1
|
Semenova E, Guo A, Liang H, Hernandez CJ, John EB, Thaker VV. The expanding landscape of genetic causes of obesity. Pediatr Res 2024:10.1038/s41390-024-03780-6. [PMID: 39690244 DOI: 10.1038/s41390-024-03780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Obesity and weight regulation disorders are determined by the combined effects of genetics and environment. Polygenic obesity results from the combination of common variants in several genes which predisposes the individual to obesity and its related complications. In contrast, monogenic obesity results from changes in single genes, especially those in leptin-melanocortin pathway, and presents with early onset severe obesity, with or without other syndromic features. Rare variants in melanocortin 4 receptor are the commonest form of monogenic obesity. In addition, structural variation in small or large segments of chromosomes may also present with syndromic forms of obesity. Prader-Willi Syndrome, caused by imprinting errors in chromosome 15q11-13, is the most prevalent genetic cause of severe hyperphagia and obesity. With the advances in technologies, the past decade has witnessed a revolution in the identification of novel genetic causes of obesity, primarily in genes related to the leptin melanocortin pathway. The availability of safe melanocortin analogs holds the potential for targeted therapies for some of these disorders. This review summarizes known and novel rare genetic forms of obesity, along with approaches for the clinical investigation of copy number and sequence variants. The goal is to provide a reference for practicing clinicians to encourage genetic testing in obesity. IMPACT: What does this article add to the existing literature? Genetic obesity is an expanding frontier with potential to change management. Here, we summarize current information on the genetic causes of obesity and provide guidance for genetic testing. Emerging treatments may provide targeted precise treatment and change management practices.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry Liang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cindy J Hernandez
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ella B John
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Morandi A, Fornari E, Corradi M, Umano GR, Olivieri F, Piona C, Maguolo A, Panzeri C, Emiliani F, Cirillo G, Cavarzere P, Miraglia Del Giudice E, Maffeis C. Variant reclassification over time decreases the level of diagnostic uncertainty in monogenic obesity: Experience from two centres. Pediatr Obes 2024; 19:e13183. [PMID: 39462520 DOI: 10.1111/ijpo.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The diagnosis of monogenic obesity is burdened by frequent variants of uncertain significance (VUS). We describe our real-life approach of variant reassessment over time and we assess whether inconclusive variants are decreasing in monogenic obesity. METHODS We tested for monogenic obesity (genes: LEPR, POMC, ADCY3, PCSK1, CARTPT, SIM1, MRAP2, LEP, NTRK2, BDNF, KSR2, MAGEL2, SH2B1, MC4R, MC3R) in 101 children/adolescents (11.7 [7.3-13.7] years, 3.6 [3.3-4.0] z-BMI) in Verona and 183 (11.3 [8.4-12.2] years, 3.2 [2.7-3.9] z-BMI) in Naples from January 2020 to February 2023. In March-July 2024 we reassessed the baseline variants by updated software interpretation and literature renavigation. RESULTS We initially found 20 VUS, 4 Likely Pathogenic (LP), 5 Likely Benign (LB) and 1 benign variant in 33 individuals. At follow-up, 6 VUS were reclassified as benign/LB, one LP as pathogenic and 3 LB as benign. Overall, 10/30 variants (6/18 in Verona, 3/11 in Naples and a variant found in both centres) were reclassified, leading to a less uncertain report for 13 of 33 variant-carrying patients. Monogenic obesity was diagnosed in 3 probands in Verona and 4 in Naples, carrying variants at MC4R or NTRK2. CONCLUSION Our variant reassessment was effective to improve classification certainty for the 39% of patients and suggested that the molecular diagnosis of monogenic obesity is becoming more accurate over time.
Collapse
Affiliation(s)
- Anita Morandi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Elena Fornari
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Massimiliano Corradi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Olivieri
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Claudia Piona
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Alice Maguolo
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
- Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Carola Panzeri
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Federica Emiliani
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Grazia Cirillo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Cavarzere
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Maffeis
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Siddiqui J, Kinney CE, Han JC. The Genetics of Obesity. Pediatr Clin North Am 2024; 71:897-917. [PMID: 39343500 DOI: 10.1016/j.pcl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the genetic causes of obesity permits anticipatory guidance and targeted treatments. Children with hyperphagia and severe early-onset obesity should receive genetic testing for rare monogenic and syndromic disorders caused by pathogenic variants involving a single gene or single chromosomal region. Gene panels covering the leptin pathway, the key regulator of energy balance, are becoming more widely available and at lower cost. Polygenic obesity is much more common and involves multiple genes throughout the genome, although the overlap in genes for rare and common disorders suggests a spectrum of severity and the potential of shared precision medicine approaches for treatment.
Collapse
Affiliation(s)
- Juwairriyyah Siddiqui
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Clint E Kinney
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
4
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
5
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
7
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
8
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
9
|
Kumar AHS. Network Proteins of Human Sortilin1, Its Expression and Targetability Using Lycopene. Life (Basel) 2024; 14:137. [PMID: 38255751 PMCID: PMC10817468 DOI: 10.3390/life14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Sortilin1 (SORT1) is a ubiquitously expressed transporter involved in sorting or clearing proteins and is pathologically linked to tissue fibrosis and calcification. Targeting SORT1 may have potential clinical efficacy in controlling or reversing cardiovascular fibrosis and/or calcification. Hence, this study assessed the protein-protein network of human SORT1 and its targetability using known nutra-/pharmaceuticals. MATERIAL AND METHODS Network proteins of human SORT1 were identified using the String database, and the affinity of the protein-protein interaction of this network was analysed using Chimera software (Chimera-1.17.3-mac64). The tissue-specific expression profile of SORT1 was evaluated and assessed for enrichment in different cell types, including immune cells. A library of in-house small molecules and currently used therapeutics for cardiovascular diseases were screened using AutoDock Vina to assess the targetability of human SORT1. The concentration affinity (CA) ratio of the small molecules was estimated to assess the clinical feasibility of targeting SORT1. RESULTS IGF2R, NTRK2, GRN and GGA1 were identified as high-affinity interaction networks of SORT1. Of these high-affinity interactions, IGF2R and GRN can be considered relevant networks in regulating tissue fibrosis or the microcalcification process due to their influence on T-cell activation, inflammation, wound repair, and the tissue remodelling process. The tissue cell-type enrichment indicated major expression of SORT1 in adipocytes, specialised epithelial cells, monocytes, cardiomyocytes, and thyroid glandular cells. The binding pocket analysis of human SORT1 showed twelve potential drug interaction sites with varying binding scores (0.86 to 5.83) and probability of interaction (0.004 to 0.304). Five of the drug interaction sites were observed to be targetable at the therapeutically feasible concentration of the small molecules evaluated. Empagliflozin, sitagliptin and lycopene showed a superior affinity and CA ratio compared to established inhibitors of SORT1. CONCLUSION IGF2R and GRN are relevant networks of SORT1, regulating tissue fibrosis or the microcalcification process. SORT1 can be targeted using currently approved small-molecule therapeutics (empagliflozin and sitagliptin) or widely used nutraceuticals (lycopene), which should be evaluated in a randomised clinical trial to assess their efficacy in reducing the cardiac/vascular microcalcification process.
