1
|
Ai Z, Li H, Xu S, Cai C, Wang X, Guan Y, Guo R, Wang Y. Overexpression of TAFA4 in the dorsal root ganglion ameliorates neuropathic pain in male rats through promoting macrophage M2-Skewing. Neurochem Int 2025; 187:105993. [PMID: 40381955 DOI: 10.1016/j.neuint.2025.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Neuro-immune interactions between macrophages and primary sensory neurons have been implicated in nerve injury and associated pain. This study aims to explore the function of the TAFA4 as a crucial neuroimmune regulator in modulating macrophage states within the context of neuropathic pain. To elucidate the role of TAFA4 in dorsal root ganglia (DRG) following a chronic constriction injury (CCI) model in male rats, immunofluorescent staining, western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were performed. Microinjection of self-complementary adeno-associated virus expressing TAFA4 mRNA into the L4 and L5 DRGs was conducted to overexpress TAFA4 in the DRGs. Following peripheral nerve injury, we observed a downregulation of TAFA4 in ipsilateral DRG neurons. Restoring this downregulation effectively alleviated the mechanical and thermal nociceptive hypersensitivity by inhibiting pro-inflammatory mediators while promoting the secretion of anti-inflammatory cytokines on day 14 post-CCI. Notably, scAAV-TAFA4 microinjection also facilitated the polarization of macrophages in the DRGs towards the M2 phenotype. Mechanistically, TAFA4 modulates the functions of macrophages in a lipoprotein receptor-related protein 1-dependent manner. Our findings revealed the role of TAFA4 in shifting macrophages in favor of an anti-inflammatory phenotype and enhancing interleukin 10 concentrations in the DRG, suggesting it is a potential analgesic target for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenghui Cai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuejuan Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
2
|
Moyer TC, Hoffman BA, Chen W, Shah I, Ren XQ, Knox T, Liu J, Wang W, Li J, Khalid H, Kulkarni AS, Egbuchulam M, Clement J, Bloedel A, Child M, Kaur R, Rouse E, Graham K, Maura D, Thorpe Z, Sayed-Zahid A, Hiu-Yan Chung C, Kutchin A, Johnson A, Yao J, Thompson J, Pande N, Nonnenmacher ME. Highly conserved brain vascular receptor ALPL mediates transport of engineered AAV vectors across the blood-brain barrier. Mol Ther 2025:S1525-0016(25)00373-9. [PMID: 40340250 DOI: 10.1016/j.ymthe.2025.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/02/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Delivery of systemically administered therapeutics to the central nervous system (CNS) is restricted by the blood-brain barrier (BBB). Bioengineered adeno-associated virus (AAV) capsids have been shown to penetrate the BBB with great efficacy in mouse and non-human primate models, but their translational potential is often limited by species selectivity and undefined mechanisms of action. Here, we apply our RNA-guided TRACER AAV capsid evolution platform to generate VCAP-102, an AAV9 variant with markedly increased brain tropism following intravenous delivery in both rodents and primates. Relative to AAV9, VCAP-102 demonstrates 20- to 400-fold increased gene transfer across multiple brain regions. We identify alkaline phosphatase (ALPL) as the primary receptor used by VCAP-102 to cross the BBB and demonstrate that direct binding of VCAP-102 to human ALPL can initiate receptor-mediated transcytosis in a cell barrier model. Our work identifies VCAP-102 as a cross-species CNS gene delivery vector with a strong potential for clinical translation and establishes ALPL as a brain delivery shuttle capable of efficient BBB transport to maximize CNS delivery of biotherapeutics.
Collapse
Affiliation(s)
- Tyler C Moyer
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Brett A Hoffman
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Weitong Chen
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Ishan Shah
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Xiao-Qin Ren
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Tatiana Knox
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Jiachen Liu
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Wei Wang
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Jiangyu Li
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Hamza Khalid
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | | | | | - Joseph Clement
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Alexis Bloedel
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Matthew Child
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Rupinderjit Kaur
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Emily Rouse
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Kristin Graham
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Damien Maura
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Zachary Thorpe
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | | | | | | | - Amy Johnson
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Johnny Yao
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Jeffrey Thompson
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | - Nilesh Pande
- Voyager Therapeutics, 75 Hayden Avenue, Lexington, MA 02421, USA
| | | |
Collapse
|
3
|
Wang D, Stevens G, Flotte TR. Gene therapy then and now: A look back at changes in the field over the past 25 years. Mol Ther 2025; 33:1889-1902. [PMID: 40022444 DOI: 10.1016/j.ymthe.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Since the inception of Molecular Therapy in 2000, the field of gene therapy has made remarkable progress, evolving from no approved clinical products to 23 clinical gene therapy products today. In this review, we aim to capture the transformative changes in the field by surveying the literature over this period, with a particular focus on advancements in gene delivery vector technology, disease and tissue targeting, and the revolutionary molecular tools that have become central to the field. We also discuss the current challenges facing gene therapy and the need for greater collaboration to ensure its accessibility worldwide.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Gregg Stevens
- Lamar Soutter Library, UMass Chan Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Suarez-Amaran L, Song L, Tretiakova AP, Mikhail SA, Samulski RJ. AAV vector development, back to the future. Mol Ther 2025; 33:1903-1936. [PMID: 40186350 DOI: 10.1016/j.ymthe.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Adeno-associated virus (AAV) has become a pivotal tool in gene therapy, providing a safe and efficient platform for long-term transgene expression. This review presents a comprehensive analysis of AAV's historical development, from its initial identification as a "contaminant" to its current clinical applications. We examine the molecular evolution of AAV, detailing advancements in vector engineering, rational design, directed evolution platforms, and computational modeling, which have expanded its therapeutic potential across diverse disease areas. Additionally, we explore AAV genome regulation, with a particular focus on inverted terminal repeats (ITRs) and AAV capsid-genome interactions, which play a crucial role in vector transduction efficiency and host adaptation. An assessment of past and present clinical trials as well as future directions is provided to illustrate the field's trajectory. Finally, another unique milestone in AAV research is also reported; namely, a pool of AAV libraries has been successfully administered to human decedents and analyzed, representing a transformative step in AAV evolution and selection for human applications. These studies should pave the way for more refined AAV vector optimization, accelerating the development of next-generation gene therapies with enhanced clinical translatability, potentially accelerating the gene therapy revolution.
