1
|
Kim H, Jang JH, Kim HR, Cho JH. Novel-designed antimicrobial peptides with dual antimicrobial and anti-inflammatory actions against Cutibacterium acnes for acne vulgaris therapy. Biochem Pharmacol 2025; 232:116708. [PMID: 39662606 DOI: 10.1016/j.bcp.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Acne vulgaris is a prevalent skin condition among adolescents, primarily instigated by over-colonization and subsequent inflammation triggered by Cutibacterium acnes. Although topical and oral antibiotics are standard treatments, they often lead to the proliferation of antibiotic-resistant bacteria and are associated with undesirable side effects. Antimicrobial peptides (AMPs) are considered a promising solution to these challenges. In this study, we aimed to develop novel short AMPs to combat C. acnes. By comparing sequences and abstracting the distribution of residue types of established AMPs, we derived a sequence template. Using this template, we crafted novel anti-C. acnes peptides comprising 13 amino acid residues. To enhance their potential therapeutic application, we designed a series of peptides by varying the number and position of the tryptophan residues. Among these peptides, DAP-7 and DAP-10 demonstrated potent antimicrobial activity against both antibiotic-susceptible and -resistant strains of C. acnes, with minimal cytotoxicity. The antimicrobial action of these peptides was attributed to their ability to target the bacterial membrane, resulting in permeabilization and rupture. Moreover, DAP-7 and DAP-10 effectively reduced the expression of pro-inflammatory cytokines induced by C. acnes and remained stable for up to 12 h after exposure to proteases found in acne lesions. Notably, DAP-7 decreased the C. acnes colonies on the ears and significantly alleviated C. acnes-induced ear swelling in a mouse model. Our findings suggest that the DAP-7 and DAP-10 peptides hold promise as candidates for developing a new acne vulgaris treatment.
Collapse
Affiliation(s)
- Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Ha Rang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, South Korea; Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
2
|
Lesiak A, Paprocka P, Wnorowska U, Mańkowska A, Król G, Głuszek K, Piktel E, Spałek J, Okła S, Fiedoruk K, Durnaś B, Bucki R. Significance of host antimicrobial peptides in the pathogenesis and treatment of acne vulgaris. Front Immunol 2024; 15:1502242. [PMID: 39744637 PMCID: PMC11688235 DOI: 10.3389/fimmu.2024.1502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e., genetically distinct bacterial subgroups that play different roles in skin health and disease) diversity of the predominant skin bacterial commensal - Cutinbacterium acnes. Like in other dysbiotic disorders, an elevated expression of endogenous antimicrobial peptides (AMPs) is a hallmark of AV. AMPs, such as human β-defensins, cathelicidin LL-37, dermcidin, or RNase-7, due to their antibacterial and immunomodulatory properties, function as the first line of defense and coordinate the host-microbiota interactions. Therefore, AMPs are potential candidates for pharmaceutical prophylaxis or treating this condition. This study outlines the current knowledge regarding the importance of AMPs in AV pathomechanism in light of recent transcriptomic studies. In particular, their role in improving the tight junctions (TJs) skin barrier by activating the fundamental cellular proteins, such as PI3K, GSK-3, aPKC, and Rac1, is discussed. We hypothesized that the increased expression of AMPs and their patterns in AV act as a compensatory mechanism to protect the skin with an impaired permeability barrier. Therefore, AMPs could be key determinants in regulating AV development and progression, linking acne-associated immune responses and metabolic factors, like insulin/IGF-1 and PI3K/Akt/mTOR/FoxO1 signaling pathways or glucotoxicity. Research and development of anti-acne AMPs are also addressed.
Collapse
Affiliation(s)
- Agata Lesiak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Paulina Paprocka
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Angelika Mańkowska
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Clinical Microbiology, Holy-Cross Oncology Center of Kielce, Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
3
|
Sennett ML, Agak GW, Thiboutot DM, Nelson AM. Transcriptomic Analyses Predict Enhanced Metabolic Activity and Therapeutic Potential of mTOR Inhibitors in Acne-Prone Skin. JID INNOVATIONS 2024; 4:100306. [PMID: 39310809 PMCID: PMC11415809 DOI: 10.1016/j.xjidi.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Current acne therapies center on preventing new lesions in patients with acne. These therapies were historically found to be beneficial yet were chosen without knowledge of the specific changes in the skin that favor lesion development. A major challenge in developing new treatments is the incomplete understanding of nonlesional (NL), acne-prone skin's molecular characteristics. To address this, we compared RNA-sequencing data from NL skin of 49 patients with acne (denoted as NL acne [NLA]) with those from 19 healthy controls with no acne history. We found 77 differentially expressed genes in NLA (log fold change > 1; P < .05), including genes associated with innate immunity and epidermal barrier function. Notably, K RT 6C, K RT 16, S100A8, S100A9, and lactotransferrin were upregulated, and LCE4A, LCE6A, and CTSE were downregulated. Gene set enrichment analysis revealed that metabolic pathways were enriched in NLA skin, whereas keratinization was negatively enriched. To identify compounds that could shift the gene expression signature of NLA skin toward healthy control skin, we performed connectivity mapping with the Library of Integrated Network-Based Signatures. We identified 187 compounds, particularly mTOR inhibitors, that could potentially normalize the gene expression profile of acne-prone skin to that of healthy skin. Our findings indicate that NLA skin has distinct differences in epidermal differentiation, cellular metabolism, and innate immunity that may promote lesion formation and suggest that mTOR inhibitors could restore NLA skin toward a healthier state, potentially reversing the predisposition to lesion development.
Collapse
Affiliation(s)
- Mackenzie L. Sennett
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - George W. Agak
- Division of Dermatology, University of California Los Angeles, Los Angeles, California, USA
| | - Diane M. Thiboutot
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
4
|
Wiesel V, Weissmann S, Cohen B, Golan-Tripto I, Horev A. Elevated hematologic ratios are correlated with acne severity: a national, retrospective cohort study. Front Med (Lausanne) 2024; 11:1475117. [PMID: 39544384 PMCID: PMC11560776 DOI: 10.3389/fmed.2024.1475117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Background Prior studies demonstrated conflicting results regarding hematologic ratios in acne patients. We sought to further characterize hematologic ratios in acne patients, according to demographics and acne severity. Methods National, retrospective cohort study of 122,822 patients using medical records from 2005 to 2024 of patients insured with the largest public healthcare organization in Israel, Clalit Health Maintenance Organization. Results Moderate-severe acne patients had higher neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) than mild acne patients at diagnosis and 12-18 months before diagnosis. A multivariable regression confirmed the significance of the correlation of increased NLR and PLR with acne severity. Adults and females had higher NLR and PLR than children and males, respectively, at diagnosis, and 12-18 months before diagnosis. Conclusion Acne severity was significantly associated with elevated NLR and PLR. NLR and PLR may also serve as indicators of upcoming acne severity, as they were elevated 12-18 months before diagnosis. These biomarkers may contribute to the diagnosis, management, and follow-up of patients with acne.
Collapse
Affiliation(s)
- Vered Wiesel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sarah Weissmann
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Clinical Research Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Bracha Cohen
- Clinical Research Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Inbal Golan-Tripto
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Pulmonary Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Amir Horev
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Dermatology Service, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
5
|
Rizk SK, Farag AGA, Shaeir SMA. A study of granulysin and pentraxin 3 genetic polymorphisms and their contribution to acne susceptibility. Arch Dermatol Res 2024; 316:691. [PMID: 39412662 DOI: 10.1007/s00403-024-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
This study aims to examine the genetic polymorphisms of the granulysin (GNLY) and pentraxin 3 (PTX3) genes and their association with acne in Egypt. Acne vulgaris is classified as a disorder of the pilosebaceous unit. Clinical, histological, and immunological findings indicate that inflammation is involved in every stage of acne development. GNLY and PTX3 are both involved in the body's immune system and may play a role in the pathophysiology of acne. This case-control study included 180 participants who have acne and 180 healthy controls. Real-time PCR was used to genotype GNLY rs7908 and PTX3 rs2305619 polymorphisms. Genotype occurrence and allelic spreading for both single nucleotide polymorphisms (SNP) are in Hardy-Weinberg equilibrium. Regarding rs7908, no statistical difference was observed in the genotype and allele distributions between acne patients and controls. On the other hand, rs2305619 showed a statistical difference in the genotype and allele distributions between acne patients and controls, with a marked prevalence of the GG group and G allele in acne patients. Our study revealed a significant link between the PTX3 rs2305619 and acne susceptibility in Egypt, with the AG + GG genotype strongly predicting acne. In contrast, the GNYL rs7908 polymorphism was not associated with acne. These results highlight a genetic component to acne and suggest that PTX3 rs2305619 could be a key marker for understanding acne susceptibility.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt.
| | - Azza Gaber Antar Farag
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | |
Collapse
|
6
|
Ramsis T, Refat M Selim HM, Elseedy H, Fayed EA. The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Adv 2024; 14:24287-24321. [PMID: 39104563 PMCID: PMC11298783 DOI: 10.1039/d4ra03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.
