1
|
Meyhöfer S, Steffen A, Plötze-Martin K, Marquardt JU, Meyhöfer SM, Bruchhage KL, Pries R. Obesity-related Plasma CXCL10 Drives CX3CR1-dependent Monocytic Secretion of Macrophage Migration Inhibitory Factor. Immunohorizons 2024; 8:19-28. [PMID: 38175171 PMCID: PMC10835669 DOI: 10.4049/immunohorizons.2300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is characterized by excessive body fat accumulation and comorbidities such as diabetes mellitus, cardiovascular disease, and obstructive sleep apnea syndrome (OSAS). Both obesity and OSAS are associated with immune disturbance, alterations of systemic inflammatory mediators, and immune cell recruitment to metabolic tissues. Chemokine CXCL10 is an important regulator of proinflammatory immune responses and is significantly increased in patients with severe obesity. This research project aims to investigate the impact of CXCL10 on human monocytes in patients with obesity. We studied the distribution of the CD14/CD16 monocyte subsets as well as their CX3CR1 expression patterns in whole-blood measurements from 92 patients with obesity and/or OSAS with regard to plasma CXCL10 values and individual clinical parameters. Furthermore, cytokine secretion by THP-1 monocytes in response to CXCL10 was analyzed. Data revealed significantly elevated plasma CXCL10 in patients with obesity with an additive effect of OSAS. CXCL10 was found to drive monocytic secretion of macrophage migration inhibitory factor via receptor protein CX3CR1, which significantly correlated with the individual body mass index. Our data show, for the first time, to our knowledge, that CX3CR1 is involved in alternative CXCL10 signaling in human monocytes in obesity-related inflammation. Obesity is a multifactorial disease, and further investigations regarding the complex interplay between obesity-related inflammatory mediators and systemic immune balances will help to better understand and improve the individual situation of our patients.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Jens-Uwe Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Sebastian M. Meyhöfer
- Institute for Endocrinology & Diabetes, Department of Internal Medicine 1, University Hospital of Schleswig-Holstein, Luebeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
2
|
Lee M, Hamilton JAG, Talekar GR, Ross AJ, Michael L, Rupji M, Dwivedi B, Raikar SS, Boss J, Scharer CD, Graham DK, DeRyckere D, Porter CC, Henry CJ. Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nat Commun 2022; 13:1157. [PMID: 35241678 PMCID: PMC8894417 DOI: 10.1038/s41467-022-28839-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
The incidence of obesity is rising with greater than 40% of the world’s population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance. Obesity has been reported to promote tumourigenesis and chemoresistance but the underlying mechanisms are not completely understood. Here, the authors show that adipocytes induce Galectin-9 (GAL-9) expression in B-acute lymphoblastic leukaemia (B-ALL) cells which leads to chemoresistance and antibody-mediated blockade of GAL-9 increases survival in preclinical B-ALL murine models.
Collapse
Affiliation(s)
- Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jamie A G Hamilton
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ganesh R Talekar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Pediatric Cancer and Blood Diseases, Riley Children's Health, Indiana University School of Medicine, Indianapolis, Indiana, IN, USA
| | | | - Manali Rupji
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jeremy Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
3
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
4
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
5
|
Kazemi Fard T, Tavakoli S, Ahmadi R, Moradi N, Fadaei R, Mohammadi A, Fallah S. Evaluation of IP10 and miRNA 296-a Expression Levels in Peripheral Blood Mononuclear Cell of Coronary Artery Disease Patients and Controls. DNA Cell Biol 2020; 39:1678-1684. [PMID: 32716219 DOI: 10.1089/dna.2020.5650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coronary artery disease (CAD) is the main cause of death worldwide. Atherosclerosis, the leading underlying cause of CAD, is a progressive inflammatory disease. miRNAs play a substantial role in inflammation. The aim of this study was to investigate the associations of peripheral blood mononuclear cells (PBMCs) gene expression of IP10 and miRNA 296-a and serum levels of IP10 and serum inflammatory cytokines interleukin-6 (IL-6) in CAD patients and controls. This is a case-control study conducted on 82 angiography confirmed CAD patients and 82 controls. PBMC expressions of miR-296a and IP10 were evaluated by real-time method, and serum concentrations of IL-6 and TNF-α were evaluated by enzyme-linked immunosorbent assay in the study population. A significant increase was found for serum IP10, IL-6, and TNF-α levels, and PBMC expression of IP10 and miRNA 296-a genes expression of CAD as comparison with controls. No significant correlation was found between IP10 gene expression and miRNA 296-a. A significant positive correlation was found between PBMC gene expression level of IP10 and serum concentrations of IP10 and cytokines IL-6 and TNF-α levels. Taking together, in PBMC of CAD patients, the IP10 and 296-a miRNA genes expression levels were increased significantly than controls. IP10, IL-6, and TNF-α levels in CAD patients were more than those in controls significantly. Concerning positive relationship between miRNA 296-a gene expression level and serum concentrations of IL-6 and TNF-α in CAD patients, it is proposed that IL-6 and TNF-α inhibitor could be the main targets of miRNA 296a and, thereby the IL-6 and TNF-α levels were increased; however, further study is needed.
