1
|
Butler JT, Yashar WM, Swords R. Breaking the Bone Marrow Barrier: Peripheral Blood as a Gateway to Measurable Residual Disease Detection in Acute Myelogenous Leukemia. Am J Hematol 2025; 100:638-651. [PMID: 39777414 PMCID: PMC11886496 DOI: 10.1002/ajh.27586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease with high rates of relapse after initial treatment. Identifying measurable residual disease (MRD) following initial therapy is essential to assess response, predict patient outcomes, and identify those in need of additional intervention. Currently, MRD analysis relies on invasive, serial bone marrow (BM) biopsies, which complicate sample availability and processing time and negatively impact patient experience. Additionally, finding a positive result can generate more questions than answers, causing anxiety for both the patient and the provider. Peripheral blood (PB) evaluation has shown promise in detecting MRD and is now recommended by the European Leukemia Net for AML for certain genetic abnormalities. PB-based sampling allows for more frequent testing intervals and better temporal resolution of malignant expansion while sparing patients additional invasive procedures. In this review, we will discuss the current state of PB testing for MRD evaluation with a focus on next-generation sequencing methodologies that are capable of MRD detection across AML subtypes.
Collapse
Affiliation(s)
- John T. Butler
- Radiation Medicine and Applied Science, Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - William M. Yashar
- Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
- Division of Oncologic Sciences, Department of MedicineOregon Health & Science UniversityPortlandOregonUSA
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandOregonUSA
| | - Ronan Swords
- Division of Oncologic Sciences, Department of MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
2
|
Li J, Wang Y, Dong C, Luo L. Advancements in leukemia management: Bridging diagnosis, prognosis and nanotechnology (Review). Int J Oncol 2024; 65:112. [PMID: 39364739 PMCID: PMC11542963 DOI: 10.3892/ijo.2024.5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Leukemia is a cancer that starts in blood stem cells in the bone marrow. Today, the proper diagnosis and prognosis of leukemia are essential in mitigating the morbidity and mortality associated with this malignancy. The advent of novel biomarkers, particularly those related to minimal residual disease, has paved the way for personalized therapeutic strategies and enables the quantitative assessment of patient responses to treatment regimens. Novel diagnostic and targeted drug delivery may be helpful for the improved management of leukemia. Genetic clinical parameters, such as chromosomal abnormalities, are crucial in diagnosing and guiding treatment decisions. These genetic markers also provide valuable prognostic information, helping to predict patient outcomes and tailor personalized treatment plans. In the present review, the studies on the diagnostic and prognostic parameters of leukemia were analyzed. The prognosis of leukemia was investigated in most of the studies, and the remaining were performed on diagnosis. The clinical and laboratory prognostic parameters were the most common, followed by diagnostic hematological parameters, diagnostic blood parameter studies, and diagnostic immunological parameters. Clinical and laboratory prognostic and hematologic parameters were the most extensively studied. The methods used to diagnose and prognose the leukemia cases in these studies were predominantly clinical hematology. Numerous surface proteins and receptors, including CD45, CD27, CD29, CD38, CD27, CD123, CD56 and CD25, react similarly in various kinds of leukemia, which are ideal for targeted drug delivery. Drug delivery to leukemia cells encounters several significant obstacles, including heterogeneity, that hinder the effectiveness of treatment. Nanocarriers play a critical role in targeted drug delivery for leukemia by enhancing the precision of treatments directed at surface proteins and receptors. Additionally, they can be functionalized with targeting drugs and antibodies to target specific tissues and cells.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yingxue Wang
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chunli Dong
- Department of Critical Care Medicine, Jilin People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
3
|
Tettero JM, Heidinga ME, Mocking TR, Fransen G, Kelder A, Scholten WJ, Snel AN, Ngai LL, Bachas C, van de Loosdrecht AA, Ossenkoppele GJ, de Leeuw DC, Cloos J, Janssen JJWM. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia 2024; 38:630-639. [PMID: 38272991 PMCID: PMC10912027 DOI: 10.1038/s41375-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Measurable residual disease (MRD) measured in the bone marrow (BM) of acute myeloid leukemia (AML) patients after induction chemotherapy is an established prognostic factor. Hemodilution, stemming from peripheral blood (PB) mixing within BM during aspiration, can yield false-negative MRD results. We prospectively examined hemodilution by measuring MRD in BM aspirates obtained from three consecutive 2 mL pulls, along with PB samples. Our results demonstrated a significant decrease in MRD percentages between the first and second pulls (P = 0.025) and between the second and third pulls (P = 0.025), highlighting the impact of hemodilution. Initially, 39% of MRD levels (18/46 leukemia-associated immunophenotypes) exceeded the 0.1% cut-off, decreasing to 30% (14/46) in the third pull. Additionally, we assessed the performance of six published methods and parameters for distinguishing BM from PB samples, addressing or compensating for hemodilution. The most promising results relied on the percentages of CD16dim granulocytic population (scarce in BM) and CD117high mast cells (exclusive to BM). Our findings highlight the importance of estimating hemodilution in MRD assessment to qualify MRD results, particularly near the common 0.1% cut-off. To avoid false-negative results by hemodilution, it is essential to collect high-quality BM aspirations and preferably utilizing the initial pull for MRD testing.