Collapse
Affiliation(s)
- Lester Suarez-Amaran
- M34, Inc., 870 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514-2600, USA; Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Liujiang Song
- M34, Inc., 870 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514-2600, USA
| | - Anna P Tretiakova
- M34, Inc., 870 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514-2600, USA
| | - Sheila A Mikhail
- M34, Inc., 870 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514-2600, USA
| | - Richard Jude Samulski
- M34, Inc., 870 Martin Luther King Jr. Boulevard, Chapel Hill, NC 27514-2600, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Wang S, Xiao L. Progress in AAV-Mediated In Vivo Gene Therapy and Its Applications in Central Nervous System Diseases. Int J Mol Sci 2025; 26:2213. [PMID: 40076831 PMCID: PMC11899905 DOI: 10.3390/ijms26052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
As the blood-brain barrier (BBB) prevents molecules from accessing the central nervous system (CNS), the traditional systemic delivery of chemical drugs limits the development of neurological drugs. However, in recent years, innovative therapeutic strategies have tried to bypass the restriction of traditional drug delivery methods. In vivo gene therapy refers to emerging biopharma vectors that carry the specific genes and target and infect specific tissues; these infected cells and tissues then undergo fundamental changes at the genetic level and produce therapeutic proteins or substances, thus providing therapeutic benefits. Clinical and preclinical trials mainly utilize adeno-associated viruses (AAVs), lentiviruses (LVs), and other viruses as gene vectors for disease investigation. Although LVs have a higher gene-carrying capacity, the vector of choice for many neurological diseases is the AAV vector due to its safety and long-term transgene expression in neurons. Here, we review the basic biology of AAVs and summarize some key issues in recombinant AAV (rAAV) engineering in gene therapy research; then, we summarize recent clinical trials using rAAV treatment for neurological diseases and provide translational perspectives and future challenges on target selection.
Collapse
Affiliation(s)
- Shuming Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Suchy FP, Karigane D, Nakauchi Y, Higuchi M, Zhang J, Pekrun K, Hsu I, Fan AC, Nishimura T, Charlesworth CT, Bhadury J, Nishimura T, Wilkinson AC, Kay MA, Majeti R, Nakauchi H. Genome engineering with Cas9 and AAV repair templates generates frequent concatemeric insertions of viral vectors. Nat Biotechnol 2025; 43:204-213. [PMID: 38589662 PMCID: PMC11524221 DOI: 10.1038/s41587-024-02171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/08/2024] [Indexed: 04/10/2024]
Abstract
CRISPR-Cas9 paired with adeno-associated virus serotype 6 (AAV6) is among the most efficient tools for producing targeted gene knockins. Here, we report that this system can lead to frequent concatemeric insertions of the viral vector genome at the target site that are difficult to detect. Such errors can cause adverse and unreliable phenotypes that are antithetical to the goal of precision genome engineering. The concatemeric knockins occurred regardless of locus, vector concentration, cell line or cell type, including human pluripotent and hematopoietic stem cells. Although these highly abundant errors were found in more than half of the edited cells, they could not be readily detected by common analytical methods. We describe strategies to detect and thoroughly characterize the concatemeric viral vector insertions, and we highlight analytical pitfalls that mask their prevalence. We then describe strategies to prevent the concatemeric inserts by cutting the vector genome after transduction. This approach is compatible with established gene editing pipelines, enabling robust genetic knockins that are safer, more reliable and more reproducible.
Collapse
Affiliation(s)
- Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Daiki Karigane
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yusuke Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maimi Higuchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinyu Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katja Pekrun
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ian Hsu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy C Fan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Toshiya Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Distinguished Professor Unit, Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Degner KN, Bell JL, Jones SD, Won H. Just a SNP away: The future of in vivo massively parallel reporter assay. CELL INSIGHT 2025; 4:100214. [PMID: 39618480 PMCID: PMC11607654 DOI: 10.1016/j.cellin.2024.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 04/03/2025]
Abstract
The human genome is largely noncoding, yet the field is still grasping to understand how noncoding variants impact transcription and contribute to disease etiology. The massively parallel reporter assay (MPRA) has been employed to characterize the function of noncoding variants at unprecedented scales, but its application has been largely limited by the in vitro context. The field will benefit from establishing a systemic platform to study noncoding variant function across multiple tissue types under physiologically relevant conditions. However, to date, MPRA has been applied to only a handful of in vivo conditions. Given the complexity of the central nervous system and its widespread interactions with all other organ systems, our understanding of neuropsychiatric disorder-associated noncoding variants would be greatly advanced by studying their functional impact in the intact brain. In this review, we discuss the importance, technical considerations, and future applications of implementing MPRA in the in vivo space with the focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katherine N. Degner
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica L. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean D. Jones
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Presa M, Bailey RM, Ray S, Bailey L, Tata S, Murphy T, Piec PA, Combs H, Gray SJ, Lutz C. Preclinical use of a clinically-relevant scAAV9/SUMF1 vector for the treatment of multiple sulfatase deficiency. COMMUNICATIONS MEDICINE 2025; 5:29. [PMID: 39870870 PMCID: PMC11772666 DOI: 10.1038/s43856-025-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD. METHODS We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days. Mice were injected as pre-symptomatic neonates via intracerebroventricular administration, or as post-symptomatic juveniles via intrathecal alone or combination intrathecal and intravenous delivery. Cohorts were assessed for survival, behavioral outcomes, and post-mortem for sulfatase activity. RESULTS We show that treatment of neonates extends survival up to 1-year post-injection. Importantly, delivery of SUMF1 through cerebral spinal fluid at 7 days of age alleviates MSD symptoms. The treated mice show wide distribution of the SUMF1 gene, no signs of toxicity or neuropathy, improved vision and cardiac function, and no behavioral deficits. One-year post treatment, tissues show increased sulfatase activity, indicating functional SUMF1. Further, a GLP toxicology study conducted in rats demonstrates favorable overall safety of this approach. CONCLUSIONS These preclinical studies highlight the potential of our AAV9/SUMF1 vector, the design of which is directly translatable for clinical use, as a gene replacement therapy for MSD patients.
Collapse
Affiliation(s)
- Maximiliano Presa
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Rachel M Bailey
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Somdatta Ray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lauren Bailey
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Saurabh Tata
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Tara Murphy
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Harold Combs
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
10
|
Li Z, Wang X, Janssen JM, Liu J, Tasca F, Hoeben RC, Gonçalves MAFV. Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs. Nucleic Acids Res 2025; 53:gkae1213. [PMID: 39657782 PMCID: PMC11754671 DOI: 10.1093/nar/gkae1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Genome editing based on programmable nucleases and donor DNA constructs permits introducing specific base-pair changes and complete transgenes or live-cell reporter tags at predefined chromosomal positions. A crucial requirement for such versatile genome editing approaches is, however, the need to co-deliver in an effective, coordinated and non-cytotoxic manner all the required components into target cells. Here, adenoviral (AdV) and adeno-associated viral (AAV) vectors are investigated as delivery agents for, respectively, engineered CRISPR-Cas9 nucleases and donor DNA constructs prone to homologous recombination (HR) or homology-mediated end joining (HMEJ) processes. Specifically, canonical single-stranded and self-complementary double-stranded AAVs served as sources of ectopic HR and HMEJ substrates, whilst second- and third-generation AdVs provided for matched CRISPR-Cas9 nucleases. We report that combining single-stranded AAV delivery of HR donors with third-generation AdV transfer of CRISPR-Cas9 nucleases results in selection-free and precise whole transgene insertion in large fractions of target-cell populations (i.e. up to 93%) and disclose that programmable nuclease-induced chromosomal breaks promote AAV transduction. Finally, besides investigating relationships between distinct AAV structures and genome-editing performance endpoints, we further report that high-fidelity CRISPR-Cas9 nucleases are critical for mitigating off-target chromosomal insertion of defective AAV genomes known to be packaged in vector particles.