Collapse
Affiliation(s)
- Toktam Kazemi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samareh Tavakoli
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asghar Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Jang K, Tong T, Lee J, Park T, Lee H. Altered Gene Expression Profiles in Peripheral Blood Mononuclear Cells in Obese Subjects. Obes Facts 2020; 13:375-385. [PMID: 32544907 PMCID: PMC7445570 DOI: 10.1159/000507817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Gene expression profiles in human peripheral blood mononuclear cells (PBMCs) may act as a useful tool to better understand obesity. We investigated gene expression levels in PMBCs for possible differences between obese and non-obese subjects (19-55 years) and evaluated correlations between gene expression in PBMCs and clinical obesity indices. METHODS Body weight, BMI, fat amount, fat percentage, waist/hip ratio, leptin, and adiponectin levels were determined in 30 obese and 20 non-obese subjects. Expression levels of 19 genes, which were differentially expressed by clinical obesity indices in the PBMCs of high fat-fed rats, were determined in their PBMCs using real-time PCR. RESULTS The expression of 9 of 19 previously selected genes was significantly correlated with one or more clinical obesity indices. Both TFEC and CCL2 expression were negatively correlated with BMI, fat amount, fat percentage, waist/hip ratio, and leptin concentration. Similarly, TNFAIP2, VCAN, ASSI, IRF1, and HK3 expression negatively correlated with some clinical obesity indices, such as TNFAIP2 for BMI, fat amount, fat percentage, and waist/hip ratio, VCAN for fat amount, fat percentage, and waist/hip ratio, ASS1 for BMI and fat amount, IRF1 for BMI, fat amount, and fat percentage, and HK3 for fat amount. In contrast, both TNF-α and LPL expression were positively correlated with waist/hip ratio. CONCLUSION We identified 9 of 19 genes in human PBMCs that significantly correlated with one or more clinical obesity indices. Because these genes have a mechanistic basis for the development or progression of obesity and its metabolic derangements, they may help to determine possible underlying mechanisms for obesity.
Collapse
Affiliation(s)
- Kyungho Jang
- Center for Clinical Pharmacology, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinhui Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
- **Taesun Park, Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120749 (South Korea),
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- *Howard Lee, Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, Seoul 110799 (South Korea),
| |
Collapse
|
7
|
Paradoxical effects of the epigenetic modifiers 5-aza-deoxycytidine and suberoylanilide hydroxamic acid on adipogenesis. Differentiation 2019; 106:1-8. [PMID: 30818187 DOI: 10.1016/j.diff.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 01/17/2023]
Abstract
Adipogenesis is an important biological process that is linked to obesity and metabolic disorders. On the other hand, fat regeneration is crucial as a restorative approach following mastectomy or severe burn injury. Furthermore, optimizing an in-vitro model of adipogenesis, which would help in understanding the possible effects and/or side effects of fat-soluble drugs and anti-obesity remedies, in addition to the developmental studies. Epigenetic is an important factor that is involved in cellular differentiation and commitment. This study aimed at investigating the effect of DNA methylation and histone deactylases inhibitors, 5-Aza-deoxycytidine (5-Aza-dC) and Suberoylanilide hydroxamic acid (SAHA), on the adipogenic differentiation process. The two modifiers were applied according to our previously published protocol, followed by three cycles of a classical, two-step adipogenesis protocol. The cells pretreated with SAHA showed enhanced expression of the many adipogenic genes, including peroxisome proliferator-activated receptor-γ as well as the accumulation of intracytoplasmic fat as shown by oil red and Nile red staining and the secretion of adipokines, such as MCP-1 and IP-10. On contrary, 5-Aza-dC inhibited all these markers. In conclusion, adding the reported step with SAHA to the differentiation protocols could have an impact on the progress of the in-vitro fat regenerative approach. The possible role of 5-Aza-dC in the inhibition of adipogenesis can be of clinical interest and will need further characterization in the future.
Collapse
|
8
|
Schlesinger S, Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, Bönhof GJ, Koenig W, Heier M, Peters A, Meisinger C, Roden M, Thorand B, Ziegler D. General and Abdominal Obesity and Incident Distal Sensorimotor Polyneuropathy: Insights Into Inflammatory Biomarkers as Potential Mediators in the KORA F4/FF4 Cohort. Diabetes Care 2019; 42:240-247. [PMID: 30523031 DOI: 10.2337/dc18-1842] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/04/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the associations between different anthropometric measurements and development of distal sensorimotor polyneuropathy (DSPN) considering interaction effects with prediabetes/diabetes and to evaluate subclinical inflammation as a potential mediator. RESEARCH DESIGN AND METHODS This study was conducted among 513 participants from the Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort (aged 62-81 years). Anthropometry was measured at baseline. Incident DSPN was defined by neuropathic impairments using the Michigan Neuropathy Screening Instrument at baseline and follow-up. Associations between anthropometric measurements and DSPN were estimated by multivariable logistic regression. Potential differences by diabetes status were assessed using interaction terms. Mediation analysis was conducted to determine the mediation effect of subclinical inflammation in these associations. RESULTS After a mean follow-up of 6.5 years, 127 cases with incident DSPN were detected. Both general and abdominal obesity were associated with development of DSPN. The odds ratios (95% CI) of DSPN were 3.06 (1.57; 5.97) for overweight, 3.47 (1.72; 7.00) for obesity (reference: normal BMI), and 1.22 (1.07; 1.38) for 5-cm differences in waist circumference, respectively. Interaction analyses did not indicate any differences by diabetes status. Two chemokines (C-C motif chemokine ligand 7 [CCL7] and C-X-C motif chemokine ligand 10 [CXCL10]) and one neuron-specific marker (Delta/Notch-like epidermal growth factor-related receptor [DNER]) were identified as potential mediators, which explained a proportion of the total effect up to 11% per biomarker. CONCLUSIONS General and abdominal obesity were associated with incident DSPN among individuals with and without diabetes, and this association was partly mediated by inflammatory markers. However, further mechanisms and biomarkers should be investigated as additional mediators to explain the remainder of this association.
