1
|
Nissilä E, Starck L, Aho E, Venerandi E, Jalkanen P, Leskinen K, Uvarov P, Saavalainen P, Julkunen I, Kotimaa J, Haapasalo K, Meri S. The COVID-19 vaccine ChAdOx1 is opsonized by anti-vector antibodies that activate complement and promote viral vector phagocytosis. Scand J Immunol 2025; 101:e70000. [PMID: 39891027 DOI: 10.1111/sji.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
The ChAdOx1 nCoV-19 vaccine has been in large-scale use during the COVID-19 pandemic. Limited efficacy compared to mRNA vaccines and certain potential side effects raise the question of whether anti-adenoviral vector antibodies influence immune responses against the vaccine. Complement activation by ChAdOx1 and leukocyte phagocytosis of ChAdOx1 in vitro were studied. Plasma IgG levels against ChAdOx1 and human adenovirus 2 (hAdV2) hexon protein were determined (n = 20) and IgGs from high- and low-titre plasmas were isolated (n = 3). Complement activation was measured as cleavage of C3 by immunoblotting and generation of C3a and sC5b-9 by ELISA. pHrodo-labelled ChAdOx1 was opsonized with complement and IgG, and phagocytosis by isolated blood PMNs in vitro was studied by flow cytometry. The transcriptomic profile of PMN cells exposed to ChAdOx1 was analysed by RNA-seq. ChAdOx1 activated the classical complement pathway in an anti-adenovirus antibody-dependent manner. Generation of the terminal complement complex sC5b-9 in individual sera correlated with anti-hAdV2 hexon and anti-ChAdOx1 IgG levels. Phagocytosis of ChAdOx1 also correlated significantly with anti-hAdV2 hexon IgG, anti-ChAdOx1 IgG and serum sC5b-9 levels. High-titre anti-hAdv2 hexon IgG increased phagocytosis in the presence of normal serum. Anti-vector antibodies induced rapid complement activation and promoted phagocytosis of the ChAdOx1 vaccine by neutrophils. Moreover, transcriptomic analysis revealed upregulation of complement-related genes induced by the ChAdOx1 vaccine in vitro. Anti-adenovirus vector antibodies and complement activation may thus influence the efficacy of the ChAdOx1 vaccine against SARS-CoV-2 and be also involved in vaccine-related side effects.
Collapse
Affiliation(s)
- Eija Nissilä
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Leo Starck
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Elias Aho
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Erika Venerandi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Katarzyna Leskinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pavel Uvarov
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Juha Kotimaa
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Human Microbiome Research Program University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Medicum, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Vasilyev AV, Nedorubova IA, Chernomyrdina VO, Meglei AY, Basina VP, Mironov AV, Kuznetsova VS, Sinelnikova VA, Mironova OA, Trifanova EM, Babichenko II, Popov VK, Kulakov AA, Goldshtein DV, Bukharova TB. Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration. Int J Mol Sci 2024; 25:13300. [PMID: 39769064 PMCID: PMC11678707 DOI: 10.3390/ijms252413300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo. The elastic modulus of the disk-shaped PLGA scaffolds created using a specialized 3D printer was determined by compressive testing in both axial and radial directions. In vitro cytocompatibility was assessed using adipose-derived stem cells (ADSCs). The ability of Ad-BMP2 to transduce cells was evaluated. The osteoinductive and biocompatible properties of the scaffolds were also assessed in vivo. The Young's modulus of the 3D-printed PLGA scaffolds exhibited comparable values in both axial and radial compression directions, measuring 3.4 ± 0.7 MPa for axial and 3.17 ± 1.4 MPa for radial compression. The scaffolds promoted cell adhesion and had no cytotoxic effect on ADSCs. Ad-BMP2 successfully transduced the cells and induced osteogenic differentiation in vitro. In vivo studies demonstrated that the 3D-printed PLGA scaffolds had osteoinductive properties, promoting bone formation within the scaffold filaments as well as at the center of a critical calvarial bone defect.
Collapse
Affiliation(s)
- Andrey Vyacheslavovich Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Irina Alekseevna Nedorubova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Viktoria Olegovna Chernomyrdina
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Anastasiia Yurevna Meglei
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | | | - Anton Vladimirovich Mironov
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Valeriya Sergeevna Kuznetsova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Victoria Alexandrovna Sinelnikova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | - Olga Anatolievna Mironova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Ekaterina Maksimovna Trifanova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Igor Ivanovich Babichenko
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | | | - Anatoly Alekseevich Kulakov
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | | | - Tatiana Borisovna Bukharova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| |
Collapse
|
3
|
Wu Y, Barbieri E, Kilgore RE, Moore BD, Chu W, Mollica GN, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adenovirus from HEK293 and vero cell lysates. J Chromatogr A 2024; 1736:465396. [PMID: 39342729 DOI: 10.1016/j.chroma.2024.465396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Adenovirus (AdVs) is the viral vector of choice in vaccines and oncolytic applications owing to its high transduction activity and inherent immunogenicity. For decades, AdV isolation has relied on ultracentrifugation and ion-exchange chromatography, which are not suitable to large-scale production and struggle to deliver sufficient purity. Immunoaffinity chromatography resins of recent introduction feature high binding capacity and selectivity, but mandate harsh elution conditions (pH 3.0), afford low yield (< 20%), and provide limited reusability. Seeking a more efficient and affordable alternative, this study introduces the first peptide affinity ligands for AdV purification. The peptides were identified via combinatorial selection and in silico design to target hexons, the most abundant proteins in the adenoviral capsid. Selected peptide ligands AEFFIWNA and TNDGPDYSSPLTGSG were conjugated on chromatographic resins and utilized to purify AdV serotype 5 from HEK293 and Vero cell lysates. The peptide-functionalized resins feature high binding capacity (> 1010 active virions per mL at the residence time of 2 min), provide high yield (> 50%) and up to 100-fold reduction of host cell proteins and DNA. Notably, the peptide ligands enable gentle elution conditions (pH 8) that prevent the "shedding" of penton and fiber proteins, thus affording intact adenovirus particles with high cell-transduction activity. The study of the peptide ligands by surface plasmon resonance and molecular docking and dynamics simulations confirmed the selective targeting of hexon proteins and elucidated the molecular-level mechanisms underlying binding and release. Collectively, these results demonstrate the strong promise of peptide ligands presented herein for the affinity purification of AdVs from cell lysates.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606.
| |
Collapse
|
4
|
Liaghat A, Konsman JP. Methodological advice for the young at heart investigator: Triangulation to build better foundations. Brain Behav Immun 2024; 115:737-746. [PMID: 37972881 DOI: 10.1016/j.bbi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In medicine and science, one is typically taught the main theories in a discipline or field along with standard models before receiving more instructions on how to apply certain methods. The aim of this work is not to address one method, but rather methodology, the study and evaluation of methods, by taking a philosophy of science detour. In this, a critique of biomedicine will be used as a starting point to address some positions regarding reductionism, specifying notions such as systems and mechanisms, as well as regarding the mind-body problem discussing psychosomatic medicine and psychoneuroimmunology. Some recommendations to make science more pluralistic, robust and translationally-relevant will then be made as a way to foster constructive debates on reductionism and the mind-body problem and, in turn, favor more interdisciplinary research.