Collapse
Affiliation(s)
- Zhen Li
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoling Wang
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Josephine M Janssen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Francesca Tasca
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rob C Hoeben
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| |
Collapse
|
11
|
Zhou L, Wang Y, Xu Y, Zhang Y, Zhu C. Advances in AAV-mediated gene replacement therapy for pediatric monogenic neurological disorders. Mol Ther Methods Clin Dev 2024; 32:101357. [PMID: 39559557 PMCID: PMC11570947 DOI: 10.1016/j.omtm.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pediatric monogenetic diseases encompass a spectrum of debilitating neurological disorders that affect infants and children, often resulting in profound cognitive and motor impairments. Gene replacement therapy holds immense promise in addressing the underlying genetic defects responsible for these conditions. Adeno-associated virus (AAV) vectors have emerged as a leading platform for delivering therapeutic genes due to their safety profile and ability to transduce various cell types, including neurons. This review highlights recent advancements in AAV-mediated gene replacement therapy for pediatric monogenetic diseases, focusing on key preclinical and clinical studies. We discuss various strategies to enhance transduction efficiency, target specificity, and safety. Furthermore, we explore challenges such as immune responses, along with innovative approaches to overcome these obstacles. Moreover, we examine the clinical outcomes and safety profiles of AAV-based gene therapies in pediatric patients, providing insights into the feasibility and efficacy of these interventions. Finally, we discuss future directions and potential avenues for further research to optimize the therapeutic potential of AAV-delivered gene replacement therapy for pediatric encephalopathies, ultimately aiming to improve the quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Livia Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Wang Y, Jiang H, Li M, Xu Z, Xu H, Chen Y, Chen K, Zheng W, Lin W, Liu Z, Lin Z, Zhang M. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024; 927:148733. [PMID: 38945310 DOI: 10.1016/j.gene.2024.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The adeno-associated virus (AAV) is a defective single-stranded DNA virus with the simplest structure reported to date. It constitutes a capsid protein and single-stranded DNA. With its high transduction efficiency, low immunogenicity, and tissue specificity, it is the most widely used and promising gene therapy vector. The clustered regularly interspaced short palindromic sequence (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is an emerging technology that utilizes cas9 nuclease to specifically recognize and cleave target genes under the guidance of small guide RNA and realizes gene editing through homologous directional repair and non-homologous recombination repair. In recent years, an increasing number of animal experiments and clinical studies have revealed the great potential of AAV as a vector to deliver the CRISPR/cas9 system for treating genetic diseases and viral infections. However, the immunogenicity, toxicity, low transmission efficiency in brain and ear tissues, packaging size limitations of AAV, and immunogenicity and off-target effects of Cas9 protein pose several clinical challenges. This research reviews the role, challenges, and countermeasures of the AAV-CRISPR/cas9 system in gene therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kepei Chen
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihong Zheng
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Hu M, Li J, Deng J, Liu C, Liu Y, Li H, Feng W, Xu X. AAV-mediated Stambp gene replacement therapy rescues neurological defects in a mouse model of microcephaly-capillary malformation syndrome. Mol Ther 2024; 32:4095-4107. [PMID: 39169623 PMCID: PMC11573578 DOI: 10.1016/j.ymthe.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The microcephaly-capillary malformation (MIC-CAP) syndrome is a life-threatening disease caused by biallelic mutations of the STAMBP gene, which encodes an endosomal deubiquitinating enzyme. To establish a suitable preclinical animal model for clinical therapeutic practice, we generated a central nervous system (CNS)-specific Stambp knockout mouse model (Stambp Sox1-cKO) that phenocopies Stambp null mice including progressive microcephaly, postnatal growth retardation and complete penetrance of preweaning death. In this MIC-CAP syndrome mouse model, early-onset neuronal death occurs specifically in the hippocampus and cortex, accompanied by aggregation of ubiquitinated proteins, and massive neuroinflammation. Importantly, neonatal AAV9-mediated gene supplementation of Stambp in the brain could significantly improve neurological defects, sustain growth, and prolong the lifespan of StambpSox1-cKO mice. Together, our findings reveal a central role of brain defects in the pathogenesis of STAMBP deficiency and provide preclinical evidence that postnatal gene replacement is an effective approach to cure the disease.
Collapse
Affiliation(s)
- Meixin Hu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingxin Deng
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Chunxue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yingying Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Department of Child Health Care, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
15
|
Hochbaum DR, Hulshof L, Urke A, Wang W, Dubinsky AC, Farnsworth HC, Hakim R, Lin S, Kleinberg G, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi MD, Prouty S, Geistlinger L, Banks AS, Scanlan TS, Datta SR, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone remodels cortex to coordinate body-wide metabolism and exploration. Cell 2024; 187:5679-5697.e23. [PMID: 39178853 PMCID: PMC11455614 DOI: 10.1016/j.cell.2024.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Hulshof
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Urke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Dubinsky
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah C Farnsworth
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giona Kleinberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Canaria Park
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Solberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yechan Yang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Baynard
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celia C Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa D Cortopassi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shannon Prouty
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | - Gabriella L Boulting
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Xu L, Yao S, Ding YE, Xie M, Feng D, Sha P, Tan L, Bei F, Yao Y. Designing and optimizing AAV-mediated gene therapy for neurodegenerative diseases: from bench to bedside. J Transl Med 2024; 22:866. [PMID: 39334366 PMCID: PMC11429861 DOI: 10.1186/s12967-024-05661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as an attractive tool for gene delivery, and demonstrated tremendous promise in gene therapy and gene editing-therapeutic modalities with potential "one-and-done" treatment benefits compared to conventional drugs. Given their tropisms for the central nervous system (CNS) across various species including humans, rAAVs have been extensively investigated in both pre-clinical and clinical studies targeting neurodegenerative disease. However, major challenges remain in the application of rAAVs for CNS gene therapy, such as suboptimal vector design, low CNS transduction efficiency and specificity, and therapy-induced immunotoxicity. Therefore, continuing efforts are being made to optimize the rAAV vectors from their "core" genetic payloads to their "coat" or capsid structure. In this review, we describe current approaches for rAAV vector design tailored for transgene expression in the CNS, summarize the development of CNS-targeting AAV serotypes, and highlight recent advancements in AAV capsid engineering, aimed at generating a new generation of rAAVs with improved CNS tropism. Additionally, we discuss various administration routes for delivering rAAVs to the CNS and provide an overview of AAV-mediated gene therapies currently under investigation in clinical trials for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Xu
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yifan Evan Ding
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingqi Feng
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215123, China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Taylor NK, Guggenbiller MJ, Mistry PP, King OD, Harper SQ. A self-complementary AAV proviral plasmid that reduces cross-packaging and ITR promoter activity in AAV vector preparations. Mol Ther Methods Clin Dev 2024; 32:101295. [PMID: 39139628 PMCID: PMC11320455 DOI: 10.1016/j.omtm.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024]
Abstract
Adeno-associated viral vectors (AAVs) are a leading delivery system for gene therapy in animal models and humans. With several Food and Drug Administration-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences, (2) increases correctly packaged AAV payloads, and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.