Collapse
Affiliation(s)
- Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany .,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia M Kannenberg
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Huth
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.,Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-Universität München am UNIKA-T Augsburg, Augsburg, Germany
| | - Michael Roden
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- German Center for Diabetes Research, München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Deng H, Li Z, Liu G, Li X, Chen Y, Zhang Y, Sun Y, Fu J. Elevated serum interferon γ-inducible protein-10 in women with polycystic ovary syndrome. Gynecol Endocrinol 2017; 33:363-367. [PMID: 28051885 DOI: 10.1080/09513590.2016.1269740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Interferon γ-induced protein 10 kDa (IP10/CXCL10) is a chemokine related to endocrine disorders; however, the serum concentrations of IP10 in women with polycystic ovary syndrome (PCOS) have not yet been reported. Therefore, we investigated whether IP10 is increased in PCOS patients and its potential clinical value in PCOS patients. METHODS For this research, the serum IP10, glucose, insulin, high sensitivity C-reactive protein (hs-CRP), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone (TT) concentrations were measured in 60 women with PCOS and healthy controls. RESULTS The median IP10 concentration was 45.60 pg/mL [interquartile range (IQR):29.75, 79.69], which was significantly higher than that of the body mass index (BMI)-matched controls (median: 36.46 pg/mL; IQR:28.98, 45.80). In the multivariate linear regression analysis, hs-CRP and the homeostasis model assessment of insulin resistance index (HOMA2-IR) were independent predictors of the IP10 values, while FSH was inversely associated with the IP10.No significant association was observed between the IP10 and BMI, glucose, LH and TT. CONCLUSIONS The serum IP10 concentrations increase in women with PCOS, moreover, IP10 appears to be correlated with the inflammatory and IR statuses of PCOS. IP10 may be a potential biomarker to estimate the disease activity of PCOS.
Collapse
Affiliation(s)
- Hongli Deng
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Zhibo Li
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Guang Liu
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Xianhua Li
- a Department of Clinical Laboratory , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Changsha , Hunan , China
| | - Yong Chen
- b Department of Clinical Laboratory , Affiliated Changsha Hospital of University of South China, The First Hospital of Changsha City , Changsha , Hunan , China
| | - Yong Zhang
- c Department of Gastrointestinal Surgery , Affiliated Liuyang Hospital of University of South China, People's Hospital of Liuyang City , Chang sha , Hunan , China
| | - Yifan Sun
- d Department of Clinical Laboratory , Third Affiliated Hospital of Guangxi University of Chinese Medicine , Liuzhou , Guangxi , China , and
| | - Jinjian Fu
- e Department of Clinical Laboratory , Liuzhou Maternity and Child Health Care Hospital , Liuzhou , Guangxi , China
| |
Collapse
|
10
|
van den Berg SM, van Dam AD, Rensen PCN, de Winther MPJ, Lutgens E. Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocr Rev 2017; 38:46-68. [PMID: 27849358 DOI: 10.1210/er.2016-1066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Obesity is associated with a variety of medical conditions such as type 2 diabetes and cardiovascular diseases and is therefore responsible for high morbidity and mortality rates. Increasing energy expenditure by brown adipose tissue (BAT) is a current novel strategy to reduce the excessive energy stores in obesity. Brown adipocytes burn energy to generate heat and are mainly activated upon cold exposure. As prolonged cold exposure is not a realistic therapy, researchers worldwide are searching for novel ways to activate BAT and/or induce beiging of white adipose tissue. Recently, the contribution of immune cells in the regulation of brown adipocyte activity and beiging of white adipose tissue has gained increased attention, with a prominent role for eosinophils and alternatively activated macrophages. This review discusses the rediscovery of BAT, presents an overview of modes of activation and differentiation of beige and brown adipocytes, and describes the recently discovered immunological pathways that are key in mediating brown/beige adipocyte development and function. Interventions in immunological pathways harbor the potential to provide novel strategies to increase beige and brown adipose tissue activity as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands
| | - Andrea D van Dam
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| |
Collapse
|
11
|
Abbott RD, Wang RY, Reagan MR, Chen Y, Borowsky FE, Zieba A, Marra KG, Rubin JP, Ghobrial IM, Kaplan DL. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems. Adv Healthc Mater 2016; 5:1667-77. [PMID: 27197588 PMCID: PMC4982640 DOI: 10.1002/adhm.201600211] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Indexed: 01/04/2023]
Abstract
There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered.
Collapse
Affiliation(s)
- Rosalyn D. Abbott
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Rebecca Y. Wang
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Michaela R. Reagan
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - Ying Chen
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Francis E. Borowsky
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Adam Zieba
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| | - Kacey G. Marra
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - J. Peter Rubin
- Departments of Plastic Surgery in the School of Medicine at the University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States of America
| | - Irene M. Ghobrial
- School of Medicine, Harvard Institute, 4 Blackfan Circle, 2nd Floor, Suite 240 Boston, MA 02115, United States of America
| | - David L. Kaplan
- Biomedical Engineering, Tufts University, 4 Colby St. Medford MA 02155, United States of America
| |
Collapse
|
12
|
Massaro M, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Wabitsch M, Storelli C, Wright M, De Caterina R. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes. Pharmacol Res 2016; 107:125-136. [PMID: 26976796 DOI: 10.1016/j.phrs.2016.02.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy; Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, Germany
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Raffaele De Caterina
- G. dAnnunzio University and Center of Excellence on Aging, Chieti, Italy; G. Monasterio Foundation for Clinical Research, Pisa, Italy.
