1
|
He Y, Long Y, Zhang C, Ma J, Ke C, Tang C, Ye Y, Lin G. Dietary alcohol exacerbates the hepatotoxicity induced by pyrrolizidine alkaloids: Hazard from food contamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127706. [PMID: 34801312 DOI: 10.1016/j.jhazmat.2021.127706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are the most common plant-derived toxins with emerging evidence to contaminate soil, water, nearby plants and derived food products. Outbreaks of human poisoning cases, due to the ingestion of PA-contaminated food, have been reported in various countries including Ethiopia. This study first investigated the contamination of PAs in retail honey in Ethiopia. A striking 77% of honey samples (27/30) were found to contain PAs with the content ranging over 1.5-323.4 μg/kg. Notably, these PAs were also found as contaminants in mead, an alcoholic beverage made from local honey, indicating the transfer of PAs from the primarily contaminated honey into mead. Further toxicological examinations revealed that long-term PA exposure caused vasculature damage, fibrosis, and steatosis in mouse livers, and co-exposure to dietary alcohol exacerbated the PA-induced chronic hepatotoxicity. Furthermore, the study revealed that moderate alcohol intake did not affect the initiation mechanism (hepatic cytochrome P450-mediated bioactivation) of PA-induced hepatotoxicity but significantly disturbed hepatic glutathione homeostasis, thereby increasing oxidative stress in mouse liver and enhancing PA-induced hepatotoxicity. Our findings exemplify the carry-over of PA contamination through the food chain. Precautionary interventions are warranted on the hazardous effects of dietary exposure to PAs, particularly with concomitant alcohol consumption.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Long
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Changqiang Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Kumar A, Zhou L, Zhi K, Raji B, Pernell S, Tadrous E, Kodidela S, Nookala A, Kochat H, Kumar S. Challenges in Biomaterial-Based Drug Delivery Approach for the Treatment of Neurodegenerative Diseases: Opportunities for Extracellular Vesicles. Int J Mol Sci 2020; 22:E138. [PMID: 33375558 PMCID: PMC7795247 DOI: 10.3390/ijms22010138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Biomaterials have been the subject of numerous studies to pursue potential therapeutic interventions for a wide variety of disorders and diseases. The physical and chemical properties of various materials have been explored to develop natural, synthetic, or semi-synthetic materials with distinct advantages for use as drug delivery systems for the central nervous system (CNS) and non-CNS diseases. In this review, an overview of popular biomaterials as drug delivery systems for neurogenerative diseases is provided, balancing the potential and challenges associated with the CNS drug delivery. As an effective drug delivery system, desired properties of biomaterials are discussed, addressing the persistent challenges such as targeted drug delivery, stimuli responsiveness, and controlled drug release in vivo. Finally, we discuss the prospects and limitations of incorporating extracellular vesicles (EVs) as a drug delivery system and their use for biocompatible, stable, and targeted delivery with limited immunogenicity, as well as their ability to be delivered via a non-invasive approach for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Shelby Pernell
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| | | | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38104, USA; (K.Z.); (B.R.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (L.Z.); (S.P.); (E.T.); (S.K.)
| |
Collapse
|
3
|
Abstract
The optimal clinical exploitation of viruses as gene therapy or oncolytic vectors will require them to be administered intravenously. Strategies must therefore be deployed to enable viruses to survive the harsh neutralizing environment of the bloodstream and achieve deposition within and throughout target tissues or tumor deposits. This chapter describes the genetic and chemical engineering approaches that are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Claudia A P Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Abstract
The objective of this article is to propose a re-visiting of the paradigms of nano-carriers based drug routeing from an industrial viewpoint. The accumulation of drugs in specific body compartments after intravenous administration and the improvement of the oral bioavailability of peptides were taken as examples to propose an update of the translational framework preceding industrialisation. In addition to the recent advances on the biopharmacy of nano-carriers, the evolution of adjacent disciplines such as the biology of diseases, the chemistry of polymers, lipids and conjugates, the physico-chemistry of colloids and the assembling of materials at the nanoscale (referred to as microfluidics) are taken into account to consider new avenues in the applications of drug nano-carriers. The deeper integration of the properties of the drug and of the nano-carrier, in the specific context of the disease, advocates for product oriented programmes. At the same time, the advent of powerful collaborative digital tools makes possible the extension of the expertise spectrum. In this open-innovation framework, the Technology Readiness Levels (TRLs) of nano-carriers are proposed as a roadmap for the translational process from the Research stage to the Proof-of-Concept in human.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- a Pre-Development Sciences, Pharmaceutical Development Platform , Sanofi Research & Development , Paris , France
| | - Didier V Bazile
- b Integrated CMC External Innovation , Sanofi Research & Development , Paris , France
| |
Collapse
|
5
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
6
|
Piccolo P, Brunetti-Pierri N. Gene therapy for inherited diseases of liver metabolism. Hum Gene Ther 2015; 26:186-92. [PMID: 25830689 DOI: 10.1089/hum.2015.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is entering the stage of initial clinical development to treat a growing number of inherited metabolic diseases. This review outlines the development of liver-directed gene therapy for diseases caused by deficiencies of enzymes that are primarily expressed in the liver and discusses the disorders that appear most promising for clinical translation.
Collapse
Affiliation(s)
- Pasquale Piccolo
- 1 Telethon Institute of Genetics and Medicine , Pozzuoli, Naples 80078, Italy
| | | |
Collapse
|
7
|
van der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 2014; 195:72-85. [PMID: 25094032 DOI: 10.1016/j.jconrel.2014.07.049] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are membrane-derived particles surrounded by a (phospho)lipid bilayer that are released by cells in the human body. In addition to direct cell-to-cell contact and the secretion of soluble factors, EVs function as another mechanism of intercellular communication. These vesicles are able to efficiently deliver their parental cell-derived molecular cargo to recipient cells, which can result in structural changes at an RNA, protein, or even phenotypic level. For this reason, EVs have recently gained much interest for drug delivery purposes. In contrast to these 'natural delivery systems', synthetic (phospho)lipid vesicles, or liposomes, have been employed as drug carriers for decades, resulting in several approved liposomal nanomedicines used in the clinic. This review discusses the similarities and differences between EVs and liposomes with the focus on features that are relevant for drug delivery purposes such as circulation time, biodistribution, cellular interactions and cargo loading. By applying beneficial features of EVs to liposomes and vice versa, improved drug carriers can be developed which will advance the field of nanomedicines and ultimately improve patient outcomes. While the application of EVs for therapeutic drug delivery is still in its infancy, issues regarding the understanding of EV biogenesis, large-scale production and in vivo interactions need to be addressed in order to develop successful and cost-effective EV-based drug delivery systems.