Collapse
Affiliation(s)
- Noah K. Taylor
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Matthew J. Guggenbiller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Pranali P. Mistry
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Oliver D. King
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Roy AJ, Leipprandt JR, Patterson JR, Stoll AC, Kemp CJ, Oula ZTD, Mola T, Batista AR, Sortwell CE, Sena-Esteves M, Neubig RR. AAV9-Mediated Intrastriatal Delivery of GNAO1 Reduces Hyperlocomotion in Gnao1 Heterozygous R209H Mutant Mice. J Pharmacol Exp Ther 2024; 390:250-259. [PMID: 38866563 DOI: 10.1124/jpet.124.002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
Collapse
Affiliation(s)
- Alex J Roy
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Joseph R Patterson
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Anna C Stoll
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Christopher J Kemp
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Zaipo-Tcheisian D Oula
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Tyler Mola
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Ana R Batista
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Caryl E Sortwell
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Miguel Sena-Esteves
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Richard R Neubig
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
19
|
Kuhn NF, Zaleta-Linares I, Nyberg WA, Eyquem J, Krummel MF. Localized in vivo gene editing of murine cancer-associated fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603114. [PMID: 39071432 PMCID: PMC11275728 DOI: 10.1101/2024.07.11.603114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Discovering the role of fibroblasts residing in the tumor microenvironment (TME) requires controlled, localized perturbations because fibroblasts play critical roles in regulating immunity and tumor biology at multiple sites. Systemic perturbations can lead to unintended, confounding secondary effects, and methods to locally genetically engineer fibroblasts are lacking. To specifically investigate murine stromal cell perturbations restricted to the TME, we developed an adeno-associated virus (AAV)-based method to target any gene-of-interest in fibroblasts at high efficiency (>80%). As proof of concept, we generated single (sKO) and double gene KOs (dKO) of Osmr, Tgfbr2, and Il1r1 in cancer-associated fibroblasts (CAFs) and investigated how their cell states and those of other cells of the TME subsequently change in mouse models of melanoma and pancreatic ductal adenocarcinoma (PDAC). Furthermore, we developed an in vivo knockin-knockout (KIKO) strategy to achieve long-term tracking of CAFs with target gene KO via knocked-in reporter gene expression. This validated in vivo gene editing toolbox is fast, affordable, and modular, and thus holds great potential for further exploration of gene function in stromal cells residing in tumors and beyond.
Collapse
Affiliation(s)
- Nicholas F. Kuhn
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - William A. Nyberg
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Justin Eyquem
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
21
|
Li G, Tian S, Sun X, Zhao M, Zhang F, Zhang JP, Cheng T, Zhang XB. Leveraging CRISPR-Cas9 for Accurate Detection of AAV-Neutralizing Antibodies: The AAV-HDR Method. Hum Gene Ther 2024; 35:490-505. [PMID: 38069573 DOI: 10.1089/hum.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Guohua Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Saining Tian
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinyu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
22
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 180] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
23
|
Zhang J, Frabutt DA, Chrzanowski M, Li N, Miller LM, Tian J, Mulcrone PL, Lam AK, Draper BE, Jarrold MF, Herzog RW, Xiao W. A novel class of self-complementary AAV vectors with multiple advantages based on cceAAV lacking mutant ITR. Mol Ther Methods Clin Dev 2024; 32:101206. [PMID: 38390555 PMCID: PMC10881427 DOI: 10.1016/j.omtm.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Self-complementary AAV vectors (scAAV) use a mutant inverted terminal repeat (mITR) for efficient packaging of complementary stranded DNA, enabling rapid transgene expression. However, inefficient resolution at the mITR leads to the packaging of monomeric or subgenomic AAV genomes. These noncanonical particles reduce transgene expression and may affect the safety of gene transfer. To address these issues, we have developed a novel class of scAAV vectors called covalently closed-end double-stranded AAV (cceAAV) that eliminate the mITR resolution step during production. Instead of using a mutant ITR, we used a 56-bp recognition sequence of protelomerase (TelN) to covalently join the top and bottom strands, allowing the vector to be generated with just a single ITR. To produce cceAAV vectors, the vector plasmid is initially digested with TelN, purified, and then subjected to a standard triple-plasmid transfection protocol followed by traditional AAV vector purification procedures. Such cceAAV vectors demonstrate yields comparable to scAAV vectors. Notably, we observed enhanced transgene expression as compared to traditional scAAV vectors. The treatment of mice with hemophilia B with cceAAV-FIX resulted in significantly enhanced long-term FIX expression. The cceAAV vectors hold several advantages over scAAV vectors, potentially leading to the development of improved human gene therapy drugs.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dylan A. Frabutt
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Ning Li
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jiahe Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Patrick L. Mulcrone
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anh K. Lam
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Martin F. Jarrold
- Chemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Roland W. Herzog
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024; 14:e1607. [PMID: 38488469 PMCID: PMC10941601 DOI: 10.1002/ctm2.1607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
Collapse
Affiliation(s)
- Valeria V. Kolesnik
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ruslan F. Nurtdinov
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ezekiel Sola Oloruntimehin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | | | - Alexander S. Malogolovkin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
- Center for Translational MedicineSirius University of Science and TechnologySochiRussia
| |
Collapse
|
25
|
Huang X, Wang X, Sun Y, Li L, Li A, Xu W, Xie X, Diao Y. Bleomycin promotes rAAV2 transduction via DNA-PKcs/Artemis-mediated DNA break repair pathways. Virology 2024; 590:109959. [PMID: 38100984 DOI: 10.1016/j.virol.2023.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Because it is safe and has a simple genome, recombinant adeno-associated virus (rAAV) is an extremely appealing vector for delivery in in vivo gene therapy. However, its low transduction efficiency for some cells, limits its further application in the field of gene therapy. Bleomycin is a chemotherapeutic agent approved by the FDA whose effect on rAAV transduction has not been studied. In this study, we systematically investigated the effect of Bleomycin on the second-strand synthesis and used CRISPR/CAS9 and RNAi methods to understand the effects of Bleomycin on rAAV vector transduction, particularly the effect of DNA repair enzymes. The results showed that Bleomycin could promote rAAV2 transduction both in vivo and in vitro. Increased transduction was discovered to be a direct result of decreased cytoplasmic rAAV particle degradation and increased second-strand synthesis. TDP1, PNKP, and SETMAR are required to repair the DNA damage gap caused by Bleomycin, TDP1, PNKP, and SETMAR promote rAAV second-strand synthesis. Bleomycin induced DNA-PKcs phosphorylation and phosphorylated DNA-PKcs and Artemis promoted second-strand synthesis. The current study identifies an effective method for increasing the capability and scope of in-vivo and in-vitro rAAV applications, which can amplify cell transduction at Bleomycin concentrations. It also supplies information on combining tumor gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China; Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Xiao Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Yaqi Sun
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Ling Li
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Anna Li
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China
| | - Wentao Xu
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China.
| | - Yong Diao
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, China.