Collapse
Affiliation(s)
- Amirreza Liaghat
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France
| | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
5
|
Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212:165-183. [PMID: 35661253 PMCID: PMC9166226 DOI: 10.1007/s00430-022-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
7
|
Pascoal VDB, Marchesini RB, Athié MCP, Matos AHB, Conte FF, Pereira TC, Secolin R, Gilioli R, Malheiros JM, Polli RS, Tannús A, Covolan L, Pascoal LB, Vieira AS, Cavalheiro EA, Cendes F, Lopes-Cendes I. Modulating Expression of Endogenous Interleukin 1 Beta in the Acute Phase of the Pilocarpine Model of Epilepsy May Change Animal Survival. Cell Mol Neurobiol 2023; 43:367-380. [PMID: 35061107 DOI: 10.1007/s10571-022-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.
Collapse
Affiliation(s)
- V D B Pascoal
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R B Marchesini
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - M C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - A H B Matos
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - F F Conte
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - T C Pereira
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - R Secolin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R Gilioli
- Multidisciplinary Centre for Biological Investigation (CEMIB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - J M Malheiros
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - R S Polli
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - A Tannús
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | - L Covolan
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - L B Pascoal
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - A S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - E A Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, (UNIFESP), Sao Paulo, SP, Brazil
| | - F Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas - (UNICAMP); and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - I Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
8
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
9
|
Du Y, Miah KM, Habib O, Meyer-Berg H, Conway CC, Viegas MA, Dean R, Satyapertiwi D, Zhao J, Wang Y, Temperton NJ, Gamlen TPE, Gill DR, Hyde SC. Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax 2022; 77:1229-1236. [PMID: 35165144 PMCID: PMC8861887 DOI: 10.1136/thoraxjnl-2021-217650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.
Collapse
Affiliation(s)
- Yue Du
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kamran M Miah
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Omar Habib
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena Meyer-Berg
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona C Conway
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana A Viegas
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Dean
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jincun Zhao
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yanqun Wang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | | | - Toby P E Gamlen
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R Gill
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Jimenez-Gonzalez M, Li R, Pomeranz LE, Alvarsson A, Marongiu R, Hampton RF, Kaplitt MG, Vasavada RC, Schwartz GJ, Stanley SA. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat Biomed Eng 2022; 6:1298-1316. [PMID: 35835995 PMCID: PMC9669304 DOI: 10.1038/s41551-022-00909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons. The ability to map the peripheral ganglia innervating the pancreas and to deliver transgenes to specific pancreas-projecting neurons will facilitate the examination of ganglionic inputs and the study of the roles of pancreatic efferent innervation in glucose metabolism.
Collapse
Affiliation(s)
- M Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - A Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R C Vasavada
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - G J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Abdel Rhman M, Owira P. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy. J Pharm Pharmacol 2022; 74:1663-1676. [PMID: 36130185 DOI: 10.1093/jpp/rgac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Diabetic cardiomyopathy (DCM) is an end-point macrovascular complication associated with increased morbidity and mortality in 12% of diabetic patients. MicroRNAs (miRNAs) are small noncoding RNAs that can act as cardioprotective or cardiotoxic agents in DCM. METHODS We used PubMed as a search engine to collect and analyse data in published articles on the role of miRNAs on the pathophysiology, diagnosis and treatment of DCM. RESULTS MiRNAs play an essential role in the pathophysiology, diagnosis and treatment of DCM due to their distinct gene expression patterns in diabetic patients compared to healthy individuals. Advances in gene therapy have led to the discovery of potential circulating miRNAs, which can be used as biomarkers for DCM diagnosis and prognosis. Furthermore, targeted miRNA therapies in preclinical and clinical studies, such as using miRNA mimics and anti-miRNAs, have yielded promising results. Application of miRNA mimics and anti-miRNAs via different nanodrug delivery systems alleviate hypertrophy, fibrosis, oxidative stress and apoptosis of cardiomyocytes. CONCLUSION MiRNAs serve as attractive potential targets for DCM diagnosis, prognosis and treatment due to their distinctive expression profile in DCM development.
Collapse
Affiliation(s)
- Mahasin Abdel Rhman
- Department of Pharmacology, Discipline of Pharmaceutical Sciences, Molecular and Clinical Pharmacology Research Laboratory, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Owira
- Department of Pharmacology, Discipline of Pharmaceutical Sciences, Molecular and Clinical Pharmacology Research Laboratory, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| |
Collapse
|
12
|
Recent Advances and Challenges in Uveal Melanoma Immunotherapy. Cancers (Basel) 2022; 14:cancers14133094. [PMID: 35804863 PMCID: PMC9264803 DOI: 10.3390/cancers14133094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Uveal melanoma is the most common primary intraocular malignancy in adults. Although it can be controlled locally, half of the patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Existing therapies, such as chemotherapy and targeted therapies, induce only minimal responses. This review focuses on newly published research on immunotherapy. We highlight expanding treatments and their clinical outcomes, as well as propose promising new treatments and feasible checkpoints. Based on these findings, we provide innovative insights into feasible strategies for the treatment of patients with uveal melanoma. Abstract Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Compared to cutaneous melanoma (CM), which mainly harbors BRAF or NRAS mutations, UM predominantly harbors GNAQ or GNA11 mutations. Although primary UM can be controlled locally, approximately 50% of patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Unfortunately, chemotherapy and targeted therapies only induce minimal responses in patients with metastatic UM, with a median survival time of only 4–5 months after metastasis detection. Immunotherapy agents, such as immune checkpoint inhibitors, have achieved pioneering outcomes in CM but have shown limited effects in UM. Researchers have explored several feasible checkpoints to identify options for future therapies. Cancer vaccines have shown little in the way of therapeutic benefit in patients with UM, and there are few ongoing trials providing favorable evidence, but adoptive cell transfer-related therapies seem promising and deserve further investigation. More recently, the immune-mobilizing monoclonal T-cell receptor against the cancer molecule tebentafusp showed impressive antitumor effects. Meanwhile, oncolytic viruses and small molecule inhibitors have also gained ground. This review highlights recent progress in burgeoning treatments and provides innovative insights on feasible strategies for the treatment of UM.