Collapse
Affiliation(s)
- Jesse M Tettero
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike E Heidinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tim R Mocking
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Glenn Fransen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Alexander N Snel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - David C de Leeuw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Qian F, Nettleford SK, Zhou J, Arner BE, Hall MA, Sharma A, Annageldiyev C, Rossi RM, Tukaramrao DB, Sarkar D, Hegde S, Gandhi UH, Finch ER, Goodfield L, Quickel MD, Claxton DF, Paulson RF, Prabhu KS. Activation of GPR44 decreases severity of myeloid leukemia via specific targeting of leukemia initiating stem cells. Cell Rep 2023; 42:112794. [PMID: 37459233 PMCID: PMC10428076 DOI: 10.1016/j.celrep.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia-initiating stem cells (LICs) that are typically not targeted by most existing therapies. Using a murine AML model, human AML cell lines, and patient samples, we show that AML LICs are sensitive to endogenous and exogenous cyclopentenone prostaglandin-J (CyPG), Δ12-PGJ2, and 15d-PGJ2, which are increased upon dietary selenium supplementation via the cyclooxygenase-hematopoietic PGD synthase pathway. CyPGs are endogenous ligands for peroxisome proliferator-activated receptor gamma and GPR44 (CRTH2; PTGDR2). Deletion of GPR44 in a mouse model of AML exacerbated the disease suggesting that GPR44 activation mediates selenium-mediated apoptosis of LICs. Transcriptomic analysis of GPR44-/- LICs indicated that GPR44 activation by CyPGs suppressed KRAS-mediated MAPK and PI3K/AKT/mTOR signaling pathways, to enhance apoptosis. Our studies show the role of GPR44, providing mechanistic underpinnings of the chemopreventive and chemotherapeutic properties of selenium and CyPGs in AML.
