Yang Wu
- Center for Excellence in Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Xia-Ping He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Mei-Feng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China
| | - Zheng-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China
| | - Dong-Dong Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
12
|
Piersanti S, Burla R, Licursi V, Brito C, La Torre M, Alves PM, Simao D, Mottini C, Salinas S, Negri R, Tagliafico E, Kremer EJ, Saggio I. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups. PLoS One 2015. [PMID: 26207738 PMCID: PMC4514711 DOI: 10.1371/journal.pone.0133607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD) canine adenovirus type 2 vectors (CAV-2) are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.
Collapse
Affiliation(s)
- Stefania Piersanti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Rome, Italy
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780–901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780–157, Oeiras, Portugal
| | - Mattia La Torre
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780–901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780–157, Oeiras, Portugal
| | - Daniel Simao
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780–901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780–157, Oeiras, Portugal
| | - Carla Mottini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Rodolfo Negri
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Rome, Italy
| | - Enrico Tagliafico
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Isabella Saggio
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
13
|
Savalia K, Manickam DS, Rosenbaugh EG, Tian J, Ahmad IM, Kabanov AV, Zimmerman MC. Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radic Biol Med 2014; 73:299-307. [PMID: 24924945 PMCID: PMC4116739 DOI: 10.1016/j.freeradbiomed.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
Excessive production of superoxide (O2(-)) in the central nervous system has been widely implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and hypertension. In an attempt to overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2(-)-scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to a poly-l-lysine (PLL50)-polyethylene glycol (PEG) block copolymer to form a CuZnSOD nanozyme. Various formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or nonreducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of angiotensin II (AngII)-dependent hypertension. As determined by electron paramagnetic resonance spectroscopy, nanozymes retain full SOD enzymatic activity compared to native CuZnSOD protein. Nonreducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. Furthermore, in vivo studies conducted in adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous infusion of AngII is significantly attenuated for up to 7 days after a single intracerebroventricular injection of nonreducible nanozyme. These data indicate the efficacy of nonreducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2(-) and decreasing blood pressure in AngII-dependent hypertensive mice after central administration. Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as an antioxidant-based therapeutic option for hypertension.
Collapse
Affiliation(s)
- Krupa Savalia
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Devika S Manickam
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iman M Ahmad
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; School of Allied Health Professionals, and University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Wei F, Wang H, Chen X, Li C, Huang Q. Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer Biol Ther 2014; 15:1358-66. [PMID: 25019940 DOI: 10.4161/cbt.29842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oncolytic viruses have recently received widespread attention for their potential in innovative cancer therapy. Many telomerase promoter-regulated oncolytic adenoviral vectors retain E1A and E1B. However, the functions of E1A and E1B proteins in the oncolytic role of replication-competent adenovirus (RCAd) and RCAd enhanced transduction of replication defective adenoviruses (RDAd) have not been addressed well. In this study, we constructed viruses expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa. We then tested their roles in oncolysis and replication of RCAd as well as their roles in RCAd enhanced transfection rate and transgene expression of RDAd in various cancer cells in vitro and in xenografted human NCI-H460 tumors in nude mice. We demonstrated that RCAds expressing E1A alone and plus E1B-19 kDa exhibited an obvious ability in replication and oncolytic effects as well as enhanced RDAd replication and transgene expression, with the former showed more effective oncolysis, while the latter exhibited superior viral replication and transgene promotion activity. However, RCAd expressing both E1A and E1B-19 kDa/55 kDa was clearly worst in all these abilities. The effects of E1A and E1B observed through using RCAd were further validated by using plasmids expressing E1A alone, E1A plus E1B-19 kDa, and E1A plus E1B-19 kDa/55 kDa proteins. Our study provided evidence that E1A was essential for inducing replication and oncolytic effects of RCAd as well as RCAd enhanced RDAd transduction, and expression of E1B-19 kDa other than E1B-55 kDa could promote these effects. E1B-55 kDa is not necessary for the oncolytic effects of adenoviruses and somehow inhibits RCAd-mediated RDAd replication and transgene expression.