| |
Collapse
|
26
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Liu S, Chowdhury EA, Xu V, Jerez A, Mahmood L, Ly BQ, Le HK, Nguyen A, Rajwade A, Meno-Tetang G, Shah DK. Whole-Body Disposition and Physiologically Based Pharmacokinetic Modeling of Adeno-Associated Viruses and the Transgene Product. J Pharm Sci 2024; 113:141-157. [PMID: 37805073 DOI: 10.1016/j.xphs.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
To facilitate model-informed drug development (MIDD) of adeno-associated virus (AAV) therapy, here we have developed a physiologically based pharmacokinetic (PBPK) model for AAVs following preclinical investigation in mice. After 2E11 Vg/mouse dose of AAV8 and AAV9 encoding a monoclonal antibody (mAb) gene, whole-body disposition of both the vector and the transgene mAb was evaluated over 3 weeks. At steady-state, the following tissue-to-blood (T/B) concentration ratios were found for AAV8/9: ∼50 for liver; ∼10 for heart and muscle; ∼2 for brain, lung, kidney, adipose, and spleen; ≤1 for bone, skin, and pancreas. T/B values for mAb were compared with the antibody biodistribution coefficients, and five different clusters of organs were identified based on their transgene expression profile. All the biodistribution data were used to develop a novel AAV PBPK model that incorporates: (i) whole-body distribution of the vector; (ii) binding, internalization, and intracellular processing of the vector; (iii) transgene expression and secretion; and (iv) whole-body disposition of the secreted transgene product. The model was able to capture systemic and tissue PK of the vector and the transgene-produced mAb reasonably well. Pathway analysis of the PBPK model suggested that liver, muscle, and heart are the main contributors for the secreted transgene mAb. Unprecedented PK data and the novel PBPK model developed here provide the foundation for quantitative systems pharmacology (QSP) investigations of AAV-mediated gene therapies. The PBPK model can also serve as a quantitative tool for preclinical study design and preclinical-to-clinical translation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Vivian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anthony Jerez
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Leeha Mahmood
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Bao Quoc Ly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Huyen Khanh Le
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Anne Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Aneesh Rajwade
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Guy Meno-Tetang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
28
|
Yao Y, Bei F. Adeno-associated Virus-Mediated Gene Delivery Across the Blood-Brain Barrier. ADVANCES IN NEUROBIOLOGY 2024; 41:91-112. [PMID: 39589711 DOI: 10.1007/978-3-031-69188-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as a popular tool for gene therapy in the central nervous system (CNS). Given the dense vasculature in the CNS, systemic administration is an appealing approach for achieving a broad distribution of AAV vectors across the CNS. However, the blood-brain barrier (BBB) is a major obstacle that blocks the entry of AAV vectors into the brain and spinal cord. Thus, there is a great need to develop novel AAV vector technology with enhanced BBB penetration. In this chapter, we briefly summarize AAV biology, possible mechanisms for AAV vectors to overcome the BBB and further engineering strategies, and current clinical trials using systemic AAV gene therapy for CNS diseases.
Collapse
Affiliation(s)
- Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
30
|
Ning K, Zhang X, Feng Z, Hao S, Kuz CA, Cheng F, Park SY, McFarlin S, Engelhardt JF, Yan Z, Qiu J. Inhibition of DNA-dependent protein kinase catalytic subunit boosts rAAV transduction of polarized human airway epithelium. Mol Ther Methods Clin Dev 2023; 31:101115. [PMID: 37841417 PMCID: PMC10568418 DOI: 10.1016/j.omtm.2023.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Adeno-associated virus 2.5T (AAV2.5T) was selected from the directed evolution of AAV capsid library in human airway epithelia. This study found that recombinant AAV2.5T (rAAV2.5T) transduction of well-differentiated primary human airway epithelia induced a DNA damage response (DDR) characterized by the phosphorylation of replication protein A32 (RPA32), histone variant H2AX (H2A histone family member X), and all three phosphatidylinositol 3-kinase-related kinases: ataxia telangiectasia mutated kinase, ataxia telangiectasia and Rad3-related kinase (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). While suppressing the expression of ATR by a specific pharmacological inhibitor or targeted gene silencing inhibited rAAV2.5T transduction, DNA-PKcs inhibition or targeted gene silencing significantly increased rAAV2.5T transgene expression. Notably, DNA-PKcs inhibitors worked as a "booster" to further increase rAAV2.5T transgene expression after treatment with doxorubicin and did not compromise epithelial integrity. Thus, our study provides evidence that DDR is associated with rAAV transduction in well-differentiated human airway epithelia, and DNA-PKcs inhibition has the potential to boost rAAV transduction. These findings highlight that the application of DDR inhibition-associated pharmacological interventions has the potential to increase rAAV transduction and thus to reduce the required vector dose.
Collapse
Affiliation(s)
- Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiujuan Zhang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soo Yuen Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Thampi P, Seabaugh KA, Pezzanite LM, Chu CR, Phillips JN, Grieger JC, McIlwraith CW, Samulski RJ, Goodrich LR. A pilot study to determine the optimal dose of scAAVIL-1ra in a large animal model of post-traumatic osteoarthritis. Gene Ther 2023; 30:792-800. [PMID: 37696981 PMCID: PMC10727982 DOI: 10.1038/s41434-023-00420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Gene therapy approaches using adeno-associated viral vectors have been successfully tested in the equine post-traumatic osteoarthritis (PTOA) model. Owing to differences in the levels of transgene expression and adverse tissue reactions observed in published studies, we sought to identify a safe therapeutic dose of scAAVIL-1ra in an inflamed and injured joint that would result in improved functional outcomes without any adverse events. scAAVIL-1ra was delivered intra-articularly over a 100-fold range, and horses were evaluated throughout and at the end of the 10-week study. A dose-related increase in IL-1ra levels with a decrease in PGE2 levels was observed, with the peak IL-1ra concentration being observed 7 days post-treatment in all groups. Perivascular infiltration with mononuclear cells was observed within the synovial membrane of the joint treated with the highest viral dose of 5 × 1012 vg, but this was absent in the lower-dosed joints. The second-highest dose of scAAVeqIL-1ra 5 × 1011 vg demonstrated elevated IL-1ra levels without any cellular response in the synovium. Taken together, the data suggest that the 10-fold lower dose of 5 × 1011vg scAAVIL-1ra would be a safe therapeutic dose in an equine model of PTOA.
