1
|
Lv Z, Zhao C, Wu X, Chen Y, Zheng C, Zhang X, Xu Y, Zhu L, Wang H, Xie G, Zheng W. Facile engineered macrophages-derived exosomes-functionalized PLGA nanocarrier for targeted delivery of dual drug formulation against neuroinflammation by modulation of microglial polarization in a post-stroke depression rat model. Biomed Pharmacother 2024; 179:117263. [PMID: 39243431 DOI: 10.1016/j.biopha.2024.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024] Open
Abstract
Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.
Collapse
Affiliation(s)
- Zhongyue Lv
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Cui Zhao
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Xiping Wu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cheng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoling Zhang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yifei Xu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Lujia Zhu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Haifeng Wang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Guomin Xie
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Wu Zheng
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| |
Collapse
|
2
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
3
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. ADVANCES IN NEUROBIOLOGY 2024; 37:405-422. [PMID: 39207705 DOI: 10.1007/978-3-031-55529-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.
Collapse
Affiliation(s)
| | - Maria Domerq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain.
| |
Collapse
|
5
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
6
|
de Medeiros Borges H, Dagostin CS, Córneo E, Dondossola ER, Bernardo HT, Pickler KDP, da Costa Pereira B, de Oliveira MA, Scussel R, Michels M, Machado-de-Ávila RA, Dal-Pizzol F, Rico EP. Zebrafish as a potential model for stroke: A comparative study with standardized models. Life Sci 2022; 312:121200. [PMID: 36435227 DOI: 10.1016/j.lfs.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Heloisa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Caroline Serafim Dagostin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne De Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariane Amanda de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Gabbia Biotechnology Company, Barra Velha, Santa Catarina, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
7
|
Attenuation in Proinflammatory Factors and Reduction in Neuronal Cell Apoptosis and Cerebral Vasospasm by Minocycline during Early Phase after Subarachnoid Hemorrhage in the Rat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5545727. [PMID: 34912890 PMCID: PMC8668279 DOI: 10.1155/2021/5545727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/31/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is an important subcategory of stroke due to its high mortality rate as well as severe complications such as neurological deficit. It has been suggested that cerebral inflammation is a major factor in advanced brain injury after SAH. Microglia and astrocytes are known supporting cells in the development and maintenance of inflammation in central nervous system. However, the role of microglia and astrocytes in the development of inflammation and neuronal cell apoptosis during the early phase after SAH has not been thoroughly investigated. Materials and Methods Sprague-Dawley rats were divided into 4 groups (n = 6/group): sham group, animals subjected to SAH without treatment, SAH animals pretreated with the microglia inhibitor minocycline (50 mg/kg, ip), and SAH animals pretreated with the astrocyte inhibitor fluorocitrate (50 mg/kg, ip). SAH was induced by injecting autologous blood (1 ml/kg) into the cistern magna on day 0. Pretreatment with minocycline or fluorocitrate was given three days prior to the induction of SAH. Rats were sacrificed 6 hr after SAH, and their cerebral spinal fluids were used to measure protein levels of neuroinflammatory cytokines IL-1β, IL-6, and TNF-α by ELISA. In addition, the cerebral cortex was utilized to determine the levels of caspase-3 by western blot and to evaluate neuronal cell apoptosis by immunohistochemistry staining and detect microglia and astrocyte by immunofluorescence staining for Iba-1 and GFAP. In this study, all SAH animals were given an injection of autologous blood and SAH rats treated with minocycline or fluorocitrate received ip injections on day 1, 2, and 3 before inducing SAH. Neurological outcome was assessed by ambulation and placing/stepping reflex responses on day 7. Results Immunofluorescence staining showed that SAH induced proliferation of microglia and astrocyte and minocycline inhibited the proliferation of both microglia and astrocyte. However, fluorocitrate inhibited only the proliferation of astrocyte. ELISA analysis showed that SAH upregulated TNF-α and IL-1β, but not IL-6 at 6 hr after SAH. Minocycline, but not fluorocitrate, attenuated the upregulation of TNF-α and IL-1β. Western blot analysis and immunohistochemistry staining showed that SAH induced neuronal cell apoptosis. Pretreatment with minocycline, but not fluorocitrate, decreased SAH-induced neuronal death and cerebral vasospasm. Furthermore, significant improvements in neurobehavioral outcome were seen in the minocycline treatment group, but not in animals treated with fluorocitrate. Conclusions Microglia may play an important role to regulate neuronal cell apoptosis and cerebral vasospasm through inhibiting inflammation at an early phase after SAH in the rat.