Collapse
Affiliation(s)
- Fang Wei
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Huiping Wang
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Xiafang Chen
- Experimental Research Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| | - Chuanyuan Li
- Department of Dermatology; Duke University Medical Center; Durham, NC USA
| | - Qian Huang
- Cancer Center; First People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai, PR China
| |
Collapse
|
15
|
|
16
|
Chan SHH, Chan JYH. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal 2013; 19:1074-84. [PMID: 22429119 DOI: 10.1089/ars.2012.4585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Overproduction of angiotensin II (Ang II) in brain contributes to the pathogenesis of cardiovascular diseases. One of the most promising theses that emerged during the last decade is that production of reactive oxygen species (ROS) and activation of redox-dependent signaling cascades underlie those Ang II actions. This review summarizes our status of understanding on the roles of ROS and redox-sensitive signaling in brain Ang II-dependent cardiovascular diseases, using hypertension and heart failure as illustrative examples. RECENT ADVANCES ROS generated by NADPH oxidase, mitochondrial electron transport chain, and proinflammatory cytokines activates mitogen-activated protein kinases and transcription factors, which in turn modulate ion channel functions and ultimately increase neuronal activity and sympathetic outflow in brain Ang II-dependent cardiovascular diseases. Antioxidants targeting ROS have been demonstrated to be beneficial to Ang II-induced hypertension and heart failure via protection from oxidative stress in brain regions that subserve cardiovascular regulation. CRITICAL ISSUES Intra-neuronal signaling and the downstream redox-sensitive proteins involved in controlling the neuronal discharge rate, the sympathetic outflow, and the pathogenesis of cardiovascular diseases need to be identified. The cross talk between Ang II-induced oxidative stress and neuroinflammation in neural mechanisms of cardiovascular diseases also warrants further elucidation. FUTURE DIRECTIONS Future studies are needed to identify new redox-based therapeutics that work not only in animal models, but also in patients suffering from the prevalent diseases. Upregulation of endogenous antioxidants in the regulation of ROS homeostasis is a potential therapeutic target, as are small molecule- or nanoformulated conjugate-based antioxidant therapy.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
17
|
Rosenbaugh EG, Savalia KK, Manickam DS, Zimmerman MC. Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 2013; 304:R917-28. [PMID: 23552499 DOI: 10.1152/ajpregu.00395.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases, including hypertension and heart failure, are associated with activation of the renin-angiotensin system (RAS) and increased circulating and tissue levels of ANG II, a primary effector peptide of the RAS. Through its actions on various cell types and organ systems, ANG II contributes to the pathogenesis of cardiovascular diseases by inducing cardiac and vascular hypertrophy, vasoconstriction, sodium and water reabsorption in kidneys, sympathoexcitation, and activation of the immune system. Cardiovascular research over the past 15-20 years has clearly implicated an important role for elevated levels of reactive oxygen species (ROS) in mediating these pathophysiological actions of ANG II. As such, the use of antioxidants, to reduce the elevated levels of ROS, as potential therapies for various ANG II-associated cardiovascular diseases has been intensely investigated. Although some antioxidant-based therapies have shown therapeutic impact in animal models of cardiovascular disease and in human patients, others have failed. In this review, we discuss the benefits and limitations of recent strategies, including gene therapy, dietary sources, low-molecular-weight free radical scavengers, polyethylene glycol conjugation, and nanomedicine-based technologies, which are designed to deliver antioxidants for the improved treatment of cardiovascular diseases. Although much work has been completed, additional research focusing on developing specific antioxidant molecules or proteins and identifying the ideal in vivo delivery system for such antioxidants is necessary before the use of antioxidant-based therapies for cardiovascular diseases become a clinical reality.
Collapse
Affiliation(s)
- Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, Nebraska Center for Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
18
|
Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, Singh J. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J Control Release 2013; 167:1-10. [PMID: 23352910 DOI: 10.1016/j.jconrel.2013.01.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/11/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Targeted nano-particulate systems hold extraordinary potential for delivery of therapeutics across blood brain barrier (BBB). In this work, we investigated the potential of novel bi-ligand (transferrin-poly-l-arginine) liposomal vector for delivery of desired gene to brain, in vivo. The in vivo evaluation of the delivery vectors is essential for clinical translation. We followed an innovative approach of combining transferrin receptor targeting with enhanced cell penetration to design liposomal vectors for improving the transport of molecules into brain. The biodistribution profile of 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine iodide(DiR)-labeled liposomes was evaluated in adult rats after single intravenous injection at dose of 15.2μmoles of phospholipids/kg body weight. We demonstrated that bi-ligand liposomes accumulated in rat brain at significantly (p<0.05) higher concentrations as compared to the single-ligand (transferrin) or plain liposomes. In addition, the bi-ligand liposomes resulted in increased expression of β-galactosidase(β-gal) plasmid in rat brain tissue in comparison to the single-ligand liposomes. Histological examination of the transfected tissues did not show any signs of tissue necrosis or inflammation. Hemolysis assay further authenticated the biocompatibility of bi-ligand liposomes in blood up to 600 nmoles of phospholipids/1.4×10(7) erythrocytes. The findings of this study provide important and detailed information regarding the distribution of bi-ligand liposomes in vivo and accentuate their ability to demonstrate improved brain penetration and transfection potential over single-ligand liposomes.
Collapse
Affiliation(s)
- Gitanjali Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Schönig K, Weber T, Frömmig A, Wendler L, Pesold B, Djandji D, Bujard H, Bartsch D. Conditional gene expression systems in the transgenic rat brain. BMC Biol 2012; 10:77. [PMID: 22943311 PMCID: PMC3520851 DOI: 10.1186/1741-7007-10-77] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Turning gene expression on and off at will is one of the most powerful tools for the study of gene function in vivo. While several conditional systems were successful in invertebrates, in mice the Cre/loxP recombination system and the tet-controlled transcription activation system are predominant. Both expression systems allow for spatial and temporal control of gene activities, and, in the case of tet regulation, even for the reversible activation/inactivation of gene expression. Although the rat is the principal experimental model in biomedical research, in particular in studies of neuroscience, conditional rat transgenic systems are exceptionally rare in this species. RESULTS We addressed this lack of technology, and established and thoroughly characterized CreERT2 and tTA transgenic rats with forebrain-specific transgene expression, controlled by the CaMKII alpha promoter. In addition, we developed new universal rat reporter lines for both transcription control systems and established inducible and efficient reporter gene expression in forebrain neurons. CONCLUSIONS We demonstrate that conditional genetic manipulations in the rat brain are both feasible and practicable and outline advantages and limitations of the Tet and Cre/loxP system in the rat brain.