| |
Collapse
|
13
|
Nayak M, Eekhoff ME, Peinhaupt M, Heinemann A, Desoye G, van Poppel MN. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity. Cytokine 2016; 77:72-8. [DOI: 10.1016/j.cyto.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
|
14
|
Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 2015; 309:E691-714. [PMID: 26330344 DOI: 10.1152/ajpendo.00297.2015] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Honda Y, Otsuka A, Nonomura Y, Kaku Y, Dainichi T, Miyachi Y, Kabashima K. CCR5 and CXCR3 expression in a case of subcutaneous panniculitis-like T-cell lymphoma. J Eur Acad Dermatol Venereol 2015; 30:1413-5. [PMID: 26301865 DOI: 10.1111/jdv.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Y Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - A Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Y Nonomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Y Kaku
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - T Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Y Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R. Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLoS One 2015. [PMID: 26200663 PMCID: PMC4511728 DOI: 10.1371/journal.pone.0133494] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of IL-6R/IL-6 axis in metabolic inflammation remains controversial. We determined the changes in adipose tissue expression of IL-6R and IL-6 in obese, overweight, and lean non-diabetic individuals. Subcutaneous adipose tissue biopsies were collected from 33 obese, 22 overweight, and 10 lean individuals and the expression of IL-6R, IL-6, TNF-α, MCP-1, IP-10, CD11b, CD163, and CD68 was detected by immunohistochemistry; results were also confirmed by real-time RT-PCR and confocal microscopy. The data were compared using unpaired t-test and the dependence between two variables was assessed by Pearson’s correlation test. Obese individuals showed higher IL-6R expression (103.8±4.807) in the adipose tissue as compared with lean/overweight (68.06±4.179) subjects (P<0.0001). The elevated IL-6R expression correlated positively with body mass index (BMI) (r=0.80 P<0.0001) and percent body fat (r=0.69 P=0.003). The increased IL-6R expression in obesity was also confirmed by RT-PCR (Obese: 3.921±0.712 fold; Lean/Overweight: 2.191±0.445 fold; P=0.0453) and confocal microscopy. IL-6 expression was also enhanced in obese adipose tissue (127.0±15.91) as compared with lean/overweight (86.69±5.25) individuals (P=0.03) which correlated positively with BMI (r=0.58 P=0.008). IL-6 mRNA expression was concordantly higher in obese (16.60±2.214 fold) versus lean/overweight (9.376±1.656 fold) individuals (P=0.0108). These changes in the IL-6R/IL-6 expression correlated positively with the adipose tissue expression of CD11b (IL-6R r=0.44 P=0.063; IL-6 r=0.77 P<0.0001), CD163 (IL-6R r=0.45 P=0.045; IL-6 r=0.55 P=0.013), TNF-α (IL-6R r=0.73 P=0.0003; IL-6 r=0.60 P=0.008), MCP-1 (IL-6R r=0.61 P=0.005; IL-6 r=0.63 P=0.004) and IP-10 (IL-6R r=0.41 P=0.08; IL-6 r=0.50 P=0.026). It was, therefore, concluded that obesity was a positive modulator of IL-6R and IL-6 expression in the adipose tissue which might be a contributory mechanism to induce metabolic inflammation.
Collapse
Affiliation(s)
- Sardar Sindhu
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
| | - Reeby Thomas
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
| | - Puthiyaveetil Shihab
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
| | - Devarajan Sriraman
- Tissue Bank Core Facility, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
| | - Kazem Behbehani
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
- Tissue Bank Core Facility, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, Kuwait
- * E-mail:
| |
Collapse
|
17
|
Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia. Mediators Inflamm 2015; 2015:325932. [PMID: 26089598 PMCID: PMC4458290 DOI: 10.1155/2015/325932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/04/2015] [Indexed: 01/12/2023] Open
Abstract
Objectives. The pathophysiology of preeclampsia is characterized by abnormal placentation, an exaggerated inflammatory response, and generalized dysfunction of the maternal endothelium. We investigated the effects of preeclampsia serum on the expression of inflammation-related genes by adipose tissue. Materials and Methods. Visceral adipose tissue was obtained from the omentum of patients with early ovarian cancer without metastasis. Adipose tissue was incubated with sera obtained from either five women affected with severe preeclampsia or five women from control pregnant women at 37°C in a humidified incubator at 5% CO2 for 24 hours. 370 genes in total mRNA were analyzed with quantitative RT-PCR (Inflammatory Response & Autoimmunity gene set). Results. Gene expression analysis revealed changes in the expression levels of 30 genes in adipose tissue treated with preeclampsia sera. Some genes are related to immune response, oxidative stress, insulin resistance, and adipogenesis, which plays a central role in excessive systemic inflammatory response of preeclampsia. In contrast, other genes have shown beneficial effects in the regulation of Th2 predominance, antioxidative stress, and insulin sensitivity. Conclusion. In conclusion, visceral adipose tissue offers protection against inflammation, oxidative insults, and other forms of cellular stress that are central to the pathogenesis of preeclampsia.