Collapse
|
8
|
Keuters MH, Keksa-Goldsteine V, Dhungana H, Huuskonen MT, Pomeshchik Y, Savchenko E, Korhonen PK, Singh Y, Wojciechowski S, Lehtonen Š, Kanninen KM, Malm T, Sirviö J, Muona A, Koistinaho M, Goldsteins G, Koistinaho J. An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo. Sci Rep 2021; 11:3518. [PMID: 33568697 PMCID: PMC7876050 DOI: 10.1038/s41598-021-81741-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yuriy Pomeshchik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula K Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Filling the gaps on stroke research: Focus on inflammation and immunity. Brain Behav Immun 2021; 91:649-667. [PMID: 33017613 PMCID: PMC7531595 DOI: 10.1016/j.bbi.2020.09.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
For the last two decades, researchers have placed hopes in a new era in which a combination of reperfusion and neuroprotection would revolutionize the treatment of stroke. Nevertheless, despite the thousands of papers available in the literature showing positive results in preclinical stroke models, randomized clinical trials have failed to show efficacy. It seems clear now that the existing data obtained in preclinical research have depicted an incomplete picture of stroke pathophysiology. In order to ameliorate bench-to-bed translation, in this review we first describe the main actors on stroke inflammatory and immune responses based on the available preclinical data, highlighting the fact that the link between leukocyte infiltration, lesion volume and neurological outcome remains unclear. We then describe what is known on neuroinflammation and immune responses in stroke patients, and summarize the results of the clinical trials on immunomodulatory drugs. In order to understand the gap between clinical trials and preclinical results on stroke, we discuss in detail the experimental results that served as the basis for the summarized clinical trials on immunomodulatory drugs, focusing on (i) experimental stroke models, (ii) the timing and selection of outcome measuring, (iii) alternative entry routes for leukocytes into the ischemic region, and (iv) factors affecting stroke outcome such as gender differences, ageing, comorbidities like hypertension and diabetes, obesity, tobacco, alcohol consumption and previous infections like Covid-19. We can do better for stroke treatment, especially when targeting inflammation following stroke. We need to re-think the design of stroke experimental setups, notably by (i) using clinically relevant models of stroke, (ii) including both radiological and neurological outcomes, (iii) performing long-term follow-up studies, (iv) conducting large-scale preclinical stroke trials, and (v) including stroke comorbidities in preclinical research.
Collapse
|
10
|
Huang Y, Chen S, Luo Y, Han Z. Crosstalk between Inflammation and the BBB in Stroke. Curr Neuropharmacol 2020; 18:1227-1236. [PMID: 32562523 PMCID: PMC7770647 DOI: 10.2174/1570159x18666200620230321] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), which is located at the interface between the central nervous system (CNS) and the circulatory system, is instrumental in establishing and maintaining the microenvironmental homeostasis of the CNS. BBB disruption following stroke promotes inflammation by enabling leukocytes, T cells and other immune cells to migrate via both the paracellular and transcellular routes across the BBB and to infiltrate the CNS parenchyma. Leukocytes promote the removal of necrotic tissues and neuronal recovery, but they also aggravate BBB injury and exacerbate stroke outcomes, especially after late reperfusion. Moreover, the swelling of astrocyte endfeet is thought to contribute to the ‘no-reflow’ phenomenon observed after cerebral ischemia, that is, blood flow cannot return to capillaries after recanalization of large blood vessels. Pericyte recruitment and subsequent coverage of endothelial cells (ECs) alleviate BBB disruption, which causes the transmigration of inflammatory cells across the BBB to be a dynamic process. Furthermore, interneurons and perivascular microglia also make contacts with ECs, astrocytes and pericytes to establish the neurovascular unit. BBB-derived factors after cerebral ischemia triggered microglial activation. During the later stage of injury, microglia remain associated with brain ECs and contribute to repair mechanisms, including postinjury angiogenesis, by acquiring a protective phenotype, which possibly occurs through the release of microglia-derived soluble factors. Taken together, we reviewed dynamic and bidirectional crosstalk between inflammation and the BBB during stroke and revealed targeted interventions based on the crosstalk between inflammation and the BBB, which will provide novel insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Shengpan Chen
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
11
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
12
|
Sato K, Tobo A, Mogi C, Tobo M, Yamane N, Tosaka M, Tomura H, Im DS, Okajima F. The protective role of proton-sensing TDAG8 in the brain injury in a mouse ischemia reperfusion model. Sci Rep 2020; 10:17193. [PMID: 33057165 PMCID: PMC7566628 DOI: 10.1038/s41598-020-74372-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
Extracellular acidification in the brain has been observed in ischemia; however, the physiological and pathophysiological implications of the pH reduction remain largely unknown. Here, we analyzed the roles of proton-sensing G protein-coupled receptors, including T-cell death-associated gene 8 (TDAG8), ovarian cancer G protein-coupled receptor 1 (OGR1), and G protein-coupled receptor 4 (GPR4) in a mouse ischemia reperfusion model. Cerebral infarction and dysfunctional behavior with transient middle cerebral artery occlusion (tMCAO) and subsequent reperfusion were exacerbated by the deficiency of TDAG8, whereas no significant effect was observed with the deficiency of OGR1 or GPR4. We confirmed that the pH of the predicted infarction region was 6.5. TDAG8 mRNA was observed in Iba1-positive microglia in the mouse brain. The tMCAO increased the mRNA expression of tumor necrosis factor-α in the ipsilateral cerebral hemisphere and evoked morphological changes in microglia in an evolving cerebral injury. These tMCAO-induced actions were significantly enhanced by the TDAG8 deficiency. Administration of minocycline, which is known to inhibit microglial activation, improved the cerebral infarction and dysfunctional behavior induced by tMCAO in the TDAG8-deficient mouse. Thus, acidic pH/TDAG8 protects against cerebral infarction caused by tMCAO, at least due to the mechanism involving the inhibition of microglial functions.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan.
| | - Ayaka Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Nobuhiro Yamane
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Masahiko Tosaka
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Dong-Soon Im
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, 030-0943, Japan
| |
Collapse
|
13
|
Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res 2020; 15:773-782. [PMID: 31719236 PMCID: PMC6990777 DOI: 10.4103/1673-5374.268898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To review the neuroprotective effects of minocycline in focal cerebral ischemia in animal models. By searching in the databases of PubMed, ScienceDirect, and Scopus, and considering the inclusion and exclusion criteria of the study. Studies were included if focal cerebral ischemia model was performed in mammals and including a control group that has been compared with a minocycline group. Written in languages other than English; duplicate data; in vitro studies and combination of minocycline with other neuroprotective agents were excluded. Neurological function of patients was assessed by National Institute of Health Stroke Scale, modified Rankin Scale, and modified Barthel Index. Neuroprotective effects were assessed by detecting the expression of inflammatory cytokines. We examined 35 papers concerning the protective effects of minocycline in focal cerebral ischemia in animal models and 6 clinical trials which had evaluated the neuroprotective effects of minocycline in ischemic stroke. These studies revealed that minocycline increases the viability of neurons and decreases the infarct volume following cerebral ischemia. The mechanisms that were reported in these studies included anti-inflammatory, antioxidant, as well as anti-apoptotic effects. Minocycline also increases the neuronal regeneration following cerebral ischemia. Minocycline has considerable neuroprotective effects against cerebral ischemia-induced neuronal damages. However, larger clinical trials may be required before using minocycline as a neuroprotective drug in ischemic stroke.