Collapse
|
13
|
Preetham HD, Umashankara M, Kumar KSS, Rangappa S, Rangappa KS. Pyrrolidine-based cationic γ-peptide: a DNA-binding molecule works as a potent anti-gene agent. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Liu Y, Xu S, Liu Y, Gowda YKM, Miao J. Generation of Adenovirus for In Vitro and In Vivo Studies of Hepatocytes. Methods Mol Biol 2022; 2455:343-358. [PMID: 35213006 PMCID: PMC9582736 DOI: 10.1007/978-1-0716-2128-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although non-alcoholic steatohepatitis (NASH) can progress to liver cancer and liver failure, no FDA-approved drugs exist to treat NASH. Deciphering the molecular mechanisms underlying the pathogenesis of NASH will facilitate the development of effective treatments for NASH, and requires loss- or gain-of-function experimental approaches. While genetically modified animals provide important information about the function of a gene, adenovirus is a fast, effective, and versatile tool that allows transient knockdown, knockout, or overexpression of one or more genes of interest (GOIs) in primary hepatocytes in vitro and in mouse liver in vivo. In addition, adenovirus is a promising treatment method in preclinical animal models, including rodents and non-human primates, and is used in many clinical trials. Here, we describe a step-by-step protocol to generate adenovirus for basic medical research. We discuss critical steps during virus propagation and purification and provide notes about how to avoid common pitfalls.
Collapse
Affiliation(s)
- Yangyang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simiao Xu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of the National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Yun Liu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Sonntag A, Mitdank H, Weng A. Construction of Minicircle Suicide Genes Coding for Ribosome-Inactivating Proteins. Methods Mol Biol 2022; 2521:157-171. [PMID: 35732997 DOI: 10.1007/978-1-0716-2441-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the lower risks of adverse effects, nonviral gene therapy is a suitable alternative to transfect cancer cells with a suicide gene to let them kill themselves by expressing toxic ribosome-inactivating proteins. Plasmids are stable and easy-to-produce vectors, but they have some disadvantages due to the bacterial backbone. Applying the minicircle technology, this problem can be solved with manageable effort in a well-equipped laboratory. With the described methodology, minicircle-DNA can be produced at low costs. The cell killing properties are monitored following transfection using the CytoSMART® Omni system-a camera based live cell imaging device.
Collapse
Affiliation(s)
| | - Hardy Mitdank
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Broad and potent bispecific neutralizing antibody gene delivery using adeno-associated viral vectors for passive immunization against HIV-1. J Control Release 2021; 338:633-643. [PMID: 34509584 DOI: 10.1016/j.jconrel.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) possess favorable safety, and passive immunization using these can prevent or control human immunodeficiency virus type 1 (HIV-1) infection. However, bNAbs generally used for monotherapy (IC80 > 5 μg/mL) have limited breadth and potency and neutralize only 70-90% of all HIV-1 strains. To address the need for broader coverage of the HIV-1 epidemic and enhance the ability of bNAbs to target HIV-1, we fused the single-chain variable antibody fragment (scFv) of bNAbs (PG9, PGT123, or NIH45-46) with full-length ibalizumab (iMab) in an scFv-monoclonal antibody tandem format to construct bispecific bNAbs (BibNAbs). Additionally, we described the feasibility of BibNAb gene delivery mediated by recombinant adeno-associated virus 8 (rAAV8) for generating long-term expression with a single injection as opposed to short-term passive immunization requiring continuous injections. Our results showed that the expressed BibNAbs targeting two distinct epitopes exhibited neutralizing activity against 20 HIV-1 pseudoviruses in vitro. After injecting a single rAAV8 vector, the expression and neutralizing activity of the BibNAbs in serum were sustained for 24 weeks. To the best of our knowledge, very few studies have been published on BibNAb gene delivery using rAAV8 vectors against HIV-1. BibNAb gene delivery using rAAV8 vectors may be promising for passive immunization against HIV-1 infection.
Collapse
|
17
|
Huang L, Bommireddy R, Munoz LE, Guin RN, Wei C, Ruggieri A, Menon AP, Li X, Shanmugam M, Owonikoko TK, Ramalingam SS, Selvaraj P. Expression of tdTomato and luciferase in a murine lung cancer alters the growth and immune microenvironment of the tumor. PLoS One 2021; 16:e0254125. [PMID: 34411144 PMCID: PMC8376001 DOI: 10.1371/journal.pone.0254125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Imaging techniques based on fluorescence and bioluminescence have been important tools in visualizing tumor progression and studying the effect of drugs and immunotherapies on tumor immune microenvironment in animal models of cancer. However, transgenic expression of foreign proteins may induce immune responses in immunocompetent syngeneic tumor transplant models and augment the efficacy of experimental drugs. In this study, we show that the growth rate of Lewis lung carcinoma (LL/2) tumors was reduced after transduction of tdTomato and luciferase (tdTomato/Luc) compared to the parental cell line. tdTomato/Luc expression by LL/2 cells altered the tumor microenvironment by increasing tumor-infiltrating lymphocytes (TILs) while inhibiting tumor-induced myeloid-derived suppressor cells (MDSCs). Interestingly, tdTomato/Luc expression did not alter the response of LL/2 tumors to anti-PD-1 and anti-CTLA-4 antibodies. These results suggest that the use of tdTomato/Luc-transduced cancer cells to conduct studies in immune competent mice may lead to cell-extrinsic tdTomato/Luc-induced alterations in tumor growth and tumor immune microenvironment that need to be taken into consideration when evaluating the efficacy of anti-cancer drugs and vaccines in immunocompetent animal models.