Collapse
|
18
|
Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol 2014; 15:46. [PMID: 25526965 PMCID: PMC4293810 DOI: 10.1186/s12860-014-0046-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stromal cells (MSC) can be obtained from potentially any tissue from the human body, but cells purified from different sources are undoubtedly different, and for each medical application, the MSC with the best regenerative potential should be chosen. Results Bone marrow-derived mesenchymal stromal cells (BM-MSC), adipose tissue-derived mesenchymal stromal cells (AT-MSC) and Wharton’s Jelly-derived mesenchymal stromal cells (WJ-MSC) were isolated from human tissues and were cultured under differentiation media supplemented with fetal bovine serum. We quantified the expression of stem cell and adipocyte genetic markers using quantitative real time PCR, as well as the secretion of cytokines, extracellular matrix components and growth factors using Luminex and ELISA. All three MSC differentiated into adipogenic cells. AT-MSC showed the highest shift in ADIPOQ, CEBPA and PPARG mRNA expression. BM-MSC kept high expression levels of stem-cell markers SOX2 and POU5F1. WJ-MSC showed the lowest increase in mRNA expression when cells were induced to differentiate into adipocytes. Regarding protein secretion, adipocyte-like cells generated from WJ-MSC secreted the highest chemokine levels. AT-MSC-derived adipocyte-like cells secreted the lowest cytokine amounts and the highest quantity of collagen types I and III. Adipocyte-like cells obtained from BM-MSC secreted high amounts of most angiogenic factors, growth factors TGF-β1 and TGF-β2, collagens type II and IV, heparan sulfate, laminin and aggrecan. Conclusion Mesenchymal stromal cells purified from different tissues have a different behavior when induced to differentiate into adipocyte-like cells.
Collapse
Affiliation(s)
- Paola Romina Amable
- Excellion Biomedical Services S.A., Rua Afrânio de Mello Franco 333, Quitandinha, Petrópolis, Rio de Janeiro, Brazil.
| | | | | | - José Mauro Granjeiro
- National Institute of Metrology, Quality and Technology (Inmetro), Xerém, Rio de Janeiro, Brazil.
| | - Radovan Borojevic
- National Institute of Metrology, Quality and Technology (Inmetro), Xerém, Rio de Janeiro, Brazil. .,Faculdade de Medicina de Petrópolis, Faculdades Arthur Sá Earp Neto, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
An Oral Mixed Fat Load Is Followed by a Modest Anti-inflammatory Adipocytokine Response in Overweight Patients with Metabolic Syndrome. Lipids 2014; 49:247-54. [DOI: 10.1007/s11745-014-3877-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/26/2013] [Indexed: 11/27/2022]
|
20
|
Comstock SS, Hortos K, Kovan B, McCaskey S, Pathak DR, Fenton JI. Adipokines and obesity are associated with colorectal polyps in adult males: a cross-sectional study. PLoS One 2014; 9:e85939. [PMID: 24465801 PMCID: PMC3895019 DOI: 10.1371/journal.pone.0085939] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity increases the risk of colon cancer. It is also known that most colorectal cancers develop from adenomatous polyps. However, the effects of obesity and adipokines on colonic polyp formation are unknown. METHODS To determine if BMI, waist circumference or adipokines are associated with colon polyps in males, 126 asymptomatic men (48-65 yr) were recruited at time of colonoscopy, and anthropometric measures as well as blood were collected. Odds ratios were determined using polytomous logistic regression for polyp number (0 or ≥3) and polyp type (no polyp, hyperplastic polyp, tubular adenoma). RESULTS 41% of the men in our study were obese (BMI ≥30). The odds of an obese individual having ≥3 polyps was 6.5 (CI: 1.3-33.0) times greater than those of a lean (BMI<25) individual. Additionally, relative to lean individuals, obese individuals were 7.8 (CI: 2.0-30.8) times more likely to have a tubular adenoma than no polyp. As BMI category increased, participants were 2.9 (CI: 1.5-5.4) times more likely to have a tubular adenoma than no polyps. Serum leptin, IP-10 and TNF-α were significantly associated with tubular adenoma presence. Serum leptin and IP-10 were significantly associated with increased likelihood of ≥3 polyps, and TNF-α showed a trend (p = 0.09). CONCLUSIONS Obese men are more likely to have at least three polyps and adenomas. This cross-sectional study provides evidence that colonoscopy should be recommended for obese, white males.
Collapse
Affiliation(s)
- Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Kari Hortos
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Bruce Kovan
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Tri-County Gastroenterology, Professional Corporation, Clinton Township, Michigan, United States of America
| | - Sarah McCaskey
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
21
|
Faber DR, van der Graaf Y, Westerink J, Kanhai DA, Monajemi H, Visseren FLJ. Hepatocyte growth factor and interferon-γ inducible protein-10 are related to visceral adiposity. Eur J Clin Invest 2013; 43:369-78. [PMID: 23398210 DOI: 10.1111/eci.12054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Increased production of chemokines by adipose tissue and defective adipose tissue oxygenation as a result of obesity may induce leucocyte infiltration and subsequent systemic inflammation. OBJECTIVES 1-To determine the relation between the amount of visceral and subcutaneous adipose tissue and the chemokine interferon-γ-inducible protein 10 (IP-10) and angiogenic factor hepatocyte growth factor (HGF). 2-To determine the relation between the metabolic syndrome and IP-10 as well as HGF. METHODS Patients originated from the Secondary Manifestations of ARTerial disease (SMART) cohort. In this study, a cohort of 1251 patients with manifest vascular disease was included. Subcutaneous and visceral adipose tissue thickness (SAT and VAT respectively) were measured ultrasonographically. IP-10 and HGF concentrations were measured with Luminex multiplex immuno assay in addition to fasting metabolic parameters. Linear regression analyses with adjustments for age, gender, smoking, estimated glomerular filtration rate, type 2 diabetes mellitus and medication use were applied to quantify the relations between adiposity or metabolic syndrome and IP-10 and HGF concentrations. RESULTS VAT was significantly associated with (log)IP-10 and (log)HGF, reflected by significant higher β-values in VAT quartile 4 compared with VAT quartile 1 (reference): β0.155 (95%CI:0.073-0.237) for IP-10 and β0.147 (95%CI:0.076-0.218) for HGF. Per standard deviation increase in VAT, (log)IP-10 levels increased with 0.057 pg/mL (95%CI:0.027-0.087) and (log)HGF increased with 0.051 pg/mL (95%CI:0.025-0.077). Effect estimates were not affected by including body mass index(BMI) in the model. In contrast, SAT was not associated with IP-10 and HGF. Furthermore, the presence of the metabolic syndrome was associated with IP-10 and HGF. CONCLUSIONS Visceral adipose tissue but not subcutaneous adipose tissue is significantly associated with circulating levels of IP-10 and HGF, irrespective of BMI.