Collapse
Affiliation(s)
- Arun H S Kumar
- Stemcology, School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Zhang Q, Wang Y, Zhou J, Zhou R, Liu A, Meng L, Ji X, Hu P, Xu Z. 11q13.3q13.4 deletion plus 9q21.13q21.33 duplication in an affected girl arising from a familial four-way balanced chromosomal translocation. Mol Genet Genomic Med 2023; 11:e2248. [PMID: 37475652 PMCID: PMC10568374 DOI: 10.1002/mgg3.2248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND We describe a 13-year-old girl with a 11q13.3q13.4 deletion encompassing the SHANK2 gene and a 9q21.13q21.33 duplication. She presented with pre- and postnatal growth retardation, global developmental delay, severe language delay, cardiac abnormalities, and dysmorphisms. Her maternal family members all had histories of reproductive problems. METHODS Maternal family members with histories of reproductive problems were studied using G-banded karyotyping and optical genome mapping (OGM). Long-range PCR (LR-PCR) and Sanger sequencing were used to confirm the precise break point sequences obtained by OGM. RESULTS G-banded karyotyping characterized the cytogenetic results as 46,XX,der(9)?del(9)(q21q22)t(9;14)(q22;q24),der(11)ins(11;?9)(q13;?q21q22),der(14)t(9;14). Using OGM, we determined that asymptomatic female family members with reproductive problems were carriers of a four-way balanced chromosome translocation. Their karyotype results were further refined as 46,XX,der(9)del(9)(q21.13q21.33)t(9;14)(q21.33;q22.31),der(11)del(11)(q13.3q13.4)ins(11;9)(q13.3;q21.33q21.13),der(14)t(9:14)ins(14;11)(q23.1;q13.4q13.3). Thus, we confirmed that the affected girl inherited the maternally derived chromosome 11. Furthermore, using LR-PCR, we showed that three disease-related genes (TMC1, NTRK2, and KIAA0586) were disrupted by the breakpoints. CONCLUSIONS Our case highlights the importance of timely parental origin testing for patients with rare copy number variations, as well as the accurate characterization of balanced chromosomal rearrangements in families with reproductive problems. In addition, our case demonstrates that OGM is a useful clinical application for analyzing complex structural variations within the human genome.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Yan Wang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Jing Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ran Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - An Liu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Lulu Meng
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xiuqing Ji
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ping Hu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Zhengfeng Xu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| |
Collapse
|
12
|
Rouskas K, Katsareli EA, Amerikanou C, Dimopoulos AC, Glentis S, Kalantzi A, Skoulakis A, Panousis N, Ongen H, Bielser D, Planchon A, Romano L, Harokopos V, Reczko M, Moulos P, Griniatsos I, Diamantis T, Dermitzakis ET, Ragoussis J, Dedoussis G, Dimas AS. Identifying novel regulatory effects for clinically relevant genes through the study of the Greek population. BMC Genomics 2023; 24:442. [PMID: 37543566 PMCID: PMC10403965 DOI: 10.1186/s12864-023-09532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) studies provide insights into regulatory mechanisms underlying disease risk. Expanding studies of gene regulation to underexplored populations and to medically relevant tissues offers potential to reveal yet unknown regulatory variants and to better understand disease mechanisms. Here, we performed eQTL mapping in subcutaneous (S) and visceral (V) adipose tissue from 106 Greek individuals (Greek Metabolic study, GM) and compared our findings to those from the Genotype-Tissue Expression (GTEx) resource. RESULTS We identified 1,930 and 1,515 eGenes in S and V respectively, over 13% of which are not observed in GTEx adipose tissue, and that do not arise due to different ancestry. We report additional context-specific regulatory effects in genes of clinical interest (e.g. oncogene ST7) and in genes regulating responses to environmental stimuli (e.g. MIR21, SNX33). We suggest that a fraction of the reported differences across populations is due to environmental effects on gene expression, driving context-specific eQTLs, and suggest that environmental effects can determine the penetrance of disease variants thus shaping disease risk. We report that over half of GM eQTLs colocalize with GWAS SNPs and of these colocalizations 41% are not detected in GTEx. We also highlight the clinical relevance of S adipose tissue by revealing that inflammatory processes are upregulated in individuals with obesity, not only in V, but also in S tissue. CONCLUSIONS By focusing on an understudied population, our results provide further candidate genes for investigation regarding their role in adipose tissue biology and their contribution to disease risk and pathogenesis.
Collapse
Affiliation(s)
- Konstantinos Rouskas
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Efthymia A Katsareli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Alexandros C Dimopoulos
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
- Hellenic Naval Academy, Hatzikyriakou Avenue, Pireaus, Greece
| | - Stavros Glentis
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
- Pediatric Hematology/Oncology Unit (POHemU), First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Alexandra Kalantzi
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - Anargyros Skoulakis
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | | | - Halit Ongen
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Deborah Bielser
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Alexandra Planchon
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Luciana Romano
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Vaggelis Harokopos
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - Martin Reczko
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Science, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
- Center of New Biotechnologies & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Griniatsos
- First Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Athens, Greece
| | - Theodoros Diamantis
- First Department of Surgery, National and Kapodistrian University of Athens, Medical School, Laiko Hospital, Athens, Greece
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University Genome Centre, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Antigone S Dimas
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| |
Collapse
|
13
|
Biernacka KM, Giri D, Hawton K, Segers F, Perks CM, Hamilton-Shield JP. Case report: Molecular characterisation of adipose-tissue derived cells from a patient with ROHHAD syndrome. Front Pediatr 2023; 11:1128216. [PMID: 37456561 PMCID: PMC10348915 DOI: 10.3389/fped.2023.1128216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
There have been over 100 cases of Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome reported, but there is currently no curative treatment for children with this condition. We aimed to better characterise adipose cells from a child with ROHHAD syndrome. We isolated pre-adipocytes from a 4 year-old female patient with ROHHAD syndrome and assessed proliferation rate of these cells. We evaluated levels of DLP-Pref-1(pre-adipocyte marker) using western blotting, and concentrations of interleukin-6(IL-6) using ELISA. We performed next-generation sequencing (NGS) and bioinformatic analyses on these cells compared to tissue from an age/sex-matched control. The two most up-/down-regulated genes were validated using QPCR. We successfully isolated pre-adipocytes from a fat biopsy, by confirming the presence of Pref-1 and differentiated them to mature adipocytes. Interleukin 6, (Il-6) levels were 5.6-fold higher in ROHHAD cells compared to a control age/sex-matched biopsy. NGS revealed 25,703 differentially expressed genes (DEGs) from ROHHAD cells vs. control of which 2,237 genes were significantly altered. The 20 most significantly up/down-regulated genes were selected for discussion. This paper describes the first transcriptomic analysis of adipose cells from a child with ROHHAD vs. normal control adipose tissue as a first step in identifying targetable pathways/mechanisms underlying this condition with novel therapeutic interventions.