Collapse
Affiliation(s)
- Roy van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Vader
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Schmitt F, Pastore N, Abarrategui-Pontes C, Flageul M, Myara A, Laplanche S, Labrune P, Podevin G, Nguyen TH, Brunetti-Pierri N. Correction of Hyperbilirubinemia in Gunn Rats by Surgical Delivery of Low Doses of Helper-Dependent Adenoviral Vectors. Hum Gene Ther Methods 2014; 25:181-6. [DOI: 10.1089/hgtb.2013.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Françoise Schmitt
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, 44093 Nantes, France
- Pediatric Hepatogastroenterology–HIFIH Laboratory, UPRES 3859, SFR 4038, 49933 Angers, France
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine, 80131 Napoli, Italy
| | - Cecilia Abarrategui-Pontes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, 44093 Nantes, France
| | - Maude Flageul
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, 44093 Nantes, France
| | - Anne Myara
- Service de Biologie, Groupe Hospitalier Saint Joseph, 75674 Paris, France
| | - Sophie Laplanche
- Service de Biologie, Groupe Hospitalier Saint Joseph, 75674 Paris, France
| | - Philippe Labrune
- Service de Pédiatrie, Hôpital Antoine Béclère, 92141 Clamart, France
| | - Guillaume Podevin
- Pediatric Hepatogastroenterology–HIFIH Laboratory, UPRES 3859, SFR 4038, 49933 Angers, France
- INSERM U948, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, 44093 Nantes, France
| | - Tuan Huy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1064, Centre Hospitalier Universitaire (CHU) Hôtel Dieu, 44093 Nantes, France
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, 80131 Napoli, Italy
- Department of Translational Medicine, Federico II University, 80131 Napoli, Italy
| |
Collapse
|
9
|
Piccolo P, Brunetti-Pierri N. Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy. Biomedicines 2014; 2:132-148. [PMID: 28548064 PMCID: PMC5423471 DOI: 10.3390/biomedicines2020132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/07/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022] Open
Abstract
Helper-dependent adenoviral (HDAd) vectors that are devoid of all viral coding sequences are promising non-integrating vectors for gene therapy because they efficiently transduce a variety of cell types in vivo, have a large cloning capacity, and drive long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd vectors is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration and result in acute toxicity, the severity of which is dose dependent. Intense efforts have been focused on elucidating adenoviral vector-host interactions and the factors involved in the acute toxicity. This review focuses on the recent acquisition of data on such interactions and on strategies investigated to improve the therapeutic index of HDAd vectors.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy.
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy.
- Department of Translational Medicine, Federico II University of Naples, Naples 80131, Italy.
| |
Collapse
|
10
|
Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1169-80. [PMID: 23727126 DOI: 10.1016/j.nano.2013.05.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/09/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED miR-122, a liver-specific tumor suppressor microRNA, is frequently down-regulated in hepatocellular carcinoma (HCC). LNP-DP1, a cationic lipid nanoparticle formulation, was developed as a vehicle to restore deregulated gene expression in HCC cells by miR-122 delivery. LNP-DP1 consists of 2-dioleyloxy-N,N-dimethyl-3-aminopropane (DODMA), egg phosphatidylcholine, cholesterol and cholesterol-polyethylene glycol. In vitro, LNP-DP1-mediated transfection of a miR-122 mimic to HCC cells down-regulated miR-122 target genes by >95%. In vivo, siRNAs/miRNAs encapsulated in LNP-DP1 were preferentially taken up by hepatocytes and tumor cells in a mouse HCC model. The miR-122 mimic in LNP-DP1 was functional in HCC cells without causing systemic toxicity. To demonstrate its therapeutic potential, LNP-DP1 encapsulating miR-122 mimic was intratumorally injected and resulted in ~50% growth suppression of HCC xenografts within 30 days, which correlated well with suppression of target genes and impairment of angiogenesis. These data demonstrate the potential of LNP-DP1-mediated microRNA delivery as a novel strategy for HCC therapy. FROM THE CLINICAL EDITOR In this study, LNP-DP1 -a cationic lipid nanoparticle formulation -is reported as a vehicle to restore deregulated gene expression in hepatic carcinoma cells by siRNA and miRNA delivery using a mouse model. Further expansions to this study may enable transition to clinical trials of this system.
Collapse
|
11
|
Jacobs F, Gordts SC, Muthuramu I, De Geest B. The liver as a target organ for gene therapy: state of the art, challenges, and future perspectives. Pharmaceuticals (Basel) 2012; 5:1372-92. [PMID: 24281341 PMCID: PMC3816670 DOI: 10.3390/ph5121372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022] Open
Abstract
The liver is a target for gene therapy of inborn errors of metabolism, of hemophilia, and of acquired diseases such as liver cancer and hepatitis. The ideal gene transfer strategy should deliver the transgene DNA to parenchymal liver cells with accuracy and precision in the absence of side effects. Liver sinusoids are highly specialized capillaries with a particular endothelial lining: the endothelium contains open fenestrae, whereas a basal lamina is lacking. Fenestrae provide a direct access of gene transfer vectors to the space of Disse, in which numerous microvilli from parenchymal liver cells protrude. The small diameter of fenestrae in humans constitutes an anatomical barrier for most gene transfer vectors with the exception of adeno-associated viral (AAV) vectors. Recent studies have demonstrated the superiority of novel AAV serotypes for hepatocyte-directed gene transfer applications based on enhanced transduction, reduced prevalence of neutralizing antibodies, and diminished capsid immune responses. In a landmark clinical trial, hemophilia B was successfully treated with an AAV8 human factor IX expressing vector. Notwithstanding significant progress, clinical experience with these technologies remains very limited and many unanswered questions warrant further study. Therefore, the field should continue to progress as it has over the past decade, cautiously and diligently.