Collapse
Affiliation(s)
- Daniël R Faber
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia 2012; 55:2583-2592. [PMID: 22733483 DOI: 10.1007/s00125-012-2607-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/17/2012] [Indexed: 12/17/2022]
Abstract
Inflammation in the white adipose tissue (WAT) is considered a major player in the development of insulin resistance. The role of macrophages accumulating in the WAT during obesity, promoting WAT inflammation and insulin resistance is well established. In contrast, less is known about the role of lymphocytes. Recent studies have implicated different lymphocyte subsets in WAT inflammation. For instance, cytotoxic CD8(+) T cells infiltrating the WAT may contribute to the recruitment, differentiation and activation of macrophages. On the other hand, a differential role for CD4(+) Th1 and CD4(+) Th2 cells has been suggested. Levels of WAT regulatory T cells decrease during the course of obesity and may represent a crucial factor for the maintenance of insulin sensitivity. Moreover, activation of natural killer T cells, an innate-like T cell population, which recognises lipid antigens, promotes insulin resistance and WAT inflammation. Finally, B cells may infiltrate WAT very early in response to high-fat feeding and worsen glucose metabolism through modulation of T cells and the production of pathogenic antibodies. These interesting new findings however bear controversies and introduce novel, yet unanswered, questions. Here, we review and discuss the impact of the different lymphocyte subsets in obesity-related WAT inflammation and attempt to identify the open questions to be answered by future studies.
Collapse
Affiliation(s)
- A Chatzigeorgiou
- Department of Internal Medicine III, Division of Vascular Inflammation, Diabetes and Kidney, University Clinic Carl-Gustav-Carus, University of Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Institute of Physiology, University of Dresden, Dresden, Germany.
| | - K P Karalis
- Department of Internal Medicine III, University Clinic Carl-Gustav-Carus, University of Dresden, Dresden, Germany
- Developmental Biology Section, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Division of Endocrinology, Children's Hospital, Boston, MA, USA
| | - S R Bornstein
- Department of Internal Medicine III, University Clinic Carl-Gustav-Carus, University of Dresden, Dresden, Germany
| | - T Chavakis
- Department of Internal Medicine III, Division of Vascular Inflammation, Diabetes and Kidney, University Clinic Carl-Gustav-Carus, University of Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Institute of Physiology, University of Dresden, Dresden, Germany.
| |
Collapse
|
23
|
Azar Sharabiani MT, Vermeulen R, Scoccianti C, Hosnijeh FS, Minelli L, Sacerdote C, Palli D, Krogh V, Tumino R, Chiodini P, Panico S, Vineis P. Immunologic profile of excessive body weight. Biomarkers 2011; 16:243-51. [DOI: 10.3109/1354750x.2010.547948] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | - Paolo Vineis
- MRC/HPA Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Imperial College, London, UK
- HuGeF Foundation, Torino, Italy
| |
Collapse
|
24
|
Krinninger P, Brunner C, Ruiz PA, Schneider E, Marx N, Foryst-Ludwig A, Kintscher U, Haller D, Laumen H, Hauner H. Role of the adipocyte-specific NF-κB activity in the regulation of IP-10 and T cell migration. Am J Physiol Endocrinol Metab 2011; 300:E304-11. [PMID: 21062959 DOI: 10.1152/ajpendo.00143.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infiltration of immune cells into adipose tissue plays a central role in the pathophysiology of obesity-associated low-grade inflammation. The aim of this study was to analyze the role of adipocyte NF-κB signaling in the regulation of the chemokine/adipokine interferon-γ-induced protein 10 kDa (IP-10) and adipocyte-mediated T cell migration. Therefore, the regulation of IP-10 was investigated in adipose tissue of male C57BL/6J mice, primary human and 3T3-L1 preadipocytes/adipocytes. To specifically block the NF-κB pathway, 3T3-L1 cells stably overexpressing a transdominant mutant of IκBα were generated, and the chemical NF-κB inhibitor Bay117082 was used. Adipocyte-mediated T cell migration was assessed by a migration assay. It could be shown that IP-10 expression was higher in mature adipocytes compared with preadipocytes. Induced IP-10 expression and secretion were completely blocked by an NF-κB inhibitor in 3T3-L1 and primary human adipocytes. Stable overexpression of a transdominant mutant of IκBα in 3T3-L1 adipocytes led to an inhibition of basal and stimulated IP-10 expression and secretion. T cell migration was induced by 3T3-L1 adipocyte-conditioned medium, and both basal and induced T cell migration was strongly inhibited by stable overexpression of a transdominant IκBα mutant. In addition, with the use of an anti-IP-10 antibody, a significant decrease of adipocyte-induced T cell migration was shown. In conclusion, in this study, we could demonstrate that the NF-κB pathway is essential for the regulation of IP-10 in 3T3-L1 and primary human adipocytes. Adipocytes rather than preadipocytes contribute to NF-κB-dependent IP-10 expression and secretion. Furthermore, NF-κB-dependent factors and especially IP-10 represent novel signals from adipocytes to induce T cell migration.