Collapse
Affiliation(s)
- Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health and Heidelberg University, Medical Faculty Mannheim, J5, 68159 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems. Gene Ther 2012; 20:69-83. [DOI: 10.1038/gt.2011.216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
22
|
Fan Y, Huang J, Duffourc M, Kao RL, Ordway GA, Huang R, Zhu MY. Transcription factor Phox2 upregulates expression of norepinephrine transporter and dopamine β-hydroxylase in adult rat brains. Neuroscience 2011; 192:37-53. [PMID: 21763404 PMCID: PMC3166407 DOI: 10.1016/j.neuroscience.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 01/22/2023]
Abstract
Degeneration of the noradrenergic locus coeruleus (LC) in aging and neurodegenerative diseases is well documented. Slowing or reversing this effect may have therapeutic implications. Phox2a and Phox2b are homeodomain transcriptional factors that function as determinants of the noradrenergic phenotype during embryogenesis. In the present study, recombinant lentiviral eGFP-Phox2a and -Phox2b (vPhox2a and vPhox2b) were constructed to study the effects of Phox2a/2b over-expression on dopamine β-hydroxylase (DBH) and norepinephrine transporter (NET) levels in central noradrenergic neurons. Microinjection of vPhox2 into the LC of adult rats significantly increased Phox2 mRNA levels in the LC region. Over-expression of either Phox2a or Phox2b in the LC was paralleled by significant increases in mRNA and protein levels of DBH and NET in the LC. Similar increases in DBH and NET protein levels were observed in the hippocampus following vPhox2 microinjection. In the frontal cortex, only NET protein levels were significantly increased by vPhox2 microinjection. Over-expression of Phox2 genes resulted in a significant increase in BrdU-positive cells in the hippocampal dentate gyrus. The present study demonstrates an upregulatory effect of Phox2a and Phox2b on the expression of DBH and NET in noradrenergic neurons of rat brains, an effect not previously shown in adult animals. Phox2 genes may play an important role in maintaining the function of the noradrenergic neurons after birth, and regulation of Phox2 gene expression may have therapeutic utility in aging or disorders involving degeneration of noradrenergic neurons.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Michelle Duffourc
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Race L. Kao
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A. Ordway
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Rui Huang
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Meng-Yang Zhu
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
23
|
Kim SS, Descalzi G, Zhuo M. Investigation of molecular mechanism of chronic pain in the anterior cingulate cortex using genetically engineered mice. Curr Genomics 2011; 11:70-6. [PMID: 20808527 PMCID: PMC2851120 DOI: 10.2174/138920210790217990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022] Open
Abstract
Recent advances into the understanding of molecular mechanism of chronic pain have been largely developed through the use of genetic manipulations. This is in part due to the scarcity of selective pharmacological tools, which can be readily solved by creating knockout or transgenic mice. By identifying new genes that are of import, our efforts can then be aimed at studying relevant signaling pathways, and combination of pharmacological manipulations with genetic models can be used to further examine the specific mechanisms involved in chronic pain. In this review, we will examine the genetic models that are currently in use to study chronic pain in the anterior cingulate cortex: knockout mice; transgenic mice; and the strength of combining pharmacology with these genetic models.
Collapse
Affiliation(s)
- Susan S Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Centre for the Study of Pain, 1 King's College Circle, Toronto, ON, Canada
| | | | | |
Collapse
|
24
|
Rosenbaugh EG, Roat JW, Gao L, Yang RF, Manickam DS, Yin JX, Schultz HD, Bronich TK, Batrakova EV, Kabanov AV, Zucker IH, Zimmerman MC. The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase. Biomaterials 2010; 31:5218-26. [PMID: 20378166 DOI: 10.1016/j.biomaterials.2010.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
Abstract
Adenoviral-mediated overexpression of the intracellular superoxide (O(2)(*-)) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O(2)(*-), as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K(+) current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58:107-19. [PMID: 20143172 DOI: 10.1007/s00005-010-0063-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/06/2009] [Indexed: 12/28/2022]
Abstract
The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.
Collapse
Affiliation(s)
- David Escors
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, London W1T 4JF, UK.
| | | |
Collapse
|
26
|
Kim JH, Lee JE, Kim SU, Cho KG. Stereological Analysis on Migration of Human Neural Stem Cells in the Brain of Rats Bearing Glioma. Neurosurgery 2010; 66:333-42; discussion 342. [DOI: 10.1227/01.neu.0000363720.07070.a8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jae-Ho Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea (Jae-Ho Kim) (Cho)
| | - Jong-Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea (Lee)
| | - Seung U. Kim
- Medical Research Institute, Chungang University College of Medicine, Seoul, Korea (Seung U. Kim)
| | - Kyung-Gi Cho
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Boulaire J, Balani P, Wang S. Transcriptional targeting to brain cells: Engineering cell type-specific promoter containing cassettes for enhanced transgene expression. Adv Drug Deliv Rev 2009; 61:589-602. [PMID: 19394380 DOI: 10.1016/j.addr.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/05/2009] [Indexed: 12/16/2022]
Abstract
Transcriptional targeting using a mammalian cellular promoter to restrict transgene expression to target cells is often desirable for gene therapy. This strategy is, however, hindered by relatively weak activity of some cellular promoters, which may lead to low levels of gene expression, thus declining therapeutic efficacy. Here we outline the advances accomplished in the area of transcriptional targeting to brain cells, with a particular focus on engineering gene cassettes to augment cell type-specific expression. Among the effective approaches that improve gene expression while retaining promoter specificity are promoter engineering to change authentic sequences of a cellular promoter and the combined use of a native cellular promoter and other cis-acting elements. Success in achieving high level and sustained transgene expression only in the cell types of interest would be of importance in allowing gene therapy to have its impact on patient treatment.