Collapse
Affiliation(s)
- Lei Huang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rohini N. Guin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Changyong Wei
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amanda Ruggieri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwathi P. Menon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Haladjova E, Dimitrov I, Davydova N, Todorova J, Ugrinova I, Forys A, Trzebicka B, Rangelov S. Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules 2020; 22:971-983. [PMID: 33371665 DOI: 10.1021/acs.biomac.0c01666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel N-substituted polyacrylamides bearing a cycle with two tertiary amines, poly(4-methyl-piperazin-1-yl)-propenone (PMPP) and its block copolymers with polylactide (PMPP-b-PLA), are synthesized and characterized. The homopolymers are water-soluble, whereas the block copolymers self-assemble in aqueous solution into a small size (Rh around 30 nm), are narrowly distributed, and exhibit core-shell micelles with good colloidal stability. Both the homopolymers and copolymer micelles are positively charged (ζ-potentials in the 13.8-17.6 mV range), which are employed for formation of electrostatic complexes with oppositely charged DNA. Complexes (polyplexes, micelleplexes, and spherical nucleic acidlike structures) in a wide range of N/P (amino to phosphate groups) ratios are prepared with short (115 bp) and long (2000 bp) DNA. The behavior and physicochemical properties of the resulting nanocarriers of DNA are strongly dependent on the polymer/polymer micelles' characteristics and the DNA chain length. All systems exhibit low cytotoxicity and good cellular uptake ability and show promise for gene delivery and regulation.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nadejda Davydova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia
| | - Jordana Todorova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
19
|
Liu Y, Fang J. Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
Affiliation(s)
- Yuxiang Liu
- Shanxi Medical University, No. 56, Xinjiannan Road, Taiyuan, 030001 Shanxi, China
| | - Jingai Fang
- First Hospital of Shanxi Medical University, No. 85, Jiefangnan Road, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
20
|
Israelow B, Song E, Mao T, Lu P, Meir A, Liu F, Alfajaro MM, Wei J, Dong H, Homer RJ, Ring A, Wilen CB, Iwasaki A. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J Exp Med 2020; 217:e20201241. [PMID: 32750141 PMCID: PMC7401025 DOI: 10.1084/jem.20201241] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-Cov-2) has caused over 13,000,000 cases of coronavirus disease (COVID-19) with a significant fatality rate. Laboratory mice have been the stalwart of therapeutic and vaccine development; however, they do not support infection by SARS-CoV-2 due to the virus's inability to use the mouse orthologue of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis, these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno-associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and exhibit pathological findings found in COVID-19 patients. Moreover, we show that type I interferons do not control SARS-CoV-2 replication in vivo but are significant drivers of pathological responses. Thus, the AAV-hACE2 mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds.
Collapse
Affiliation(s)
- Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Amit Meir
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Feimei Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Jin Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Huiping Dong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Aaron Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Craig B. Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
21
|
Yuan F, Yin H, Deng Y, Jiao F, Jiang H, Niu Y, Chen S, Ying H, Zhai Q, Chen Y, Guo F. Overexpression of Smad7 in hypothalamic POMC neurons disrupts glucose balance by attenuating central insulin signaling. Mol Metab 2020; 42:101084. [PMID: 32971298 PMCID: PMC7551358 DOI: 10.1016/j.molmet.2020.101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.
Collapse
Affiliation(s)
- Feixiang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yalan Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yuguo Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Shanghai Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences.
| |
Collapse
|
22
|
Haladjova E, Rangelov S, Tsvetanov C. Thermoresponsive Polyoxazolines as Vectors for Transfection of Nucleic Acids. Polymers (Basel) 2020; 12:polym12112609. [PMID: 33171983 PMCID: PMC7694630 DOI: 10.3390/polym12112609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx-PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.
Collapse
|
23
|
Carestia A, Kim SJ, Horling F, Rottensteiner H, Lubich C, Reipert BM, Crowe BA, Jenne CN. Modulation of the liver immune microenvironment by the adeno-associated virus serotype 8 gene therapy vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:95-108. [PMID: 33376758 PMCID: PMC7750493 DOI: 10.1016/j.omtm.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Adeno-associated viruses (AAVs) are emerging as one of the vehicles of choice for gene therapy. However, the potential immunogenicity of these vectors is a major limitation of their use, leading to the necessity of a better understanding of how viral vectors engage the innate immune system. In this study, we demonstrate the immune response mediated by an AAV vector in a mouse model. Mice were infected intravenously with 4 × 1012 copies (cp)/kg of AAV8, and the ensuing immune response was analyzed using intravital microscopy during a period of weeks. Administration of AAV8 resulted in the infection of hepatocytes, and this infection led to a moderate, but significant, activation of the immune system in the liver. This host immune response involved platelet aggregation, neutrophil extracellular trap (NET) formation, and the recruitment of monocytes, B cells, and T cells. The resident liver macrophage population, Kupffer cells, was necessary to initiate this immune response, as its depletion abrogated platelet aggregation and NET formation and delayed the recruitment of immune cells. Moreover, the death of liver cells produced by this AAV was moderate and failed to result in a robust, sustained inflammatory response. Altogether, these data suggest that AAV8 is a suitable vector for gene therapy approaches.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Seok-Joo Kim
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | - Christian Lubich
- Institute Krems Bioanalytics, IMC FH Krems, University of Applied Sciences, Krems, Austria
| | - Birgit M Reipert
- Drug Discovery Austria, Baxalta Innovations GmbH, Vienna, Austria
| | - Brian A Crowe
- Drug Discovery Austria, Baxalta Innovations GmbH, Vienna, Austria
| | - Craig N Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Cleary SJ, Magnen M, Looney MR, Page CP. Update on animal models for COVID-19 research. Br J Pharmacol 2020; 177:5679-5681. [PMID: 33140409 DOI: 10.1111/bph.15266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Mélia Magnen
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - Mark R Looney
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| |
Collapse
|
25
|
Sena-Esteves M, Gao G. Introducing Genes into Mammalian Cells: Viral Vectors. Cold Spring Harb Protoc 2020; 2020:095513. [PMID: 32457039 DOI: 10.1101/pdb.top095513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the years, many different viral vector systems have been developed to take advantage of the specific biological properties and tropisms of a large number of mammalian viruses. As a result, researchers wanting to introduce and/or express genes in mammalian cells have many options, as discussed here.