Collapse
Affiliation(s)
- P Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - K A Seabaugh
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - L M Pezzanite
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - C R Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - J N Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - J C Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - C W McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - R J Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - L R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
32
|
Zanker J, Hüser D, Savy A, Lázaro-Petri S, Hammer EM, Schwarzer C, Heilbronn R. Evaluation of the SH-SY5Y cell line as an in vitro model for potency testing of a neuropeptide-expressing AAV vector. Front Mol Neurosci 2023; 16:1280556. [PMID: 38098942 PMCID: PMC10720649 DOI: 10.3389/fnmol.2023.1280556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Viral vectors have become important tools for basic research and clinical gene therapy over the past years. However, in vitro testing of vector-derived transgene function can be challenging when specific post-translational modifications are needed for biological activity. Similarly, neuropeptide precursors need to be processed to yield mature neuropeptides. SH-SY5Y is a human neuroblastoma cell line commonly used due to its ability to differentiate into specific neuronal subtypes. In this study, we evaluate the suitability of SH-SY5Y cells in a potency assay for neuropeptide-expressing adeno-associated virus (AAV) vectors. We looked at the impact of neuronal differentiation and compared single-stranded (ss) AAV and self-complementary (sc) AAV transduction at increasing MOIs, RNA transcription kinetics, as well as protein expression and mature neuropeptide production. SH-SY5Y cells proved highly transducible with AAV1 already at low MOIs in the undifferentiated state and even better after neuronal differentiation. Readouts were GFP or neuropeptide mRNA expression. Production of mature neuropeptides was poor in undifferentiated cells. By contrast, differentiated cells produced and sequestered mature neuropeptides into the medium in a MOI-dependent manner.
Collapse
Affiliation(s)
- Jeanette Zanker
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Hüser
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrien Savy
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Lázaro-Petri
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva-Maria Hammer
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Regine Heilbronn
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 2023; 22:875-894. [PMID: 37723222 DOI: 10.1038/s41573-023-00762-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/20/2023]
Abstract
CRISPR-based drugs can theoretically manipulate any genetic target. In practice, however, these drugs must enter the desired cell without eliciting an unwanted immune response, so a delivery system is often required. Here, we review drug delivery systems for CRISPR-based genome editors, focusing on adeno-associated viruses and lipid nanoparticles. After describing how these systems are engineered and their subsequent characterization in preclinical animal models, we highlight data from recent clinical trials. Preclinical targeting mediated by polymers, proteins, including virus-like particles, and other vehicles that may deliver CRISPR systems in the future is also discussed.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
35
|
Ling Q, Herstine JA, Bradbury A, Gray SJ. AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov 2023; 22:789-806. [PMID: 37658167 DOI: 10.1038/s41573-023-00766-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/03/2023]
Abstract
Recent advancements in gene supplementation therapy are expanding the options for the treatment of neurological disorders. Among the available delivery vehicles, adeno-associated virus (AAV) is often the favoured vector. However, the results have been variable, with some trials dramatically altering the course of disease whereas others have shown negligible efficacy or even unforeseen toxicity. Unlike traditional drug development with small molecules, therapeutic profiles of AAV gene therapies are dependent on both the AAV capsid and the therapeutic transgene. In this rapidly evolving field, numerous clinical trials of gene supplementation for neurological disorders are ongoing. Knowledge is growing about factors that impact the translation of preclinical studies to humans, including the administration route, timing of treatment, immune responses and limitations of available model systems. The field is also developing potential solutions to mitigate adverse effects, including AAV capsid engineering and designs to regulate transgene expression. At the same time, preclinical research is addressing new frontiers of gene supplementation for neurological disorders, with a focus on mitochondrial and neurodevelopmental disorders. In this Review, we describe the current state of AAV-mediated neurological gene supplementation therapy, including critical factors for optimizing the safety and efficacy of treatments, as well as unmet needs in this field.
Collapse
Affiliation(s)
- Qinglan Ling
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Herstine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Allison Bradbury
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University, Columbus, OH, USA
| | - Steven J Gray
- Department of Paediatrics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Burke CT, Vitko I, Straub J, Nylund EO, Gawda A, Blair K, Sullivan KA, Ergun L, Ottolini M, Patel MK, Perez-Reyes E. EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications. Int J Mol Sci 2023; 24:14467. [PMID: 37833914 PMCID: PMC10572392 DOI: 10.3390/ijms241914467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.
Collapse
Affiliation(s)
- Cassidy T. Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elsa O. Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lara Ergun
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
37
|
Tournier B, Bouteldja F, Amossé Q, Nicolaides A, Duarte Azevedo M, Tenenbaum L, Garibotto V, Ceyzériat K, Millet P. 18 kDa Translocator Protein TSPO Is a Mediator of Astrocyte Reactivity. ACS OMEGA 2023; 8:31225-31236. [PMID: 37663488 PMCID: PMC10468775 DOI: 10.1021/acsomega.3c03368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
An increase in astrocyte reactivity has been described in Alzheimer's disease and seems to be related to the presence of a pro-inflammatory environment. Reactive astrocytes show an increase in the density of the 18 kDa translocator protein (TSPO), but TSPO involvement in astrocyte functions remains poorly understood. The goal of this study was to better characterize the mechanisms leading to the increase in TSPO under inflammatory conditions and the associated consequences. For this purpose, the C6 astrocytic cell line was used in the presence of lipopolysaccharide (LPS) or TSPO overexpression mediated by the transfection of a plasmid encoding TSPO. The results show that nonlethal doses of LPS induced TSPO expression at mRNA and protein levels through a STAT3-dependent mechanism and increased the number of mitochondria per cell. LPS stimulated reactive oxygen species (ROS) production and decreased glucose consumption (quantified by the [18F]FDG uptake), and these effects were diminished by FEPPA, a TSPO antagonist. The transfection-mediated overexpression of TSPO induced ROS production, and this effect was blocked by FEPPA. In addition, a synergistic effect of overexpression of TSPO and LPS on ROS production was observed. These data show that the increase of TSPO in astrocytic cells is involved in the regulation of glucose metabolism and in the pro-inflammatory response. These data suggest that the overexpression of TSPO by astrocytes in Alzheimer's disease would have rather deleterious effects by promoting the pro-inflammatory response.
Collapse
Affiliation(s)
- Benjamin
B. Tournier
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Farha Bouteldja
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Quentin Amossé
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Alekos Nicolaides
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Marcelo Duarte Azevedo
- Laboratory
of Cellular and Molecular Neurotherapies, Center for Neuroscience
Research, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Liliane Tenenbaum
- Laboratory
of Cellular and Molecular Neurotherapies, Center for Neuroscience
Research, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Valentina Garibotto
- Division
of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva 1206, Switzerland
- CIBM
Center for BioMedical Imaging; NIMTLab, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Kelly Ceyzériat
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
- Division
of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva 1206, Switzerland
- CIBM
Center for BioMedical Imaging; NIMTLab, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Philippe Millet
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
38
|
Hochbaum DR, Dubinsky AC, Farnsworth HC, Hulshof L, Kleinberg G, Urke A, Wang W, Hakim R, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi M, Prouty S, Geistlinger L, Banks A, Scanlan T, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552874. [PMID: 37609206 PMCID: PMC10441422 DOI: 10.1101/2023.08.10.552874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
|
39
|
Brown EE, Scandura MJ, Pierce EA. Expression of NMNAT1 in the photoreceptors is sufficient to prevent NMNAT1-associated retinal degeneration. Mol Ther Methods Clin Dev 2023; 29:319-328. [PMID: 37214313 PMCID: PMC10193288 DOI: 10.1016/j.omtm.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
Nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) is a ubiquitously expressed enzyme involved in nuclear NAD+ production throughout the body. However, mutations in the NMNAT1 gene lead to retina-specific disease with few reports of systemic effects. We have previously demonstrated that AAV-mediated gene therapy using self-complementary AAV (scAAV) to ubiquitously express NMNAT1 throughout the retina prevents retinal degeneration in a mouse model of NMNAT1-associated disease. We aimed to develop a better understanding of the cell types in the retina that contribute to disease pathogenesis in NMNAT1-associated disease, and to identify the cell types that require NMNAT1 expression for therapeutic benefit. To achieve this goal, we treated Nmnat1V9M/V9M mice with scAAV using cell type-specific promoters to restrict NMNAT1 expression to distinct retinal cell types. We hypothesized that photoreceptors are uniquely vulnerable to NAD+ depletion due to mutations in NMNAT1. Consistent with this hypothesis, we identified that treatments that drove NMNAT1 expression in the photoreceptors led to preservation of retinal morphology. These findings suggest that gene therapies for NMNAT1-associated disease should aim to express NMNAT1 in the photoreceptor cells.