Collapse
Affiliation(s)
- Kalina M. Biernacka
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Dinesh Giri
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Katherine Hawton
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Francisca Segers
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Julian P. Hamilton-Shield
- Department of Translational Health Sciences, Nutrition Theme, NIHR Bristol Biomedical Research Centre, Bristol Medical School, University of Bristol, UBHT Education Centre, Bristol, United Kingdom
| |
Collapse
|
14
|
Cheshmeh S, Moradi S, Nachvak SM, Mohammadi A, Najafi N, Erfanifar A, Bajelani A. Birth weight concerning obesity and diabetes gene expression in healthy infants; a case-control study. BMC Pregnancy Childbirth 2023; 23:218. [PMID: 36997916 PMCID: PMC10061768 DOI: 10.1186/s12884-023-05538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Since obesity and diabetes are prevalent worldwide, identifying the factors affecting these two conditions can effectively alter them. We decided to investigate the expression of obesity and diabetes genes in infants with birth weights lower than 2500 g in comparison with infants with normal birth weights.
Methods
215 healthy infants between the ages of 5–6 months were used in the current case-control research, which was conducted at health and treatment facilities in Kermanshah. Infants who were healthy were chosen for the research after their weight and height were measured and compared to the WHO diagram to ensure that they were well-grown and in good health. There were 137 infants in the control group and 78 infants in the case group. All newborns had 5 cc of blood drawn intravenously. To assess the expression of the genes MC4R, MTNR1B, PTEN, ACACB, PPAR-γ, PPAR-α, NRXN3, NTRK2, PCSK1, A2BP1, TMEM18, LXR, BDNF, TCF7L2, FTO and CPT1A, blood samples were gathered in EDTA-coated vials. Chi-square, Mann-Whitney U, and Spearman analyses were used to examine the data.
Results
A significant inverse correlation between birth weight and obesity and diabetes genes, including MTNR1B, NTRK2, PCSK1, and PTEN genes (r= -0.221, -0.235, -0.246, and − 0.418, respectively). In addition, the LBW infant’s expression level was significantly up-regulated than the normal-weight infants (P = 0.001, 0.007, 0.001, and < 0.001, respectively). The expression level of the PPAR-a gene had a significantly positive correlation with birth weight (r = 0.19, P = 0.005). The expression level of the PPAR-a gene in the normal-weight infants was significantly up-regulated than the LBW infants (P = 0.049).
Conclusion
The expression levels of MTNR1B, NTRK2, PCSK1, and PTEN genes were up-regulated in the LBW infants; however, the expression level of PPAR-a gene was significantly down-regulated in the LBW infants compared to the infants with normal birth weight.
Collapse
|
15
|
Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, Szczepańska M. The Role of Brain-Derived Neurotrophic Factor (BDNF) in Diagnosis and Treatment of Epilepsy, Depression, Schizophrenia, Anorexia Nervosa and Alzheimer's Disease as Highly Drug-Resistant Diseases: A Narrative Review. Brain Sci 2023; 13:brainsci13020163. [PMID: 36831706 PMCID: PMC9953867 DOI: 10.3390/brainsci13020163] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophins, which are growth factors with trophic effects on neurons. BDNF is the most widely distributed neurotrophin in the central nervous system (CNS) and is highly expressed in the prefrontal cortex (PFC) and hippocampus. Its distribution outside the CNS has also been demonstrated, but most studies have focused on its effects in neuropsychiatric disorders. Despite the advances in medicine in recent decades, neurological and psychiatric diseases are still characterized by high drug resistance. This review focuses on the use of BDNF in the developmental assessment, treatment monitoring, and pharmacotherapy of selected diseases, with a particular emphasis on epilepsy, depression, anorexia, obesity, schizophrenia, and Alzheimer's disease. The limitations of using a molecule with such a wide distribution range and inconsistent method of determination are also highlighted.
Collapse
Affiliation(s)
- Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-32-370-43-05; Fax: +48-32-370-42-92
| | - Justyna Czubilińska-Łada
- Department of Neonatal Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Gniewko Więckiewicz
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Dworak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, 41-800 Zabrze, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
16
|
Genome Editing and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:179-190. [PMID: 36454467 DOI: 10.1007/978-981-19-5642-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Rodríguez-López R, Gimeno-Ferrer F, do Santos DA, Ferrer-Bolufer I, Luján CG, Alcalá OZ, García-Banacloy A, Cogollos VB, Juan CS. Reviewed and updated Algorithm for Genetic Characterization of Syndromic Obesity Phenotypes. Curr Genomics 2022; 23:147-162. [PMID: 36777005 PMCID: PMC9878830 DOI: 10.2174/1389202923666220426093436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Individuals with a phenotype of early-onset severe obesity associated with intellectual disability can have molecular diagnoses ranging from monogenic to complex genetic traits. Severe overweight is the major sign of a syndromic physical appearance and predicting the influence of a single gene and/or polygenic risk profile is extremely complicated among the majority of the cases. At present, considering rare monogenic bases as the principal etiology for the majority of obesity cases associated with intellectual disability is scientifically poor. The diversity of the molecular bases responsible for the two entities makes the appliance of the current routinely powerful genomics diagnostic tools essential. Objective: Clinical investigation of these difficult-to-diagnose patients requires pediatricians and neurologists to use optimized descriptions of signs and symptoms to improve genotype correlations. Methods: The use of modern integrated bioinformatics strategies which are conducted by experienced multidisciplinary clinical teams. Evaluation of the phenotype of the patient's family is also of importance. Results: The next step involves discarding the monogenic canonical obesity syndromes and considering infrequent unique molecular cases, and/or then polygenic bases. Adequate management of the application of the new technique and its diagnostic phases is essential for achieving good cost/efficiency balances. Conclusion: With the current clinical management, it is necessary to consider the potential coincidence of risk mutations for obesity in patients with genetic alterations that induce intellectual disability. In this review, we describe an updated algorithm for the molecular characterization and diagnosis of patients with a syndromic obesity phenotype.