Collapse
Affiliation(s)
- Frank Jacobs
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
12
|
Targeting of liposomes via PSGL1 for enhanced tumor accumulation. Pharm Res 2012; 30:352-61. [PMID: 22992830 PMCID: PMC3553414 DOI: 10.1007/s11095-012-0875-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/23/2012] [Indexed: 12/17/2022]
Abstract
Purpose To improve the delivery of liposomes to tumors using P-selectin glycoprotein ligand 1 (PSGL1) mediated binding to selectin molecules, which are upregulated on tumorassociated endothelium. Methods PSGL1 was orientated and presented on the surface of liposomes to achieve optimal selectin binding using a novel streptavidin-protein G linker molecule. Loading of PSGL1 liposomes with luciferin allowed their binding to e-selectin and activated HUVEC to be quantified in vitro and their stability, pharmacokinetics and tumor accumulation to be tested in vivo using murine models. Results PSGL1 liposomes showed 5-fold (p < 0.05) greater selectin binding than identically formulated control liposomes modified with ligand that did not contain the selectin binding domain. When added to HUVEC, PSGL1 liposomes showed >7-fold (p < 0.001) greater attachment than control liposomes. In in vivo studies PSGL1 liposomes showed similar stability and circulation to control liposomes but demonstrated a >3-fold enhancement in the level of delivery to tumors (p < 0.05). Conclusions The technologies and strategies described here may contribute to clinical improvements in the selectivity and efficacy of liposomal drug delivery agents. Electronic supplementary material The online version of this article (doi:10.1007/s11095-012-0875-5) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Goulinet-Mainot S, Tranchart H, Groyer-Picard MT, Lainas P, Saloum Diop P, Holopherne D, Gonin P, Benihoud K, Ba N, Gauthier O, Franco D, Guettier C, Pariente D, Weber A, Dagher I, Huy Nguyen T. Improved Hepatocyte Engraftment After Portal Vein Occlusion in LDL Receptor-Deficient WHHL Rabbits and Lentiviral-Mediated Phenotypic Correction In Vitro. CELL MEDICINE 2012; 4:85-98. [PMID: 26858856 DOI: 10.3727/215517912x647136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innovative cell-based therapies are considered as alternatives to liver transplantation. Recent progress in lentivirus-mediated hepatocyte transduction has renewed interest in cell therapy for the treatment of inherited liver diseases. However, hepatocyte transplantation is still hampered by inefficient hepatocyte engraftment. We previously showed that partial portal vein embolization (PVE) improved hepatocyte engraftment in a nonhuman primate model. We developed here an ex vivo approach based on PVE and lentiviral-mediated transduction of hepatocytes from normal (New Zealand White, NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits: the large animal model of familial hypercholesterolemia type IIa (FH). FH is a life-threatening human inherited autosomal disease caused by a mutation in the low-density lipoprotein receptor (LDLR) gene, which leads to severe hypercholesterolemia and premature coronary heart disease. Rabbit hepatocytes were isolated from the resected left liver lobe, and the portal branches of the median lobes were embolized with Histoacryl® glue under radiologic guidance. NZW and WHHL hepatocytes were each labeled with Hoechst dye or transduced with lentivirus expressing GFP under the control of a liver-specific promoter (mTTR, a modified murine transthyretin promoter) and were then immediately transplanted back into donor animals. In our conditions, 65-70% of the NZW and WHHL hepatocytes were transduced. Liver repopulation after transplantation with the Hoechst-labeled hepatocytes was 3.5 ± 2%. It was 1.4 ± 0.6% after transplantation with either the transduced NZW hepatocytes or the transduced WHHL hepatocytes, which was close to that obtained with Hoechst-labeled cells, given the mean transduction efficacy. Transgene expression persisted for at least 8 weeks posttransplantation. Transduction of WHHL hepatocytes with an LDLR-encoding vector resulted in phenotypic correction in vitro as assessed by internalization of fluorescent LDL ligands. In conclusion, our results have applications for the treatment of inherited metabolic liver diseases, such as FH, by transplantation of lentivirally transduced hepatocytes.
Collapse
Affiliation(s)
| | - Hadrien Tranchart
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | | | - Panagiotis Lainas
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Papa Saloum Diop
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Delphine Holopherne
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Patrick Gonin
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Karim Benihoud
- ¶ CNRS UMR 8203, Institut Gustave Roussy , Villejuif , France
| | - Nathalie Ba
- # IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Olivier Gauthier
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Dominique Franco
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Catherine Guettier
- * Department of Pathology, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Danièle Pariente
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; ††Department of Pediatric Radiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Anne Weber
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Ibrahim Dagher
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Tuan Huy Nguyen
- ‡‡ INSERM U1064, CHU Hôtel Dieu, Université de Nantes , Nantes , France
| |
Collapse
|
14
|
Polymer coatings for delivery of nucleic acid therapeutics. J Control Release 2012; 161:537-53. [PMID: 22366547 DOI: 10.1016/j.jconrel.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 12/15/2022]
Abstract
Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.
Collapse
|
15
|
Gindy ME, Leone AM, Cunningham JJ. Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics. Expert Opin Drug Deliv 2012; 9:171-82. [DOI: 10.1517/17425247.2012.642363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Buyens K, De Smedt SC, Braeckmans K, Demeester J, Peeters L, van Grunsven LA, de Mollerat du Jeu X, Sawant R, Torchilin V, Farkasova K, Ogris M, Sanders NN. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release 2011; 158:362-70. [PMID: 22023849 DOI: 10.1016/j.jconrel.2011.10.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/29/2011] [Accepted: 10/09/2011] [Indexed: 02/07/2023]
Abstract
siRNA therapeutics are currently regarded as promising candidates to make a leap forward in the search for treatments of various hard to cure diseases. In order to exploit the full potential of siRNA based therapeutics, development of delivery systems that can efficiently guide the siRNA molecules to their target without major side effects will be the key to success. Lipid based delivery systems, originating from earlier research in the fields of gene delivery, are the most studied candidates for siRNA delivery. Here we discuss the requirements that need to be met by these siRNA delivery systems to ensure adequate stability after systemic application and subsequent deposition in the target tissue. The encountered hurdles in the blood stream and the solutions proposed in literature are discussed.
Collapse
Affiliation(s)
- Kevin Buyens
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khare R, Chen CY, Weaver EA, Barry MA. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 2011; 11:241-58. [PMID: 21453281 PMCID: PMC3267160 DOI: 10.2174/156652311796150363] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
Abstract
Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral "sinks" must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect.
Collapse
Affiliation(s)
- Reeti Khare
- Virology and Gene Therapy Program, Mayo Graduate School
| | - Christopher Y Chen
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Eric A Weaver
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
- Department of Molecular Medicine, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus). Gene Ther 2011; 19:109-13. [PMID: 21677690 DOI: 10.1038/gt.2011.87] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coagulation factor X (FX)-binding ablated adenovirus type 5 (Ad5) vectors have been genetically engineered to ablate the interaction with FX, resulting in substantially reduced hepatocyte transduction following intravenous administration in rodents. Here, we quantify viral genomes and gene transfer mediated by Ad5 and FX-binding-ablated Ad5 vectors in non-human primates. Ad5 vectors accumulated in and mediated gene transfer predominantly to the liver, whereas FX-binding-ablated vectors primarily targeted the spleen but showed negligible liver gene transfer. In addition, we show that Ad5 binding to hepatocytes may be due to the presence of heparan sulfate proteoglycans (HSPGs) on the cell membrane. Therefore, the Ad5-FX-HSPG pathway mediating liver gene transfer in rodents is also the mechanism underlying Ad5 hepatocyte transduction in Microcebus murinus.
Collapse
|
19
|
Jacobs F, Van Craeyveld E, De Geest B. Why the diameter of sinusoidal fenestrae unlikely matters for lipoprotein metabolism and atherosclerosis susceptibility. Cardiovasc Pathol 2011. [DOI: 10.1016/j.carpath.2010.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Brunetti-Pierri N, Ng P. Helper-dependent adenoviral vectors for liver-directed gene therapy. Hum Mol Genet 2011; 20:R7-13. [PMID: 21470977 DOI: 10.1093/hmg/ddr143] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration resulting in acute toxicity, the severity of which is dependent on vector dose. Intense efforts have been focused on elucidating the factors involved in this acute response and various strategies have been investigated to improve the therapeutic index of HDAd vectors. These strategies have yielded encouraging results with the potential for clinical translation.