Collapse
Affiliation(s)
- Emily E. Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| | - Michael J. Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Chen X, Dong T, Hu Y, De Pace R, Mattera R, Eberhardt K, Ziegler M, Pirovolakis T, Sahin M, Bonifacino JS, Ebrahimi-Fakhari D, Gray SJ. Intrathecal AAV9/AP4M1 gene therapy for hereditary spastic paraplegia 50 shows safety and efficacy in preclinical studies. J Clin Invest 2023; 133:e164575. [PMID: 36951961 PMCID: PMC10178841 DOI: 10.1172/jci164575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Spastic paraplegia 50 (SPG50) is an ultrarare childhood-onset neurological disorder caused by biallelic loss-of-function variants in the AP4M1 gene. SPG50 is characterized by progressive spastic paraplegia, global developmental delay, and subsequent intellectual disability, secondary microcephaly, and epilepsy. We preformed preclinical studies evaluating an adeno-associated virus (AAV)/AP4M1 gene therapy for SPG50 and describe in vitro studies that demonstrate transduction of patient-derived fibroblasts with AAV2/AP4M1, resulting in phenotypic rescue. To evaluate efficacy in vivo, Ap4m1-KO mice were intrathecally (i.t.) injected with 5 × 1011, 2.5 × 1011, or 1.25 × 1011 vector genome (vg) doses of AAV9/AP4M1 at P7-P10 or P90. Age- and dose-dependent effects were observed, with early intervention and higher doses achieving the best therapeutic benefits. In parallel, three toxicology studies in WT mice, rats, and nonhuman primates (NHPs) demonstrated that AAV9/AP4M1 had an acceptable safety profile up to a target human dose of 1 × 1015 vg. Of note, similar degrees of minimal-to-mild dorsal root ganglia (DRG) toxicity were observed in both rats and NHPs, supporting the use of rats to monitor DRG toxicity in future i.t. AAV studies. These preclinical results identify an acceptably safe and efficacious dose of i.t.-administered AAV9/AP4M1, supporting an investigational gene transfer clinical trial to treat SPG50.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Dong
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhui Hu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kathrin Eberhardt
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J. Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Yang H, Brown RH, Wang D, Strauss KA, Gao G. Rescue of GM3 synthase deficiency by spatially controlled, rAAV-mediated ST3GAL5 delivery. JCI Insight 2023; 8:e168688. [PMID: 37014712 PMCID: PMC10243808 DOI: 10.1172/jci.insight.168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
GM3 synthase deficiency (GM3SD) is an infantile-onset epileptic encephalopathy syndrome caused by biallelic loss-of-function mutations in ST3GAL5. Loss of ST3GAL5 activity in humans results in systemic ganglioside deficiency and severe neurological impairment. No disease-modifying treatment is currently available. Certain recombinant adeno-associated viruses (rAAVs) can cross the blood-brain barrier to induce widespread, long-term gene expression in the CNS and represent a promising therapeutic strategy. Here, we show that a first-generation rAAV-ST3GAL5 replacement vector using a ubiquitous promoter restored tissue ST3GAL5 expression and normalized cerebral gangliosides in patient-derived induced pluripotent stem cell neurons and brain tissue from St3gal5-KO mice but caused fatal hepatotoxicity when administered systemically. In contrast, a second-generation vector optimized for CNS-restricted ST3GAL5 expression, administered by either the intracerebroventricular or i.v. route at P1, allowed for safe and effective rescue of lethality and behavior impairment in symptomatic GM3SD mice up to a year. These results support further clinical development of ST3GAL5 gene therapy.
Collapse
Affiliation(s)
- Huiya Yang
- Horae Gene Therapy Center
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Robert H. Brown
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Dan Wang
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kevin A. Strauss
- Horae Gene Therapy Center
- Clinic for Special Children, Strasburg, Pennsylvania, USA
- Department of Molecular, Cell and Cancer Biology, and
| | - Guangping Gao
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Asaad W, Volos P, Maksimov D, Khavina E, Deviatkin A, Mityaeva O, Volchkov P. AAV genome modification for efficient AAV production. Heliyon 2023; 9:e15071. [PMID: 37095911 PMCID: PMC10121408 DOI: 10.1016/j.heliyon.2023.e15071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The adeno-associated virus (AAV) is one of the most potent vectors in gene therapy. The experimental profile of this vector shows its efficiency and accepted safety, which explains its increased usage by scientists for the research and treatment of a wide range of diseases. These studies require using functional, pure, and high titers of vector particles. In fact, the current knowledge of AAV structure and genome helps improve the scalable production of AAV vectors. In this review, we summarize the latest studies on the optimization of scalable AAV production through modifying the AAV genome or biological processes inside the cell.
Collapse
|
43
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
44
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
45
|
Ahmed CM, Massengill MT, Ildefonso CJ, Jalligampala A, Zhu P, Li H, Patel AP, McCall MA, Lewin AS. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP). Vision Res 2023; 206:108189. [PMID: 36773475 DOI: 10.1016/j.visres.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Autosomal dominant retinitis pigmentosa (adRP) is frequently caused by mutations in RHO, the gene for rhodopsin. In previous experiments in dogs with the T4R mutation in RHO, an AAV2/5 vector expressing an shRNA directed to human and dog RHO mRNA and an shRNA-resistant human RHO cDNA (AAV-RHO820-shRNA820) prevented retinal degeneration for more than eight months following injection. It is crucial, however, to determine if this RNA replacement vector acts in a mutation-independent and species-independent manner. We, therefore, injected mice transgenic for human P23H RHO with this vector unilaterally at postnatal day 30. We monitored their retinal structure by using spectral-domain optical coherence tomography (SD-OCT) and retinal function using electroretinography (ERG) for nine months. We compared these to P23H RHO transgenic mice injected unilaterally with a control vector. Though retinas continued to thin over time, compared to control injected eyes, treatment with AAV-RHO820-shRNA820 slowed the loss of photoreceptor cells and the decrease in ERG amplitudes during the nine-month study period. Unexpectedly, we also observed the preservation of retinal structure and function in the untreated contralateral eyes of AAV-RHO820-shRNA820 treated mice. PCR analysis and western blots showed that a low amount of vector from injected eyes was present in uninjected eyes. In addition, protective neurotrophic factors bFGF and GDNF were elevated in both eyes of treated mice. Our finding suggests that using this or similar RNA replacement vectors in human gene therapy may provide clinical benefit to both eyes of patients with adRP.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
46
|
Shitik EM, Shalik IK, Yudkin DV. AAV- based vector improvements unrelated to capsid protein modification. Front Med (Lausanne) 2023; 10:1106085. [PMID: 36817775 PMCID: PMC9935841 DOI: 10.3389/fmed.2023.1106085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the leading platform for delivering genetic constructs in vivo. To date, three AAV-based gene therapeutic agents have been approved by the FDA and are used in clinical practice. Despite the distinct advantages of gene therapy development, it is clear that AAV vectors need to be improved. Enhancements in viral vectors are mainly associated with capsid protein modifications. However, there are other structures that significantly affect the AAV life cycle and transduction. The Rep proteins, in combination with inverted terminal repeats (ITRs), determine viral genome replication, encapsidation, etc. Moreover, transgene cassette expression in recombinant variants is directly related to AAV production and transduction efficiency. This review discusses the ways to improve AAV vectors by modifying ITRs, a transgene cassette, and the Rep proteins.