Collapse
|
26
|
Abstract
A. David Napier has been studying immunology and immunologists for more than three decades. In this article, he argues that the medicalization of viral epidemics has distracted us from the importance of their true social drivers: that is, the behaviour of people when they are together - what epidemiologists call human herds. On their own, viruses cannot 'invade' us. Our cells bring them to life and make them infectious through our social actions. Confusing viruses with invasive microbes not only leads us to misuse antibiotics, but fosters xenophobic responses towards outside carriers - as even our neighbours become categorical 'others' in the face of a foreign threat. Indeed, new work in viral epidemiology indicates that many viruses have infectious potential long before an epidemic develops. It is not only changes within viruses that cause epidemics, but also the condition of human herds - how we behave socially - that ignites the rapid circulation of viral information.
Collapse
|
27
|
Recent progress in microRNA-based delivery systems for the treatment of human disease. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0024-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Beyret E, Martinez Redondo P, Platero Luengo A, Izpisua Belmonte JC. Elixir of Life: Thwarting Aging With Regenerative Reprogramming. Circ Res 2019; 122:128-141. [PMID: 29301845 DOI: 10.1161/circresaha.117.311866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity.
Collapse
Affiliation(s)
- Ergin Beyret
- From the Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA (E.B., P.M.R., A.P.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia, Guadalupe, Spain (P.M.R.)
| | - Paloma Martinez Redondo
- From the Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA (E.B., P.M.R., A.P.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia, Guadalupe, Spain (P.M.R.)
| | - Aida Platero Luengo
- From the Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA (E.B., P.M.R., A.P.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia, Guadalupe, Spain (P.M.R.)
| | - Juan Carlos Izpisua Belmonte
- From the Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA (E.B., P.M.R., A.P.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia, Guadalupe, Spain (P.M.R.).
| |
Collapse
|
29
|
Agarwal N, Popovic B, Martucci NJ, Fraunhoffer NA, Soto-Gutierrez A. Biofabrication of Autologous Human Hepatocytes for Transplantation: How Do We Get There? Gene Expr 2019; 19:89-95. [PMID: 30143060 PMCID: PMC6466180 DOI: 10.3727/105221618x15350366478989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed differentiation of hepatocytes from induced pluripotent stem cells (iPSCs) holds promise as source material for treating some liver disorders. The unlimited availability of perfectly differentiated iPSC-derived hepatocytes will dramatically facilitate cell therapies. While systems to manufacture large quantities of iPSC-derived cells have been developed, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. This short review highlights important challenges and possible solutions to the current state of hepatocyte biofabrication for cellular therapies to treat liver diseases. Successful cell transplantation will require optimizing the best cell function, overcoming limitations to cell numbers and safety, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new autologous stem cell-based therapies to treat liver diseases.
Collapse
Affiliation(s)
- Nandini Agarwal
- *School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Branimir Popovic
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicole J. Martucci
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas A. Fraunhoffer
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- §Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Souza LAC, Worker CJ, Li W, Trebak F, Watkins T, Gayban AJB, Yamasaki E, Cooper SG, Drumm BT, Feng Y. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT 1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol 2019; 316:H1389-H1405. [PMID: 30925093 DOI: 10.1152/ajpheart.00780.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined. In this study, we investigated the involvement and mechanisms of the PVN-PRR in DOCA-salt-induced hypertension, a mouse model of hypertension. Using nanoinjection of adeno-associated virus-mediated Cre recombinase expression to knock down the PRR specifically in the PVN, we report here that PVN-PRR knockdown attenuated the enhanced blood pressure and sympathetic tone associated with hypertension. Mechanistically, we found that PVN-PRR knockdown was associated with reduced activation of ERK (extracellular signal-regulated kinase)-1/2 in the PVN and rostral ventrolateral medulla during hypertension. In addition, using the genetically encoded Ca2+ biosensor GCaMP6 to monitor Ca2+-signaling events in the neurons of PVN brain slices, we identified a reduction in angiotensin II type 1 receptor-mediated Ca2+ activity as part of the mechanism by which PVN-PRR knockdown attenuates hypertension. Our study demonstrates an essential role of the PRR in PVN neurons in hypertension through regulation of ERK1/2 activation and angiotensin II type 1 receptor-mediated Ca2+ activity. NEW & NOTEWORTHY PRR knockdown in PVN neurons attenuates the development of DOCA-salt hypertension and autonomic dysfunction through a decrease in ERK1/2 activation in the PVN and RVLM during hypertension. In addition, PRR knockdown reduced AT1aR expression and AT1R-mediated calcium activity during hypertension. Furthermore, we characterized the neuronal targeting specificity of AAV serotype 2 in the mouse PVN and validated the advantages of the genetically encoded calcium biosensor GCaMP6 in visualizing neuronal calcium activity in the PVN.
Collapse
Affiliation(s)
- Lucas A C Souza
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University , Winston-Salem, North Carolina
| | - Fatima Trebak
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Trevor Watkins
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Evan Yamasaki
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Yumei Feng
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
31
|
De Carlo F, Thomas L, Brooke B, Varney ET, Nande R, Boskovic O, Marshall GD, Claudio PP, Howard CM. Microbubble-mediated delivery of human adenoviruses does not elicit innate and adaptive immunity response in an immunocompetent mouse model of prostate cancer. J Transl Med 2019; 17:19. [PMID: 30635014 PMCID: PMC6329087 DOI: 10.1186/s12967-019-1771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Gene transfer to malignant sites using human adenoviruses (hAds) has been limited because of their immunogenic nature and host specificity. Murine cells often lack some of the receptors needed for hAds attachment, thus murine cells are generally non-permissive for human adenoviral infection and replication, which limits translational studies. Methods We have developed a gene transfer method that uses a combination of lipid-encapsulated perfluorocarbon microbubbles and ultrasound to protect and deliver hAds to a target tissue, bypassing the requirement of specific receptors. Results In an in vitro model, we showed that murine TRAMP-C2 and human DU145 prostate cancer cells display a comparable expression pattern of receptors involved in hAds adhesion and internalization. We also demonstrated that murine and human cells showed a dose-dependent increase in the percentage of cells transduced by hAd-GFP (green fluorescent protein) after 24 h and that GFP transgene was efficiently expressed at 48 and 72 h post-transduction. To assess if our image-guided delivery system could effectively protect the hAds from the immune system in vivo, we injected healthy immunocompetent mice (C57BL/6) or mice bearing a syngeneic prostate tumor (TRAMP-C2) with hAd-GFP/MB complexes. Notably, we did not observe activation of innate (TNF-α and IL-6 cytokines), or adaptive immune response (neutralizing antibodies, INF-γ+ CD8+ T cells). Conclusions This study brings us a step closer to demonstrating the feasibility of murine cancer models to investigate the clinical translation of image guided site-specific adenoviral gene therapy mediated by ultrasound-targeted microbubble destruction. Electronic supplementary material The online version of this article (10.1186/s12967-019-1771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia De Carlo
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Litty Thomas
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Bell Brooke
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Elliot T Varney
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA
| | - Rounak Nande
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Olivia Boskovic
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Gailen D Marshall
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA. .,National Center for Natural Products Research, University of Mississippi, University, MS, USA. .,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA. .,Department of BioMolecular Sciences, Department of Radiation Oncology, University of Mississippi, Jackson, MS, 39126, USA.