Collapse
Affiliation(s)
- Yazdan Naderi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Amirhosein Sahebkar
- Halal Research Center of IRI, FDA, Tehran; Biotechnology Research Center, Pharmaceutical Technology Institute; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Yang H, Gao XJ, Li YJ, Su JB, E TZ, Zhang X, Ni W, Gu YX. Minocycline reduces intracerebral hemorrhage-induced white matter injury in piglets. CNS Neurosci Ther 2019; 25:1195-1206. [PMID: 31556245 PMCID: PMC6776747 DOI: 10.1111/cns.13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Aims White matter (WM) injury after intracerebral hemorrhage (ICH) results in poor or even fatal outcomes. As an anti‐inflammatory drug, minocycline has been considered a promising choice to treat brain injury after ICH. However, whether minocycline can reduce WM injury after ICH is still controversial. In the present study, we investigate the effect and underlying mechanism of minocycline on WM injury after ICH. Methods An ICH model was induced by an injection of autologous blood into the right frontal lobe of piglets. First, transcriptional analysis was performed at day 1 or 3 to investigate the dynamic changes in neuroinflammatory gene expression in WM after ICH. Second, ICH piglets were treated either with minocycline or with vehicle alone. All piglets then underwent magnetic resonance imaging to measure brain swelling. Brain tissue was used for real‐time polymerase chain reaction (RT‐PCR), immunohistochemistry, Western blot, and electron microscopy. Results Transcriptional analysis demonstrated that transforming growth factor‐β (TGF‐β)/mitogen‐activated protein kinase (MAPK) signaling is associated with microglia/macrophage‐mediated inflammation activation after ICH and is then involved in WM injury after ICH in piglets. Minocycline treatment results in less ICH‐induced brain swelling, fewer neurological deficits, and less WM injury in comparison with the vehicle alone. In addition, minocycline reduces microglial activation and alleviates demyelination in white matter after ICH. Finally, we found that minocycline attenuates WM injury by increasing the expression of TGF‐β and suppressing MAPK activation after ICH. Conclusion These results indicate that TGF‐β–mediated MAPK signaling contributes to WM injury after ICH, which can be altered by minocycline treatment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Jie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Jiang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Bin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tong-Zhou E
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
16
|
Vadokas G, Koehler S, Weiland J, Lilla N, Stetter C, Westermaier T. Early Antiinflammatory Therapy Attenuates Brain Damage After Sah in Rats. Transl Neurosci 2019; 10:104-111. [PMID: 31098320 PMCID: PMC6487785 DOI: 10.1515/tnsci-2019-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. METHODS Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). RESULTS Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. CONCLUSION The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.
Collapse
Affiliation(s)
- Georg Vadokas
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
- Department of Urology, Canisius Wilhelmina Hospital Nijmegen, Weg door Jonkerbos 100, 6532 SZ Nijmegen, Netherlands
| | - Stefan Koehler
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| |
Collapse
|
17
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
19
|
Zhang Z, Zhang L, Ding Y, Han Z, Ji X. Effects of Therapeutic Hypothermia Combined with Other Neuroprotective Strategies on Ischemic Stroke: Review of Evidence. Aging Dis 2018; 9:507-522. [PMID: 29896438 PMCID: PMC5988605 DOI: 10.14336/ad.2017.0628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability globally, and its incidence is increasing. The only treatment approved by the US Food and Drug Administration for acute ischemic stroke is thrombolytic treatment with recombinant tissue plasminogen activator. As an alternative, therapeutic hypothermia has shown excellent potential in preclinical and small clinical studies, but it has largely failed in large clinical studies. This has led clinicians to explore the combination of therapeutic hypothermia with other neuroprotective strategies. This review examines preclinical and clinical progress towards developing highly effective combination therapy involving hypothermia for stroke patients.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhao Han
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Gutiérrez-Martos M, Girard B, Mendonça-Netto S, Perroy J, Valjent E, Maldonado R, Martin M. Cafeteria diet induces neuroplastic modifications in the nucleus accumbens mediated by microglia activation. Addict Biol 2018; 23:735-749. [PMID: 28872733 DOI: 10.1111/adb.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
High-palatable and caloric foods are widely overconsumed due to hedonic mechanisms that prevail over caloric necessities leading to overeating and overweight. The nucleus accumbens (NAc) is a key brain area modulating the reinforcing effects of palatable foods and is crucially involved in the development of eating disorders. We describe that prolonged exposure to high-caloric chocolate cafeteria diet leads to overeating and overweight in mice. NAc functionality was altered in these mice, presenting structural plasticity modifications in medium spiny neurons, increased expression of neuroinflammatory factors and activated microglia, and abnormal responses after amphetamine-induced hyperlocomotion. Chronic inactivation of microglia normalized these neurobiological and behavioural alterations exclusively in mice exposed to cafeteria diet. Our data suggest that prolonged exposure to cafeteria diet produces neuroplastic and functional changes in the NAc that can modify feeding behaviour. Microglia activation and neuroinflammation play an important role in the development of these neurobiological alterations.