Collapse
Affiliation(s)
- Fenghua Qian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiayan Zhou
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brooke E Arner
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Molly A Hall
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Arati Sharma
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Charyguly Annageldiyev
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Randy M Rossi
- Transgenic Core Facility, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Diwakar B Tukaramrao
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Deborpita Sarkar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shailaja Hegde
- Hoxworth Blood Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ujjawal H Gandhi
- Department of Hematology and Oncology, University of North Carolina Health, Cary, NC 27518, USA
| | - Emily R Finch
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Goodfield
- Immunooncology Division, Bicycle Therapeutics, Boston, MA 02140, USA
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Rueankham L, Panyajai P, Saiai A, Rungrojsakul M, Tima S, Chiampanichayakul S, Yeerong K, Somwongin S, Chaiyana W, Dejkriengkraikul P, Okonogi S, Katekunlaphan T, Anuchapreeda S. Biological activities of extracts and compounds from Thai Kae-Lae (Maclura cochinchinensis (Lour.) Corner). BMC Complement Med Ther 2023; 23:191. [PMID: 37296375 DOI: 10.1186/s12906-023-03979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND AIMS The purpose of this study was to investigate the biological properties of Kae-Lae (Maclura cochinchinensis (Lour.) Corner), a traditional medicinal plant used in Ayurvedic recipes in Thailand. To achieve this objective, heartwood samples were collected from 12 sources across Thailand. Fractional extracts (n-hexane, ethyl acetate, and ethanol) and the dominant compounds (morin, resveratrol, and quercetin) were examined for their abilities on cytotoxicity, antioxidant, anti-inflammation, and antileukaemic activity (Wilms' tumour 1 protein was used as a well-known biomarker for leukaemic cell proliferation). METHODS The study used MTT to assess cytotoxicity in leukaemic cells (K562, EoL-1, and KG-1a). Antioxidant activities were evaluated using ABTS, DPPH, and FRAP assays. The anti-inflammatory activity was investigated by detecting IL-2, TNF-α, and NO using appropriate detection kits. Wilms' tumour 1 protein expression was measured by Western blotting to determine the anti-leukaemic activity. The inhibition of cell migration was also analyzed to confirm anticancer progression. RESULTS Among the tested extract fraction, ethyl acetate No. 001 displayed strong cytotoxicity specifically in EoL-1 cells, while n-hexane No. 008 demonstrated this effect in three cell lines. Resveratrol, on the other hand, displayed cytotoxicity in all the tested cells. Additionally, the three major compounds, morin, resveratrol, and quercetin, exhibited significant antioxidant and anti-inflammatory properties. In particular, resveratrol demonstrated a noteworthy decreased Wilms' tumour 1 protein expression and a reduction in cell proliferation across all cells. Moreover, ethyl acetate No. 001, morin, and resveratrol effectively inhibited MCF-7 cell migration. None of these compounds showed any impact on red blood cell haemolysis. CONCLUSION Based on these findings, it can be concluded that Kae-Lae has promising chemotherapeutic potential against leukaemic cells, with fractional extracts (ethyl acetate and n-hexane) and resveratrol exhibiting the most potent cytotoxic, antioxidant, anti-inflammatory, and anti-cell migration activities.
Collapse
Affiliation(s)
- Lapamas Rueankham
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawaret Panyajai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aroonchai Saiai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Methee Rungrojsakul
- Department of Traditional Chinese Medicine, Faculty of Science, Chandrakasem, Rajabhat University, Bangkok, 10900, Thailand
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Siriporn Okonogi
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Trinnakorn Katekunlaphan
- Department of Chemistry, Faculty of Science, Chandrakasem, Rajabhat University, Bangkok, 10900, Thailand.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Arroyo-Berdugo Y, Sendino M, Greaves D, Nojszewska N, Idilli O, So CW, Di Silvio L, Quartey-Papafio R, Farzaneh F, Rodriguez JA, Calle Y. High Throughput Fluorescence-Based In Vitro Experimental Platform for the Identification of Effective Therapies to Overcome Tumour Microenvironment-Mediated Drug Resistance in AML. Cancers (Basel) 2023; 15:1988. [PMID: 37046649 PMCID: PMC10093176 DOI: 10.3390/cancers15071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.
Collapse
Affiliation(s)
- Yoana Arroyo-Berdugo
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - David Greaves
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Natalia Nojszewska
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Orest Idilli
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Chi Wai So
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | | | - Farzin Farzaneh
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Yolanda Calle
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|
7
|
Ciurea SO, Kothari A, Sana S, Al Malki MM. The mythological chimera and new era of relapse prediction post-transplant. Blood Rev 2023; 57:100997. [PMID: 35961800 DOI: 10.1016/j.blre.2022.100997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Allogeneic hemopoietic stem cell transplantation is the treatment of choice for high-risk or relapsed acute leukemia. However, unfortunately, relapse post-transplant continues to be the most common cause of treatment failure with 20-80% of patients relapsing based on disease risk and status at transplant. Advances in molecular profiling of different hematological malignancies have enabled us to monitor low level disease before and after transplant and develop a more personalized approach to the management of these disease including early detection post-transplant. While, in general, detectable disease by morphology remains the gold standard to diagnosing relapse, multiple approaches have allowed detection of cancer cells earlier, using peripheral blood-based methods with sensitivities as high as 1:106, together called minimal/measurable residual disease (MRD) detection. However, a in significant number of patients with acute leukemia where no such molecular markers exist it remains challenging to detect early relapse. In such patients who receive transplantation, chimerism monitoring remains the only option. An increase in mixed chimerism in post allogeneic HCT patients has been correlated with relapse in multiple studies. However, chimerism monitoring, while commonly accepted as a tool for assessing engraftment, has not been routinely used for relapse detection, at least in part because of the lack of standardized, high sensitivity, reliable methods for chimerism detection. In this paper, we review the various methods employed for MRD and chimerism detection post-transplant and discuss future trends in MRD and chimerism monitoring from the viewpoint of the practicing transplant physician.