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA.
| |
Collapse
|
32
|
Wang LP, Jia ZB, Liu Y, Gao Q, Cheng SJ, Jin D, Ma L, Yin XH. Inhibitory effect of wild-type P53 gene transfer on graft coronary artery disease. Transpl Immunol 2018; 48:1-9. [DOI: 10.1016/j.trim.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022]
|
33
|
Singh K, Evens H, Nair N, Rincón MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T. Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9. Mol Ther 2018; 26:1241-1254. [PMID: 29599079 PMCID: PMC5993986 DOI: 10.1016/j.ymthe.2018.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nisha Nair
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Melvin Y Rincón
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium; Centro de Investigaciones, Fundacion Cardiovascular de Colombia, 681004 Floridablanca, Colombia
| | - Shilpita Sarcar
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Schwerdt JI, Lopez-Leon M, Cónsole GM, Brown OA, Morel GR, Spinedi E, Goya RG. Rejuvenating Effect of Long-Term Insulin-Like Growth Factor-I Gene Therapy in the Hypothalamus of Aged Rats with Dopaminergic Dysfunction. Rejuvenation Res 2018; 21:102-108. [DOI: 10.1089/rej.2017.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- José I. Schwerdt
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | - Micaela Lopez-Leon
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | | | - Oscar A Brown
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | - Gustavo R. Morel
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| | | | - Rodolfo G. Goya
- INIBIOLP-Pathology B, UNLP, La Plata, Argentina
- Department of Histology and Embryology B, UNLP, La Plata, Argentina
| |
Collapse
|
35
|
Haladjova E, Halacheva S, Momekova D, Moskova-Doumanova V, Topouzova-Hristova T, Mladenova K, Doumanov J, Petrova M, Rangelov S. Polyplex Particles Based on Comb-Like Polyethylenimine/Poly(2-ethyl-2-oxazoline) Copolymers: Relating Biological Performance with Morphology and Structure. Macromol Biosci 2018; 18:e1700349. [DOI: 10.1002/mabi.201700349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| | - Silviya Halacheva
- Institute for Materials Research and Innovation; University of Bolton; Deane road Bolton Greater Manchester BL3 5AB UK
| | - Denitsa Momekova
- Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | | | | | - Kirilka Mladenova
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Jordan Doumanov
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Maria Petrova
- Institute of Molecular Biology; Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| |
Collapse
|
36
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Li B, Xu WW, Han L, Chan KT, Tsao SW, Lee NPY, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, He QY, Cheung ALM. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. Oncogene 2017; 36:3986-4000. [PMID: 28288140 PMCID: PMC5511242 DOI: 10.1038/onc.2017.29] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/29/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Esophageal cancer is one of the most lethal cancers worldwide with poor survival and limited therapeutic options. The discovery of microRNAs created a new milestone in cancer research. miR-377 is located in chromosome region 14q32, which is frequently deleted in esophageal squamous cell carcinoma (ESCC), but the biological functions, clinical significance and therapeutic implication of miR-377 in ESCC are largely unknown. In this study, we found that miR-377 expression was significantly downregulated in tumor tissue and serum of patients with ESCC. Both tumor tissue and serum miR-377 expression levels were positively correlated with patient survival. Higher serum miR-377 expression was inversely associated with pathologic tumor stage, distant metastasis, residual tumor status and chemoradiotherapy resistance. The roles of miR-377 in suppressing tumor initiation and progression, and the underlying molecular mechanisms were investigated. Results of in vitro and in vivo experiments showed that miR-377 overexpression inhibited the initiation, growth and angiogenesis of ESCC tumors as well as metastatic colonization of ESCC cells, whereas silencing of miR-377 had opposite effects. Mechanistically, miR-377 regulated CD133 and VEGF by directly binding to their 3' untranslated region. Moreover, systemic delivery of formulated miR-377 mimic not only suppressed tumor growth in nude mice but also blocked tumor angiogenesis and metastasis of ESCC cells to the lungs without overt toxicity to mice. Collectively, our study established that miR-377 plays a functional and significant role in suppressing tumor initiation and progression, and may represent a promising non-invasive diagnostic and prognostic biomarker and therapeutic strategy for patients with ESCC.
Collapse
MESH Headings
- AC133 Antigen/genetics
- Adult
- Aged
- Aged, 80 and over
- Animals
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Down-Regulation/genetics
- Esophageal Neoplasms/diagnosis
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- MicroRNAs/physiology
- Middle Aged
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- B Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
| | - W W Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - L Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - K T Chan
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
| | - N P Y Lee
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - S Law
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - L Y Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - E M Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - K W Chan
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Pathology, The University of Hong Kong, Pokfulam, China
| | - Y R Qin
- Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - X Y Guan
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- Department of Clinical oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Q Y He
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou, China
| | - A L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
- Centre for Cancer Research, The University of Hong Kong, Pokfulam, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China. E-mail:
| |
Collapse
|
38
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
39
|
Tai L, Liu C, Jiang K, Chen X, Wei G, Lu W, Pan W. Noninvasive delivery of oligonucleotide by penetratin-modified polyplexes to inhibit protein expression of intraocular tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2091-2100. [PMID: 28435135 DOI: 10.1016/j.nano.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/08/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Our present study aimed to develop an antisense oligonucleotide (ASO) delivery system to achieve gene silencing in intraocular tumor via topical instillation. ASO specific for luciferase was chosen as model drug, polyamidoamine (PG5) was employed to condense ASO, and penetratin (Pene) was used to enhance cellular uptake. Nanoscale PG5/ASO/Pene polyplex was stabilized via noncovalent bonding. In vitro evaluations indicated that PG5/ASO/Pene exhibited improved cell-penetrating and gene silencing ability compared with naked ASO and PG5/ASO. Subcutaneous and orthotopic tumor models expressing luciferase were established in nude mice. After treated by PG5/ASO/Pene, immunohistochemical results of subcutaneous tumors showed significant inhibition of luciferase expression via peritumoral injection, and bioluminescence from orthotopic tumor was obviously weakened via topical instillation. To date, few works were successful in noninvasive treatment of intraocular diseases using antisense strategy, this penetratin-modified polyplex could be a promising vector to inhibit protein expression by effectively delivering ASOs into the eye.