Collapse
Affiliation(s)
- Miriam Gutiérrez-Martos
- Laboratory of Neuropharmacology (DCEXS); Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra (PRBB/UPF); Spain
| | - Benoit Girard
- Pathophysiology of Synaptic Transmission Laboratory; Institut de Génomique Fonctionnelle; France
| | - Sueli Mendonça-Netto
- Laboratory of Neuropharmacology (DCEXS); Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra (PRBB/UPF); Spain
| | - Julie Perroy
- Pathophysiology of Synaptic Transmission Laboratory; Institut de Génomique Fonctionnelle; France
| | - Emmanuel Valjent
- Inserm U1191, CNRS UMR5203, Laboratory of Neural Circuit and Signal Transduction; University Montpellier; France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology (DCEXS); Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra (PRBB/UPF); Spain
- IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| | - Miquel Martin
- Laboratory of Neuropharmacology (DCEXS); Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra (PRBB/UPF); Spain
- IMIM (Hospital del Mar Medical Research Institute); Barcelona Spain
| |
Collapse
|
21
|
Hurtado-Alvarado G, Becerril-Villanueva E, Contis-Montes de Oca A, Domínguez-Salazar E, Salinas-Jazmín N, Pérez-Tapia SM, Pavon L, Velázquez-Moctezuma J, Gómez-González B. The yin/yang of inflammatory status: Blood-brain barrier regulation during sleep. Brain Behav Immun 2018; 69:154-166. [PMID: 29154957 DOI: 10.1016/j.bbi.2017.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Sleep loss induces a low-grade inflammatory status characterized by a subtle but sustained increase of pro-inflammatory mediators, which are key regulators of blood-brain barrier function. To investigate the influence of inflammatory status on blood-brain barrier dysfunction induced by sleep restriction we performed an experiment using two strains of mice with different immunological backgrounds, C57BL/6 mice that have a predominant pro-inflammatory response and BALB/c mice that have a predominant anti-inflammatory response. Mice were sleep-restricted during 10 days using the flowerpot technique during 20 h per day with 4 h of daily sleep opportunity. The systemic inflammatory status, blood-brain barrier permeability, and the hippocampal expression of neuroinflammatory markers were characterized at the 10th day. Serum levels of TNF and IFN-γ increased in sleep-restricted C57BL/6 but not in BALB/c mice; no changes in other cytokines were found. Sleep restriction increased blood-brain barrier permeability in C57BL/6 strain but not in BALB/c. The hippocampus of sleep-restricted C57BL/6 mice exhibited an increase in the expression of the neuroinflammatory markers Iba-1, A2A adenosine receptor, and MMP-9; meanwhile in sleep-restricted BALB/c mice the expression of this markers was lesser than the control group. These data suggest that cytokines may be playing a key role in modulating blood-brain barrier function during sleep restriction, and probably the effects are related to Iba-1, MMP-9 and A2A adenosine receptor overexpression.
Collapse
Affiliation(s)
- G Hurtado-Alvarado
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - E Becerril-Villanueva
- Dept. Psychoimmunology, National Institute of Psychiatry, "Ramón de la Fuente", Mexico City, Mexico
| | | | - E Domínguez-Salazar
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - N Salinas-Jazmín
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Dept. Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - L Pavon
- Dept. Psychoimmunology, National Institute of Psychiatry, "Ramón de la Fuente", Mexico City, Mexico
| | - J Velázquez-Moctezuma
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - B Gómez-González
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
22
|
Merentie M, Rissanen R, Lottonen-Raikaslehto L, Huusko J, Gurzeler E, Turunen MP, Holappa L, Mäkinen P, Ylä-Herttuala S. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice. PLoS One 2018; 13:e0190981. [PMID: 29351307 PMCID: PMC5774698 DOI: 10.1371/journal.pone.0190981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.
Collapse
Affiliation(s)
- Mari Merentie
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riina Rissanen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Line Lottonen-Raikaslehto
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko P. Turunen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lari Holappa
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Burn-induced distant organ ınjury in rats and the effect of minocycline. MARMARA MEDICAL JOURNAL 2017. [DOI: 10.5472/marumj.357247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Chhor V, Moretti R, Le Charpentier T, Sigaut S, Lebon S, Schwendimann L, Oré MV, Zuiani C, Milan V, Josserand J, Vontell R, Pansiot J, Degos V, Ikonomidou C, Titomanlio L, Hagberg H, Gressens P, Fleiss B. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun 2017; 63:197-209. [PMID: 27818218 PMCID: PMC5441571 DOI: 10.1016/j.bbi.2016.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/22/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.