Collapse
|
21
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
22
|
Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-2355. [PMID: 21994621 PMCID: PMC3185574 DOI: 10.3390/v2102290] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023] Open
Abstract
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated “stealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
Collapse
|
23
|
Vetrini F, Brunetti-Pierri N, Palmer DJ, Bertin T, Grove NC, Finegold MJ, Ng P. Vasoactive intestinal peptide increases hepatic transduction and reduces innate immune response following administration of helper-dependent Ad. Mol Ther 2010; 18:1339-45. [PMID: 20461064 PMCID: PMC2911263 DOI: 10.1038/mt.2010.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/14/2010] [Indexed: 01/27/2023] Open
Abstract
Helper-dependent adenoviral vectors (HDAd) are effective tools for liver-directed gene therapy because they can mediate long-term transgene expression in the absence of chronic toxicity. However, high vector doses required for efficient hepatocyte transduction by intravascular delivery result in systemic vector dissemination and dose-dependent activation of the innate immunity. Therefore, strategies to achieve high-efficiency hepatocyte transduction using low vector doses and/or to reduce the acute elevations of proinflammatory cytokines and chemokines may have significant clinical potential. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide involved in the regulation of hepatic blood flow and plays an important role as modulator of immune functions. Here, we show that VIP pretreatment in mice is able to increase hepatocyte transduction by HDAd, decrease vector uptake by the spleen, reduce elevation of proinflammatory serum cytokines interleukin (IL)-6 and IL-12, and reduce serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) following intravenous HDAd injection. VIP pretreatment also resulted in a reduction in the expression of the chemokines macrophage-inflammatory protein 2 (MIP-2), monocyte chemotactic protein 1 (MCP-1), and regulated on activation normal T-cell expressed and secreted (RANTES) in the livers of mice injected with HDAd. These results suggest that VIP can improve the therapeutic index of HDAd by increasing hepatocyte transduction efficiency while reducing cytokine and chemokine expression following intravascular delivery of HDAd.
Collapse
Affiliation(s)
- Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wisse E, Braet F, Duimel H, Vreuls C, Koek G, Olde Damink SWM, van den Broek MAJ, De Geest B, Dejong CHC, Tateno C, Frederik P. Fixation methods for electron microscopy of human and other liver. World J Gastroenterol 2010; 16:2851-66. [PMID: 20556830 PMCID: PMC2887580 DOI: 10.3748/wjg.v16.i23.2851] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects.
Collapse
|
25
|
Feng Y, Lievens J, Jacobs F, Hoekstra M, Van Craeyveld E, Gordts SC, Snoeys J, De Geest B. Hepatocyte-specific ABCA1 transfer increases HDL cholesterol but impairs HDL function and accelerates atherosclerosis. Cardiovasc Res 2010; 88:376-85. [PMID: 20562425 DOI: 10.1093/cvr/cvq204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The ATP-binding cassette transporter A1 (ABCA1) lipidates apolipoprotein (apo) A-I. The hypothesis that hepatocyte-specific ABCA1 overexpression results in high-density lipoprotein (HDL) dysfunction was evaluated by comparing the effects of murine ABCA1 (AdABCA1) and human apo A-I (AdA-I) transfer on lipoprotein profile, HDL function, and progression of atherosclerosis. METHODS AND RESULTS Gene transfer in male and female C57BL/6 apo E(-/-) mice was performed at the age of 3 months with E1E3E4-deleted adenoviral vectors containing hepatocyte-specific expression cassettes. Atherosclerosis was quantified at baseline and 56 days later in AdABCA1, AdA-I, and control mice. HDL cholesterol after AdA-I transfer was 1.7-fold (P < 0.001) and 1.8-fold (P < 0.001) higher in male and female mice, respectively, and potently inhibited atherosclerosis progression compared with respective controls. Notwithstanding a 1.4-fold (P < 0.01) and a 1.7-fold (P < 0.01) increase of HDL cholesterol in male and female mice, respectively, after AdABCA1 transfer, the intima was 2.2-fold (P < 0.001) larger in male and 1.3-fold (P = NS) larger in female mice compared with respective controls. HDL isolated from control and AdA-I mice but not from AdABCA1 mice enhanced endothelial progenitor cell (EPC) migration in vitro and reduced endothelial cell death in vitro after serum and growth factor withdrawal. Scavenger receptor class B type I (SR-BI) protein level in the liver was significantly lower in AdABCA1 mice than in control and AdA-I mice. CONCLUSION Hepatocyte-specific ABCA1 transfer decreases SR-BI protein level in the liver and abrogates beneficial effects of HDL on EPCs and endothelial cells. Decreased HDL function may underlie accelerated atherosclerosis in AdABCA1 apo E(-/-)mice.
Collapse
Affiliation(s)
- Yingmei Feng
- Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schmitt F, Flageul M, Dariel A, Pichard V, Pontes CA, Boni S, Podevin G, Myara A, Ferry N, Nguyen TH. Transient increase in intrahepatic pressure mediates successful treatment of the Gunn rat with reduced doses of lentiviral vector. Hum Gene Ther 2010; 21:1349-56. [PMID: 20486774 DOI: 10.1089/hum.2009.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors can stably transduce hepatocytes and are promising tools for gene therapy of hepatic diseases. Although hepatocytes are accessible to blood-borne viral vectors through fenestrations of the hepatic endothelium, improved liver transduction after delivery of vectors to the blood stream is needed. As the normal endothelial fenestration and lentiviral vectors are similar in size (150 nm), we hypothesized that a transient increase in hepatic blood pressure may enhance in vivo gene transfer to hepatocytes. We designed a simple surgical procedure, by which the liver is temporarily excluded from blood flow. Lentiviral vectors were injected in a large volume to increase intrahepatic pressure. We demonstrated that in the Gunn rat, a model of Crigler-Najjar disease, the administration of low vector doses (corresponding to a multiplicity of infection of 0.2) by this procedure resulted in therapeutic correction of hyperbilirubinemia, without toxicity. The correction was sustained for 10 months (end of study). The same vector amounts yielded only partial correction after intraportal delivery. We believe that this new and clinically applicable strategy may broaden the range of genetic liver diseases accessible to gene therapy.
Collapse
|
27
|
Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2:468-502. [PMID: 21994645 PMCID: PMC3185605 DOI: 10.3390/v2020468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-512-471-1972; Fax: +1-512-471-7474
| |
Collapse
|
28
|
Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:14-21. [PMID: 19948827 DOI: 10.2353/ajpath.2010.090136] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocytes are a key target for gene therapy of inborn errors of metabolism as well as of acquired diseases such as liver cancer and hepatitis. Gene transfer efficiency into hepatocytes is significantly determined by histological and functional aspects of liver sinusoidal cells. On the one hand, uptake of vectors by Kupffer cells and liver sinusoidal endothelial cells may limit hepatocyte transduction. On the other hand, the presence of fenestrae in liver sinusoidal endothelial cells provides direct access to the space of Disse and allows vectors to bind to receptors on the microvillous surface of hepatocytes. Nevertheless, the diameter of fenestrae may restrict the passage of vectors according to their size. On the basis of lege artis measurements of the diameter of fenestrae in different species, we show that the diameter of fenestrae affects the distribution of transgene DNA between sinusoidal and parenchymal liver cells after adenoviral transfer. The small diameter of fenestrae in humans may underlie low efficiency of adenoviral transfer into hepatocytes in men. The disappearance of the unique morphological features of liver sinusoidal endothelial cells in pathological conditions like liver cirrhosis and liver cancer may further affect gene transfer efficiency. Preclinical gene transfer studies should consider species differences in the structure and function of liver sinusoidal cells as important determinants of gene transfer efficiency into hepatocytes.