Collapse
|
28
|
Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009; 6:211-25. [PMID: 19290842 DOI: 10.1517/17425240902758188] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
With an increase in lifespan and changing population demographics, the incidence of central nervous system (CNS) diseases is expected to increase significantly in the 21st century. The most challenging of the CNS diseases are neurodegenerative diseases, characterized by age-related gradual decline in neurological function, often accompanied by neuronal death. Alzheimer's disease, Parkinson's disease and Huntington's disease are some examples of neurodegenerative diseases and have been well described in terms of disease mechanisms and pathology. However, successful treatment strategies for neurodegenerative diseases have so far been limited. Delivery of drugs into the CNS is one of the most challenging problems faced in the treatment of neurodegeneration. In this review, we describe the difficulties with CNS therapy, especially with the use of biological macromolecules, such as proteins and nucleic acid constructs. CNS therapeutics also represents a huge opportunity and examples of strategies that can enhance therapeutic delivery for the treatment of neurodegenerative diseases are emphasized. It is anticipated that with an increase in biological understanding of neurodegenerative diseases, there will be even more therapeutic opportunities. As such, these delivery strategies have a very important role to play in the future in the translation of CNS therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Thomas M Barchet
- Department of Pharmaceutical Sciences, Northeastern University, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, Massachussets, MA 02115, USA
| | | |
Collapse
|
29
|
Giordano C, Causa F, Bianco F, Perale G, Netti PA, Ambrosio L, Cigada A. Gene delivery systems for gene therapy in tissue engineering and central nervous system applications. Int J Artif Organs 2009; 31:1017-26. [PMID: 19115193 DOI: 10.1177/039139880803101205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review aims to describe the potential applications of gene delivery systems to tissue engineering and central nervous system diseases. Some key experimental work has been done with interesting results, but the subject is far from being fully explored. The combined approach of gene therapy and material science has a huge potential to improve the therapeutic approaches now available for a wide range of medical applications. Focus is given to this multidisciplinary strategy in neurodegenerative pathologies, where the use of polymeric matrices as gene carriers might make a crucial difference.
Collapse
Affiliation(s)
- C Giordano
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wakade C, King MD, Laird MD, Alleyne CH, Dhandapani KM. Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal 2009; 11:35-45. [PMID: 18752423 DOI: 10.1089/ars.2008.2056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebral vasospasm is a major cause of death and disability after subarachnoid hemorrhage (SAH); however, clinical therapies to limit the development of cerebral vasospasm are lacking. Although the causative factors underlying the development of cerebral vasospasm are poorly understood, oxidative stress contributes to disease progression. In the present study, curcumin (150 or 300 mg/kg) protected against the development of cerebral vasospasm and limited secondary cerebral infarction after SAH in mice. The protective effect of curcumin was associated with a significant attenuation of inflammatory gene expression and lipid peroxidation within the cerebral cortex and the middle cerebral artery. Despite the ability of curcumin to limit the development of cerebral vasospasm and secondary infarction, behavioral outcome was not improved, indicating a dissociation between cerebral vasospasm and neurologic outcome. Together, these data indicate a novel role for curcumin as a possible adjunct therapy after SAH, both to prevent the development of cerebral vasospasm and to reduce oxidative brain injury after secondary infarction.
Collapse
Affiliation(s)
- Chandramohan Wakade
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
31
|
Box M, Parks DA, Knight A, Hale C, Fishman PS, Fairweather NF. A Multi-domain Protein System Based on the HCFragment of Tetanus Toxin for Targeting DNA to Neuronal Cells. J Drug Target 2008; 11:333-43. [PMID: 14668054 DOI: 10.1080/1061186310001634667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One goal of gene therapy is the targeted delivery of therapeutic genes to defined tissues. One attractive target is the central nervous system as there are several neuronal degenerative diseases which may be amenable to gene therapy. At present there is a lack of delivery systems that are able to target genes specifically to neuronal cells. Multi-domain proteins were designed and constructed to facilitate the delivery of exogenous genes to neuronal cells. Neuronal targeting activity of the proteins was achieved by inclusion of the HC fragment of tetanus toxin (TeNT), a protein with well-characterised tropism for the central nervous system. The yeast Gal4 DNA-binding domain enabled specific binding of DNA while the translocation domain from diphtheria toxin (DT) was included to facilitate crossing of the endosomal vesicle. One multi-domain protein, containing all three of these domains, was found to transfect up to 8% of neuroblastoma N18-RE105 cells with marker genes. Monitoring the transfection by confocal microscopy indicated that this protein-DNA transfection complex is to some extent localised at the cell surface, suggesting that further improvements to translocating this membrane barrier may yield higher transfection levels. The demonstration that this multi-domain protein can target genes specifically to neuronal cells is a first step in the development of novel vectors for the delivery of genes with therapeutic potential to diseased neuronal tissues.