Collapse
Affiliation(s)
- Raquel Rodríguez-López
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain;,Address correspondence to this author at the Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Avenida de las Tres Cruces no. 2 46014, Valencia, Spain; Tel: 0034 963 131 800 – 437317; Fax: 0034 963 131 979; E-mail:
| | - Fátima Gimeno-Ferrer
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | - David Albuquerque do Santos
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | - Irene Ferrer-Bolufer
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | - Carola Guzmán Luján
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | - Otilia Zomeño Alcalá
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | - Amor García-Banacloy
- Laboratory of Molecular Genetics, Clinical Analysis Service, General Hospital Consortium of Valencia, Valencia, Spain
| | | | - Carlos Sánchez Juan
- Endocrinology Service, General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
18
|
Harada G, Drilon A. TRK Inhibitor Activity and Resistance in TRK Fusion-Positive Cancers in Adults. Cancer Genet 2022; 264-265:33-39. [DOI: 10.1016/j.cancergen.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
|
19
|
Long A, Crouse A, Kesterson RA, Might M, Wallis D. Functional characterization and potential therapeutic avenues for variants in the NTRK2 gene causing developmental and epileptic encephalopathies. Am J Med Genet B Neuropsychiatr Genet 2022; 189:37-47. [PMID: 34889524 DOI: 10.1002/ajmg.b.32882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023]
Abstract
Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.Thr720Ile (T720I) (located in the catalytic domain). Wild-type and variant cDNAs were constructed and transfected into HEK293 cells. In cell culture, variant Y434C exhibited ligand-independent activation of tropomyosin-related kinase B (TRKB) signaling with an associated abnormal response to brain-derived neurotrophic factor (BDNF) stimulation and increased levels of phosphorylated extracellular signal-regulated kinase (ERK) and ETS like-1 protein (ELK1) activity. Expression of variant T720I resulted in decreased TRKB signaling with reduced mTor activity as determined by decreased levels of phosphorylated S6. With the deleterious mechanisms characterized, we utilized mediKanren (a novel artificial intelligence tool) to identify therapeutics to compensate for the pathological effects. Downregulation of TRKB through inhibition with mediKanren-predicted compound 1NM-PP1 led to decreased MEK activity. Upregulation of TRKB signaling by mediKanren-predicted valproic acid led to subsequent increase of mTor activity. Overall, our results provide further characterization of the pathogenicity of these two variants in the NTRK2 gene. Indeed, Y434C is the first patient-specific NTRK2 variant with demonstrated hypermorphic activity. Furthermore, we observed that variants Y434C and T720I result in distinct functional consequences that require distinct therapeutic strategies. These data suggest the possibility that unique mutations within different regions of the NTRK2 gene results in separate clinical presentations, representing distinct genetic disorders requiring unique therapeutics.
Collapse
Affiliation(s)
- Ashlee Long
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Crouse
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew Might
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
21
|
Irvin MR, Montasser ME, Kind T, Fan S, Barupal DK, Patki A, Tanner RM, Armstrong ND, Ryan KA, Claas SA, O’Connell JR, Tiwari HK, Arnett DK. Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study. Nutrients 2021; 13:4000. [PMID: 34836252 PMCID: PMC8617762 DOI: 10.3390/nu13114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10-8/132 = 4 × 10-10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10-7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p < 3.3 × 10-3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tobias Kind
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Sili Fan
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Kathleen A. Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Steven A. Claas
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| | - Jeffrey R. O’Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| |
Collapse
|
22
|
Cognitive impairments in patients with overweight and obesity. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. In modern society, the growth of the overweight and obese population increase every year. This confirms the status assigned to the problem under consideration as a non-infectious epidemic of the 21st century. At the same time, the amount of scientific information about the influence of excess weight on various aspects of human life is actively increasing. This undoubtedly requires a systematic generalization of the available data.Aims. The presented literature review is devoted to the analysis of modern scientific research on the specificity of cognitive impairment in overweight and obese people.Materials and methods. Information search was carried out using Internet resources (PubMed, Web of Science, eLibrary.ru, frontiersin.org, sciencedirect. com, ncbi.nlm.nih.gov), literature sources were analyzed for the period from 2001 to 2020 for the following keywords: obesity, overweight, cognitive functions, cognitions, cognitive impairments.Results. As a result of the literature review, the main directions of research on the relationship between cognitive impairment and overweight, as well as the relationship between cognitive dysfunction and obesity, were identified. The specificity of diametrically opposed opinions within the framework of each consecrated trend is presented. According to the results of the analysis of the identified areas, in the scientific community the most common point of view is the presence of a connection between obesity and cognitive impairment. In this connection, the authors identified the main cognitive impairments associated with excess weight and their mediating mechanisms. And also the age specificity of the problem under study is indicated.Conclusions. Despite the fact that the problem of the relationship between obesity, overweight and cognitive functions is comprehensively studied, there is a shortage of data on the state of thinking, attention, praxis, gnosis, and speech in overweight people.
Collapse
|
23
|
Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab 2021; 32:488-499. [PMID: 33958275 PMCID: PMC8192464 DOI: 10.1016/j.tem.2021.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolic disorders result from dysregulation of central nervous system and peripheral metabolic energy homeostatic pathways. To maintain normal energy balance, neural circuits must integrate feedforward and feedback signals from the internal metabolic environment to orchestrate proper food intake and energy expenditure. These signals include conserved meal and adipocyte cues such as glucose and leptin, respectively, in addition to more novel players including brain-derived neurotrophic factor (BDNF). In particular, BDNF's two receptors, tropomyosin related kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), are increasingly appreciated to be involved in whole body energy homeostasis. At times, these two receptors even seem to functionally oppose one another's actions, providing the framework for a potential neurotrophin mediated energy regulatory axis, which we explore further here.