Collapse
Affiliation(s)
- Triveena Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch Ismailia 41636 Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 35527 Egypt
| | - Howida Elseedy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo Egypt
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt +20 201221330523
| |
Collapse
|
7
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
8
|
Lin Q, Cai B, Ke R, Chen L, Ni X, Liu H, Lin X, Wang B, Shan X. Integrative bioinformatics and experimental validation of hub genetic markers in acne vulgaris: Toward personalized diagnostic and therapeutic strategies. J Cosmet Dermatol 2024; 23:1777-1799. [PMID: 38268224 DOI: 10.1111/jocd.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Acne vulgaris is a widespread chronic inflammatory dermatological condition. The precise molecular and genetic mechanisms of its pathogenesis remain incompletely understood. This research synthesizes existing databases, targeting a comprehensive exploration of core genetic markers. METHODS Gene expression datasets (GSE6475, GSE108110, and GSE53795) were retrieved from the GEO. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were conducted using GSVA for pathway assessment and clusterProfiler for GO and KEGG analyses. PPI networks and immune cell infiltration were analyzed using the STRING database and ssGSEA, respectively. We investigated the correlation between hub gene biomarkers and immune cell infiltration using Spearman's rank analysis. ROC curve analysis validated the hub genes' diagnostic accuracy. miRNet, TarBase v8.0, and ChEA3 identified miRNA/transcription factor-gene interactions, while DrugBank delineated drug-gene interactions. Experiments utilized HaCaT cells stimulated with Propionibacterium acnes, treated with retinoic acid and methotrexate, and evaluated using RT-qPCR, ELISA, western blot, lentiviral transduction, CCK-8, wound-healing, and transwell assays. RESULTS There were 104 genes with consistent differences across the three datasets of paired acne and normal skin. Functional analyses emphasized the significant enrichment of these DEGs in immune-related pathways. PPI network analysis pinpointed hub genes PTPRC, CXCL8, ITGB2, and MMP9 as central players in acne pathogenesis. Elevated levels of specific immune cell infiltration in acne lesions corroborated the inflammatory nature of the disease. ROC curve analysis identified the acne diagnostic potential of four hub genes. Key miRNAs, particularly hsa-mir-124-3p, and central transcription factors like TFEC were noted as significant regulators. In vitro validation using HaCaT cells confirmed the upregulation of hub genes following Propionibacterium acnes exposure, while CXCL8 knockdown reduced pro-inflammatory cytokines, cell proliferation, and migration. DrugBank insights led to the exploration of retinoic acid and methotrexate, both of which mitigated gene expression upsurge and inflammatory mediator secretion. CONCLUSION This comprehensive study elucidated pivotal genes associated with acne pathogenesis, notably PTPRC, CXCL8, ITGB2, and MMP9. The findings underscore potential biomarkers, therapeutic targets, and the therapeutic potential of agents like retinoic acid and methotrexate. The congruence between bioinformatics and experimental validations suggests promising avenues for personalized acne treatments.
Collapse
Affiliation(s)
- Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinjian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Liang J, Chen Y, Wang Z, Wang Y, Mu S, Zhang D, Wang Z, Zeng W. Exploring the association between rosacea and acne by integrated bioinformatics analysis. Sci Rep 2024; 14:3065. [PMID: 38321132 PMCID: PMC10847114 DOI: 10.1038/s41598-024-53453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
Clinically, rosacea occurs frequently in acne patients, which hints the existence of shared signals. However, the connection between the pathophysiology of rosacea and acne are not yet fully understood. This study aims to unveil molecular mechanism in the pathogenesis of rosacea and acne. We identified differentially expressed genes (DEGs) by limma and weighted gene co-expression network analysis and screened hub genes by constructing a protein-protein interaction network. The hub genes were verified in different datasets. Then, we performed a correlation analysis between the hub genes and the pathways. Finally, we predicted and verified transcription factors of hub genes, performed the immune cell infiltration analysis using CIBERSORT, and calculated the correlation between hub genes and immune cells. A total of 169 common DEGs were identified, which were mainly enriched in immune-related pathways. Finally, hub genes were identified as IL1B, PTPRC, CXCL8, MMP9, CCL4, CXCL10, CD163, CCR5, CXCR4, and TLR8. 9 transcription factors that regulated the expression of hub genes were identified. The infiltration of γδT cells was significantly increased in rosacea and acne lesions and positively linked with almost all hub genes. These identified hub genes and immune cells may play a crucial role in the development of rosacea and acne.
Collapse
Affiliation(s)
- Jingchen Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zihao Wang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yawen Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengzhi Mu
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dewu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Wang W, Hwang S, Park D, Park YD. The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene. Protein Pept Lett 2024; 31:356-374. [PMID: 38766834 DOI: 10.2174/0109298665290166240426072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases. OBJECTIVE To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA. METHODS Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted. RESULTS We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway. CONCLUSION Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
| | - Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
11
|
Topical Administration of Lactiplantibacillus plantarum (SkinDuo TM) Serum Improves Anti-Acne Properties. Microorganisms 2023; 11:microorganisms11020417. [PMID: 36838382 PMCID: PMC9967017 DOI: 10.3390/microorganisms11020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The tailoring of the skin microbiome is challenging and is a research hotspot in the pathogenesis of immune-mediated inflammatory skin diseases such as acne. Commonly encountered preservatives used as functional ingredients have an impact on the skin microbiota and are known to inhibit the survival of skin commensal bacteria. The selected species is Lactiplantibacillus plantarum, formulated with natural enhancers for topical use (SkinDuoTM). Ex vivo human skin models were used as a test system to assess the strain viability which was then validated on healthy volunteers. SkinDuoTM showed increased viability over time for in vitro skin models and a stable viability of over 50% on healthy skin. The strain was tested on human primary sebocytes obtained from sebaceous gland rich areas of facial skin and inoculated with the most abundant bacteria from the skin microbiota. Results on human ex vivo sebaceous gland models with the virulent phylotype of Cutibacterium acnes and Staphylococcus epidermidis present a significant reduction in viability, lipid production, and anti-inflammatory markers. We have developed an innovative anti-acne serum with L. plantarum that mimics the over-production of lipids, anti-inflammatory properties, and improves acne-disease skin models. Based on these results, we suggest that SkinDuoTM may be introduced as an acne-mitigating agent.
Collapse
|
12
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Jiang Z, Jin S, Fan X, Cao K, Liu Y, Wang X, Ma Y, Xiang L. Cannabidiol Inhibits Inflammation Induced by Cutibacterium acnes-Derived Extracellular Vesicles via Activation of CB2 Receptor in Keratinocytes. J Inflamm Res 2022; 15:4573-4583. [PMID: 35982758 PMCID: PMC9379120 DOI: 10.2147/jir.s374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acne is a common inflammatory skin disease, while cannabidiol (CBD) is a representative non-psychoactive phytocannabinoid which has been proved to exert universal anti-inflammatory properties. This study aimed to explore the effect of CBD on acne inflammation induced by Cutibacterium acnes-derived extracellular vesicles (CEVs) in keratinocytes and reveal the underlying mechanisms. Methods Normal human epidermal keratinocytes (NHEKs) were stimulated by CEVs in the presence of CBD or vehicle. Interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels were examined by RT-PCR and ELISA. The expression of cannabinoid type-2 (CB2) receptor and transient receptor potential vanilloid type-1 (TRPV1) was detected by Western blotting. TNF-α levels in the presence of CB2 receptor antagonist (AM630) or TRPV1 antagonist (Capsazepine) were detected by RT-PCR. The activation of MAPK and NF-κB signaling pathways and the nuclear translocation of NF-κB p65 upon CBD treatment were analyzed by Western blotting and immunofluorescence assay, respectively. Results The expression of inflammatory cytokines (IL-6, IL-8 and TNF-α) in CEVs-stimulated NHEKs was suppressed by CBD. CB2 receptor expression was upregulated by CBD, whereas CEVs-promoted TRPV1 expression was downregulated by CBD. AM630 reversed TNF-α levels inhibited by CBD. Capsazepine exerted an inhibitory effect on CEVs-induced inflammation and had synergistic effect with CBD. The phosphorylation of ERK1/2 and NF-κB p65 and nuclear translocation of NF-κB p65 were induced by CEVs but reduced by CBD. Conclusion The results indicated that CBD could inhibit inflammation induced by CEVs in NHEKs, which was mediated by activation of CB2 receptor and enhanced by the TRPV1 antagonist, through inactivation of the MAPK and NF-κB signaling pathways. CBD might be a potential novel strategy for acne treatment in the future.
Collapse
Affiliation(s)
- Ziqi Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shanglin Jin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaoyao Fan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ke Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ye Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xuan Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
14
|
Do TH, Ma F, Andrade PR, Teles R, de Andrade Silva BJ, Hu C, Espinoza A, Hsu JE, Cho CS, Kim M, Xi J, Xing X, Plazyo O, Tsoi LC, Cheng C, Kim J, Bryson BD, O'Neill AM, Colonna M, Gudjonsson JE, Klechevsky E, Lee JH, Gallo RL, Bloom BR, Pellegrini M, Modlin RL. TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol 2022; 7:eabo2787. [PMID: 35867799 PMCID: PMC9400695 DOI: 10.1126/sciimmunol.abo2787] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acne affects 1 in 10 people globally, often resulting in disfigurement. The disease involves excess production of lipids, particularly squalene, increased growth of Cutibacterium acnes, and a host inflammatory response with foamy macrophages. By combining single-cell and spatial RNA sequencing as well as ultrahigh-resolution Seq-Scope analyses of early acne lesions on back skin, we identified TREM2 macrophages expressing lipid metabolism and proinflammatory gene programs in proximity to hair follicle epithelium expressing squalene epoxidase. We established that the addition of squalene induced differentiation of TREM2 macrophages in vitro, which were unable to kill C. acnes. The addition of squalene to macrophages inhibited induction of oxidative enzymes and scavenged oxygen free radicals, providing an explanation for the efficacy of topical benzoyl peroxide in the clinical treatment of acne. The present work has elucidated the mechanisms by which TREM2 macrophages and unsaturated lipids, similar to their involvement in atherosclerosis, may contribute to the pathogenesis of acne.
Collapse
Affiliation(s)
- Tran H Do
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Priscila R Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Rosane Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Chanyue Hu
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jer-En Hsu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jingyue Xi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol Cheng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Barry R Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles,, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Greywal T, Kusari A, Han AM, Borok J, Proudfoot JA, Ahluwalia J, Friedlander SF. Severe acne and its variants: Exploring its natural history and heritability. Pediatr Dermatol 2022; 39:535-540. [PMID: 35584791 DOI: 10.1111/pde.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Acne vulgaris varies in clinical severity, from minimal comedonal disease to severe hemorrhagic and ulcerative lesions with scarring. While a family history confers a higher risk for developing acne, the correlation between heritability and clinical severity remains unclear. OBJECTIVE To examine the natural history and heritability of severe acne with scarring in patients undergoing isotretinoin therapy. METHODS A total of 101 subjects with severe acne with scarring and its variants, including acne conglobata and acne fulminans, were enrolled. All subjects and adult family members underwent an interview regarding their acne, and a corresponding "historical" Investigator's Global Assessment (hIGA) score (0 = clear, 1 = almost clear, 2 = mild, 3 = moderate, 4 = severe, 5 = very severe) was assigned. Study assessors performed an "examination" Investigator's Global Assessment (eIGA) based on the clinical examination of each subject (0 = clear, 1 = almost clear, 2 = mild, 3 = moderate, 4 = severe, 5 = very severe). A detailed family history and pedigree were documented. RESULTS Most subjects were Caucasian (44.5%) and male (79.2%) who had previously used doxycycline and/or minocycline (86.1%). The mean eIGA and hIGA scores were 2.7 and 4.4, respectively. 37.2% of subjects had one first-degree relative with a history of moderate or severe acne with scarring; of note, of the patients with hemorrhagic disease, 30% had at least one parent with moderate or severe acne. CONCLUSIONS Severe forms of acne often "cluster" in families, underscoring the heritable nature of acne and the prognostic value of a family history of moderate or severe disease.