Collapse
Affiliation(s)
- Michael Box
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road SW7 2AY London, UK
| | | | | | | | | | | |
Collapse
|
32
|
Liu B, Paton JF, Kasparov S. Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol 2008; 8:49. [PMID: 18485188 PMCID: PMC2396617 DOI: 10.1186/1472-6750-8-49] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 05/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using cell-type-specific promoters to restrict gene expression to particular cells is an attractive approach for gene therapy, but often hampered by insufficient transcriptional activity of these promoters. Previous studies have shown that transcriptional amplification strategy (TAS) can be used to enhance the activity of such promoters without loss of cell type specificity. Originally TAS involved the use of two copies of a cell-specific promoter leading to generation of large expression cassettes, which can be hard to use given the space limitations of the conventional viral gene expression vectors. RESULTS We have now developed a new bidirectional lentiviral vector system, based on TAS that can enhance the transcriptional activity of human synapsin-1 (SYN) promoter and the compact glial fibrillary acidic protein (GfaABC1D) promoter. In the opposite orientation, a minimal core promoter (65 bp) derived from the human cytomegalovirus (CMV) was joined upstream of the SYN promoter or GfaABC1D promoter. This led to the formation of synthetic bidirectional promoters which were flanked with two gene expression cassettes. The 5' cassette transcribed the artificial transcriptional activator. The downstream cassette drove the synthesis of the gene of interest. Studies in both cell cultures and in vivo showed that the new bidirectional promoters greatly increased the expression level of the reporter gene. In vivo studies also showed that transgene expression was enhanced without loss of cell specificity of both SYN and GfaABC1D promoters. CONCLUSION This work establishes a novel approach for creating compact TAS-amplified cell-specific promoters, a feature important for their use in viral backbones. This improved approach should prove useful for the development of powerful gene expression systems based on weak cell-specific promoters.
Collapse
Affiliation(s)
- Beihui Liu
- Department of Physiology and Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | |
Collapse
|
33
|
Ormerod BK, Palmer TD, Caldwell MA. Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 2008; 363:153-70. [PMID: 17331894 PMCID: PMC2605492 DOI: 10.1098/rstb.2006.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The past decade has witnessed ground-breaking advances in human stem cell biology with scientists validating adult neurogenesis and establishing methods to isolate and propagate stem cell populations suitable for transplantation. These advances have forged promising strategies against human neurodegenerative diseases. For example, growth factor administration could stimulate intrinsic repair from endogenous neural stem cells, and cultured stem cells engineered into biopumps could be transplanted to deliver neuroprotective or restorative agents. Stem cells could also be transplanted to generate new neural elements that augment and potentially replace degenerating central nervous system (CNS) circuitry. Early efforts in neural tissue transplantation have shown that these strategies can improve functional outcome, but the ultimate success of clinical stem cell-based strategies will depend on detailed understanding of stem cell biology in the degenerating brain and detailed evaluation of their functional efficacy and safety in preclinical animal models.
Collapse
Affiliation(s)
- Brandi K Ormerod
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University300 Pasteur Drive, Boswell Building, A301, Stanford, CA 94305-5327, USA
| | - Maeve A Caldwell
- Centre for Brain Repair, University of Cambridge School of Clinical MedicineAddenbrooke's Hospital, Box 111, Hills Road, Cambridge CB2 2SP, UK
- Author and address for correspondence: Laboratory for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK ()
| |
Collapse
|
34
|
Abstract
Gene delivery offers the promise of treatment for a range of human diseases. Although carried out initially with modified viruses, the use of synthetic molecules, including polymers, lipids and peptides, has extended the possibilities greatly for rationally designed vectors tailored to individual gene-delivery applications. Underlying the rational design of gene-delivery vectors is the need to understand the individual steps of the gene-delivery pathway. Using new methods in fluorescence microscopy, it is now possible to isolate individual steps along the gene-delivery pathway to characterize the mechanisms of cellular binding, cellular internalization and nuclear entry. This review describes the advances made in the gene-delivery field with the assistance of fluorescence microscopy. The focus of this review is the use of synthetic gene-delivery vectors, especially polyethylenimine, and the live-cell imaging and single-particle tracking techniques that reveal the intracellular dynamics of the gene-delivery process.
Collapse
Affiliation(s)
- Christine K Payne
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute of Bioengineering and Bioscience, 901 Atlantic Drive, Molecular Science and Engineering, Atlanta, GA 30332–0400, USA
| |
Collapse
|
35
|
Efficient gene transfer mediated by HIV-1-based defective lentivector and inhibition of HIV-1 replication. Virol Sin 2007. [DOI: 10.1007/s12250-007-0002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Khan Z, Akhtar M, Asklund T, Juliusson B, Almqvist PM, Ekström TJ. HDAC inhibition amplifies gap junction communication in neural progenitors: potential for cell-mediated enzyme prodrug therapy. Exp Cell Res 2007; 313:2958-67. [PMID: 17555745 DOI: 10.1016/j.yexcr.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/03/2007] [Accepted: 05/02/2007] [Indexed: 01/18/2023]
Abstract
Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (Cx43) was analyzed by western blot and immunocytochemistry. While Cx43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased Cx43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of Cx43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.