Collapse
Affiliation(s)
- Lingyu Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xishan Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
40
|
Zhang SK, Song JW, Li SB, Gao HW, Chang HY, Jia LL, Gong F, Tan YX, Ji SP. Design of pH-sensitive peptides from natural antimicrobial peptides for enhancing polyethylenimine-mediated gene transfection. J Gene Med 2017; 19. [PMID: 28370835 DOI: 10.1002/jgm.2955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Poor endosomal release is a major barrier of polyplex-mediated gene transfection. Antimicrobial peptides (AMPs) are commonly used to improve polyethylenimine (PEI)-mediated gene transfection by increasing endosomal release. In the present study, we designed novel pH-sensitive peptides that highly enhance transfection efficiency compared to their parent peptides. METHODS Two analogues of melittin (Mel) and RV-23 (RV) were synthesized by replacing the positively-charged residues in their sequences with glutamic acid residues. The pH-sensitive lysis ability of the peptides, the effect of the peptides on physicochemical characteristics, the intracellular trafficking, the transfection efficiency, and the cytotoxicity of the polyplexes were determined. RESULTS The acidic peptides showed pH-sensitive lytic activity. The hemolytic activity of acidic peptides at pH 5.0 was higher than that at pH 7.4. The incorporation of acidic peptides did not affect the DNA binding ability of PEI but affected the physicochemical characteristics of the PEI/DNA polyplexes, which may be beneficial for endosomal release and gene transfection. The incorporation of acidic peptides into PEI/DNA polyplexes enhanced the PEI-mediated transfection efficiency corresponding to up to 42-fold higher luciferase activity compared to that of PEI alone. CONCLUSIONS The results of the present study indicate that replacement of positively-charged residues with glutamic acid residues in the AMP sequence yields pH-sensitive peptides, which enhance the transfection efficiency of PEI/DNA polyplexes in various cell lines.
Collapse
Affiliation(s)
- Shi-Kun Zhang
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Su-Bo Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hong-Wei Gao
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hong-Yu Chang
- Department of Paediatrics, General Hospital of the PLA Rocket Force, Beijing, China
| | - Li-Li Jia
- Neonatal Department of Xi'an No 4 Hospital, Xi'an, China
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Ying-Xia Tan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shou-Ping Ji
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
41
|
Sun D, Sahu B, Gao S, Schur RM, Vaidya AM, Maeda A, Palczewski K, Lu ZR. Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for Leber's Congenital Amaurosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624218 PMCID: PMC5363681 DOI: 10.1016/j.omtn.2017.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of a gene delivery system with high efficiency and a good safety profile is essential for successful gene therapy. Here we developed a targeted non-viral delivery system using a multifunctional lipid ECO for treating Leber’s congenital amaurosis type 2 (LCA2) and tested this in a mouse model. ECO formed stable nanoparticles with plasmid DNA (pDNA) at a low amine to phosphate (N/P) ratio and mediated high gene transfection efficiency in ARPE-19 cells because of their intrinsic properties of pH-sensitive amphiphilic endosomal escape and reductive cytosolic release (PERC). All-trans-retinylamine, which binds to interphotoreceptor retinoid-binding protein (IRBP), was incorporated into the nanoparticles via a polyethylene glycol (PEG) spacer for targeted delivery of pDNA into the retinal pigmented epithelium. The targeted ECO/pDNA nanoparticles provided high GFP expression in the RPE of 1-month-old Rpe65−/− mice after subretinal injection. Such mice also exhibited a significant increase in electroretinographic activity, and this therapeutic effect continued for at least 120 days. A safety study in wild-type BALB/c mice indicated no irreversible retinal damage following subretinal injection of these targeted nanoparticles. All-trans-retinylamine-modified ECO/pDNA nanoparticles provide a promising non-viral platform for safe and effective treatment of RPE-specific monogenic eye diseases such as LCA2.
Collapse
Affiliation(s)
- Da Sun
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Songqi Gao
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44140, USA
| | - Rebecca M Schur
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M Vaidya
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44140, USA
| | - Zheng-Rong Lu
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
42
|
Williams CL, Uytingco CR, Green WW, McIntyre JC, Ukhanov K, Zimmerman AD, Shively DT, Zhang L, Nishimura DY, Sheffield VC, Martens JR. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther 2017; 25:904-916. [PMID: 28237838 DOI: 10.1016/j.ymthe.2017.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022] Open
Abstract
Olfactory dysfunction is a pervasive but underappreciated health concern that affects personal safety and quality of life. Patients with olfactory dysfunctions have limited therapeutic options, particularly those involving congenital diseases. Bardet-Biedl syndrome (BBS) is one such disorder, where olfactory loss and other symptoms manifest from defective cilium morphology and/or function in various cell types/tissues. Olfactory sensory neurons (OSNs) of BBS mutant mice lack the capacity to build/maintain cilia, rendering the cells incapable of odor detection. Here we examined OSN cilium defects in Bbs1 mutant mice and assessed the utility of gene therapy to restore ciliation and function in young and adult mice. Bbs1 mutant mice possessed short residual OSN cilia in which BBSome protein trafficking and odorant detection were defective. Gene therapy with an adenovirus-delivered wild-type Bbs1 gene restored OSN ciliation, corrected BBSome cilium trafficking defects, and returned acute odor responses. Finally, using clinically approved AAV serotypes, we demonstrate, for the first time, the capacity of AAVs to restore ciliation and odor detection in OSNs of Bbs1 mutants. Together, our data demonstrate that OSN ciliogenesis can be promoted in differentiated cells of young and adult Bbs1 mutants and highlight the potential of gene therapy as a viable restorative treatment for congenital olfactory disorders.