Collapse
Affiliation(s)
- Tanya Greywal
- Division of Dermatology, University of Washington, Seattle, Washington, USA.,Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Ayan Kusari
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Allison M Han
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jenna Borok
- Division of Dermatology, Albert Einstein College of Medicine, New York City, New York, USA
| | - James A Proudfoot
- Clinical and Translational Research Institute, University of California San Diego, San Diego, California, USA
| | | | - Sheila Fallon Friedlander
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA.,Scripps Health Dermatology, San Diego, California, USA
| |
Collapse
|
16
|
Mayslich C, Grange PA, Castela M, Marcelin AG, Calvez V, Dupin N. Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation. Int J Mol Sci 2022; 23:ijms23095065. [PMID: 35563458 PMCID: PMC9104286 DOI: 10.3390/ijms23095065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes (C. acnes) has been implicated in inflammatory acne where highly mutated Christie-Atkins-Munch-Petersen factor (CAMP)1 displays strong toll like receptor (TLR)-2 binding activity. Using specific antibodies, we showed that CAMP1 production was independent of C. acnes phylotype and involved in the induction of inflammation. We confirmed that TLR-2 bound both mutated and non-mutated recombinant CAMP1, and peptide array analysis showed that seven peptides (A14, A15, B1, B2, B3, C1 and C3) were involved in TLR-2 binding, located on the same side of the three-dimensional structure of CAMP1. Both mutated and non-mutated recombinant CAMP1 proteins induced the production of C-X-C motif chemokine ligand interleukin (CXCL)8/(IL)-8 in vitro in keratinocytes and that of granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, IL-1β and IL-10 in ex vivo human skin explants. Only A14, B1 and B2 inhibited the production of CXCL8/IL-8 by keratinocytes and that of (GM-CSF), TNF-α, IL-1β and IL-10 in human skin explants stimulated with rCAMP1 and C. acnes. Following pretreatment with B2, RNA sequencing on skin explants identified the 10 genes displaying the strongest differential expression as IL6, TNF, CXCL1, CXCL2, CXCL3, CXCL8, IL-1β, chemokine ligand (CCL)2, CCL4 and colony stimulating factor (CSF)2. We, thus, identified a new CAMP1-derived peptide as a TLR-2 modulator likely to be a good candidate for clinical evaluation.
Collapse
Affiliation(s)
- Constance Mayslich
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
| | - Philippe Alain Grange
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
- Service de Dermatologie-Vénéréologie et CeGIDD, Groupe Hospitalier APHP.centre, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
- Hôpital Cochin, U1016, Equipe Biologie Cutanée—CNR IST bactériennes—Syphilis 24, rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Mathieu Castela
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
| | - Anne Geneviève Marcelin
- National Reference Centre for Herpesviruses, Virology Department, Team 3 THERAVIR, and AP-HP, Pitié-Salpêtrière—Charles Foix University Hospital, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.M.); (V.C.)
| | - Vincent Calvez
- National Reference Centre for Herpesviruses, Virology Department, Team 3 THERAVIR, and AP-HP, Pitié-Salpêtrière—Charles Foix University Hospital, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.M.); (V.C.)
| | - Nicolas Dupin
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
- Service de Dermatologie-Vénéréologie et CeGIDD, Groupe Hospitalier APHP.centre, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
- Hôpital Cochin, U1016, Equipe Biologie Cutanée—CNR IST bactériennes—Syphilis 24, rue du faubourg Saint-Jacques, 75014 Paris, France
- Correspondence: ; Tel.: +33-158-411-849; Fax: +33-158-411-55
| |
Collapse
|
17
|
A New Topical Candidate in Acne Treatment: Characterization of the Meclozine Hydrochloride as an Anti-Inflammatory Compound from In Vitro to a Preliminary Clinical Study. Biomedicines 2022; 10:biomedicines10050931. [PMID: 35625668 PMCID: PMC9138413 DOI: 10.3390/biomedicines10050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Acne is a chronic inflammatory multifactorial disease involving the anaerobic bacterium Cutibacterium acnes (C. acnes). Current acne treatments are associated with adverse effects, limiting treatment compliance and use. We showed that meclozine, an anti-histaminic H1 compound, has anti-inflammatory properties. In Vitro, meclozine reduced the production of CXCL8/IL-8 and IL-1β mRNA and protein by C. acnes-stimulated human keratinocytes and monocytes. No cell toxicity was observed at the IC50. Meclozine prevented the phosphorylation of ERK and JNK. In Vivo, 1% meclozine gel significantly decreased C. acnes-mouse ear induced inflammation by 26.7% (p = 0.021). Ex vivo experiments on human skin explants showed that meclozine decreased the production of GM-CSF, IL-1β and TNF-α at transcriptional and translational levels. In a randomized, double-blind, placebo-controlled proof-of-concept clinical trial on 60 volunteers, 2% meclozine pharmaceutical gel decreased by 20.1% (p < 0.001) the ASI score in the treated group after 12 weeks of treatment. No adverse event was reported. Together, these results indicate that meclozine is a potent topical anti-inflammatory compound of potential value for acne treatment.
Collapse
|
18
|
Chen X, Min S, Chen C, Lin X, Wang D, Jiang G. Influence of RETN, IL‐1, and IL‐6 gene polymorphisms on the risk of acne vulgaris in the Chinese population. J Cosmet Dermatol 2022; 21:4965-4973. [PMID: 35279931 DOI: 10.1111/jocd.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xi Chen
- Department of Dermatology Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 China
- Department of Dermatology Huzhou First People's Hospital
| | - Shuhui Min
- Department of Dermatology Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 China
| | - Can Chen
- Department of Tumor Biological Treatment The Third Affiliated Hospital of Soochow University
| | - Xiao Lin
- Department of Dermatology Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 China
| | - Danfeng Wang
- Department of Dermatology Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 China
| | - Guan Jiang
- Department of Dermatology Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 China
| |
Collapse
|
19
|
O’Neill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14:eabh1478. [PMID: 35171653 PMCID: PMC9885891 DOI: 10.1126/scitranslmed.abh1478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc C. Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tran H. Do
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joyce Y. Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tissa R. Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.,Corresponding author.
| |
Collapse
|
20
|
ElAttar Y, Mourad B, Alngomy HA, Deen ASE, Ismail M. Study of Interleukin-1Beta Expression in Acne Vulgaris and Acne Scars. J Cosmet Dermatol 2022; 21:4864-4870. [PMID: 35174608 DOI: 10.1111/jocd.14852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Acne vulgaris is a multifactorial disease that mostly heals by scarring. Interleukin-1 beta (IL-1β) is a proinflammatory cytokine, suggested to play a key role in acne pathogenesis. OBJECTIVE To study the immunohistochemical (IHC) expression of IL1β in acne vulgaris and acne scars to evaluate its possible role in their pathogenesis and to study the relation between expression of IL1β and the clinicopathological parameters. PATIENTS AND METHODS This study was conducted on sixty subjects (twenty patients with acne vulgaris and twenty patients with acne scars), and twenty healthy volunteers as controls. Skin biopsies were taken from patients and controls for routine histopathological examination with Hematoxylin and Eosin (H&E) stain and IHC staining of IL-1β. RESULTS There was a statistically significant increase in expression of IL-1β in acne vulgaris compared to post-acne scars and controls, (p<0.001) for both. IL-1β expression was significantly positively correlated with both clinical severity of acne vulgaris (p=0.022) and severity of histopathological inflammation (p=0.011). CONCLUSION IL-1β expression was associated with acne vulgaris and post acne scars with significant positive correlation to clinical and histopathological severity of acne vulgaris. Thus IL-1β could be a key player cytokine in acne pathogenesis, its severity and development of post acne scars.
Collapse
Affiliation(s)
- Yasmina ElAttar
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| | - Basma Mourad
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| | | | - Aliaa Shams El Deen
- Department of Pathology, Faculty of medicine, Tanta University, Tanta, Egypt
| | - Mayada Ismail
- Department of Dermatology and Venereology, Faculty of medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
The Immunogenetics of Acne. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:137-154. [DOI: 10.1007/978-3-030-92616-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Sawada Y, Nakatsuji T, Dokoshi T, Kulkarni NN, Liggins MC, Sen G, Gallo RL. Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Sci Immunol 2021; 6:eabe1935. [PMID: 34021025 PMCID: PMC8363943 DOI: 10.1126/sciimmunol.abe1935] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/22/2021] [Indexed: 01/07/2023]
Abstract
The skin typically tolerates exposure to various microbes and chemicals in the environment. Here, we investigated how the epidermis maintains this innate immune tolerance to stimuli that are recognized by Toll-like receptors (TLRs). Loss of tolerance to TLR ligands occurred after silencing of the histone deacetylases (HDACs) HDAC8 and HDAC9 in keratinocytes. Transcriptional analysis identified MAP2K3 as suppressed by HDAC8/9 activity and a potential key intermediary for establishing this tolerance. HDAC8/9 influenced acetylation at H3K9 and H3K27 marks in the MAP2K3 promoter. Proteomic analysis further identified SSRP1 and SUPT16H as associated with HDAC8/9 and responsible for transcriptional elongation of MAP2K3. Silencing of MAP2K3 blocked the capacity of HDAC8/9 to influence cytokine responses. Relevance in vivo was supported by observations of increased MAP2K3 in human inflammatory skin conditions and the capacity of keratinocyte HDAC8/9 to influence dendritic cell maturation and T cell proliferation. Keratinocyte-specific deletion of HDAC8/9 also increased inflammation in mice after exposure to ultraviolet radiation, imiquimod, or Staphylococcus aureus These findings define a mechanism for the epidermis to regulate inflammation in the presence of ubiquitous TLR ligands.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | | | - Marc C Liggins
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - George Sen
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
23
|
Monib KMED, El-Fallah AA, Salem RM. Inflammatory markers in acne vulgaris: Saliva as a novel diagnostic fluid. J Cosmet Dermatol 2021; 21:1280-1285. [PMID: 34008303 DOI: 10.1111/jocd.14236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite the wide use of saliva-based measurements in inflammatory, autoimmune and neoplastic conditions, its use in dermatology is still limited. AIMS The aims of this study were to assess the serum and salivary levels of interleukin-1 beta (IL-1β) and C-reactive protein (CRP) in patients with acne vulgaris. PATIENTS/METHODS The study included 84 moderate-to-severe acne vulgaris patients, in addition to 105 healthy control subjects. Serum and salivary levels of CRP and IL-1β were estimated using enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Using T-test, the serum and salivary levels of both CRP and IL-1β in the patients were significantly higher than the measured levels in the control subjects (p < 0.001). Using Pearson correlation coefficient, serum and salivary CRP and serum IL-1β levels showed significantly positive correlation with GAGS scores (p < 0.001). The levels of IL-1β in saliva did not show significant correlation with GAGS scores or with serum and salivary CRP. CONCLUSIONS The current study supports the emerging role of saliva as a valid noninvasive tool for monitoring inflammation and as a reliable and stress-free tool to evaluate cytokines and other inflammatory marker levels in acne vulgaris.