Collapse
Affiliation(s)
- Frank Jacobs
- Center for Molecular and Vascular Biology, Department of Molecular and Cellular Medicine, University of Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | |
Collapse
|
29
|
The diameter of liver sinusoidal fenestrae is not a major determinant of lipoprotein levels and atherosclerosis in cholesterol-fed rabbits. Cardiovasc Pathol 2009; 20:44-50. [PMID: 19914092 DOI: 10.1016/j.carpath.2009.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/12/2009] [Accepted: 09/04/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The liver is a key organ in lipid and lipoprotein metabolism. It has been postulated that a small diameter of sinusoidal fenestrae retards clearance of chylomicron remnants, resulting in hypercholesterolemia and atherosclerosis. However, this hypothesis has not been rigorously tested hitherto. METHODS In the current study, we compared plasma levels of proatherogenic lipoproteins and assessed the development of atherosclerosis at distinct locations throughout the arterial tree in heterozygous New Zealand White and Dutch Belt rabbits that are deficient in low-density lipoprotein receptor and with an average fenestrae size of 103 and 124 nm, respectively. RESULTS Feeding of a 0.15% cholesterol diet for 4 months resulted in similar total plasma cholesterol levels in New Zealand White (420±20 mg/dl) and Dutch Belt (380±30 mg/dl) rabbits. Following isolation of lipoproteins by ultracentrifugation, no biologically significant differences in very-low-density lipoprotein, intermediate-density lipoprotein, and low-density lipoprotein cholesterol levels were observed between cholesterol-fed New Zealand White and Dutch Belt rabbits. Furthermore, the relative amount of intestinally derived apolipoprotein-B48-containing lipoproteins did not differ significantly between both strains (7.3±0.42% vs. 8.0±0.54%). Atherosclerosis was more pronounced in the thoracic aorta in New Zealand White rabbits than in Dutch Belt rabbits, but the reverse was observed with the abdominal aorta. These topographic differences cannot be explained by circulating lipoprotein levels. CONCLUSIONS The data presented in this study do not support the hypothesis that the diameter of fenestrae is an important determinant of chylomicron remnant levels, diet-induced hypercholesterolemia, and atherosclerosis in cholesterol-fed rabbits.
Collapse
|
30
|
The impact of antigen expression in antigen-presenting cells on humoral immune responses against the transgene product. Gene Ther 2009; 17:288-93. [PMID: 19759564 DOI: 10.1038/gt.2009.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment of genetic diseases by gene therapy is hampered by immune responses against the transgene product. Promoter choice has been shown to be an important parameter of the presence or absence of antibodies against the transgene product after gene transfer. Here, the generality of some of these observations was tested by comparing different murine strains and different transgene products. We show immunological unresponsiveness for human apolipoprotein (apo) A-I in six murine strains after transfer with E1E3E4-deleted adenoviral vectors containing hepatocyte-specific expression cassettes. However, differences in the induction of a humoral immune response against human apo A-I after gene transfer with vectors driven by the major histocompatibility complex class II Ebeta promoter and the ubiquitously active cytomegalovirus promoter were not consistent in these six murine strains. Furthermore, use of a potent hepatocyte-specific expression cassette did not prevent a humoral immune response against human plasminogen in C57BL/6 mice. In contrast, human microplasminogen transfer resulted in stable expression in the absence of an immune response against the transgene product. Taken together, the molecular design of strategies to abrogate or induce an immune response against the transgene product may be hampered by the multitude of parameters affecting the outcome, thus limiting the external validity of results.
Collapse
|
31
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
32
|
Jacobs F, Wisse E, De Geest B. Early effect of a single intravenous injection of ethanol on hepatic sinusoidal endothelial fenestrae in rabbits. COMPARATIVE HEPATOLOGY 2009; 8:4. [PMID: 19594919 PMCID: PMC2715370 DOI: 10.1186/1476-5926-8-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/13/2009] [Indexed: 12/31/2022]
Abstract
Background It has been postulated that ethanol affects hepatic sinusoidal and perisinusoidal cells. In the current experimental study, we investigated the early effect of a single intravenous dose of ethanol on the diameter of liver sinusoidal endothelial fenestrae in New Zealand White rabbits. The diameter of fenestrae in these rabbits is similar to the diameter found in humans with healthy livers. The effect of ethanol on the size of fenestrae was studied using transmission electron microscopy, because plastic embedding provides true measures for the diameter of fenestrae. Results After intravenous administration of a single dose of 0.75 g/kg, ethanol concentration peaked at 1.1 ± 0.10 g/l at ten minutes after injection. Compared to control rabbits (103 ± 1.1 nm; n = 8), the average diameter of fenestrae in ethanol-injected rabbits determined at 10 minutes after injection was significantly (p < 0.01) smaller (96 ± 2.2 nm; n = 5). Detailed analysis of distribution histograms of the diameters of fenestrae showed that the effect of ethanol was highly homogeneous. Conclusion A decrease of the diameter of fenestrae 10 minutes after ethanol administration is likely the earliest morphological alteration induced by ethanol in the liver and underscores the potential role of liver sinusoidal endothelial cells in alcoholic liver injury.
Collapse
Affiliation(s)
- Frank Jacobs
- Center for Molecular and Vascular Biology, Department of Molecular and Cellular Medicine, University of Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | | | | |
Collapse
|
33
|
Braet F, Riches J, Geerts W, Jahn KA, Wisse E, Frederik P. Three-dimensional organization of fenestrae labyrinths in liver sinusoidal endothelial cells. Liver Int 2009; 29:603-13. [PMID: 18662275 DOI: 10.1111/j.1478-3231.2008.01836.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Liver sinusoidal endothelial cell (LSEC) fenestrae are membrane-bound pores that are grouped in sieve plates and act as a bidirectional guardian in regulating transendothelial liver transport. The high permeability of the endothelial lining is explained by the presence of fenestrae and by various membrane-bound transport vesicles. The question as to whether fenestrae relate to other transport compartments remains unclear and has been debated since their discovery almost 40 years ago. METHODS In this study, novel insights concerning the three-dimensional (3D) organization of the fenestrated cytoplasm were built on transmission electron tomographical observations on isolated and cultured whole-mount LSECs. Classical transmission electron microscopy and atomic force microscopy imaging was performed to accumulate cross-correlative structural evidence. RESULTS AND CONCLUSIONS The data presented here indicate that different arrangements of fenestrae have to be considered: i.e. open fenestrae that lack any structural obstruction mainly located in the thin peripheral cytoplasm and complexes of multifolded fenestrae organized as labyrinth-like structures that are found in the proximity of the perinuclear area. Fenestrae in labyrinths constitute about one-third of the total LSEC porosity. The 3D reconstructions also revealed that coated pits and small membrane-bound vesicles are exclusively interspersed in the non-fenestrated cytoplasmic arms.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
A new surgical approach to improve gene transfer in liver using lentiviral vectors. J Pediatr Surg 2009; 44:517-22. [PMID: 19302851 DOI: 10.1016/j.jpedsurg.2008.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/10/2008] [Accepted: 08/14/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE Metabolic inherited liver diseases are attractive targets for gene therapy. Recombinant lentiviruses are very powerful viral vectors able to infect nonmitotic cells. We wanted to develop a new surgical approach to improve gene transfer in adult liver using low viral doses. MATERIALS AND METHODS Adult rats were injected with 2.108 infectious particles of lentiviral vectors encoding the green fluorescent protein marker gene under control of a liver-specific promoter transthyretin. In the control group (n = 5), gene delivery was performed by inflow intraportal injection. In the surgical group (n = 5), liver was completely excluded from systemic circulation before viral injection in infrahepatic vena cava with high pressure. RESULTS At day 9, transduction efficiency was 14.35% in the surgical group 3 and 0.39% in the control group (P = .016). At month 2, the number of transduced hepatocytes decreased in the most part of rats, except in half of rats in the surgical group. Antibodies against green fluorescent protein were detected in all rats at month 2, except one in the surgical group. CONCLUSIONS We developed a new surgical approach allowing an efficient transduction of hepatocytes in adult rats using lentivirus at low viral doses. We have now to control the immune response to permit long-term expression of transgene.