Collapse
Affiliation(s)
- Vibol Chhor
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Georges Pompidou European Hospital, Paris, France
| | - Raffaella Moretti
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Università degli Studi di Udine, Udine, Italy
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Stephanie Sigaut
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Sophie Lebon
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Leslie Schwendimann
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Marie-Virginie Oré
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Chiara Zuiani
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Valentina Milan
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Julien Josserand
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Regina Vontell
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Julien Pansiot
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Vincent Degos
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris, France
| | | | - Luigi Titomanlio
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Henrik Hagberg
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Department of Clinical Sciences, Sahlgrenska Academy/East Hospital, Gothenburg University, 416 85 Gothenburg, Sweden
| | - Pierre Gressens
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Bobbi Fleiss
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
26
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
27
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
28
|
Buerki SE, Grandgirard D, Datta AN, Hackenberg A, Martin F, Schmitt-Mechelke T, Leib SL, Steinlin M. Inflammatory markers in pediatric stroke: An attempt to better understanding the pathophysiology. Eur J Paediatr Neurol 2016; 20:252-260. [PMID: 26778232 DOI: 10.1016/j.ejpn.2015.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/11/2015] [Accepted: 12/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The mechanisms of childhood and perinatal arterial ischemic stroke (AIS) are poorly understood. Multiple risk factors include cerebral arteriopathy, congenital cardiac disease, infection, sickle cell disease, and maternal-fetal conditions in neonates. For infections and parainfectious conditions being the most important a possible inflammatory pathophysiology has long been suspected. This pilot study aims to detect, whether there are any abnormalities of inflammatory markers associated with childhood and neonatal stroke. METHODS The concentration of 23 different metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), endothelial factors, vascular cell adhesion proteins, and cytokines in plasma were measured in 12 children with AIS, 7 healthy age matched controls and 6 full term neonates with perinatal AIS. RESULTS At the time of the acute event children with AIS had significantly elevated levels of MMP-9, TIMP4, IL-6, IL-8 and CRP compared to controls (p < 0.05). Except for lower IL-6 and CRP levels the pattern of children with a history of varizella-zoster virus (VZV) and other viral infections did not differ to the non-infectious group. Median levels of MMP-1, MMP-2, TIMP-1, TIMP-2, sE-selectin, sICAM-1, sVCAM-1, IL-8, IL-10, TNF-alpha, VEGF, Fetuin A were found to be higher in the neonatal group when compared with older children. CONCLUSION This pilot study supports the assumption of an inflammatory process and up-regulation of metalloproteinases and their inhibitors, and altered pattern of circulating pro-inflammatory cytokines, CRP and vWF levels in pediatric and neonatal AIS. It highlights the feasibility but also difficulties for similar larger future studies that should aim to clarify childhood stroke etiopathogenesis and consecutive further therapeutic options.
Collapse
Affiliation(s)
- Sarah E Buerki
- Division of Neurology, Department of Pediatrics, Children's Hospital and University of British Columbia, Canada; Department of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Berne, Switzerland.
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Neuroinfectiology Laboratory, Institute for Infectious Diseases, Postfach 8571, CH-3001 Bern, Switzerland
| | - Alexandre N Datta
- University Children's Hospital Basel, Universitäts-Kinderspital beider Basel, Spitalstrasse 33, CH-4056 Basel, Switzerland
| | - Annette Hackenberg
- University Children's Hospital Zürich, Kinderspital Zürich, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland
| | - Florence Martin
- Children's Hospital Winterthur, Kantonsspital Winterthur, Brauerstrasse 15, Postfach 834, CH-8401 Winterthur, Switzerland
| | - Thomas Schmitt-Mechelke
- Children's Hospital Lucerne, Luzerner Kantonsspital, Kinderspital Luzern, CH-6000 Luzern 16, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Neuroinfectiology Laboratory, Institute for Infectious Diseases, Postfach 8571, CH-3001 Bern, Switzerland; Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
| | - Maja Steinlin
- Department of Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Berne, Switzerland
| | | |
Collapse
|
29
|
Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 2016; 238:627-40. [PMID: 26712630 DOI: 10.1002/path.4684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ayuso-Dolado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Arbeteta
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Gema M Esteban-Ortega
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Oscar G Vidaurre
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
30
|
Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C, Langmann T. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation 2015; 12:209. [PMID: 26576678 PMCID: PMC4650866 DOI: 10.1186/s12974-015-0431-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. Methods LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Results Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells. Conclusions Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0431-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Markus Sobotka
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
31
|
Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219597 PMCID: PMC4640313 DOI: 10.1038/jcbfm.2015.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) are being investigated for advanced therapies, and matrix metalloproteinase 9 (MMP9) has an important role in stroke recovery. Our aim was to determine whether tissue MMP9 influences the EPC-induced angiogenesis after ischemia. Wild-type (WT) and MMP9-deficient mice (MMP9/KO) were subjected to cerebral ischemia and treated with vehicle or outgrowth EPCs. After 3 weeks, we observed an increase in the peri-infarct vessel density in WT animals but not in MMP9/KO mice; no differences were found in the vehicle-treated groups. Our data suggest that tissue MMP9 has a crucial role in EPC-induced vascular remodeling after stroke.
Collapse
|
32
|
Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Gu C, Hu Q, Wang L, Chen G. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage. Mol Neurobiol 2015; 53:2668-78. [DOI: 10.1007/s12035-015-9318-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
|
33
|
Yan P, Zhu A, Liao F, Xiao Q, Kraft A, Gonzales E, Perez R, Greenberg SM, Holtzman D, Lee JM. Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy. Stroke 2015; 46:1633-1640. [PMID: 25944329 DOI: 10.1161/strokeaha.115.008582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine whether spontaneous intracerebral hemorrhage could be reduced. METHODS Tg2576 (n=16) and 5xFAD/ApoE4 knockin mice (n=16), aged 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, IP) or saline every other day for 2 months. Brains were extracted and stained with X-34 (to quantify amyloid), Perls' blue (to quantify hemorrhage), and immunostained to examined β-amyloid peptide load, gliosis (glial fibrillary acidic protein [GFAP], Iba-1), and vascular markers of blood-brain barrier integrity (zonula occludins-1 [ZO-1] and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. RESULTS Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5xFAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (matrix metalloproteinase-9, NOX4, CD45, S-100b, and Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. CONCLUSIONS Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in 2 different mouse models of CAA, supporting the importance of matrix metalloproteinase-related and inflammatory pathways in intracerebral hemorrhage pathogenesis. As a Food and Drug Administration-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alec Zhu
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fan Liao
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingli Xiao
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Kraft
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ernie Gonzales
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ron Perez
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven M Greenberg
- Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Holtzman
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Abstract
Microglia are considered the brain's resident immune cell involved in immune defense, immunocompetence, and phagocytosis. They maintain tissue homeostasis within the brain and spinal cord under normal condition and serves as its initial host defense system. However, when the central nervous system (CNS) faces injury, microglia respond through signaling molecules expressed or released by neighboring cells. Microglial responses are dual in nature. They induce a nonspecific immune response that may exacerbate CNS injury, especially in the acute stages, but are also essential to CNS recovery and repair. The full range of microglial mechanisms have yet to be clarified, but there is accumulating knowledge about microglial activation in acute CNS injury. Microglial responses require hours to days to fully develop, and may present a therapeutic target for intervention with a much longer window of opportunity compare to other neurological treatments. The challenge will be to find ways to selectively suppress the deleterious effects of microglial activation without compromising its beneficial functions. This review aims to provide an overview of the recent progress relating on the deleterious and beneficial effect of microglia in the setting of acute CNS injury and the potential therapeutic intervention against microglial activation to CNS injury.