Collapse
Affiliation(s)
| | - Asmaa Adel El-Fallah
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Mohammed Salem
- Dermatology and Andrology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
24
|
Guo JH, Yin SS, Liu H, Liu F, Gao FH. Tumor microenvironment immune-related lncRNA signature for patients with melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:857. [PMID: 34164491 PMCID: PMC8184426 DOI: 10.21037/atm-21-1794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The incidence of malignant melanoma accounts for only approximately 5% of skin malignant tumors, however, it accounts for 75% of its mortality. Long-chain non-coding RNA (lncRNA) has a wide range of functional activities. Disorders of lncRNAs may lead to the occurrence and development of melanoma, and may also be related to immunotherapy. Methods The transcriptomic data of primary and metastatic melanoma patients and 331 immune-related genes were downloaded from skin cutaneous melanoma (SKCM) in the The Cancer Genome Atlas (TCGA) database. On this basis, 460 immunologically relevant lncRNAs were identified by constructing a co-expression network of immunogenic genes and lncRNAs in primary and metastatic melanoma patients. Prognostic genes were screened using univariate Cox regression analysis. ROC analysis was performed to evaluate the robustness of the prognostic signature. Results Univariate correlation analysis showed that only 3 of the 23 immune-related lncRNAs were at high risk and the rest were at low risk. Signatures of 7 immune-related lncRNAs were identified by multivariate correlation analysis. The clinical correlation analysis showed that the 7 immune-related lncRNAs were associated with the clinical stage of primary and metastatic melanoma. Principal component analysis (PCA) showed that only 7 immune-related lncRNA signals divided tumor patients into high-risk and low-risk groups, while the low-risk group was enriched in the immune system process M13664 and immune response M19817 sets. PPI interaction network analysis showed that 11 G protein-coupled receptors and 6 corresponding ligands in the 2 gene sets affected the tumor microenvironment and were negatively related to the risk of the 7 immune-related lncRNAs. The tumor microenvironment immune cell infiltration analysis also supported the finding that anti-tumor immunity in the low-risk group was stronger than in the high-risk group. Conclusions These results indicate that characteristics of the 7 immune-related lncRNAs have prognostic value for melanoma patients and can be used as potential immunotherapy targets.
Collapse
Affiliation(s)
- Jia-Hui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-Shan Yin
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai, China
| | - Feng Liu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Lim HJ, Kang SH, Song YJ, Jeon YD, Jin JS. Inhibitory Effect of Quercetin on Propionibacterium acnes-induced Skin Inflammation. Int Immunopharmacol 2021; 96:107557. [PMID: 33812252 DOI: 10.1016/j.intimp.2021.107557] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Quercetin is a well-known antioxidant and a plant polyphenolic of flavonoid group found in many fruits, leaves, and vegetables. Propionibacterium acnes is a key skin pathogen involved in the progression of acne inflammation. Although quercetin has been applied to treat various inflammatory diseases, the effects of quercetin on P. acnes-induced skin inflammation have not been explored. This study investigated the effects of quercetin on P. acnes-induced inflammatory skin disease in vitro and in vivo. The results showed that quercetin suppressed the production of pro-inflammatory cytokines in P. acnes-stimulated HaCaT, THP-1 and RAW 264.7 cells. Additionally, quercetin reduced the production of TLR-2 and the phosphorylation of p38, ERK and JNK MAPKs in P. acnes-stimulated HaCaT and THP-1 cells. It also suppressed MMP-9 mRNA levels in two cell lines exposed to P. acnes in vitro. In the case of in vivo, P. acnes was intradermally injected into the ears of mice and it resulted in cutaneous erythema, swelling, and a granulomatous response. Treatment with quercetin markedly reduced ear thickness and swelling. These results suggested that quercetin can be a potential therapeutic agent against P. acnes-induced skin inflammation and may have diverse pharmaceutical and cosmetics applications.
Collapse
Affiliation(s)
- Hyeon-Ji Lim
- Jeonju AgroBio-Materials Institute, 111-27, Wonjangdong-gill, Jeonju, Jeollabuk-do 54810, Republic of Korea; Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Sa-Haeng Kang
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Young-Jae Song
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Yong-Deok Jeon
- Department of Korean Pharmacy, College of Pharmacy, Woosuk University, 443 Samrye-ro, Samrye-eup, Wanju-gun, Jeollabuk-do 55338, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
26
|
Nakamizo S, Honda T, Sato T, Al Mamun M, Chow Z, Duan K, Lum J, Tan KJ, Tomari K, Sato R, Kitoh A, Tay ASL, Common JEA, Guan NL, Setou M, Ginhoux F, Kabashima K. High-fat diet induces a predisposition to follicular hyperkeratosis and neutrophilic folliculitis in mice. J Allergy Clin Immunol 2021; 148:473-485.e10. [PMID: 33713763 DOI: 10.1016/j.jaci.2021.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Neutrophilic folliculitis is an inflammatory condition of hair follicles. In some neutrophilic folliculitis, such as in patients with acne and hidradenitis suppurativa, follicular hyperkeratosis is also observed. Neutrophilic folliculitis is often induced and/or exacerbated by a high-fat diet (HFD). However, the molecular mechanisms by which an HFD affects neutrophilic folliculitis are not fully understood. OBJECTIVE Our aim was to elucidate how an HFD promotes the development of neutrophilic folliculitis. METHODS Mice were fed an HFD, and their skin was subjected to histologic, RNA sequencing, and imaging mass spectrometry analyses. To examine the effect of an HFD on neutrophil accumulation around the hair follicles, phorbol 12-myristate 13-acetate (PMA) was used as an irritant to the skin. RESULTS Histologic analysis revealed follicular hyperkeratosis in the skin of HFD-fed mice. RNA sequencing analysis showed that genes related to keratinization, especially in upper hair follicular keratinocytes, were significantly upregulated in HFD-fed mice. Application of PMA to the skin induced neutrophilic folliculitis in HFD-fed mice but not in mice fed a normal diet. Accumulation of neutrophils in the skin and around hair follicles was dependent on CXCR2 signaling, and CXCL1 (a CXCR2 ligand) was produced mainly by hair follicular keratinocytes. Imaging mass spectrometry analysis revealed an increase in fatty acids in the skin of HFD-fed mice. Application of these fatty acids to the skin induced follicular hyperkeratosis and caused PMA-induced neutrophilic folliculitis even in mice fed a normal diet. CONCLUSION An HFD can facilitate the development of neutrophilic folliculitis with the induction of hyperkeratosis of hair follicles and increased neutrophil infiltration around the hair follicles via CXCR2 signaling.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, School of Medicine, Hamamatsu University, Hamamatsu, Shizuoka, Japan.
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zachary Chow
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kahbing Jasmine Tan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Kaori Tomari
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reiko Sato
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Angeline S L Tay
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Ng Lai Guan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.
| | - Kenji Kabashima
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore; Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
27
|
Patrick MT, Zhang H, Wasikowski R, Prens EP, Weidinger S, Gudjonsson JE, Elder JT, He K, Tsoi LC. Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. J Allergy Clin Immunol 2021; 147:857-869.e7. [PMID: 33485957 PMCID: PMC7825803 DOI: 10.1016/j.jaci.2021.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is commonly associated with skin manifestations, and may also exacerbate existing skin diseases, yet the relationship between COVID-19 and skin diseases remains unclear. OBJECTIVE By investigating this relationship through a multiomics approach, we sought to ascertain whether patients with skin conditions are more susceptible to COVID-19. METHODS We conducted an epidemiological study and then compared gene expression across 9 different inflammatory skin conditions and severe acute respiratory syndrome coronavirus 2-infected bronchial epithelial cell lines, and then performed a genome-wide association study transdisease meta-analysis between COVID-19 susceptibility and 2 skin diseases (psoriasis and atopic dermatitis). RESULTS Skin conditions, including psoriasis and atopic dermatitis, increase the risk of COVID-19 (odds ratio, 1.55; P = 1.4 × 10-9) but decrease the risk of mechanical ventilation (odds ratio, 0.22; P = 8.5 × 10-5). We observed significant overlap in gene expression between the infected normal bronchial epithelial cells and inflammatory skin diseases, such as psoriasis and atopic dermatitis. For genes that are commonly induced in both the severe acute respiratory syndrome coronavirus 2 infection and skin diseases, there are 4 S100 family members located in the epidermal differentiation complex, and we also identified the "IL-17 signaling pathway" (P = 4.9 × 10-77) as one of the most significantly enriched pathways. Furthermore, a shared genome-wide significant locus in the epidermal differentiation complex was identified between psoriasis and severe acute respiratory syndrome coronavirus 2 infection, with the lead marker being a significant expression quantitative trait locus for S100A12 (P = 3.3 × 10-7). CONCLUSIONS Together our findings suggest association between inflammatory skin conditions and higher risk of COVID-19, but with less severe course, and highlight shared components involved in anti-COVID-19 immune response.