Collapse
Affiliation(s)
- Zahidul Khan
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, D-50937 Cologne, Germany
| | | | | |
Collapse
|
38
|
Stott SRW, Kirik D. Targetedin uterodelivery of a retroviral vector for gene transfer in the rodent brain. Eur J Neurosci 2006; 24:1897-906. [PMID: 17067293 DOI: 10.1111/j.1460-9568.2006.05095.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vivo application of viral vectors for gene transfer is a commonly used tool in anatomical and functional studies, as well as in development of neuroprotective and restorative strategies for therapy. Although the most common route of administration is via direct injection into the brain parenchyma in adult animals, a number of short-term studies have been performed in the developing central nervous system. Here we investigated the long-term transgene expression following in utero delivery of a retroviral vector encoding for the green fluorescent protein (GFP) marker gene at embryonic days 14.5-17.5 using an ultrasound-guided injection system. Intraparenchymal injections of the ganglionic eminence were compared with vector delivery to the intracerebroventricular space. Injections into the ganglionic eminences resulted in a predominantly unilateral transduction localized to the forebrain, giving rise to GFP-positive (GFP+) neurons and astrocytes in the striatum, olfactory bulb, cortex and hippocampus. When the vector was injected into the lateral ventricle, on the other hand, widespread expression of GFP was seen throughout the brain. The total number of GFP+ cells in the striatum was estimated to be between 20,000 and 50,000 cells using a computerized stereological quantification tool. Phenotypic characterization of these transduced cells using confocal microscopical analysis showed that 64% were NeuN+ neurons, 14% APC+ oligodendrocytes and 15% glial cells labelled with GFAP, S100beta and Iba1, when the vector injection was performed at E14.5. Delivery into later embryos resulted in a reduction in neuronal profiles with a reciprocal increase in glial cells.
Collapse
Affiliation(s)
- Simon R W Stott
- CNS Disease Modelling Unit, Section of Neuroscience, Department of Experimental Medical Science, Lund University, Sweden.
| | | |
Collapse
|
39
|
Abdellatif AA, Pelt JL, Benton RL, Howard RM, Tsoulfas P, Ping P, Xu XM, Whittemore SR. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res 2006; 84:553-67. [PMID: 16786574 PMCID: PMC2862356 DOI: 10.1002/jnr.20968] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Viral gene delivery for spinal cord injury (SCI) is a promising approach for enhancing axonal regeneration and neuroprotection. An understanding of spatio-temporal transgene expression in the spinal cord is essential for future studies of SCI therapies. Commonly, intracellular marker proteins (e.g., EGFP) were used as indicators of transgene levels after viral delivery, which may not accurately reflect levels of secreted transgene. This study examined transgene expression using ELISA after viral delivery of D15A, a neurotrophin with BDNF and NT-3 activities, at 1, 2, and 4weeks after in vivo and ex vivo delivery using lentiviral, adenoviral, and retroviral vectors. Further, the inflammatory responses and viral infection patterns after in vivo delivery were examined. Lentiviral vectors had the most stable pattern of gene expression, with D15A levels of 536 +/- 38 and 363 +/- 47 pg/mg protein seen at 4 weeks after the in vivo and ex vivo delivery, respectively. Our results show that protein levels downregulate disproportionately to levels of EGFP after adenoviral vectors both in vivo and ex vivo. D15A dropped from initial levels of 422 +/- 87 to 153 +/- 18 pg/mg protein at 4 weeks after in vivo administration. Similarly, ex vivo retrovirus-mediated transgene expression exhibited rapid downregulation by 2 weeks post-grafting. Compared to adenoviral infection, macrophage activation was attenuated after lentiviral infection. These results suggest that lentiviral vectors are most suitable in situations where stable long-term transgene expression is needed. Retroviral ex vivo delivery is optional when transient expression within targeted spinal tissue is desired, with adenoviral vectors in between.