Collapse
Affiliation(s)
- Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908-0738, USA.
| | - Kavya Parekh
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
24
|
Han JC, Weiss R. Obesity, Metabolic Syndrome and Disorders of Energy Balance. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:939-1003. [DOI: 10.1016/b978-0-323-62520-3.00024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Baron M, Froguel P, Bonnefond A. [Something new in the genetics of monogenic obesity and its insights into pathophysiology]. Med Sci (Paris) 2020; 36:859-865. [PMID: 33026327 DOI: 10.1051/medsci/2020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Obesity is a complex, multifactorial disorder. About 5% of obese patients actually present with a monogenic form of obesity where only one mutation is sufficient to cause the disease. So far, the genes that have been found to be mutated in these monogenic forms play a key role in the leptin/melanocortin pathway which is mainly active in the hypothalamus and which regulates food intake and energy expenditure. Our laboratory has recently reported a novel monogenic form of obesity due to MRAP2 deficiency where, contrary to previously described monogenic forms of obesity, the carriers presented with hyperglycemia and hypertension in addition to obesity, suggesting that MRAP2 might play a pleiotropic role in metabolic tissues, in addition to its role in brain control of food intake and energy expenditure.
Collapse
Affiliation(s)
- Morgane Baron
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France - Department of Metabolism, Imperial College London, Londres, W12 0NN, Royaume-Uni
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France - Department of Metabolism, Imperial College London, Londres, W12 0NN, Royaume-Uni
| |
Collapse
|
26
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
27
|
Sonoyama T, Stadler LKJ, Zhu M, Keogh JM, Henning E, Hisama F, Kirwan P, Jura M, Blaszczyk BK, DeWitt DC, Brouwers B, Hyvönen M, Barroso I, Merkle FT, Appleyard SM, Wayman GA, Farooqi IS. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep 2020; 10:9028. [PMID: 32493978 PMCID: PMC7270116 DOI: 10.1038/s41598-020-65531-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.
Collapse
Affiliation(s)
- Takuhiro Sonoyama
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Mingyan Zhu
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fuki Hisama
- Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter Kirwan
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Magdalena Jura
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Beata K Blaszczyk
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Bas Brouwers
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - Inês Barroso
- MRC Epidemiology Unit, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Florian T Merkle
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Suzanne M Appleyard
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Gary A Wayman
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
28
|
Brzozowska MM, Havula E, Allen RB, Cox MP. Genetics, adaptation to environmental changes and archaic admixture in the pathogenesis of diabetes mellitus in Indigenous Australians. Rev Endocr Metab Disord 2019; 20:321-332. [PMID: 31278514 DOI: 10.1007/s11154-019-09505-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indigenous Australians are particularly affected by type 2 diabetes mellitus (T2D) due to both their genetic susceptibility and a range of environmental and lifestyle risk factors. Recent genetic studies link predisposition to some diseases, including T2D, to alleles acquired from archaic hominins, such as Neanderthals and Denisovans, which persist in the genomes of modern humans today. Indo-Pacific human populations, including Indigenous Australians, remain extremely underrepresented in genomic research with a paucity of data examining the impact of Denisovan or Neanderthal lineages on human phenotypes in Oceania. The few genetic studies undertaken emphasize the uniqueness and antiquity of Indigenous Australian genomes, with possibly the largest proportion of Denisovan ancestry of any population in the world. In this review, we focus on the potential contributions of ancient genes/pathways to modern human phenotypes, while also highlighting the evolutionary roles of genetic adaptation to dietary and environmental changes associated with an adopted Western lifestyle. We discuss the role of genetic and epigenetic factors in the pathogenesis of T2D in understudied Indigenous Australians, including the potential impact of archaic gene lineages on this disease. Finally, we propose that greater understanding of the underlying genetic predisposition may contribute to the clinical efficacy of diabetes management in Indigenous Australians. We suggest that improved identification of T2D risk variants in Oceania is needed. Such studies promise to clarify how genetic and phenotypic differences vary between populations and, crucially, provide novel targets for personalised medical therapies in currently marginalized groups.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, New South Wales, Australia.
- St George & Sutherland Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - Essi Havula
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Benjamin Allen
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
29
|
Resveratrol Regulates BDNF, trkB, PSA-NCAM, and Arc Expression in the Rat Cerebral Cortex after Bilateral Common Carotid Artery Occlusion and Reperfusion. Nutrients 2019; 11:nu11051000. [PMID: 31052460 PMCID: PMC6567029 DOI: 10.3390/nu11051000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The polyphenol resveratrol (RVT) may drive protective mechanisms of cerebral homeostasis during the hypoperfusion/reperfusion triggered by the transient bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R). This immunochemical study investigates if a single dose of RVT modulates the plasticity-related markers brain-derived neurotrophic factor (BDNF), the tyrosine kinase trkB receptor, Polysialylated-Neural Cell Adhesion Molecule (PSA-NCAM), and Activity-regulated cytoskeleton-associated (Arc) protein in the brain cortex after BCCAO/R. Frontal and temporal-occipital cortical regions were examined in male Wistar rats randomly subdivided in two groups, sham-operated and submitted to BCCAO/R. Six hours prior to surgery, half the rats were gavage fed a dose of RVT (180 mg·kg−1 in 300 µL of sunflower oil as the vehicle), while the second half was given the vehicle alone. In the frontal cortex of BCCAO/R vehicle-treated rats, BDNF and PSA-NCAM decreased, while trkB increased. RVT pre-treatment elicited an increment of all examined markers in both sham- and BCCAO/R rats. No variations occurred in the temporal-occipital cortex. The results highlight a role for RVT in modulating neuronal plasticity through the BDNF-trkB system and upregulation of PSA-NCAM and Arc, which may provide both trophic and structural local support in the dynamic changes occurring during the BCCAO/R, and further suggest that dietary supplements such as RVT are effective in preserving the tissue potential to engage plasticity-related events and control the functional response to the hypoperfusion/reperfusion challenge.
Collapse
|
30
|
Felsted JA, Chien CH, Wang D, Panessiti M, Ameroso D, Greenberg A, Feng G, Kong D, Rios M. Alpha2delta-1 in SF1 + Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis. Cell Rep 2018; 21:2737-2747. [PMID: 29212022 DOI: 10.1016/j.celrep.2017.11.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease.