Collapse
Affiliation(s)
- Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Mich.
| | - Haihan Zhang
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Mich
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Mich
| | - Errol P Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Mich
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Mich; Ann Arbor Veterans Affairs Hospital, Ann Arbor, Mich
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Mich
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Mich; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Mich; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
28
|
Tian LM, Ke D. Acne Vulgaris is Associated with the Human β-Defensin 1-Gene Polymorphisms in Han Chinese Ethnic Group Patients. Clin Cosmet Investig Dermatol 2021; 14:123-128. [PMID: 33568929 PMCID: PMC7869712 DOI: 10.2147/ccid.s292797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/10/2021] [Indexed: 12/26/2022]
Abstract
Objective To study the relationship between the single nucleotide polymorphisms (SNPs) of the human β-defensin 1-gene (DEFB1) and the genetic susceptibility of acne vulgaris in the Han Chinese ethnic group. Methods A total of 104 patients with acne vulgaris and 126 healthy participants were included in our study. We analyzed the association between acne vulgaris and the polymorphisms in the DEFB1 G-52A, C-44G, and G-20A gene. We then analyzed the relationship between the different genotypes and the susceptibility to acne vulgaris. Results The frequency of DEFB1 C-44G genetic polymorphisms between the acne vulgaris group and the control group was significantly different (P < 0.05). The frequency of DEFB1 G-20A genetic polymorphisms between the acne vulgaris group and the control group was also significantly different (P < 0.05). Conclusion The −44G or −20A allele showed a low expression in acne vulgaris, which has already been shown to correlate with the low risk of acne vulgaris among Chinese Han patients. This further supports the contribution of the DEFB1 gene to the pathogenesis of acne.
Collapse
Affiliation(s)
- Li-Ming Tian
- Department of Dermatology, Wuhan No.1 Hospital, Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine Affiliated to Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Dan Ke
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, People's Republic of China
| |
Collapse
|
29
|
Mayslich C, Grange PA, Dupin N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021; 9:303. [PMID: 33540667 PMCID: PMC7913060 DOI: 10.3390/microorganisms9020303] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes is a member of the skin microbiota found predominantly in regions rich in sebaceous glands. It is involved in maintaining healthy skin and has long been considered a commensal bacterium. Its involvement in various infections has led to its emergence as an opportunist pathogen. Interactions between C. acnes and the human host, including the human skin microbiota, promote the selection of C. acnes strains capable of producing several virulence factors that increase inflammatory capability. This pathogenic property may be related to many infectious mechanisms, such as an ability to form biofilms and the expression of putative virulence factors capable of triggering host immune responses or enabling C. acnes to adapt to its environment. During the past decade, many studies have identified and characterized several putative virulence factors potentially involved in the pathogenicity of this bacterium. These virulence factors are involved in bacterial attachment to target cells, polysaccharide-based biofilm synthesis, molecular structures mediating inflammation, and the enzymatic degradation of host tissues. C. acnes, like other skin-associated bacteria, can colonize various ecological niches other than skin. It produces several proteins or glycoproteins that could be considered to be active virulence factors, enabling the bacterium to adapt to the lipophilic environment of the pilosebaceous unit of the skin, but also to the various organs it colonizes. In this review, we summarize current knowledge concerning characterized C. acnes virulence factors and their possible implication in the pathogenicity of C. acnes.
Collapse
Affiliation(s)
- Constance Mayslich
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
| | - Philippe Alain Grange
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| | - Nicolas Dupin
- NSERM Institut Cochin, INSERM U1016-CNRS UMR8104, Equipe de Biologie Cutanée, Université de Paris, 75014 Paris, France; (C.M.); (P.A.G.)
- Service de Dermatologie-Vénéréologie, Groupe Hospitalier APHP.5, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
| |
Collapse
|
30
|
Oliveira CMMD, Almeida LMC, Bonamigo RR, Lima CWGD, Bagatin E. Consensus on the therapeutic management of rosacea - Brazilian Society of Dermatology. An Bras Dermatol 2020; 95 Suppl 1:53-69. [PMID: 33172727 PMCID: PMC7772594 DOI: 10.1016/j.abd.2020.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/14/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Rosacea is a chronic inflammatory disease of the skin, relatively more frequent in women over 30 with a low phototype and proven genetic predisposition. Although its etiology is unknown and possibly multifactorial, the immunological abnormality, associated with neurovascular dysregulation and triggering factors, are important elements in its pathophysiology, which lead to the main changes of inflammation, vasodilation, and angiogenesis that are responsible for the clinical manifestations. Despite the lack of cure, numerous therapeutic options are available for the different clinical presentations of the disease, with satisfactory responses. OBJECTIVE To reach a consensus, with recommendations from experts, on the therapeutic management of rosacea suitable to the Brazilian setting. METHODS The study was conducted by five specialized dermatologists from university centers, representatives of the different Brazilian regions, with experience in rosacea, who were appointed by the Brazilian Society of Dermatology. Based on the adapted DELPHI methodology, the experts contributed through an updated bibliographic review of the scientific evidence, combined with personal experiences. RESULTS The group of experts reached a consensus on the relevant aspects in the therapeutic management of rosacea, providing information on epidemiology, pathophysiology, triggering factors, clinical condition, classification, quality of life, and comorbidities. Consensus was defined as approval by at least 90% of the panel. CONCLUSION Despite the impossibility of cure, there are several therapeutic alternatives specific to each patient that provide excellent results, with chances of total improvement and long periods of remission, promoting a positive impact on quality of life. This consensus provides detailed guidance for clinical practice and therapeutic decisions in rosacea.
Collapse
Affiliation(s)
| | - Luiz Mauricio Costa Almeida
- Department of Dermatology, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, MG, Brazil; Dermatology Service, Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service, Hospital das Clínicas de Porto Alegre, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Ediléia Bagatin
- Department of Dermatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat Commun 2020; 11:5067. [PMID: 33082341 PMCID: PMC7575575 DOI: 10.1038/s41467-020-18784-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Although acne is the most common human inflammatory skin disease, its pathogenic mechanisms remain incompletely understood. Here we show that GATA6, which is expressed in the upper pilosebaceous unit of normal human skin, is down-regulated in acne. GATA6 controls keratinocyte proliferation and differentiation to prevent hyperkeratinisation of the infundibulum, which is the primary pathological event in acne. When overexpressed in immortalised human sebocytes, GATA6 triggers a junctional zone and sebaceous differentiation program whilst limiting lipid production and cell proliferation. It modulates the immunological repertoire of sebocytes, notably by upregulating PD-L1 and IL10. GATA6 expression contributes to the therapeutic effect of retinoic acid, the main treatment for acne. In a human sebaceous organoid model GATA6-mediated down-regulation of the infundibular differentiation program is mediated by induction of TGFβ signalling. We conclude that GATA6 is involved in regulation of the upper pilosebaceous unit and may be an actionable target in the treatment of acne.
Collapse
|
32
|
Jiang Y, Chen H, Han L, Xie X, Zheng Y, Lai W. Altered Gene Expression in Acne Vulgaris Patients Treated by Oral Isotretinoin: A Preliminary Study. Pharmgenomics Pers Med 2020; 13:385-395. [PMID: 32982373 PMCID: PMC7509477 DOI: 10.2147/pgpm.s250969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background/Objective The role of gene expression changes in acne patients treated by oral isotretinoin (ISO) and in influencing the ISO therapeutic effects is still unclear. In this study, we investigated the gene profiles of patients with severe acne who responded variously to ISO therapy. Methods The peripheral blood of 113 acne vulgaris patients (Pillsbury IV grade) was collected before treatment. After 8 weeks of oral ISO, nine acne patients were selected and divided into the following groups. A: effectively treated by ISO, group B: ineffectively treated by ISO, group C: ISO-induced acne flare-up, and 3 healthy subjects were included as control group D. The peripheral blood of patients pre- and post-treatment was subjected to high-throughput RNA sequencing technology and bioinformatics analysis of the separate groups (n = 3). The candidate genes were validated by qRT-PCR. Results Comparing pre- and post-oral ISO treatment, gene expression was changed as 39 genes in ISO-effective group, 345 genes in ISO-ineffective group, and 57 genes in ISO-induced acne flare-up group. Comparing the ISO-induced acne flare-up group with healthy control subjects revealed 34 upregulated genes and 23 downregulated genes, while comparing the ISO-induced acne flare-up group with ISO-ineffective patients identified 1835 changed genes. Expression of GATA2 (2.73 fold, P=0.024512), C4BPA (35.87 folds, P=0.038073), and CCR5 (2.48 folds, P=0.004681) increased in the ISO-induced acne flare-up patients. Meanwhile, the expression of DEFA3 (0.18 fold, P=0.041934), ELANE (0.14 fold, P=0.030767), MMP9 (0.41 fold, P=0.013383), and RPS4Y1 (0.00018 fold, P=0.000986) decreased when compared with ISO-ineffective patients. Conclusion Oral ISO treatment could temporarily alter gene expression in acne patients. ISO therapeutic mechanisms were involved, not only in regulating the inflammatory reaction but also in the process of DNA repair. GATA2, C4BPA, CCR5, DEFA3, ELANE, MMP9, and RPS4Y1 might be susceptible to genes that could participate in the ISO-induced aggravation of acne.