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
| | | |
Collapse
|
35
|
Wei D, Xiong X, Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab Brain Dis 2015; 30:483-90. [PMID: 24771108 PMCID: PMC4213319 DOI: 10.1007/s11011-014-9543-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
The protective effect of ischemic postconditioning (IPostC) against stroke has been well-established, and the underlying mechanisms are known to involve inhibited-inflammation and free radical production. Nevertheless, how IPostC affects protein expression of iNOS, nitrotyrosine, and COX-2 has not been characterized. In addition, the role of the galectin-9/Tim-3 cell signaling pathway--a novel inflammatory pathway--in IPostC has not been studied. We examined whether iNOS, nitrotyrosine, and COX-2, as well as galectin-9/Tim-3 are involved in the protective effects of IpostC in a rat focal ischemia model. Western blot and confocal immunofluoresent staining results indicate that IPostC significantly inhibited Tim-3 expression, and that galectin-9 expression was also inhibited. In addition, IPostC attenuated production of iNOS and nitrotyrosine, but not COX-2, suggesting that IPostC has distinct effects on these inflammatory factors. Furthermore, the inflammation inhibitor minocycline blocked Tim-3 and iNOS expression induced by stroke. Taken together, we show that the galectin-9/Tim-3 cell signaling pathway is involved in inflammation induced by stroke, and IPostC may reduce infarction by attenuating this novel pathway as well as the inflammatory factors iNOS and nitrotyrosine, but not COX-2.
Collapse
Affiliation(s)
- Dingtai Wei
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Fujian Medical University Ningde Hospital, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
37
|
Kim JY, Kim N, Yenari MA. Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther 2014; 21:309-19. [PMID: 25475659 DOI: 10.1111/cns.12360] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/14/2022] Open
Abstract
As the resident immune cells of the central nervous system, microglia rapidly respond to brain insults, including stroke and traumatic brain injury. Microglial activation plays a major role in neuronal cell damage and death by releasing a variety of inflammatory and neurotoxic mediators. Their activation is an early response that may exacerbate brain injury and many other stressors, especially in the acute stages, but are also essential to brain recovery and repair. The full range of microglial activities is still not completely understood, but there is accumulating knowledge about their role following brain injury. We review recent progress related to the deleterious and beneficial effects of microglia in the setting of acute neurological insults and the current literature surrounding pharmacological interventions for intervention.
Collapse
Affiliation(s)
- Jong-Youl Kim
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
38
|
da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8:362. [PMID: 25404894 PMCID: PMC4217497 DOI: 10.3389/fncel.2014.00362] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Carolina Carvalho da Fonseca
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Diana Matias
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Celina Garcia
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Rackele Amaral
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Luiz Henrique Geraldo
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Catarina Freitas
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Bloco F, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury. Cell Death Dis 2014; 5:e1481. [PMID: 25341035 PMCID: PMC4649529 DOI: 10.1038/cddis.2014.446] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
Ischemic stroke occurs as a result of blood supply interruption to the brain causing tissue degeneration, patient disabilities or death. Currently, treatment of ischemic stroke is limited to thrombolytic therapy with a narrow time window of administration. The sonic hedgehog (Shh) signaling pathway has a fundamental role in the central nervous system development, but its impact on neural cell survival and tissue regeneration/repair after ischemic stroke has not been well investigated. Here we report the neuroprotective properties of a small-molecule agonist of the Shh co-receptor Smoothened, purmorphamine (PUR), in the middle cerebral artery occlusion model of ischemic stroke. We found that intravenous administration of PUR at 6 h after injury was neuroprotective and restored neurological deficit after stroke. PUR promoted a transient upregulation of tissue-type plasminogen activator in injured neurons, which was associated with a reduction of apoptotic cell death in the ischemic cortex. We also observed a decrease in blood–brain barrier permeability after PUR treatment. At 14 d postinjury, attenuation of inflammation and reactive astrogliosis was found in PUR-treated animals. PUR increased the number of newly generated neurons in the peri-infarct and infarct area and promoted neovascularization in the ischemic zone. Notably, PUR treatment did not significantly alter the ischemia-induced level of Gli1, a Shh target gene of tumorigenic potential. Thus our study reports a novel pharmacological approach for postischemic treatment using a small-molecule Shh agonist, providing new insights into hedgehog signaling-mediated mechanisms of neuroprotection and regeneration after stroke.
Collapse
|
40
|
Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol 2014; 169:337-52. [PMID: 23441623 DOI: 10.1111/bph.12139] [Citation(s) in RCA: 668] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 01/26/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein.
Collapse
Affiliation(s)
- N Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research, University of Granada, Avenida del Conocimiento s/n, Granada, Spain.
| | | | | |
Collapse
|
41
|
Chaturvedi M, Kaczmarek L. Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol 2014; 49:563-73. [PMID: 24026771 PMCID: PMC3918117 DOI: 10.1007/s12035-013-8538-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood-brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia.