Collapse
|
35
|
Apolipoprotein A-I and lecithin:cholesterol acyltransferase transfer induce cholesterol unloading in complex atherosclerotic lesions. Gene Ther 2009; 16:757-65. [PMID: 19242527 DOI: 10.1038/gt.2009.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasma levels of high-density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo), apo A-I, are inversely correlated with the incidence of ischemic cardiovascular diseases. Reverse cholesterol transport is likely the main mechanism underlying the atheroprotective effects of HDL. Here, we investigated whether increased HDL cholesterol following hepatocyte-directed adenoviral rabbit apo A-I (AdrA-I) or rabbit lecithin-cholesterol acyltransferase (LCAT) (AdrLCAT) transfer may induce cholesterol unloading in complex atherosclerotic lesions in heterozygous low-density lipoprotein receptor-deficient rabbits fed a 0.15% cholesterol diet for 420 days before and for 120 days after transfer. HDL cholesterol levels increased 2.0-fold (P<0.001) and 1.9-fold (P<0.001) in the 120 days after transfer with AdrA-I and AdrLCAT, respectively, compared to levels just before transfer whereas non-HDL cholesterol remained unchanged. Increased HDL cholesterol following AdrA-I and AdrLCAT transfer resulted in a 31% (P<0.05) reduction of the intima/media ratio in comparison with the control progression group. Compared to the baseline group killed after 420 days of cholesterol diet, AdrA-I and AdrLCAT transfer reduced the percentage of Oil Red O area 1.6-fold (P<0.001) and 1.4-fold (P<0.001), respectively. In conclusion, increased HDL cholesterol after AdrA-I and AdrLCAT transfer inhibits progression of atherosclerosis and induces cholesterol unloading in complex lesions in rabbits.
Collapse
|
36
|
Bachtarzi H, Stevenson M, Fisher K. Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv 2009; 5:1231-40. [PMID: 18976133 DOI: 10.1517/17425240802507636] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. OBJECTIVE This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. METHODS Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. RESULTS/CONCLUSION Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.
Collapse
Affiliation(s)
- Houria Bachtarzi
- University of Oxford, Department of Clinical Pharmacology, Old Road Campus Research Building, OX3 7DQ, Oxford, UK
| | | | | |
Collapse
|
37
|
Abstract
Adenovirus provides an attractive candidate tool to destroy tumor cells. However, to fulfill the expectations, selective targeting of tumor cells is mandatory. This chapter reviews critical aspects in the design of tumor-targeted adenovirus vectors and oncolytic adenoviruses. The review focuses on genetic modifications of capsid and regulatory genes that can enhance the therapeutic index of these agents after systemic administration. Selectivity will be considered at different levels: biodistribution selectivity of the injected virus particles, transductional selectivity defined as cell receptor interactions and trafficking that lead to virus gene expression, transcriptional selectivity by means of tumor-selective promoters, and mutation-rescue selectivity to achieve selective replication. Proper assays to analyze selectivity at these different levels are discussed. Finally, mutations and transgenes that can enhance the potency and efficacy of tumor-targeted adenoviruses from virocentric or immunocentric points of view will be presented.
Collapse
Affiliation(s)
- Ramon Alemany
- Translational Research Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Haisma HJ, Kamps JAAM, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 2008; 89:1097-1105. [PMID: 18420786 DOI: 10.1099/vir.0.83495-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adenovirus is among the preferred vectors for gene therapy because of its superior in vivo gene-transfer efficiency. However, upon systemic administration, adenovirus is preferentially sequestered by the liver, resulting in reduced adenovirus-mediated transgene expression in targeted tissues. In the liver, Kupffer cells are responsible for adenovirus degradation and contribute to the inflammatory response. As scavenger receptors present on Kupffer cells are responsible for the elimination of blood-borne pathogens, we investigated the possible implication of these receptors in the clearance of the adenovirus vector. Polyinosinic acid [poly(I)], a scavenger receptor A ligand, was analysed for its capability to inhibit adenovirus uptake specifically in macrophages. In in vitro studies, the addition of poly(I) before virus infection resulted in a specific inhibition of adenovirus-induced gene expression in a J774 macrophage cell line and in primary Kupffer cells. In in vivo experiments, pre-administration of poly(I) caused a 10-fold transient increase in the number of adenovirus particles circulating in the blood. As a consequence, transgene expression levels measured in different tissues were enhanced (by 5- to 15-fold) compared with those in animals that did not receive poly(I). Finally, necrosis of Kupffer cells, which normally occurs as a consequence of systemic adenovirus administration, was prevented by the use of poly(I). No toxicity, as measured by liver-enzyme levels, was observed after poly(I) treatment. From our data, we conclude that poly(I) can prevent adenovirus sequestration by liver macrophages. These results imply that, by inhibiting adenovirus uptake by Kupffer cells, it is possible to reduce the dose of the viral vector to diminish the liver-toxicity effect and to improve the level of transgene expression in target tissues. In systemic gene-therapy applications, this will have great impact on the development of targeted adenoviral vectors.