Collapse
Affiliation(s)
- Jennifer A Felsted
- Graduate Program in Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Cheng-Hao Chien
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micaella Panessiti
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique Ameroso
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrew Greenberg
- Graduate Program in Biochemical and Molecular Nutrition, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Maribel Rios
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
31
|
|
32
|
Gudernova I, Balek L, Varecha M, Kucerova JF, Kunova Bosakova M, Fafilek B, Palusova V, Uldrijan S, Trantirek L, Krejci P. Inhibitor repurposing reveals ALK, LTK, FGFR, RET and TRK kinases as the targets of AZD1480. Oncotarget 2017; 8:109319-109331. [PMID: 29312610 PMCID: PMC5752523 DOI: 10.18632/oncotarget.22674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023] Open
Abstract
Many tyrosine kinase inhibitors (TKIs) have failed to reach human use due to insufficient activity in clinical trials. However, the failed TKIs may still benefit patients if their other kinase targets are identified by providing treatment focused on syndromes driven by these kinases. Here, we searched for novel targets of AZD1480, an inhibitor of JAK2 kinase that recently failed phase two cancer clinical trials due to a lack of activity. Twenty seven human receptor tyrosine kinases (RTKs) and 153 of their disease-associated mutants were in-cell profiled for activity in the presence of AZD1480 using a newly developed RTK plasmid library. We demonstrate that AZD1480 inhibits ALK, LTK, FGFR1-3, RET and TRKA-C kinases and uncover a physical basis of this specificity. The RTK activity profiling described here facilitates inhibitor repurposing by enabling rapid and efficient identification of novel TKI targets in cells.
Collapse
Affiliation(s)
- Iva Gudernova
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | | | | | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Veronika Palusova
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
33
|
van der Klaauw AA. Neuropeptides in Obesity and Metabolic Disease. Clin Chem 2017; 64:173-182. [PMID: 29097517 DOI: 10.1373/clinchem.2017.281568] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The global rise in the prevalence of obesity and associated comorbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. CONTENT Studies in rodents with the use of global and targeted gene disruption, and mapping of neurocircuitry by using optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) have greatly advanced our understanding of the neural control of body weight. In conjunction with analytical chemistry techniques involving classical immunoassays and mass spectrometry, many neuropeptides that are key to energy homeostasis have been identified. The actions of neuropeptides are diverse, from paracrine modulation of local neurotransmission to hormonal control of distant target organs. SUMMARY Multiple hormones, such as the adipocyte-derived leptin, insulin, and gut hormones, and nutrients signal peripheral energy state to the central nervous system. Neurons in distinct areas of the hypothalamus and brainstem integrate and translate this information by both direct inhibitory/excitatory projections and anorexigenic or orexigenic neuropeptides into actions on food intake and energy expenditure. The importance of these neuropeptides in human energy balance is most powerfully illustrated by genetic forms of obesity that involve neuropeptides such as melanocortin-4-receptor (MC4R) deficiency. Drugs that mimic the actions of neuropeptides are being tested for the treatment of obesity. Successful therapeutic strategies in obesity will require in-depth knowledge of the neuronal circuits they are working in, the downstream targets, and potential compensatory mechanisms.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- Department of Clinical Biochemistry, Metabolic Research Laboratories - Institute of Metabolic Science, University of Cambridge, Cambridge, England.
| |
Collapse
|
34
|
da Fonseca ACP, Mastronardi C, Johar A, Arcos-Burgos M, Paz-Filho G. Genetics of non-syndromic childhood obesity and the use of high-throughput DNA sequencing technologies. J Diabetes Complications 2017; 31:1549-1561. [PMID: 28735903 DOI: 10.1016/j.jdiacomp.2017.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood obesity is a serious public health problem associated with the development of several chronic diseases, such as type 2 diabetes mellitus, dyslipidemia, and hypertension. The elevated prevalence of obesity is mostly due to inadequate diet and lifestyle, but it is also influenced by genetic factors. OBJECTIVES To review recent advances in the field of the genetics of obesity. We summarize the list of genes associated with the rare non-syndromic forms of obesity, and explain their function. Furthermore, we discuss the technologies that are available for the genetic diagnosis of obesity. RESULTS Several studies reported that single gene variants cause Mendelian forms of obesity, determined by mutations of major effect in single genes. Rare, non-syndromic forms of obesity are a result of loss-of-function mutations in genes that act on the development and function of the hypothalamus or the leptin-melanocortin pathway. These variants disrupt enzymes and receptors that play a role in energy homeostasis, resulting in severe early-onset obesity and endocrine dysfunctions. Different approaches and technologies have been used to understand the genetic background of obesity. Currently, whole genome and whole exome sequencing are important diagnostic tools to identify new genes and variants associated with severe obesity, but other approaches are also useful at individual or population levels, such as linkage analysis, candidate gene sequencing, chromosomal microarray analysis, and genome-wide association studies. CONCLUSIONS The understanding of the genetic causes of obesity and the usefulness and limitations of the genetic diagnostic approaches can contribute to the development of new personalized therapeutic targets against obesity.
Collapse
Affiliation(s)
| | - Claudio Mastronardi
- Institute of Translational Medicine, Universidad del Rosario, Bogota, Colombia
| | - Angad Johar
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Australia.
| | | | - Gilberto Paz-Filho
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Australia.
| |
Collapse
|
35
|
Bethea CL, Mueller K, Reddy AP, Kohama SG, Urbanski HF. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS One 2017; 12:e0178788. [PMID: 28628658 PMCID: PMC5476244 DOI: 10.1371/journal.pone.0178788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
The beneficial effects of bioidentical ovarian steroid hormone therapy (HT) during the perimenopause are gaining recognition. However, the positive effects of estrogen (E) plus or minus progesterone (P) administration to ovariectomized (Ovx) lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars) and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E) in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE) or Delayed E (DE). Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E-induced gene expression in the dorsal raphe. These results suggest that with regard to function and viability in the dorsal raphe, HT may not be as beneficial for obese women as normal weight women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kevin Mueller
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Arubala P. Reddy
- Department of Internal Medicine, Texas Technical University Health Sciences Center School of Medicine, Lubbock, TX, United States of America
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
36
|
|
37
|
Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 2017; 130:943-86. [PMID: 27154742 DOI: 10.1042/cs20160136] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine.
Collapse
|
38
|
Miller KA, Twigg SRF, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KEM, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JAC, Swagemakers SMA, Mathijssen IMJ, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JEV, Sweeney E, Weber A, Wilson LC, Wilkie AOM. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet 2017; 54:260-268. [PMID: 27884935 PMCID: PMC5366069 DOI: 10.1136/jmedgenet-2016-104215] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. METHODS We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. RESULTS We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). CONCLUSIONS This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.