Collapse
Affiliation(s)
- Mayank Chaturvedi
- Laboratory of Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
42
|
Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine 2014; 9:575-88. [PMID: 24531257 PMCID: PMC3901738 DOI: 10.2147/ijn.s54750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Bojja Sreedhar
- Indian Institute of Chemical Technology, Hyderabad, India
| | | | | |
Collapse
|
43
|
Kurzepa J, Kurzepa J, Golab P, Czerska S, Bielewicz J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int J Neurosci 2014; 124:707-16. [PMID: 24304146 DOI: 10.3109/00207454.2013.872102] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is a continuous urgent need to explore the pathogenesis and biochemical changes within the infarcted area during acute ischemic stroke (IS). Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest proteins located extracellulary, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, gelatinases (MMP-2 and MMP-9) are the most investigated enzymes. Gelatinases possess the ability to active numerous pro-inflammatory agents as chemokine CXCL-8, interleukin 1β or tumor necrosis factor α. Moreover, due to digestion of collagen type IV (the component of basal membranes) and tight junction proteins (TJPs) they facilitate to cross the endothelium by leukocytes. Due to the significant role of gelatinases during brain ischemia, their selective inhibition seems to be an interesting kind of treatment of acute stroke. The synthetic inhibitors of gelatineses decrease the infarct volume in animal models of IS. In clinical practice statins, the lipid-lowering drugs possess the ability to inhibit the activity of MMP-9 during acute IS. This review briefly provides the most important information about the involvement of MMP-2 and MMP-9 in the pathogenesis of brain ischemia.
Collapse
Affiliation(s)
- Jacek Kurzepa
- 1Department of Medical Chemistry, Medical University of Lublin , Poland
| | | | | | | | | |
Collapse
|
44
|
Baranger K, Rivera S, Liechti FD, Grandgirard D, Bigas J, Seco J, Tarrago T, Leib SL, Khrestchatisky M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. PROGRESS IN BRAIN RESEARCH 2014; 214:313-51. [DOI: 10.1016/b978-0-444-63486-3.00014-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Abcouwer SF, Lin CM, Shanmugam S, Muthusamy A, Barber AJ, Antonetti DA. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 2013; 10:149. [PMID: 24325836 PMCID: PMC3866619 DOI: 10.1186/1742-2094-10-149] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB). Methods Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells. Results Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the appearance of MHCII+ inflammatory leukocytes. Surprisingly, Mino did not significantly inhibit retinal cell death in this model. Conclusions IR induces a retinal neuroinflammation within hours of reperfusion characterized by inflammatory gene expression, leukocyte adhesion and invasion, and vascular permeability. Despite Mino significantly inhibiting these responses, it failed to block neurodegeneration.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Modulation of coagulation has been successfully applied to ischemic disorders of the central nervous system (CNS). Some components of the coagulation system have been identified in the CNS, yet with limited exception their functions have not been clearly defined. Little is known about how events within the cerebral tissues affect hemostasis. Nonetheless, the interaction between cerebral cells and vascular hemostasis and the possibility that endogenous coagulation factors can participate in functions within the neurovascular unit provide intriguing possibilities for deeper insight into CNS functions and the potential for treatment of CNS injuries. Here, we consider the expression of coagulation factors in the CNS, the coagulopathy associated with focal cerebral ischemia (and its relationship to hemorrhagic transformation), the use of recombinant tissue plasminogen activator (rt-PA) in ischemic stroke and its study in animal models, the impact of rt-PA on neuron and CNS structure and function, and matrix protease generation and matrix degradation and hemostasis. Interwoven among these topics is evidence for interactions of coagulation factors with and within the CNS. How activation of hemostasis occurs in the cerebral tissues and how the brain responds are difficult questions that offer many research possibilities.
Collapse
Affiliation(s)
- Gregory J. del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Yoshikane Izawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Brian T. Hawkins
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
47
|
Cayabyab FS, Gowribai K, Walz W. Involvement of matrix metalloproteinases-2 and -9 in the formation of a lacuna-like cerebral cavity. J Neurosci Res 2013; 91:920-33. [PMID: 23606560 DOI: 10.1002/jnr.23223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 12/20/2022]
Abstract
We used a modified pial vessel disruption (PVD) protocol with adult male Wistar rats to mimic small-vessel stroke in the cerebral cortex. Within 3 weeks, this lesion develops into a single lacuna-like cavity, which is fluid-filled and encapsulated by reactive astrocytes. Minocycline treatment that commences 1 hr after lesion and continues for 6 days prevents the cavitation and causes a filling of the lesion with reactive astrocytes and no barrier. Here, we determined whether inhibition of matrix metalloproteinases-2 and -9 (MMPs) mediates this minocycline action. Confocal microscopy revealed increased punctate staining of MMPs inside the lesion sites after 2 days of PVD. Astrocytes lined the lesion border but showed sparse localization inside the lesion. In contrast, increased MMP levels inside the lesion coincided with increased ED1 or OX-42 immunostaining, suggesting that MMP elevation reflected increased secretions from microglia/macrophages. Imaging analyses also revealed that minocycline administered for 2 days before animal euthanasia, significantly decreased MMP levels within the lesion. Moreover, Western blot analysis of cortical tissue extracts showed a significant 30-40% upregulation of MMPs 2 days after lesion. Minocycline administered 2 hr before the lesion significantly inhibited both MMP-9 and MMP-2 levels by ∼40%. In contrast, minocycline administered 1 hr after the lesion only decreased MMP-9 levels by ∼30%. Because MMP inhibition with batimastat injection also prevented cavity formation at 21 days, we conclude that minocycline prevented the creation of a lacuna-like cyst in the cerebral cortex by inhibiting the MMP secretion from microglia in the affected tissue.