Collapse
Affiliation(s)
- Hidde J Haisma
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Laboratory Medicine, Medical Biology Section, University Medical Center Groningen (UMCG), University of Groningen, The Netherlands
| | - Gera K Kamps
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Josee A Plantinga
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Marianne G Rots
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | - Anna Rita Bellu
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| |
Collapse
|
39
|
The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 2008; 15:1193-9. [PMID: 18401434 DOI: 10.1038/gt.2008.60] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fenestrae allow the passage of gene transfer vectors from the sinusoidal lumen to the surface of hepatocytes. We have previously shown that the diameter of fenestrae correlates with species and strain differences of transgene expression following intravenous adenoviral transfer. In the current study, we demonstrate that the diameter of fenestrae in humans without liver pathology is 107+/-1.5 nm. This is similar to the previously reported diameter in New Zealand White (NZW) rabbits (103+/-1.3 nm) and is significantly smaller than in C57BL/6 mice (141+/-5.4 nm) and Sprague-Dawley rats (161+/-2.7 nm). We show that the diameter of fenestrae in one male NZW rabbit and its offspring characterized by a more than 50-fold increase of transgene expression after adenoviral gene transfer is significantly (113+/-1.5 nm; P<0.001) larger than in control NZW rabbits. In vitro filtration experiments using polycarbonate filters with increasing pore sizes demonstrate that a relatively small increment of the diameter of pores potently enhances passage of adenoviral vectors, consistent with in vivo data. In conclusion, the small diameter of fenestrae in humans is likely to be a major obstacle for hepatocyte transduction by adenoviral vectors.
Collapse
|
40
|
Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A 2008; 105:5483-8. [PMID: 18391209 DOI: 10.1073/pnas.0711757105] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human species C adenovirus serotype 5 (Ad5) is the most common viral vector used in clinical studies worldwide. Ad5 vectors infect liver cells in vivo with high efficiency via a poorly defined mechanism, which involves virus binding to vitamin K-dependent blood coagulation factors. Here, we report that the major Ad5 capsid protein, hexon, binds human coagulation factor X (FX) with an affinity of 229 pM. This affinity is 40-fold stronger than the reported affinity of Ad5 fiber for the cellular receptor coxsackievirus and adenovirus receptor, CAR. Cryoelectron microscopy and single-particle image reconstruction revealed that the FX attachment site is localized to the central depression at the top of the hexon trimer. Hexon-mutated virus bearing a large insertion in hexon showed markedly reduced FX binding in vitro and failed to deliver a transgene to hepatocytes in vivo. This study describes the mechanism of FX binding to Ad5 and demonstrates the critical role of hexon for virus infection of hepatocytes in vivo.
Collapse
|
41
|
Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Ther 2008; 15:553-60. [PMID: 18288209 DOI: 10.1038/gt.2008.14] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.
Collapse
|
42
|
Di Paolo NC, Kalyuzhniy O, Shayakhmetov DM. Fiber shaft-chimeric adenovirus vectors lacking the KKTK motif efficiently infect liver cells in vivo. J Virol 2007; 81:12249-59. [PMID: 17855526 PMCID: PMC2168974 DOI: 10.1128/jvi.01584-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms governing the infectivity of adenovirus (Ad) toward specific cell and tissue types in vivo remain poorly understood. The direct Ad binding to hepatic heparan sulfate proteoglycans via the KKTK motif within the fiber shaft domain was suggested to be the major mechanism of Ad liver cell infection in vivo. Here, we describe the generation and in vitro and in vivo infectivity studies of Ad5-based vectors possessing long Ad31- or Ad41-derived fiber shaft domains, which lack the KKTK motif. We found that all the critical early steps of Ad infection, including attachment to the cellular receptor, internalization, and virus genome transfer into the nucleus, occurred with similar levels of efficiency for fiber shaft-chimeric vectors and unmodified Ad5. Upon intravenous delivery into mice, fiber shaft-chimeric vectors accumulated in liver tissue, transduced liver cells, and induced the production of proinflammatory cytokines (tumor necrosis factor alpha and interleukin-6) and the chemokine monocyte chemoattractant protein 1 at levels indistinguishable from those observed for Ad5. Thus, our data provide evidence that the Ad5 fiber shaft amino acid sequence does not play any substantial role in determining adenovirus infectivity toward hepatic cells in vivo. The data obtained contribute to improving our understanding of the molecular mechanisms determining Ad infectivity and biodistribution in vivo and may aid in designing novel Ad-based vectors for gene therapy applications.
Collapse
Affiliation(s)
- Nelson C Di Paolo
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | | | | |
Collapse
|
43
|
Smith JS, Xu Z, Byrnes AP. A quantitative assay for measuring clearance of adenovirus vectors by Kupffer cells. J Virol Methods 2007; 147:54-60. [PMID: 17850893 DOI: 10.1016/j.jviromet.2007.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 01/25/2023]
Abstract
Kupffer cells are a major barrier to systemic adenovirus (Ad) gene therapy because they rapidly and efficiently clear virions from the circulation. The lack of a straightforward quantitative technique for selectively measuring uptake of Ad by Kupffer cells has made it difficult to study the mechanisms by which they recognize Ad. A new method was developed that relies on immunofluorescent detection of Ad within Kupffer cells in mouse liver sections, followed by confocal microscopy and computerized image analysis. The method is sensitive, quantitative and reproducible, with a linear range spanning two orders of magnitude. As an example of the utility of this method, it was found that pre-injecting mice with polyinosinic acid reduces accumulation of Ad in Kupffer cells by approximately 90%.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Division of Cellular and Gene Therapies, Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Mocanu JD, Yip KW, Alajez NM, Shi W, Li JH, Lunt SJ, Moriyama EH, Wilson BC, Milosevic M, Lo KW, van Rooijen N, Busson P, Bastianutto C, Liu FF. Imaging the modulation of adenoviral kinetics and biodistribution for cancer gene therapy. Mol Ther 2007; 15:921-929. [PMID: 17356543 DOI: 10.1038/mt.sj.6300119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/04/2007] [Indexed: 11/08/2022] Open
Abstract
To explore systemic utilization of Epstein-Barr virus (EBV)-specific transcriptionally targeted adenoviruses, three vectors were constructed to examine kinetics, specificity, and biodistribution: adv.oriP.luc, expressing luciferase under EBV-specific control; adv.SV40luc, expressing luciferase constitutively; and adv.oriP.E1A.oriP.luc, a conditionally replicating adenovirus, expressing both luciferase and E1A. Bioluminescence imaging (BLI) was conducted on tumor-bearing severe combined immunodeficient (SCID) mice (C666-1, EBV-positive human nasopharyngeal cancer) treated intravenously (i.v.) with 3 x 10(8) infectious units (ifu) of the adenoviral vectors. At 72 hours, adv.oriPluc demonstrated an 8.4-fold higher tumor signal than adv.SV40luc; adv.oriP.E1A.oriP.luc was 26.7-fold higher; however, a significant liver signal was also observed, necessitating further action to improve biodistribution. Several compounds were examined to this end, including norepinephrine, serotonin, clodronate liposomes, and STI571, to determine whether any of these measures could improve adenoviral biodistribution. Each of these interventions was assessed using BLI in mice i.v. injected with adv.oriP.luc. STI571 achieved the highest increase in tumor-to-liver ratio (TLR; 6.6-fold), which was associated with a 59% reduction in tumor interstitial fluid pressure (IFP) along with a decrease in platelet-derived growth factor-beta receptor (PDGF beta R) activation. This study reports the favorable modulation by STI571 of the biodistribution of adenoviral vectors, providing a potential approach to improving therapeutic outcome.