Collapse
Affiliation(s)
- Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Julie M Phipps
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Aimée L Fenwick
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Noons
- Department of Craniofacial Surgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Katie E M Rees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth A Tidey
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Craft
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tracy Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noina Abid
- Department of Paediatric Endocrinology, The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Deirdre Cilliers
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane A Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny E V Morton
- Clinical Genetics Unit, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
39
|
McCoy RC, Wakefield J, Akey JM. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression. Cell 2017; 168:916-927.e12. [PMID: 28235201 PMCID: PMC6219754 DOI: 10.1016/j.cell.2017.01.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jon Wakefield
- Department of Statistics, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Abstract
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
Collapse
Affiliation(s)
- Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
41
|
Han J. Rare Syndromes and Common Variants of the Brain-Derived Neurotrophic Factor Gene in Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:75-95. [DOI: 10.1016/bs.pmbts.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Saeed S, Bonnefond A, Manzoor J, Shabbir F, Ayesha H, Philippe J, Durand E, Crouch H, Sand O, Ali M, Butt T, Rathore AW, Falchi M, Arslan M, Froguel P. Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 2015; 23:1687-95. [PMID: 26179253 DOI: 10.1002/oby.21142] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Single gene mutations leading to severe obesity have so far been identified in 3-5% cases in European populations. However, prevalence of these pathogenic mutations has not systematically been examined in specific consanguineous populations. Here we describe the incidence of obesity-associated mutations through a step-wise sequence analysis, in a cohort of 73 Pakistani children with severe obesity from consanguineous families. METHODS Initially, all subjects were screened for mutations in coding regions of leptin (LEP) and melanocortin 4 receptor (MC4R) genes by direct sequencing. Subjects negative for mutation in these genes were screened using microdroplet PCR enrichment and NGS. Genomic structural variation was assessed by genotyping. Serum leptin, insulin, and cortisol were determined by ELISA. RESULTS Among 73 children with severe obesity (BMI SDS > 3.0), we identified 22 probands and 5 relatives, carrying 10 different loss-of-function homozygous mutations in LEP, leptin receptor (LEPR), and MC4R genes, including 4 novel variants. Hypercortisolemia was significantly emphasized in LEP mutation carriers. CONCLUSIONS The prevalence of pathogenic mutations in genes known to directly influence leptin-melanocortin signaling is 30% in our cohort. The results of this study emphasize the desirability of undertaking systematic and in-depth genetic analysis of cases with severe obesity in specific consanguineous populations.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Amélie Bonnefond
- European Genomic Institute for Diabetes (EGID), Lille, France
- CNRS-Umr8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Faiza Shabbir
- Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
| | - Hina Ayesha
- Department of Paediatrics, Punjab Medical College, Faisalabad, Pakistan
| | - Julien Philippe
- European Genomic Institute for Diabetes (EGID), Lille, France
- CNRS-Umr8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
| | - Emmanuelle Durand
- European Genomic Institute for Diabetes (EGID), Lille, France
- CNRS-Umr8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
| | - Hutokshi Crouch
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Olivier Sand
- European Genomic Institute for Diabetes (EGID), Lille, France
- CNRS-Umr8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
| | - Muhammad Ali
- Department of Paediatrics, Mayo Hospital, King Edward Medical University, Lahore, Pakistan
| | - Taeed Butt
- Department of Paediatrics, Fatima Memorial Hospital, Lahore, Pakistan
| | - Ahsan W Rathore
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Mario Falchi
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Muhammad Arslan
- Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
- Centre for Research in Molecular Medicine, the University of Lahore, Lahore, Pakistan
| | - Philippe Froguel
- Department of Genomics of Common Disease, Imperial College London, London, UK
- European Genomic Institute for Diabetes (EGID), Lille, France
- CNRS-Umr8199, Lille Pasteur Institute, Lille, France
- Lille University, Lille, France
| |
Collapse
|
43
|
Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again. PeerJ 2015; 3:e856. [PMID: 25825681 PMCID: PMC4375971 DOI: 10.7717/peerj.856] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide.
Collapse
Affiliation(s)
- Fereshteh T. Yazdi
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Travan L, Rocca MS, Buonomo F, Cleva L, Pecile V, De Cunto A. When Feeding Difficulties Are due to Genetics. J Investig Med High Impact Case Rep 2015; 3:2324709615574949. [PMID: 26425634 PMCID: PMC4586914 DOI: 10.1177/2324709615574949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chromosomal abnormalities may cause growth failure before or since birth. 9q duplication is reported as a cause of intrauterine growth restriction, mild dysmporphism, and intellectual disabilities. We report a case of a maternally inherited 9q21.31q21.33 duplication causing prenatal and postnatal growth restriction with feeding refusal and mild facial dysmorphisms, prenatally diagnosed by single-nucleotide polymorphism array analysis. Hypothesis of the possible pathogenic mechanisms are discussed.
Collapse
Affiliation(s)
- Laura Travan
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Maria Santa Rocca
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Francesca Buonomo
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Lisa Cleva
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Vanna Pecile
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Angela De Cunto
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
45
|
D'Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Lourenço CM, Perez ABA, Koiffmann CP. Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 2014; 7:75. [PMID: 25411582 PMCID: PMC4236449 DOI: 10.1186/s13039-014-0075-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/19/2014] [Indexed: 01/02/2023] Open
Abstract
Background Certain rare syndromes with developmental delay or intellectual disability caused by genomic copy number variants (CNVs), either deletions or duplications, are associated with higher rates of obesity. Current strategies to diagnose these syndromes typically rely on phenotype-driven investigation. However, the strong phenotypic overlap between syndromic forms of obesity poses challenges to accurate diagnosis, and many different individual cytogenetic and molecular approaches may be required. Multiplex ligation-dependent probe amplification (MLPA) enables the simultaneous analysis of multiple targeted loci in a single test, and serves as an important screening tool for large cohorts of patients in whom deletions and duplications involving specific loci are suspected. Our aim was to design a synthetic probe set for MLPA analysis to investigate in a cohort of 338 patients with syndromic obesity deletions and duplications in genomic regions that can cause this phenotype. Results We identified 18 patients harboring copy number imbalances; 18 deletions and 5 duplications. The alterations in ten patients were delineated by chromosomal microarrays, and in the remaining cases by additional MLPA probes incorporated into commercial kits. Nine patients showed deletions in regions of known microdeletion syndromes with obesity as a clinical feature: in 2q37 (4 cases), 9q34 (1 case) and 17p11.2 (4 cases). Four patients harbored CNVs in the DiGeorge syndrome locus at 22q11.2. Two other patients had deletions within the 22q11.2 ‘distal’ locus associated with a variable clinical phenotype and obesity in some individuals. The other three patients had a recurrent CNV of one of three susceptibility loci: at 1q21.1 ‘distal’, 16p11.2 ‘distal’, and 16p11.2 ‘proximal’. Conclusions Our study demonstrates the utility of an MLPA-based first line screening test to the evaluation of obese patients presenting with syndromic features. The overall detection rate with the synthetic MLPA probe set was about 5.3% (18 out of 338). Our experience leads us to suggest that MLPA could serve as an effective alternative first line screening test to chromosomal microarrays for diagnosis of syndromic obesity, allowing for a number of loci (e.g., 1p36, 2p25, 2q37, 6q16, 9q34, 11p14, 16p11.2, 17p11.2), known to be clinically relevant for this patient population, to be interrogated simultaneously.