Collapse
Affiliation(s)
- Yuchen Jiang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| | - Haiyan Chen
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| | - Le Han
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyuan Xie
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yue Zheng
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
33
|
Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clin Rev Allergy Immunol 2020; 60:200-219. [PMID: 32378146 DOI: 10.1007/s12016-020-08787-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic diseases are highly complex with respect to pathogenesis, inflammation, and response to treatment. Current efforts for allergic disease diagnosis have focused on clinical evidence as a binary outcome. Although outcome status based on clinical phenotypes (observable characteristics) is convenient and inexpensive to measure in large studies, it does not adequately provide insight into the complex molecular determinants of allergic disease. Individuals with similar clinical diagnoses do not necessarily have similar disease etiologies, natural histories, or responses to treatment. This heterogeneity contributes to the ineffective response to treatment leading to an annual estimated cost of $350 billion in the USA alone. There has been a recent focus to deconvolute the clinical heterogeneity of allergic diseases into specific endotypes using molecular and omics approaches. Endotypes are a means to classify patients based on the underlying pathophysiological mechanisms involving distinct functions or treatment response. The advent of high-throughput molecular omics, immunophenotyping, and bioinformatics methods including machine learning algorithms is facilitating the development of endotype-based diagnosis. As we move to the next decade, we should truly start treating clinical endotypes not clinical phenotype. This review highlights current efforts taking place to improve allergic disease endotyping via molecular omics profiling, immunophenotyping, and machine learning approaches in the context of precision diagnostics in allergic diseases. Graphical Abstract.
Collapse
|
34
|
Thiboutot D, Anderson R, Cook-Bolden F, Draelos Z, Gallo RL, Granstein RD, Kang S, Macsai M, Gold LS, Tan J. Standard management options for rosacea: The 2019 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol 2020; 82:1501-1510. [PMID: 32035944 DOI: 10.1016/j.jaad.2020.01.077] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
In 2017, a National Rosacea Society Expert Committee developed and published an updated classification of rosacea to reflect current insights into rosacea pathogenesis, pathophysiology, and management. These developments suggest that a multivariate disease process underlies the various clinical manifestations of the disorder. The new system is consequently based on phenotypes that link to this process, providing clear parameters for research and diagnosis as well as encouraging clinicians to assess and treat the disorder as it may occur in each individual. Meanwhile, a range of therapies has become available for rosacea, and their roles have been increasingly defined in clinical practice as the disorder has become more widely recognized. This update is intended to provide a comprehensive summary of management options, including expert evaluations, to serve as a guide for tailoring treatment and care on an individual basis to achieve optimal patient outcomes.
Collapse
Affiliation(s)
- Diane Thiboutot
- Department of Dermatology, Pennsylvania State University, Hershey, Pennsylvania.
| | - Rox Anderson
- Department of Dermatology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fran Cook-Bolden
- Skin of Color Center, Department of Dermatology, St Luke's-Roosevelt Hospital, New York, New York
| | - Zoe Draelos
- Department of Dermatology, Duke University, Durham, North Carolina
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, San Diego, California
| | - Richard D Granstein
- Department of Dermatology, Weill Cornell Medical College, New York, New York
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marian Macsai
- Department of Ophthalmology, University of Chicago, Chicago, Illinois
| | - Linda Stein Gold
- Department of Dermatology, Henry Ford Health System, West Bloomfield, Michigan
| | - Jerry Tan
- Department of Medicine, University of Western Ontario, Windsor, Ontario, Canada
| |
Collapse
|
35
|
Tabara K, Tamura R, Nakamura A, Mori S, Kitano T, Fujikawa K, Fujikawa M, Okamoto K, Kanayama S, Uratsuji H, Ikeda F, Matsumoto T. Anti-inflammatory effects of ozenoxacin, a topical quinolone antimicrobial agent. J Antibiot (Tokyo) 2020; 73:247-254. [PMID: 31974519 PMCID: PMC7056637 DOI: 10.1038/s41429-020-0278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/10/2022]
Abstract
Ozenoxacin is a topical quinolone showing potent antimicrobial activities against Gram-negative and Gram-positive bacteria and is widely used for the treatment of inflammatory acne. However, the anti-inflammatory activities of ozenoxacin have not been examined so far. In the present study, we investigated the in vitro and in vivo anti-inflammatory effects of ozenoxacin. The production of interleukin (IL)-6 and IL-8 by human epidermal keratinocytes stimulated by heat-killed Cutibacterium acnes was significantly inhibited by ozenoxacin at concentrations from 1 to 30 μg ml−1. Likewise, the production of IL-6, IL-8, and tumor necrosis factor alpha by stimulated THP-1 cells, a human monocyte cell line, was inhibited by ozenoxacin at concentrations from 1 to 30 μg ml−1. The production of IL-1β by THP-1 was also inhibited by ozenoxacin at the concentration of 30 μg ml−1. Phosphorylation of the mitogen-activated protein kinases and degradation of IκB-α, an inhibitory factor of NF-κB in keratinocytes and THP-1 cells, was increased by stimulation with heat-killed C. acnes. Of these activated intracellular pathways, the p38 phosphorylation pathway was remarkably reduced by ozenoxacin in both keratinocytes and THP-1 cells. In addition, the application of 2% ozenoxacin suppressed the increase in the ear thickness of rats induced by an intracutaneous injection of heat-killed C. acnes. These findings suggest that ozenoxacin possesses an anti-inflammatory activity, which may contribute to its therapeutic effects on inflammatory acne.
Collapse
Affiliation(s)
- Keisuke Tabara
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan.
| | - Rie Tamura
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Aki Nakamura
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Sachi Mori
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Takamichi Kitano
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Koki Fujikawa
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Mika Fujikawa
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Kazuaki Okamoto
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Shoji Kanayama
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Hideya Uratsuji
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Fumiaki Ikeda
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Tatsumi Matsumoto
- Maruho Co., Ltd, Kyoto R&D Center, Drug Development Laboratories, Kyoto Research Park, Bldg. #5, 93 Chudoji Awata-cho, Shimogyo-ku, Kyoto, 600-8815, Japan
| |
Collapse
|
36
|
Li X, Jia Y, Wang S, Meng T, Zhu M. Identification of Genes and Pathways Associated with Acne Using Integrated Bioinformatics Methods. Dermatology 2019; 235:445-455. [DOI: 10.1159/000502203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
Background: Acne is the most common skin inflammatory condition. The pathogenesis of acne is not fully understood. Aims: We performed weighted gene co-expression network analysis (WGCNA) to select acne-associated genes and pathways. Methods: GSE53795 and GSE6475 datasets including data from lesional and nonlesional skin of acne patients were downloaded from the NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) in lesions were identified following a false discovery rate <0.05 and | log2 fold change | ≥0.5. DEG-associated biological processes and pathways were identified. WGCNA analysis was performed to identify acne-associated modules. DEGs in the acne-associated modules were used for protein-protein interaction (PPI) network construction and Gene Set Enrichment Analysis (GSEA). Acne-associated candidate DEGs and pathways were identified together with items in the Comparative Toxicogenomics Database (CTD). Results: A total of 2,140 and 1,190 DEGs were identified in GSE53795 and GSE6475 datasets, respectively, including 716 overlapping DEGs with similar expression profiles in the two datasets, which were clustered into 10 consensus modules. Two modules (brown and turquoise, 359 genes) were associated with acne phenotype. Of these 359 DEGs, 254 were enrolled in the PPI network. GSEA showed that these DEGs were associated with chemokine signaling pathway, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. After identification in CTD, one pathway Cytokine-cytokine receptor interaction and 24 acne-associated DEGs, including IL1R1, CXCL1, CXCR4, CCR1, CXCL2 and IL1β, were identified as candidates associated with acne. Conclusion: Our results highlight the important roles of the proinflammatory cytokines including IL1β, CXCL1, CXCL2, CXCR4, and CCR1 in acne pathogenesis or therapeutic management.
Collapse
|
37
|
Analysis of Potential Genes and Pathways Involved in the Pathogenesis of Acne by Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3739086. [PMID: 31281837 PMCID: PMC6590534 DOI: 10.1155/2019/3739086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Acne is the eighth most frequent disease worldwide. Inflammatory response runs through all stages of acne. It is complicated and is involved in innate and adaptive immunity. This study aimed to explore the candidate genes and their relative signaling pathways in inflammatory acne using data mining analysis. Microarray data GSE6475 and GSE53795, including 18 acne lesion tissues and 18 matched normal skin tissues, were obtained. Differentially expressed genes (DEGs) were filtered and subjected to functional and pathway enrichment analyses. Protein-protein interaction (PPI) network and module analyses were also performed based on the DEGs. In this work, 154 common DEGs, including 145 upregulated and 9 downregulated, were obtained from two microarray profiles. Gene Ontology and pathway enrichment of DEGs were clustered using significant enrichment analysis. A PPI network containing 110 nodes/DEGs was constructed, and 31 hub genes were obtained. Four modules in the PPI network, which mainly participated in chemokine signaling pathway, cytokine-cytokine receptor interaction, and Fc gamma R-mediated phagocytosis, were extracted. In conclusion, aberrant DEGs and pathways involved in acne pathogenesis were identified using bioinformatic analysis. The DEGs included FPR2, ITGB2, CXCL8, C3AR1, CXCL1, FCER1G, LILRB2, PTPRC, SAA1, CCR2, ICAM1, and FPR1, and the pathways included chemokine signaling pathway, cytokine-cytokine receptor interaction, and Fc gamma R-mediated phagocytosis. This study could serve as a basis for further understanding the pathogenesis and potential therapeutic targets of inflammatory acne.