Collapse
Affiliation(s)
- Corey L Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jeremy C McIntyre
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dana T Shively
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
43
|
Alevizos I, Zheng C, Cotrim AP, Goldsmith CM, McCullagh L, Berkowitz T, Strobl SL, Malyguine A, Kopp WC, Chiorini JA, Nikolov NP, Neely M, Illei GG, Baum BJ. Immune reactivity after adenoviral-mediated aquaporin-1 cDNA transfer to human parotid glands. Oral Dis 2017; 23:337-346. [PMID: 27886428 DOI: 10.1111/odi.12614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The purpose of this study was to examine the humoral and cellular immune reactivity to adenoviral vector (AdhAQP1) administration in the human parotid gland over the first 42 days of a clinical gene therapy trial. METHODS Of eleven treated subjects, five were considered as positive responders (Baum et al, 2012). Herein, we measured serum neutralizing antibody titers, circulating cytotoxic lymphocytes, and lymphocyte proliferation in peripheral blood mononuclear cells. Additionally, after adenoviral vector stimulation of lymphocyte proliferation, we quantified secreted cytokine levels. RESULTS Responders showed little to modest immune reactivity during the first 42 days following gene transfer. Additionally, baseline serum neutralizing antibody titers to serotype 5-adenovirus generally were not predictive of a subject's response to parotid gland administration of AdhAQP1. Cytokine profiling from activated peripheral blood mononuclear cells could not distinguish responders and non-responders. CONCLUSIONS The data are the first to describe immune responses after adenoviral vector administration in a human parotid gland. Importantly, we found that modest (2-3 fold) changes in systemic cell-mediated immune reactivity did not preclude positive subject responses to gene transfer. However, changes beyond that level likely impeded the efficacy of gene transfer.
Collapse
Affiliation(s)
- I Alevizos
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - C Zheng
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - A P Cotrim
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - C M Goldsmith
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - L McCullagh
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - T Berkowitz
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - S L Strobl
- Clinical Services Program, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - A Malyguine
- Clinical Services Program, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - W C Kopp
- Clinical Services Program, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - J A Chiorini
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - N P Nikolov
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - M Neely
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - G G Illei
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA.,Clinical Development, MedImmune, Gaithersburg, MD, USA
| | - B J Baum
- Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| |
Collapse
|
44
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures. Sci Rep 2016; 6:27872. [PMID: 27296089 PMCID: PMC4906281 DOI: 10.1038/srep27872] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/26/2016] [Indexed: 12/18/2022] Open
Abstract
This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool
for delivering oligonucleotides into mammalian cells. Compared to lipofection and
electroporation methods, plasma transfection showed a better uptake efficiency and
less cell death in the transfection of oligonucleotides. We demonstrated that the
level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma
is correlated with the uptake efficiency and that this is achieved through an
increase of intracellular ROS levels and the resulting increase in cell membrane
permeability. This finding was supported by the use of ROS scavengers, which reduced
CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma
could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D
cultures, thus suggesting the potential for unique applications of CAP beyond those
provided by standard transfection techniques. Together, our results suggest that
cold plasma might provide an efficient technique for the delivery of siRNA and miRNA
in 2D and 3D culture models.
Collapse
|
46
|
Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma. Ther Deliv 2016; 5:975-90. [PMID: 25375341 DOI: 10.4155/tde.14.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.
Collapse
|
47
|
Update on ocular gene therapy and advances in treatment of inherited retinal diseases and exudative macular degeneration. Curr Opin Ophthalmol 2016; 27:268-73. [DOI: 10.1097/icu.0000000000000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines. PLoS One 2016; 11:e0146404. [PMID: 26751211 PMCID: PMC4709057 DOI: 10.1371/journal.pone.0146404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023] Open
Abstract
Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV.
Collapse
|
49
|
Uusi-Kerttula H, Hulin-Curtis S, Davies J, Parker AL. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses 2015; 7:6009-42. [PMID: 26610547 PMCID: PMC4664994 DOI: 10.3390/v7112923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sarah Hulin-Curtis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - James Davies
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alan L Parker
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
50
|
Martínez-Vélez N, Xipell E, Vera B, Acanda de la Rocha A, Zalacain M, Marrodán L, Gonzalez-Huarriz M, Toledo G, Cascallo M, Alemany R, Patiño A, Alonso MM. The Oncolytic Adenovirus VCN-01 as Therapeutic Approach Against Pediatric Osteosarcoma. Clin Cancer Res 2015; 22:2217-25. [PMID: 26603261 DOI: 10.1158/1078-0432.ccr-15-1899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Osteosarcoma is the most common malignant bone tumor in children and adolescents. Despite aggressive chemotherapy, more than 30% of patients do not respond and develop bone or lung metastasis. Oncolytic adenoviruses engineered to specifically destroy cancer cells are a feasible option for osteosarcoma treatment. VCN-01 is a replication-competent adenovirus specifically engineered to replicate in tumors with a defective RB pathway, presents an enhanced infectivity through a modified fiber and an improved distribution through the expression of a soluble hyaluronidase. The aim of this study is to elucidate whether the use of VCN-01 would be an effective therapeutic strategy for pediatric osteosarcoma. EXPERIMENTAL DESIGN We used osteosarcoma cell lines established from patients with metastatic disease (531MII, 678R, 588M, and 595M) and a commercial cell line (143B). MTT assays were carried out to evaluate the cytotoxicity of VCN-01. Hexon assays were used to evaluate the replication of the virus. Western blot analysis was performed to assess the expression levels of viral proteins and autophagic markers. The antitumor effect of VCN-01 was evaluated in orthotopic and metastatic osteosarcoma murine animal models. RESULTS This study found that VCN-01, a new generation genetically modified oncolytic adenovirus, administered locally or systemically, had a potent antisarcoma effect in vitro and in vivo in mouse models of intratibial and lung metastatic osteosarcoma. Moreover, VCN-01 administration showed a safe toxicity profile. CONCLUSIONS These results uncover VCN-01 as a promising strategy for osteosarcoma, setting the bases to propel a phase I/II trial for kids with this disease. Clin Cancer Res; 22(9); 2217-25. ©2015 AACR.
Collapse
Affiliation(s)
- Naiara Martínez-Vélez
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Enric Xipell
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Beatriz Vera
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Arlet Acanda de la Rocha
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Marta Zalacain
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Lucía Marrodán
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain
| | - Gemma Toledo
- Department of Pathology, MD Anderson Cancer Center, Madrid, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Vallés, Barcelona, Spain
| | - Ramón Alemany
- Translational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Patiño
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marta M Alonso
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain. Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain. Department of Medical Oncology, University Hospital of Navarra, Pamplona, Spain.
| |
Collapse
|