Collapse
Affiliation(s)
- Ahmed A. Abdellatif
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Jennifer L. Pelt
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Russell M. Howard
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Pantelis Tsoulfas
- The Miami Project and Department of Neurological Surgery, University of Miami, School of Medicine, Miami, Florida
| | - Peipei Ping
- Department of Medicine, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Xiao-Ming Xu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Scott R. Whittemore
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| |
Collapse
|
40
|
Fedorova E, Battini L, Prakash-Cheng A, Marras D, Gusella GL. Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice. J Gene Med 2006; 8:414-24. [PMID: 16389638 DOI: 10.1002/jgm.861] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Direct injection of lentivectors into the central nervous system (CNS) mostly results in localized parenchymal transgene expression. Intrathecal gene delivery into the spinal canal may produce a wider dissemination of the transgene and allow diffusion of secreted transgenic proteins throughout the cerebrospinal fluid (CSF). Herein, we analyze the distribution and expression of LacZ and SEAP transgenes following the intrathecal delivery of lentivectors into the spinal canal. METHODS Four weeks after intrathecal injection into the spinal canal of newborn mice, the expression of the LacZ gene was assessed by histochemical staining and by in situ polymer chain reaction (PCR). Following the spinal infusion of a lentivector carrying the SEAP gene, levels of enzymatically active SEAP were measured in the CSF, blood serum, and in brain extracts. RESULTS Intrathecal spinal canal delivery of lentivectors to newborn mice resulted in patchy, widely scattered areas of beta-gal expression mostly in the meninges. The transduction of the meningeal cells was confirmed by in situ PCR. Following the spinal infusion of a lentivector carrying the SEAP gene, sustained presence of the reporter protein was detected in the CSF, as well as in blood serum, and brain extracts. CONCLUSIONS These findings indicate that intrathecal injections of lentivectors can provide significant levels of transgene expression in the meninges. Unlike intracerebral injections of lentivectors, intrathecal gene delivery through the spinal canal appears to produce a wider diffusion of the transgene. This approach is less invasive and may be useful to address those neurological diseases that benefit from the ectopic expression of soluble factors impermeable to the blood-brain barrier.
Collapse
Affiliation(s)
- Elena Fedorova
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
41
|
Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J, Bankiewicz K. Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 2006; 17:291-302. [PMID: 16544978 DOI: 10.1089/hum.2006.17.291] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2)-based vectors are promising transgene carriers for experimental gene therapy treatments of brain diseases. However, detailed evaluation of transgene distribution, trafficking, and transport within the brain is of the utmost importance before applying any type of gene therapy in humans. We examined the distribution of AAV2-thymidine kinase (AAV2-TK) and AAV2-aromatic L-amino acid decarboxylase (AAV2-AADC) in monkey brain after convection-enhanced delivery (CED). The AADC group consisted of two 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys that received unilateral infusions of AAV2-AADC into six sites in the right hemisphere. The TK group consisted of three monkeys that received bilateral CED infusion of AAV2-TK into the putamen; one side in all three monkeys was coinfused with heparin. Six weeks after AAV delivery, the brains were collected and processed for immunohistochemical staining. Volumetric measurement of TK distribution showed that at least 75% of the putamen could be covered by a single infusion of the vector; however, no effects of heparin coadministration were found, most likely because of the already robust gene transfer achieved by CED. Interestingly, TK- and AADCimmunoreactive cells were also present outside the striatum, in the globus pallidus, subthalamic nucleus, thalamus, and substantia nigra. CED proved to be an efficient method for delivery of the AAV2 vector. Detection of the transgenes in brain structures distant from the site of injection emphasizes the potential for gene transport, and the advantages and disadvantages of CED for gene therapy deserve further study.
Collapse
Affiliation(s)
- Piotr Hadaczek
- Laboratory of Molecular Therapeutics, Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zeng L, Planelles V, Sui Z, Gartner S, Maggirwar SB, Dewhurst S, Ye L, Nerurkar VR, Yanagihara R, Lu Y. HIV-1-based defective lentiviral vectors efficiently transduce human monocytes-derived macrophages and suppress replication of wild-type HIV-1. J Gene Med 2006; 8:18-28. [PMID: 16142830 PMCID: PMC2825118 DOI: 10.1002/jgm.825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Human monocytes play an important role in mediating human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS), and monocytes-derived macrophages (MDM) represent a major viral reservoir within the brain and other target organs. Current gene transduction of MDM is hindered by a limited efficiency. In this study we established a lentiviral vector-based technique for improved gene transfer into human MDM cultures in vitro and demonstrated significant protection of transduced MDM from super-infection with wild-type HIV-1. METHODS HIV-1-based lentiviral vector stocks were prepared in 293T cells by the established calcium phosphate transfection method. Human monocytes were isolated from donors' blood by Ficoll-Paque separation and cultured in vitro. To establish an effective technique for vector-mediated gene transfer, primary cultures of human MDM were transduced at varying multiplicities of infection (MOI) and at a range of time points following initial isolation of cells (time-in-culture). Transduced cells were then examined for transgene (green fluorescent protein (GFP)) expression by fluorescent microscopy and reverse transcription polymerase chain reaction (RT-PCR). These cultures were then exposed to wild-type HIV-1, and viral replication was quantitated by p24 assay; production of neurotoxic effector molecules by the transduced MDM was also examined, using indicator neurons. RESULTS We have demonstrated that primary human MDM could be efficiently transduced (>50%) with concentrated HIV-1-based defective lentiviral vectors (DLV). Furthermore, DLV-mediated gene transduction was stable, and the transduced cells exhibited no apparent difference from normal MDM in terms of their morphology, viability and neurotoxin secretion. Challenge of DLV-transduced MDM cultures with HIV-1(Ba-L) revealed a 4- to 5-fold reduction in viral replication, as measured by p24 antigen production. This effect was associated with the mobilization of the GFP-expressing DLV construct by the wild-type virus. CONCLUSIONS These data demonstrate the inhibition of HIV-1 replication in primary MDM, by a DLV vector that lacks any anti-HIV-1 transgene. These findings lay the initial groundwork for future studies on the ability of DLV-modified monocytes to introduce anti-HIV-1 genes into the CNS. Lentiviral vector-mediated gene delivery to the CNS by monocytes/macrophages is a promising, emerging strategy for treating neuro-AIDS.