Collapse
|
38
|
Méhul B, Séraïdaris A, Blanchet-Réthoré S, Gamboa B, Bahadoran P, Queille-Roussel C, Voegel JJ, Mazuy A. Non-invasive profiling for cytokines, chemokines and growth factors in acne vulgaris. J Eur Acad Dermatol Venereol 2019; 33:e386-e388. [PMID: 31087481 DOI: 10.1111/jdv.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Méhul
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - A Séraïdaris
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | | | - B Gamboa
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - P Bahadoran
- Dermatology Department, Archet II Hospital, Nice, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Team 1, University of Nice Sophia Antipolis, Nice, France
| | - C Queille-Roussel
- Centre de Pharmacologie Clinique Appliquée à la Dermatologie (CPCAD), University Hospital of Nice, Nice, France
| | - J J Voegel
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| | - A Mazuy
- Galderma R&D, Nestlé Skin Health, Sophia Antipolis, France
| |
Collapse
|
39
|
Common J, Barker J, Steensel M. What does acne genetics teach us about disease pathogenesis? Br J Dermatol 2019; 181:665-676. [DOI: 10.1111/bjd.17721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- J.E.A. Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
| | - J.N. Barker
- St John's Institute of Dermatology Faculty of Life Sciences and Medicine King's College London London U.K
| | - M.A.M. Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Clinical Sciences Building Novena Singapore
| |
Collapse
|
40
|
Colombo S, Harmankaya N, Water JJ, Bohr A. Exploring the potential for rosacea therapeutics of siRNA dispersion in topical emulsions. Exp Dermatol 2019; 28:261-269. [DOI: 10.1111/exd.13881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/10/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
| | - Necati Harmankaya
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Adam Bohr
- Umbed Pharmaceuticals; Frederiksberg Denmark
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
41
|
Bakus AD, Yaghmai D, Massa MC, Garden BC, Garden JM. Sustained Benefit After Treatment of Acne Vulgaris Using Only a Novel Combination of Long-Pulsed and Q-Switched 1064-nm Nd: YAG Lasers. Dermatol Surg 2018; 44:1402-1410. [PMID: 29877931 DOI: 10.1097/dss.0000000000001565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acne vulgaris remains a challenging disease to treat in many patients. Traditional therapies may have limited successes with potential side effects. Laser and light energy devices may offer a desirable alternative. OBJECTIVE To evaluate the effectiveness and safety in using a combination laser approach with both long-pulsed (LP) and Q-switched (QS) Nd:YAG lasers in the treatment of active acne. METHODS Twenty patients with moderate to severe inflammatory acne were treated with LP YAG laser followed immediately with QS YAG laser. Patients received at least 8 treatments. Follow-up evaluation occurred at a minimum of 12 months. Pre- and post-treatment photographs were graded by blinded physicians. All topical acne medications and oral antibiotics were discontinued throughout the therapy and follow-up period. RESULTS There was a 81% reduction in acne lesions, with 60% of patients having 90% or greater reduction. Overall appearance was graded at 84% improvement at follow-up. Follow-up occurred at a mean of 22.7 months after completion of therapy. Aside from transient erythema, there were no other adverse effects. CONCLUSION Active acne can be treated successfully with a combination of LP and QS YAG lasers with patients remaining off acne medications throughout laser therapy and the follow-up period.
Collapse
Affiliation(s)
- Abnoeal D Bakus
- Physicians Laser and Dermatology Institute, Chicago, Illinois
| | - Dina Yaghmai
- Physicians Laser and Dermatology Institute, Chicago, Illinois
| | - Mary C Massa
- Physicians Laser and Dermatology Institute, Chicago, Illinois.,Department of Dermatology, Rush University Medical School, Chicago, Illinois
| | - Benjamin C Garden
- Physicians Laser and Dermatology Institute, Chicago, Illinois.,Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Jerome M Garden
- Physicians Laser and Dermatology Institute, Chicago, Illinois.,Department of Dermatology and Biomedical Engineering, Northwestern University, Chicago, Illinois
| |
Collapse
|
42
|
A Tumor-Promoting Phorbol Ester Causes a Large Increase in APOBEC3A Expression and a Moderate Increase in APOBEC3B Expression in a Normal Human Keratinocyte Cell Line without Increasing Genomic Uracils. Mol Cell Biol 2018; 39:MCB.00238-18. [PMID: 30348839 DOI: 10.1128/mcb.00238-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression. We tested here the possibility that induction of APOBEC3A by PMA causes genomic accumulation of uracils that may lead to such mutations. When a human keratinocyte cell line was treated with PMA, both APOBEC3A and APOBEC3B gene expression increased, anti-APOBEC3A/APOBEC3B antibody bound a protein(s) in the nucleus, and nuclear extracts displayed cytosine deamination activity. Surprisingly, there was little increase in genomic uracils in PMA-treated wild-type or uracil repair-defective cells. In contrast, cells transfected with a plasmid expressing APOBEC3A acquired more genomic uracils. Unexpectedly, PMA treatment, but not APOBEC3A plasmid transfection, caused a cessation in cell growth. Hence, a reduction in single-stranded DNA at replication forks may explain the inability of PMA-induced APOBEC3A/APOBEC3B to increase genomic uracils. These results suggest that the proinflammatory PMA is unlikely to promote extensive APOBEC3A/APOBEC3B-mediated cytosine deaminations in human keratinocytes.
Collapse
|
43
|
O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. MICROBIOME 2018; 6:177. [PMID: 30285861 PMCID: PMC6169095 DOI: 10.1186/s40168-018-0558-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 05/07/2023]
Abstract
Acne is one of the most common skin diseases worldwide and results in major health care costs and significant morbidity to severely affected individuals. However, the pathophysiology of this disorder is not well understood. Host-microbiome interactions that affect both innate and adaptive immune homeostasis appear to be a central factor in this disease, with recent observations suggesting that the composition and activities of the microbiota in acne is perturbed. Staphylococcus epidermidis and Cutibacterium acnes (C. acnes; formerly Propionibacterium acnes) are two major inhabitants of the skin that are thought to contribute to the disease but are also known to promote health by inhibiting the growth and invasion of pathogens. Because C. acnes is ubiquitous in sebaceous-rich skin, it is typically labeled as the etiological agent of acne yet it fails to fulfill all of Koch's postulates. The outdated model of acne progression proposes that increased sebum production promotes over-proliferation of C. acnes in a plugged hair follicle, thereby driving inflammation. In contrast, growing evidence indicates that C. acnes is equally abundant in both unaffected and acne-affected follicles. Moreover, recent advances in metagenomic sequencing of the acne microbiome have revealed a diverse population structure distinct from healthy individuals, uncovering new lineage-specific virulence determinants. In this article, we review recent developments in the interactions of skin microbes with host immunity, discussing the contribution of dysbiosis to the immunobiology of acne and newly emerging skin microbiome-based therapeutics to treat acne.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr., #0869, La Jolla, CA 92093 USA
| |
Collapse
|
44
|
Mills KJ, Robinson MK, Sherrill JD, Schnell DJ, Xu J. Analysis of gene expression profiles of multiple skin diseases identifies a conserved signature of disrupted homeostasis. Exp Dermatol 2018; 27:1000-1008. [DOI: 10.1111/exd.13694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kevin J. Mills
- The Procter and Gamble Company; Mason Business Center; Mason OH USA
| | | | | | - Daniel J. Schnell
- Department of Biomedical Informatics; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - Jun Xu
- Calico, LLC; South San Francisco CA USA
| |
Collapse
|
45
|
Fernández JR, Webb C, Rouzard K, Healy J, Tamura M, Voronkov M, Huber KL, Stock JB, Stock M, Gordon JS, Pérez E. SIG1459: A novel phytyl-cysteine derived TLR2 modulator with in vitro and clinical anti-acne activity. Exp Dermatol 2018; 27:993-999. [PMID: 29797368 DOI: 10.1111/exd.13692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Cutibacterium (formerly Propionibacterium acnes) is a major contributor to the pathogenesis of acne. C. acnes initiates an innate immune response in keratinocytes via recognition and activation of toll-like receptor-2 (TLR2), a key step in comedogenesis. Tetramethyl-hexadecenyl-cysteine-formylprolinate (SIG1459), a novel anti-acne isoprenylcysteine (IPC) small molecule, is shown in this study to have direct antibacterial activity and inhibit TLR2 inflammatory signalling. In vitro antibacterial activity of SIG1459 against C. acnes was established demonstrating minimal inhibitory concentration (MIC = 8.5 μmol\L), minimal bactericidal concentration (MBC = 16.1 μmol\L) and minimal biofilm eradication concentration (MBEC = 12.5 μmol\L). To assess SIG1459's anti-inflammatory activity, human keratinocytes were exposed to C. acnes and different TLR2 ligands (peptidoglycan, FSL-1, Pam3CSK4) that induce pro-inflammatory cytokine IL-8 and IL-1α production. Results demonstrate SIG1459 inhibits TLR2-induced IL-8 release from TLR2/TLR2 (IC50 = 0.086 μmol\L), TLR2/6 (IC50 = 0.209 μmol\L) and IL-1α from TLR2/TLR2 (IC50 = 0.050 μmol\L). To assess the safety and in vivo anti-acne activity of SIG1459, a vehicle controlled clinical study was conducted applying 1% SIG1459 topically (n = 35 subjects) in a head-to-head comparison against 3% BPO (n = 15 subjects). Utilizing the Investigator Global Assessment scale for acne as primary endpoint, results demonstrate 1% SIG1459 significantly outperformed 3% BPO over 8 weeks, resulting in 79% improvement as compared to 56% for BPO. Additionally, 1% SIG1459 was well tolerated. Thus, SIG1459 and phytyl IPC compounds represent a novel anti-acne technology that provides a safe dual modulating benefit by killing C. acnes and reducing the inflammation it triggers via TLR2 signalling.