Collapse
Affiliation(s)
- Carla S D'Angelo
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Monica C Varela
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Ie de Castro
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Chong A Kim
- Genetics Unit, Department of Pediatrics, Children Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Débora R Bertola
- Genetics Unit, Department of Pediatrics, Children Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Charles M Lourenço
- Neurogenetics Unit, Department of Medical Genetics, School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Beatriz A Perez
- Department of Morphology, Medical Genetics Center, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Celia P Koiffmann
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
46
|
Abstract
Heritability of obesity and body weight variation is high. Molecular genetic studies have led to the identification of mutations in a few genes, with a major effect on obesity (major genes and monogenic forms). Analyses of these genes have helped to unravel important pathways and have created a more profound understanding of body weight regulation. For most individuals, a polygenic basis is relevant for the genetic predisposition to obesity. Small effect sizes are conveyed by the polygenic variants. Hence, only if a number of these variants is harboured, a sizeable phenotypic effect is detectable. Most, if not all, of the genes relevant to weight regulation are expressed in the hypothalamus. This underscores the major role of this region of the brain in body weight regulation.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
47
|
Variants Close to NTRK2 Gene Are Associated With Birth Weight in Female Twins. Twin Res Hum Genet 2014; 17:254-61. [DOI: 10.1017/thg.2014.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low weight at birth has previously been shown to be associated with a number of adult diseases such as type 2 diabetes, cardiovascular disease, high blood pressure, and obesity later in life. Genome-wide association studies (GWAS) have been published for singleton-born individuals, but the role of genetic variation in birth weight (BW) in twins has not yet been fully investigated. A GWAS was performed in 4,593 female study participants with BW data available from the TwinsUK cohort. A genome-wide significant signal was found in chromosome 9, close to the NTRK2 gene (OMIM: 600456). QIMR, an Australian twin cohort (n = 3,003), and UK-based singleton-birth individuals from the Hertfordshire cohort (n = 2,997) were used as replication for the top two single nucleotide polymorphism (SNPs) underpinning this signal, rs12340987 and rs7849941. The top SNP, rs12340987, was found to be in the same direction in the Australian twins and in the singleton-born females (fixed effects meta-analysis beta = -0.13, SE = 0.02, and p = 1.48 × 10−8) but not in the singleton-born males tested. These findings provide an important insight into the genetic component of BW in twins who are normally excluded due to their lower BW when compared with singleton births, as well as the difference in BW between twins. The NTRK2 gene identified in this study has previously been associated with obesity.
Collapse
|
48
|
Abstract
The neurotrophin family is comprised of the structurally related secreted proteins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophine-4 (NT-4). They bind and activate the tyrosine kinase receptors Trk A, B, and C in a ligand-specific manner and additionally bind a shared p75NTR receptor. The neurotrophins were originally defined by their ability to support the survival and maturation of embryonic neurons. However, they also control important physiological functions of the adult nervous system including learning and memory, sensation, and energy homeostasis. For example, NGF/trkA signaling is critical for normal and pathological sensation of pain. Likewise, the BDNF/trkB pathway controls feeding and metabolism, and its dysfunction leads to severe obesity. Antibodies can modulate neurotrophin signaling. Thus, NGF blocking agents can attenuate pain in several animal models, and a recombinant humanized NGF blocking antibody (Tanezumab) has shown promising results in human clinical trials for osteoarthritic pain. On the other hand trkB agonist antibodies can modulate food intake and body weight in rodents and nonhuman primates. The power of monoclonal antibodies to modulate neurotrophin signaling promises to turn the rich biological insights into novel human medicines.
Collapse
Affiliation(s)
- A Rosenthal
- Alector Inc., 953 Indiana St., San Francisco, CA, 94107, USA,
| | | |
Collapse
|
49
|
Abstract
Obesity and its related metabolic consequences represent a major public health problem. Huge changes within the environment have undoubtedly contributed to the increased prevalence of obesity but genetic factors are also critical in determining an individual's predisposition to gain weight. The last two decades have seen a huge increase in the understanding of the mechanisms controlling appetitive behavior, body composition, and energy expenditure. Many regions throughout the central nervous system play critical roles in these processes but the hypothalamus, in particular, receives and orchestrates a variety of signals to bring about coordinated changes in energy balance. Reviewing data from human genetic and model organism studies, we consider how disruptions of hypothalamic pathways evolved to maintain energy homeostasis and go on to cause obesity. We highlight ongoing technological developments which continue to lead to novel insights and discuss how this increased knowledge may lead to effective therapeutic interventions in the future.
Collapse
Affiliation(s)
- Rachel Larder
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Chung Thong Lim
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
50
|
Byerly MS, Swanson RD, Semsarzadeh NN, McCulloh PS, Kwon K, Aja S, Moran TH, Wong GW, Blackshaw S. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1085-95. [PMID: 23576617 DOI: 10.1152/ajpregu.00368.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruption of finely coordinated neuropeptide signals in the hypothalamus can result in altered food intake and body weight. We identified neuron-derived neurotrophic factor (NENF) as a novel secreted protein through a large-scale screen aimed at identifying novel secreted hypothalamic proteins that regulate food intake. We observed robust Nenf expression in hypothalamic nuclei known to regulate food intake, and its expression was altered under the diet-induced obese (DIO) condition relative to the fed state. Hypothalamic Nenf mRNA was regulated by brain-derived neurotrophic factor (BDNF) signaling, itself an important regulator of appetite. Delivery of purified recombinant BDNF into the lateral cerebral ventricle decreased hypothalamic Nenf expression, while pharmacological inhibition of trkB signaling increased Nenf mRNA expression. Furthermore, recombinant NENF administered via an intracerebroventricular cannula decreased food intake and body weight and increased hypothalamic Pomc and Mc4r mRNA expression. Importantly, the appetite-suppressing effect of NENF was abrogated in obese mice fed a high-fat diet, demonstrating a diet-dependent modulation of NENF function. We propose the existence of a regulatory circuit involving BDNF, NENF, and melanocortin signaling. Our study validates the power of using an integrated experimental and bioinformatic approach to identify novel CNS-derived proteins with appetite-modulating function and reveals NENF as an important central modulator of food intake.
Collapse
Affiliation(s)
- Mardi S Byerly
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|