Collapse
|
47
|
Huang X, Wang X, Ren Y, Gao P, Xu W, Xie X, Diao Y. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes. Virol J 2023; 20:2. [PMID: 36611172 PMCID: PMC9825130 DOI: 10.1186/s12985-023-01964-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent seminal studies have revealed that endosomal reactive oxygen species (ROS) promote rather than inhibit viral infection. Some ROS generators, including shikonin and H2O2, have the potential to enhance recombinant adeno-associated virus (rAAV) transduction. However, the impact of ROS on rAAV intracellular trafficking remains unclear. METHODS To understand the effects of ROS on the transduction of rAAV vectors, especially the rAAV subcellular distribution profiles, this study systematically explored the effect of ROS on each step of rAAV intracellular trafficking pathway using fluorescently-labeled rAAV and qPCR quantification determination. RESULTS The results showed promoted in-vivo and in-vitro rAAV transduction by ROS exposure, regardless of vector serotype or cell type. ROS treatment directed rAAV intracellular trafficking towards a more productive pathway by upregulating the expression of cathepsins B and L, accelerating the rAAV transit in late endosomes, and increasing the rAAV nucleus entry. CONCLUSIONS These data support that ROS generative drugs, such as shikonin, have the potential to promote rAAV vector transduction by promoting rAAV's escape from late endosomes, and enhancing its productive trafficking to the nucleus.
Collapse
Affiliation(s)
- Xiaoping Huang
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiao Wang
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Yanxuan Ren
- grid.411404.40000 0000 8895 903XSchool of Medicine, Huaqiao University, Quanzhou, China
| | - Pingzhang Gao
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Wentao Xu
- grid.449406.b0000 0004 1757 7252College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, China.
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, China.
| |
Collapse
|
48
|
Zhang Y, Bassel-Duby R, Olson EN. CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System. Methods Mol Biol 2023; 2587:411-425. [PMID: 36401041 PMCID: PMC10069557 DOI: 10.1007/978-1-0716-2772-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder, caused by mutations in the DMD gene coding dystrophin. Applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) for therapeutic gene editing represents a promising technology to correct this devastating disease through elimination of underlying genetic mutations. Adeno-associated virus (AAV) has been widely used for gene therapy due to its low immunogenicity and high tissue tropism. In particular, CRISPR-Cas9 gene editing components packaged by self-complementary AAV (scAAV) demonstrate robust viral transduction and efficient gene editing, enabling restoration of dystrophin expression throughout skeletal and cardiac muscle in animal models of DMD. Here, we describe protocols for cloning CRISPR single guide RNAs (sgRNAs) into a scAAV plasmid and procedures for systemic delivery of AAVs into a DMD mouse model. We also provide methodologies for quantification of dystrophin restoration after systemic CRISPR-Cas9-mediated correction of DMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
Zhang J, Chrzanowski M, Frabutt DA, Lam AK, Mulcrone PL, Li L, Konkle BA, Miao CH, Xiao W. Cryptic resolution sites in the vector plasmid lead to the heterogeneities in the rAAV vectors. J Med Virol 2023; 95:e28433. [PMID: 36571262 PMCID: PMC10155192 DOI: 10.1002/jmv.28433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors carry a cassette of interest retaining only the inverted terminal repeats (ITRs) from the wild-type virus. Conventional rAAV production primarily uses a vector plasmid as well as helper genes essential for AAV replication and packaging. Nevertheless, plasmid backbone related contaminants have been a major source of vector heterogeneity. The mechanism driving the contamination phenomenon has yet to be elucidated. Here we identified cryptic resolution sites in the plasmid backbone as a key source for producing snapback genomes, which leads to the increase of vector genome heterogeneity in encapsidated virions. By using a single ITR plasmid as a model molecule and mapping subgenomic particles, we found that there exist a few typical DNA break hotspots in the vector DNA plasmid backbone, for example, on the ampicillin DNA element, called aberrant rescue sites. DNA around these specific breakage sites may assume some typical secondary structures. Similar to normal AAV vectors, plasmid DNA with a single ITR was able to rescue and replicate efficiently. These subgenomic DNA species significantly compete for trans factors required for rAAV rescue, replication, and packaging. The replication of single ITR contaminants during AAV production is independent of size. Packaging of these species is greatly affected by its size. A single ITR and a cryptic resolution site in the plasmid work synergistically, likely causing a source of plasmid backbone contamination.
Collapse
Affiliation(s)
- Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dylan A. Frabutt
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Anh K. Lam
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
50
|
Wang K, Huang R, Zhang L, Liu D, Diao Y. Recombinase-Aided Amplification Combined with Lateral Flow (LF-RAA) Assay for Rapid AAV Genome Detection. ACS OMEGA 2022; 7:47832-47839. [PMID: 36591156 PMCID: PMC9798390 DOI: 10.1021/acsomega.2c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Adeno-associated virus (AAV) is a versatile gene vector that is widely used in mammalian research. In basic studies and large-scale AAV production, genetic testing is ubiquitous and routine polymerase chain reaction (PCR)-based tests limit the efficiency due to the labor-intensive and time-consuming requirements of thermal cycling. This study introduces an assay based on recombinase-aided amplification combined with lateral flow (LF-RAA), which can quickly and accurately detect the AAV genome, thus improving the efficiency of AAV research and production. This application is the first use of an RAA approach to AAV genome detection. In this point-of-care testing (POCT) detection platform, the RAA reaction and LF readout are integrated into a user-friendly microfluidic chip that can be applied without advanced technical training. The LF-RAA chip provides high sensitivity, with a limit of detection of 10 copies/μL, and generates results quickly, and it only needs to be incubated for 10 min at a constant temperature, that is, 39 °C. Results are visualized on the LF Dipstick, and detection results are reliable, validated with 100% accuracy in 47 laboratory-produced recombination adeno-associated virus (rAAV) samples carrying target genes from several different viruses. The LF-RAA assay is applicable in AAV research and production processes requiring genome identification.
Collapse
|