Collapse
|
25
|
Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo. REVISTA COLOMBIANA DE CARDIOLOGÍA 2010. [DOI: 10.1016/s0120-5633(10)70236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Clément K, Vignes S. Inflammation, adipokines et obésité. Rev Med Interne 2009; 30:824-32. [PMID: 19394723 DOI: 10.1016/j.revmed.2009.03.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 12/15/2022]
|
27
|
Chemotactic cytokines, obesity and type 2 diabetes:in vivoandin vitroevidence for a possible causal correlation? Proc Nutr Soc 2009; 68:378-84. [DOI: 10.1017/s0029665109990218] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistancein vivoandin vitro.
Collapse
|
28
|
Byrne FR, Winters A, Brankow D, Hu S, Juan T, Steavenson S, Doellgast G, Kuchimanchi K, Brown H, Anderson S, Smelt S, Sullivan T, Alcorn D, Tocker J, Dean C, Macmaster J, Kirchner J, Buys J, Manoukian R, Jiao E, Zou X, Campanella GS, Siu G. An antibody to IP-10 is a potent antagonist of cell migration in vitro and in vivo and does not affect disease in several animal models of inflammation. Autoimmunity 2009; 42:171-82. [PMID: 19301198 DOI: 10.1080/08916930802629547] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
IP-10 secretion is induced by pro-inflammatory cytokines and mediates the migration of CXCR3+ cells. Its elevation in clinical samples has been associated with multiple inflammatory diseases and its antagonism has been reported to be effective in several animal models of inflammatory disease. We generated a mouse anti-mouse IP-10 monoclonal antibody (mAb; Clone 20A9) that specifically bound murine IP-10 with high affinity and inhibited in vitro IP-10 induced BaF3/mCXCR3 cell migration with an IC(50) of approximately 4 nM. The 20A9 mAb was completely absorbed in vivo and had dose proportional pharmacokinetic exposure with a serum half life of 2.4-6 days. The 20A9 mAb inhibited IP-10 mediated T-cell recruitment to the airways, indicating that it is effective in vivo. However, administration of the 20A9 mAb had no significant effect on disease in mouse models of delayed type hypersensitivity, collagen induced arthritis, cardiac allograft transplantation tolerance, EAE or CD4+ CD45RBHi T-cell transfer-induced IBD. These data suggest that the 20A9 mAb can antagonize IP-10 mediated chemotaxis in vitro and in vivo and that this is insufficient to cause a therapeutic benefit in multiple mouse models of inflammatory disease.
Collapse
|
29
|
Ahmad SM, Haskell MJ, Raqib R, Stephensen CB. Markers of innate immune function are associated with vitamin a stores in men. J Nutr 2009; 139:377-85. [PMID: 19091796 PMCID: PMC2646203 DOI: 10.3945/jn.108.100198] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/16/2008] [Accepted: 11/14/2008] [Indexed: 01/25/2023] Open
Abstract
Recommendations for vitamin A intake and liver stores are based on maintaining normal vision. We propose that higher levels may be required to maintain normal innate immune function. To test this hypothesis, we conducted an 8-wk residential study among 36 healthy Bangladeshi men with low vitamin A stores. Subjects were randomized to receive vitamin A (240 mg in 4 doses) or placebo during study wk 2 and 3. They received 2 vaccines during wk 5 and vitamin A stores were estimated by isotopic dilution at wk 8. The serum concentration of the chemokine interferon-gamma-induced protein 10, a component of T-helper 1 (Th1) response, increased significantly after supplementation and was positively and significantly associated with vitamin A stores. Blood concentrations of natural killer (NK) and NK T-cells, which have anticancer and antiviral activity, were positively associated with stores (P < 0.05), as was monocyte oxidative burst (P < 0.05), a marker of bacterial killing ability. However, serum interleukin (IL)-6 and IL-17, cytokines that regulate the antibacterial Th17 response, were significantly and negatively associated with stores, as was production of the regulatory cytokine IL-10 by whole-blood cultures stimulated with bacterial lipopolysaccharide. In summary, vitamin A stores were positively associated with several measures of innate immune activity across a broad range of stores, suggesting that vitamin A enhances protection against diverse pathogens even at concentrations above those needed to maintain normal vision. The negative association of stores with serum IL-6 and IL-17 suggests that not all protective responses are similarly enhanced by vitamin A.
Collapse
Affiliation(s)
- Shaikh M Ahmad
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
30
|
Schnäbele K, Roser S, Rechkemmer G, Hauner H, Skurk T. Effects of adipocyte-secreted factors on cell cycle progression in HT29 cells. Eur J Nutr 2009; 48:154-61. [DOI: 10.1007/s00394-009-0775-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/18/2008] [Indexed: 01/20/2023]
|
31
|
Abstract
Adipose tissue is not an inert cell mass contributing only to the storage of fat, but a sophisticated ensemble of cellular components with highly specialized and complex functions. In addition to managing the most important energy reserve of the body, it secretes a multitude of soluble proteins called adipokines, which have beneficial or, alternatively, deleterious effects on the homeostasis of the whole body. The expression of these adipokines is an integrated response to various signals received from many organs, which depends heavily on the integrity and physiological status of the adipose tissue. One of the main regulators of gene expression in fat is the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), which is a fatty acid- and eicosanoid-dependent nuclear receptor that plays key roles in the development and maintenance of the adipose tissue. Furthermore, synthetic PPARgamma agonists are therapeutic agents used in the treatment of type 2 diabetes.This review discusses recent knowledge on the link between fat physiology and metabolic diseases, and the roles of PPARgamma in this interplay via the regulation of lipid and glucose metabolism. Finally, we assess the putative benefits of targeting this nuclear receptor with still-to-be-identified highly selective PPARgamma modulators.