Collapse
Affiliation(s)
- Francisco S Cayabyab
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
48
|
Fan X, Lo EH, Wang X. Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke 2013; 44:745-52. [PMID: 23422086 DOI: 10.1161/strokeaha.111.000309] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Poststroke hyperglycemia is associated with resistance to tissue plasminogen activator (tPA) reperfusion, higher risk of intracerebral hemorrhage, and worse neurological outcomes. In this study, we asked whether minocycline combined with intravenous tPA may ameliorate inflammation and brain injury after focal embolic stroke in type 1 diabetic rats. METHODS Type 1 diabetic rats were subjected to a focal embolic stroke. Three treatment groups were used: (1) saline at 1.5 hours after stroke; (2) tPA alone at 1.5 hours after stroke; (3) combined minocycline (intravenously) at 1 hour plus tPA at 1.5 hours, and second treatment of minocycline (intraperitoneally) at 12 hours after stroke. Acute brain tissue damages were assessed at 24 hours after stroke. Inflammatory biomarkers interleukin-1β and matrix metalloproteinases 2 and 9 were examined in plasma. Neutrophil infiltration, microglia activation, matrix metalloproteinase activation, and degradation of the tight junction protein claudin-5 were examined in the brain. RESULTS Compared with saline or tPA alone treatments, minocycline plus tPA combination therapy significantly reduced brain infarction, intracerebral hemorrhage, and hemispheric swelling at 24 hours after stroke. The combination also significantly suppressed the elevated plasma levels of matrix metalloproteinase-9 and interleukin-1β up to 24 hours after stroke. At 16 hours after stroke, neutrophil infiltration, microglia activation, matrix metalloproteinase-9, and tight junction protein claudin-5 degradation in the peri-infarct brain tissues were also significantly attenuated by the combination therapy. CONCLUSIONS Combination therapy with minocycline plus tPA may be beneficial in ameliorating inflammation and reducing infarction, brain swelling, and hemorrhage after ischemic stroke with diabetes mellitus/hyperglycemia.
Collapse
Affiliation(s)
- Xiang Fan
- Departmens of Neurology and Radiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
49
|
Rosell A, Agin V, Rahman M, Morancho A, Ali C, Koistinaho J, Wang X, Vivien D, Schwaninger M, Montaner J. Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome? Transl Stroke Res 2013; 4:297-307. [PMID: 24323300 DOI: 10.1007/s12975-012-0234-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 12/23/2022]
Abstract
Rodent animal models of stroke are widely used with brain ischemia inducible by various occlusion methods. Permanent or transient occlusion of the distal portion of the middle cerebral artery (MCAO) offers a reproducible model with low mortality rates, and it is the most likely model of choice for mid- and long-term studies to assess neurorepair or long-term effects of neuroprotective drugs. Therefore, a measurable and stable neurological assessment would be required to evaluate sensorimotor and cognitive deficits at short and long terms as suggested by the Stroke Therapy Academic Industry Roundtable preclinical recommendations. We review the usefulness of different tests used to measure functional outcome after distal MCAO in mice and further sustain these data with our own multilaboratories' experience. Results show that several tests were suitable to detect neurological deterioration at short term. Grip strength and latency to move have shown some usefulness at long term, with important differences between strains, while less clear are the data for the corner test. Important strain differences in terms of infarct volume are also reported in this study. Statistical power analysis and sample size calculation of our data confirmed the value of grip strength and latency to move tests but suggest that larger sample size would be required. In conclusion, there are no robust data supporting the use of a specific behavior test to assess long-term functional outcome after distal MCAO in mice. This is an important limitation since translational basic research should provide data to help further clinical trial evaluation. New multicenter studies with larger sample size and specific mouse strains are needed to confirm the validity of tests, such as the corner, latency to move or grip strength.
Collapse
Affiliation(s)
- Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, PasseigValld'Hebron 119-129, 08035, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Y, Liu W. Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol 2012. [PMID: 23195595 DOI: 10.1016/j.expneurol.2012.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normobaric hyperoxia (NBO), which maintains penumbral oxygenation, reduces brain injury during cerebral ischemia, and minocycline, a tetracycline derivative, reduces reperfusion injury, including inflammation, apoptosis and matrix metalloproteinases (MMPs) activation. Since they have different mechanisms of action, we hypothesized that combining them would provide greater neuroprotection. To test the hypothesis, we evaluated the neuroprotective effects of the combination of NBO with minocycline. Male Sprague-Dawley rats were exposed to NBO (95% O(2)) or normoxia (21% O(2)) during 90-min filament occlusion of the middle cerebral artery, followed by 48 h of reperfusion. Minocycline (3 mg/kg) or vehicle was intravenously administered to rats 15 min after reperfusion onset. Treatment with NBO and minocycline alone resulted in 36% and 30% reductions in infarction volume, respectively. When the two treatments were combined, there was a 68% reduction in infarction volume. The combination therapy also significantly reduced hemispheric swelling, which was absent with monotherapy. In agreement with its greater neuro- and vasoprotection, the combination therapy showed greater inhibitory effects on MMP-2/9 induction, occludin degradation, caspase-3 and -9 activation and apoptosis inducing factor (AIF) induction in ischemic brain tissue. Our results show that NBO plus minocycline effectively reduces brain injury in transient focal cerebral ischemia with protection due to inhibition on MMP-2/9-mediated occludin degradation and attenuation of caspase-dependent and independent apoptotic pathways.
Collapse
Affiliation(s)
- Xinchun Jin
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|