Collapse
Affiliation(s)
- Joseph D Mocanu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ, Beaudet AL, Leland MM, Mullins CE, Ng P. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther 2007; 15:732-40. [PMID: 17285138 DOI: 10.1038/sj.mt.6300102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Helper-dependent adenoviral vectors (HDAds) are attractive for liver-directed gene therapy because they can mediate long-term, high-level transgene expression without chronic toxicity. However, systemic delivery requires high vector doses for efficient hepatic transduction, resulting in dose-dependent acute toxicity. Clearly, strategies to improve hepatic transduction with low vector doses are needed. In this regard, we have previously shown that hydrodynamic injection of helper-dependent adenoviral vectors into mice results in increased hepatic transduction, reduced systemic vector dissemination, and reduced pro-inflammatory cytokines compared with conventional injection and thus has the potential to improve dramatically the therapeutic index of helper-dependent adenoviral vectors. Unfortunately, the rapid, large-volume injection used in this method cannot be applied to larger animals. Therefore, we have developed a novel balloon occlusion catheter-based method to mimic hydrodynamic injection of helper-dependent adenoviral vectors into non-human primates that does not require rapid, large-volume injection. Using a low, clinically relevant vector dose, this minimally invasive method results in high-efficiency hepatic transduction with minimal toxicity and stable long-term transgene expression for at least 413 days.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Snoeys J, Lievens J, Wisse E, Jacobs F, Duimel H, Collen D, Frederik P, De Geest B. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Ther 2007; 14:604-12. [PMID: 17235290 DOI: 10.1038/sj.gt.3302899] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sinusoidal fenestrae may restrict the transport of gene transfer vectors according to their size. Using Vitrobot technology and cryo-electron microscopy, we show that the diameter of human adenoviral serotype 5 vectors is 93 nm with protruding fibers of 30 nm. Thus, a diameter of fenestrae of 150 nm or more is likely to be sufficient for passage of vectors from the sinusoidal lumen to the space of Disse and subsequent uptake of vectors in hepatocytes. The average diameter of fenestrae in New Zealand White rabbits (103+/-1.3 nm) was 1.4-fold (P<0.0001) lower than in C57BL/6 mice (141+/-5.4 nm). The percentage of sinusoidal fenestrae with a diameter larger than 150 nm was 10-fold (P<0.01) lower in rabbits (3.2+/-0.24%) than in C57BL/6 mice (32+/-5%), and this resulted in 8.8-fold (P=0.01) lower transgene DNA levels in hepatocytes in rabbits after adenoviral transfer. Injection of N-acetylcysteine combined with transient liver ischemia preceding intraportal transfer in rabbits increased the percentage of sinusoidal fenestrae above 150 nm 2.0-fold (P<0.001) and increased transgene DNA levels in hepatocytes 6.6-fold (P<0.05). In conclusion, species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the diameter of fenestrae.
Collapse
Affiliation(s)
- J Snoeys
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 2007; 70:230-42. [PMID: 17279510 DOI: 10.1002/jemt.20408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
MacKay PA, Leibundgut-Landmann S, Koch N, Dunn AC, Reith W, Jack RW, McLellan AD. Circulating, soluble forms of major histocompatability complex antigens are not exosome-associated. Eur J Immunol 2006; 36:2875-84. [PMID: 17072917 DOI: 10.1002/eji.200636041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vitro studies have shown that soluble MHC (sMHC) released by cell lines is bound to nano-vesicles termed exosomes. It is thought that exosomes may represent the major reservoir of sMHC class I and II molecules in biological fluids. However, most studies have been confined to in vitro assays performed with cell lines. We show here that sMHC in the serum or plasma differs from exosome-bound sMHC in five ways: In contrast to exosome-associated sMHC, circulating sMHC is of low density, has a low apparent molecular mass (40-300 kDa) and is not detergent-labile. Moreover, the majority of MHC class II isoforms and MHC class I in blood are not physically linked and circulating HLA-DR is accessible to an antibody specific for the HLA-DR alpha-chain intracellular epitope, which is masked by its association with cellular or exosomal membranes. Finally, utilizing transcriptional activator of murine MHC class II (C2ta) promoter-mutant mice, we showed that the release of sMHC class II into the circulation is dependent on the C2ta pI promoter, but not pIII or pIV. This suggests that myeloid dendritic cells and/or macrophages, which preferentially use promoter pI of the C2ta gene, produce most of the sMHC class II found in the circulation.
Collapse
|
49
|
Baer K, Roosevelt M, Clarkson AB, van Rooijen N, Schnieder T, Frevert U. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell Microbiol 2006; 9:397-412. [PMID: 16953803 DOI: 10.1111/j.1462-5822.2006.00798.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies suggested Plasmodium sporozoites infect hepatocytes after passing through Kupffer cells, but proof has been elusive. Here we present new information strengthening that hypothesis. We used homozygous op/op mice known to have few Kupffer cells because they lack macrophage colony stimulating factor 1 required for macrophage maturation due to a deactivating point mutation in the osteopetrosis gene. We found these mice to have 77% fewer Kupffer cells and to exhibit reduced clearance of colloidal carbon particles compared with heterozygous phenotypically normal littermates. Using a novel quantitative reverse transcription polymerase chain reaction assay for P. yoelii 18S rRNA, we found liver infection of op/op mice to be decreased by 84% compared with controls. However, using another way of limiting Kupffer cells, treatment with liposome-encapsulated clodronate, infection of normal mice was enhanced seven- to 15-fold. This was explained by electron microscopy showing temporary gaps in the sinusoidal cell layer caused by this treatment. Thus, Kupffer cell deficiency in op/op mice decreases sporozoite infection by reducing the number of portals to the liver parenchyma, whereas clodronate increases sporozoite infection by opening portals and providing direct access to hepatocytes. Together these data provide strong support for the hypothesis that Kupffer cells are the portal for sporozoites to hepatocytes and critical for the onset of a malaria infection.
Collapse
Affiliation(s)
- Kerstin Baer
- Department of Medical Parasitology, New York University School of Medicine, 341 E 25 St, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
50
|
Brunetti-Pierri N, Palmer DJ, Mane V, Finegold M, Beaudet AL, Ng P. Increased hepatic transduction with reduced systemic dissemination and proinflammatory cytokines following hydrodynamic injection of helper-dependent adenoviral vectors. Mol Ther 2006; 12:99-106. [PMID: 15963925 DOI: 10.1016/j.ymthe.2005.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 01/10/2023] Open
Abstract
Hydrodynamic injection of helper-dependent adenoviral vectors (HDAd) in mice results in increased hepatic transduction, reduced splenic and pulmonary transduction, and reduced levels of the proinflammatory cytokines IL-6 and IL-12 compared to conventional injection. These results indicate that hepatic transduction by HDAd, at least alone, does not necessarily provoke a severe innate inflammatory response. Instead, they suggest that systemic vector dissemination may play a major role in the severity of the innate inflammatory response. These results further suggest that the safety and efficacy of HDAd-mediated, liver-directed gene therapy may be improved if the vector could be preferentially, if not exclusively, targeted to liver.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|