Collapse
Affiliation(s)
- Silvia I Anghel
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne CH-1015, Switzerland
| | | |
Collapse
|
32
|
Kempf K, Rathmann W, Herder C. Impaired glucose regulation and type 2 diabetes in children and adolescents. Diabetes Metab Res Rev 2008; 24:427-37. [PMID: 18551709 DOI: 10.1002/dmrr.869] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus in paediatric patients used to be almost exclusively type 1, but in recent years, case series as well as hospital-based and population-based studies indicated that the number of children and adolescents with type 2 diabetes (T2DM) has been increasing. This development is alarming since T2DM in youth is usually not an isolated condition, but accompanied by other cardiovascular risk factors such as obesity, dyslipidaemia, hypertension and low-grade inflammation. In adults, numerous studies provided detailed data on prevalence, incidence and risk factors for the development of T2DM, but for children and adolescents clinical and experimental data are still rather limited. This review provides an overview about the epidemiology and pathogenesis of T2DM in youth and about impaired glucose regulation as major risk factor for diabetes development with a special focus on the recent literature on clinical and lifestyle-related risk factors. Differences in incidence and prevalence across different populations indicate that ethnic background and genetic pre-disposition may be important risk determinants. In addition, epigenetic factors and foetal programming appear to confer additional risk before birth. Among the environmental and lifestyle-related risk factors there is evidence that obesity, hypercaloric diet, physical inactivity, socio-economic position (SEP), smoking, low-grade inflammation, psychosocial stress and sleeping patterns contribute to the risk for T2DM. However, the assessment of the relevance of risk factors and of incidence or prevalence estimates in youth is complicated by methodological issues that are also discussed.
Collapse
Affiliation(s)
- Kerstin Kempf
- Institute for Clinical Diabetes Research, German Diabetes Centre, Leibniz Institute at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
33
|
Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TFE, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 2008; 28:1304-10. [PMID: 18420999 DOI: 10.1161/atvbaha.108.165100] [Citation(s) in RCA: 522] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adipose tissue inflammation may play a critical role in the pathogenesis of insulin resistance (IR). The present study examined the role of lymphocytes in adipose tissue inflammation and IR. METHODS AND RESULTS In a mouse model of obesity-mediated IR, high-fat diet (HFD) induced IR already after 5 weeks, which was associated with a marked T-lymphocyte infiltration in visceral adipose tissue. In contrast, recruitment of macrophages was delayed with an increase of MAC3-positive staining and F4/80 mRNA expression after 10 weeks of HFD, suggesting a dissociation of macrophage invasion into adipose tissue and IR initiation. In patients with type 2 diabetes, lymphocyte content in adipose tissue biopsies significantly correlated with waist circumference, a marker of IR. Immunohistochemical staining of human adipose tissue revealed the presence of mainly CD4-positive lymphocytes as well as macrophage infiltration. Most macrophages were HLA-DR-positive, reflecting activation through IFNgamma, a cytokine released from CD4-positive lymphocytes. CONCLUSIONS Proinflammatory T-lymphocytes are present in visceral adipose tissue and may contribute to local inflammatory cell activation before the appearance of macrophages, suggesting that these cells could play an important role in the initiation and perpetuation of adipose tissue inflammation as well as the development of IR.
Collapse
Affiliation(s)
- Ulrich Kintscher
- Department of Internal Medicine II-Cardiology, University of Ulm, Robert-Koch-Str 8, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, Winkler H, Bredahl R, Hahnloser E, Martin S. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab 2007; 92:4569-74. [PMID: 17911172 DOI: 10.1210/jc.2007-0955] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Low-grade inflammation is associated with insulin resistance and precedes the onset of type 2 diabetes mellitus in adults, but there are no comparable data in youth. OBJECTIVE The objective of the study was to characterize the pattern of subclinical immune activation that is associated with indices of obesity and insulin resistance in youth and analyze whether this association is explained by obesity. DESIGN This was a cross-sectional study. SETTING Medical check-up of schoolchildren was conducted by the Public Health Office in Düsseldorf (Germany). PARTICIPANTS Participants included 519 adolescents (mean age 15.5 +/- 0.8 yr). MAIN OUTCOME MEASURES Measures included body mass index (BMI) and waist circumference (WC) as indices of obesity; fasting glucose, insulin, and homeostasis model assessment of insulin resistance; serum concentrations of TNFalpha, IL-6, IL-8, IL-18, monocyte chemoattractant protein-1, interferon-gamma-inducible protein (IP)-10 and adiponectin as immunological variables. RESULTS In age-, sex-, and lipid-adjusted analyses, IL-6, IL-18, IP-10, and adiponectin (inversely) were associated with both BMI and WC (all P <or= 0.002). None of the immune markers was related to glucose, but IL-6, IL-18, and adiponectin (inversely) were associated with insulin and homeostasis model assessment of insulin resistance in age- and sex-adjusted models. Adjustment for BMI or WC indicated that a considerable proportion of these associations may be mediated by obesity. CONCLUSIONS We found that a differential low-grade immune activation is associated with parameters of obesity in adolescents. Moreover, there is evidence that IL-6, IL-18, IP-10, and adiponectin (inversely) are associated with insulin resistance and that these associations can mainly be attributed to obesity.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetes Research, German Diabetes Center, Leibniz Institute at Heinrich Heine University, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|