Collapse
Affiliation(s)
| | - Corey Webb
- Signum Dermalogix, Monmouth Junction, NJ, USA
| | | | - Jason Healy
- Signum Dermalogix, Monmouth Junction, NJ, USA
| | | | | | | | - Jeffry B Stock
- Signum Dermalogix, Monmouth Junction, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | | | |
Collapse
|
46
|
Törőcsik D, Kovács D, Póliska S, Szentkereszty-Kovács Z, Lovászi M, Hegyi K, Szegedi A, Zouboulis CC, Ståhle M. Genome wide analysis of TLR1/2- and TLR4-activated SZ95 sebocytes reveals a complex immune-competence and identifies serum amyloid A as a marker for activated sebaceous glands. PLoS One 2018; 13:e0198323. [PMID: 29927962 PMCID: PMC6013244 DOI: 10.1371/journal.pone.0198323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLR) 2 and 4 are active in sebaceous glands and play a central role in the development of acne. Still, there is only limited knowledge on their effect on sebocytes. In this work we performed global gene expression profile analysis with functional clustering of the differentially regulated genes of TLR1/2 (PAM3CSK4)- and TLR4 (lipopolysaccharide [LPS])-activated SZ95 sebocytes. Both TLR1/2- and 4-activation promoted inflammation in a similar manner already at an early time-point (6 hours), regulating genes involved in inflammation, wound healing and chemotaxis reflecting a more complex cytokine and chemokine regulation than previously known. Importantly, lipid metabolism, the primary feature of sebocytes, was affected at the level of gene expression only at a later time point (24 hours) indicating that sebocytes prioritize to exert a pro-inflammatory phenotype when confronted with a danger signal. Supporting the biological relevance of our results, a meta-analysis revealed that the genes showing the strongest up-regulation were also found up-regulated in acne. Of these genes, serum amyloid A 1/2 (SAA1/2) was confirmed to be a suitable protein marker for in vivo activated sebocytes, underlining their immune-competence, which is structurally defined within sebaceous glands of acne and rosacea skin samples. Altogether our findings demonstrate that sebocytes are not only positioned at the end point of inflammation but are actively involved in shaping the inflammatory response with putative diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Marianna Lovászi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Hegyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Mona Ståhle
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Dréno B, Bissonnette R, Gagné-Henley A, Barankin B, Lynde C, Kerrouche N, Tan J. Prevention and Reduction of Atrophic Acne Scars with Adapalene 0.3%/Benzoyl Peroxide 2.5% Gel in Subjects with Moderate or Severe Facial Acne: Results of a 6-Month Randomized, Vehicle-Controlled Trial Using Intra-Individual Comparison. Am J Clin Dermatol 2018; 19:275-286. [PMID: 29549588 PMCID: PMC5978908 DOI: 10.1007/s40257-018-0352-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Very few clinical trials have investigated the effect of topical acne treatment on scarring. OBJECTIVES Our objective was to evaluate the efficacy of adapalene 0.3%/benzoyl peroxide 2.5% gel (A0.3/BPO2.5) in atrophic acne scar formation in patients with acne. METHODS In this multicenter, randomized, investigator-blinded, vehicle-controlled study, subjects with moderate or severe facial acne (Investigator's Global Assessment [IGA] score 3 or 4; ≥ 25 inflammatory lesions; ten or more atrophic acne scars) applied A0.3/BPO2.5 or vehicle daily per half face for 24 weeks. Subjects with acne requiring systemic treatment were excluded. Assessments included investigator atrophic acne scar count, Scar Global Assessment (SGA), acne lesion count, IGA, skin roughness and skin texture, subject self-assessment of clinical acne-related scars and satisfaction questionnaire, tolerability, and safety. RESULTS Included subjects (n = 67) had mainly moderate acne (92.5% IGA 3); mean scores at baseline were approximately 40 acne lesions and 12 scars per half face. By week 24, the change from baseline in total scar count was - 15.5% for A0.3/BPO2.5 versus + 14.4% for vehicle (approximately 30% difference), with a mean of 9.5 scars versus 13.3 per half face, respectively (p < 0.0001). For SGA at week 24, a total of 32.9% with A0.3/BPO2.5 versus 16.4% with vehicle (p < 0.01) were clear/almost clear. Inflammatory acne lesions decreased by 86.7% for A0.3/BPO2.5 versus 57.9% for vehicle (p < 0.0001), and 64.2 versus 19.4% of subjects, respectively, were IGA clear/almost clear (p < 0.0001) at week 24. Treatment-related AEs were reported by 20.9% for A0.3/BPO2.5 versus 9% for vehicle side, most commonly skin irritation (14.9 vs. 6%, respectively). CONCLUSIONS Topical A0.3/BPO2.5 prevented and reduced atrophic scar formation. Scar count increased with vehicle (+ 14.4%) but decreased with A0.3/BPO2.5 (- 15.5%) over 24 weeks. TRIAL REGISTRY ClinicalTrials.gov identifier NCT02735421.
Collapse
Affiliation(s)
- Brigitte Dréno
- Department of Dermato-Cancerology, CIC 1413, CRCINA Inserm 1232, CHU Nantes, Nantes, France.
| | | | | | | | - Charles Lynde
- Lynde Institute for Dermatology, Markham, Ontario, Canada
| | | | - Jerry Tan
- University of Western Ontario, London, Ontario, Canada
- Windsor Clinical Research Inc, Windsor, Ontario, Canada
| |
Collapse
|
48
|
Loss MJ, Leung S, Chien A, Kerrouche N, Fischer AH, Kang S. Adapalene 0.3% Gel Shows Efficacy for the Treatment of Atrophic Acne Scars. Dermatol Ther (Heidelb) 2018; 8:245-257. [PMID: 29549598 PMCID: PMC6002315 DOI: 10.1007/s13555-018-0231-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Scarring is an unfortunate clinical outcome of acne. Current treatment options for atrophic acne scars are dominated by non-pharmacological, invasive procedures which may not be suitable or affordable to all patients. This phase II, single-center, open-label, exploratory study assessed the efficacy, safety and subject-reported outcomes of adapalene 0.3% gel in the treatment of atrophic acne scars. Methods The study included subjects aged 18–50 years with past history of acne and moderate to severe facial atrophic acne scars. Subjects received adapalene 0.3% gel once daily for the first 4 weeks and twice daily for the following 20 weeks. Assessments were performed at baseline, day 10 and weeks 4, 8, 16 and 24, and at post-treatment follow-ups (weeks 36 and 48–72). Results At week 24, investigator and subject assessments reported improvement in skin texture/atrophic scars in 50% and > 80% of subjects, respectively. Subjects were satisfied with the treatment and reported improvements in quality of life. Conclusion Daily use of adapalene 0.3% gel for the treatment of atrophic acne scars showed promising clinical efficacy, a favorable tolerability profile, and improvement in quality of life. Funding Nestlé Skin Health–Galderma R&D. Trial Registration ClinicalTrials.gov Identifier NCT01213199.
Collapse
Affiliation(s)
- Manisha J Loss
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sherry Leung
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nabil Kerrouche
- Nestlé Skin Health-Galderma R&D, Sophia Antipolis, Biot, France
| | - Alexander H Fischer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Gollnick HPM, Buer J, Beissert S, Sunderkätter C. Verantwortlicher Umgang mit Antibiotika: Notwendigkeit der Antibiotikareduktion in der Aknetherapie. J Dtsch Dermatol Ges 2018; 14:1319-1327. [PMID: 27992149 DOI: 10.1111/ddg.13048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Der übermäßige oder unkritische weltweite Einsatz von Antibiotika in der Medizin hat die Ausbreitung von Antibiotikaresistenzen beschleunigt. In einigen Bereichen sind viele Antibiotika bei bakteriellen Infektionen, die zuvor noch gut auf antibakterielle Wirkstoffe reagierten, mittlerweile wirkungslos geworden. Dermatologen/Venerologen setzten orale und topische Antibiotika bei der Behandlung von Acne vulgaris routinemäßig ein, obwohl Akne weder eine infektiöse Erkrankung ist noch alleine durch das Propionibacterium getriggert wird. Vielmehr ist sie eine komplexe, chronische entzündliche Hauterkrankung, die durch verschiedene pathogenetische Faktoren wie follikuläre Hyperkeratose, erhöhter Sebumproduktion, bakterielle Proliferation und Entzündung zustande kommt. Folglich sollte eine erfolgreiche Therapie auf die Bekämpfung verschiedener pathogenetischer Faktoren und nicht nur auf die von Propionibacterium acnes abzielen. Daher wurden topische Retinoide und Benzoylperoxid als Mittel der ersten Wahl definiert. Monotherapien mit lokalen Antibiotika sollten insgesamt vermieden werden. Systemische Antibiotika der Tetrazyklin-Gruppe haben bei bestimmen Krankheitsstadien ihren Sinn, ihre Wirkung könnte aber eher auf der antientzündlichen als auf der antibiotischen Reaktion beruhen. Gesundheitsbehörden ermahnen alle Gesundheitsdienstleister, den Einsatz von Antibiotika einzuschränken. Das Nutzen-Risiko-Verhältnis muss bei der Entscheidung für oder gegen eine antibiotische Therapie bei einem einzelnen Patienten immer auch in Bezug auf das öffentliche Interesse am Erhalt der Wirksamkeit von Antibiotika abgewogen werden. Im Folgenden werden das aktuelle Krankheitskonzept zu Acne vulgaris und die sich daraus ableitenden Konsequenzen für den Einsatz von Antibiotika vorgestellt.
Collapse
|
50
|
Park AJ, Agak GW, Qin M, Hisaw LD, Pirouz A, Kao S, Marinelli LJ, Garbán HJ, Thiboutot D, Liu PT, Kim J. G2A Attenuates Propionibacterium acnes Induction of Inflammatory Cytokines in Human Monocytes. Ann Dermatol 2017; 29:688-698. [PMID: 29200756 PMCID: PMC5705349 DOI: 10.5021/ad.2017.29.6.688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Background Acne vulgaris is a disease of the pilosebaceous unit characterized by increased sebum production, hyperkeratinization, and immune responses to Propionibacterium acnes (PA). Here, we explore a possible mechanism by which a lipid receptor, G2A, regulates immune responses to a commensal bacterium. Objective To elucidate the inflammatory properties of G2A in monocytes in response to PA stimulation. Furthermore, our study sought to investigate pathways by which lipids modulate immune responses in response to PA. Methods Our studies focused on monocytes collected from human peripheral blood mononuclear cells, the monocytic cell line THP-1, and a lab strain of PA. Our studies involved the use of enzyme-linked immunosorbent, Western blot, reverse transcription polymerase chain reaction, small interfering RNA (siRNA), and microarray analysis of human acne lesions in the measurements of inflammatory markers. Results G2A gene expression is higher in acne lesions compared to normal skin and is inducible by the acne therapeutic, 13-cis-retinoic acid. In vitro, PA induces both the Toll-like receptor 2-dependent expression of G2A as well as the production of the G2A ligand, 9-hydroxyoctadecadienoic acid, from human monocytes. G2A gene knockdown through siRNA enhances PA stimulation of interleukin (IL)-6, IL-8, and IL-1β possibly through increased activation of the ERK1/2 MAP kinase and nuclear factor kappa B p65 pathways. Conclusion G2A may play a role in quelling inflammatory cytokine response to PA, revealing G2A as a potential attenuator of inflammatory response in a disease associated with a commensal bacterium.
Collapse
Affiliation(s)
- Andrew J Park
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Min Qin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lisa D Hisaw
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aslan Pirouz
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Kao
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura J Marinelli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hermes J Garbán
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Diane Thiboutot
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, USA
| | - Philip T Liu
- Department of Orthopedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|