Collapse
Affiliation(s)
- Lingbing Zeng
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Ziye Sui
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Suzanne Gartner
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Linbai Ye
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Vivek R. Nerurkar
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Yanagihara
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuanan Lu
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Correspondence to: Yuanan Lu, Retrovirology Research Laboratory, Leahi Hospital, 3675 Kilauea Avenue, Honolulu, Hawaii 96816, USA.
| |
Collapse
|
43
|
Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J, Bankiewicz K. Convection-Enhanced Delivery of Adeno-Associated Virus Type 2 (AAV2) into the Striatum and Transport of AAV2 Within Monkey Brain. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
Tang GP, Guo HY, Alexis F, Wang X, Zeng S, Lim TM, Ding J, Yang YY, Wang S. Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system. J Gene Med 2006; 8:736-44. [PMID: 16550629 DOI: 10.1002/jgm.874] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.
Collapse
Affiliation(s)
- G P Tang
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Handley OJ, Naji JJ, Dunnett SB, Rosser AE. Pharmaceutical, cellular and genetic therapies for Huntington's disease. Clin Sci (Lond) 2005; 110:73-88. [PMID: 16336206 DOI: 10.1042/cs20050148] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HD (Huntington's disease) is a devastating neurodegenerative disorder caused by a polyglutamine expansion in the gene encoding the huntingtin protein. Presently, there is no known cure for HD and existing symptomatic treatments are limited. However, recent advances have identified multiple pathological mechanisms involved in HD, some of which have now become the focus of therapeutic intervention. In this review, we consider progress made towards developing safe and effective pharmaceutical-, cell- and genetic-based therapies, and discuss the extent to which some of these therapies have been successfully translated into clinical trials. These new prospects offer hope for delaying and possibly halting this debilitating disease.
Collapse
Affiliation(s)
- Olivia J Handley
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
46
|
Arkin LM, Sondhi D, Worgall S, Suh LHK, Hackett NR, Kaminsky SM, Hosain SA, Souweidane MM, Kaplitt MG, Dyke JP, Heier LA, Ballon DJ, Shungu DC, Wisniewski KE, Greenwald BM, Hollmann C, Crystal RG. Confronting the Issues of Therapeutic Misconception, Enrollment Decisions, and Personal Motives in Genetic Medicine-Based Clinical Research Studies for Fatal Disorders. Hum Gene Ther 2005; 16:1028-36. [PMID: 16149901 DOI: 10.1089/hum.2005.16.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic medicine-based therapies have unlocked the potential for ameliorating diseases previously considered inevitably fatal. Inherent in the clinical trials of genetic medicines are ethical issues of therapeutic misconception, enrollment decisions as they relate to the risks and benefits of research, and the complex relationships among funding sources, investigators, and the families of affected individuals. The purpose of this paper is to help define these complex issues relevant to the use of genetic medicines and to describe the strategy we have used to confront these issues in a phase I trial of adeno-associated virus-mediated gene transfer to the central nervous system of children with late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal lysosomal storage disease associated with progressive neurodegeneration and death by mid-childhood. Our approach to these challenges should provide a useful paradigm for investigators initiating other genetic medicine- based studies to treat inevitably fatal diseases.
Collapse
Affiliation(s)
- Lisa M Arkin
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arkin LM, Sondhi D, Worgall S, Suh LHK, Hackett NR, Kaminsky SM, Hosain SA, Souweidane MM, Kaplitt MG, Dyke JP, Heier LA, Ballon DJ, Shungu DC, Wisniewski KE, Greenwald BM, Hollmann C, Crystal RG. Confronting the Issues of Therapeutic Misconception, Enrollment Decisions, and Personal Motives in Genetic Medicine-Based Clinical Research Studies for Fatal Disorders. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Gene therapy. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Balaban AT, Ilies MA. Recent developments in cationic lipid-mediated gene delivery and gene therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.11.1729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Eming SA, Krieg T, Davidson JM. Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 2005; 4:1373-86. [PMID: 15335305 DOI: 10.1517/14712598.4.9.1373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair involves a complex interaction of various cell types, extracellular matrix molecules and soluble mediators. Details on signals controlling wound cell activities are beginning to emerge. In recent years this knowledge has been applied to a number of therapeutic strategies in soft tissue repair. Key challenges include re-adjusting the adult repair process in order to augment diseased healing processes, and providing the basis for a regenerative rather than a reparative wound environment. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trials indicates that an important aspect of the growth factor wound-healing paradigm is the effective delivery of these polypeptides to the wound site. A molecular genetic approach in which genetically modified cells synthesise and deliver the desired growth factor in a time-regulated manner is a powerful means to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. This article summarises repair mechanisms and their failure, and gives an overview of techniques and studies applied to gene transfer in tissue repair. It also provides perspectives on potential targets for gene transfer technology.
Collapse
Affiliation(s)
- Sabine A Eming
- University of Cologne, Department of Dermatology, Cologne, Joseph-Stelzmann Str. 9, 50931 Köln, Germany.
| | | | | |
Collapse
|