Collapse
Affiliation(s)
- Stefan O Ciurea
- University of California Irvine, Orange, CA, United States of America.
| | | | - Sean Sana
- CareDx Inc., Brisbane, CA, United States of America
| | - Monzr M Al Malki
- City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
8
|
Short NJ, Fu C, Berry DA, Walter RB, Freeman SD, Hourigan CS, Huang X, Gonzalez GN, Hwang H, Qi X, Kantarjian H, Zhou S, Ravandi F. Association of hematologic response and assay sensitivity on the prognostic impact of measurable residual disease in acute myeloid leukemia: a systematic review and meta-analysis. Leukemia 2022; 36:2817-2826. [PMID: 36261575 PMCID: PMC11852401 DOI: 10.1038/s41375-022-01692-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/25/2022]
Abstract
Measurable residual disease (MRD) is associated with relapse and survival in acute myeloid leukemia (AML). We aimed to quantify the impact of MRD on outcomes across clinical contexts, including its association with hematologic response and MRD assay sensitivity. We performed systematic literature review and meta-analysis of 48 studies that reported the association between MRD and overall survival (OS) or disease-free survival (DFS) in AML and provided information on the MRD threshold used and the hematologic response of the study population. Among studies limited to patients in complete remission (CR), the estimated 5-year OS for the MRD-negative and MRD-positive groups was 67% (95% Bayesian credible interval [CrI], 53-77%) and 31% (95% CrI, 18-44%), respectively. Achievement of an MRD-negative response was associated with superior DFS and OS, regardless of MRD threshold or analytic sensitivity. Among patients in CR, the benefit of MRD negativity was highest in studies using an MRD cutoff less than 0.1%. The beneficial impact of MRD negativity was observed across MRD assays and timing of MRD assessment. In patients with AML in morphological remission, achievement of MRD negativity is associated with superior DFS and OS, irrespective of hematologic response or the MRD threshold used.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenqi Fu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Donald A Berry
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sylvie D Freeman
- Institute of Infection and Immunity, University of Birmingham, Birmingham, UK
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinyue Qi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Tettero JM, Al-Badri WKW, Ngai LL, Bachas C, Breems DA, van Elssen CHMJ, Fischer T, Gjertsen BT, van Gorkom GNY, Gradowska P, Greuter MJE, Griskevicius L, Juliusson G, Maertens J, Manz MG, Pabst T, Passweg J, Porkka K, Löwenberg B, Ossenkoppele GJ, Janssen JJWM, Cloos J. Concordance in measurable residual disease result after first and second induction cycle in acute myeloid leukemia: An outcome- and cost-analysis. Front Oncol 2022; 12:999822. [PMID: 36300090 PMCID: PMC9589259 DOI: 10.3389/fonc.2022.999822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Measurable residual disease (MRD) measured using multiparameter flow-cytometry (MFC) has proven to be an important prognostic biomarker in acute myeloid leukemia (AML). In addition, MRD is increasingly used to guide consolidation treatment towards a non-allogenic stem cell transplantation treatment for MRD-negative patients in the ELN-2017 intermediate risk group. Currently, measurement of MFC-MRD in bone marrow is used for clinical decision making after 2 cycles of induction chemotherapy. However, measurement after 1 cycle has also been shown to have prognostic value, so the optimal time point remains a question of debate. We assessed the independent prognostic value of MRD results at either time point and concordance between these for 273 AML patients treated within and according to the HOVON-SAKK 92, 102, 103 and 132 trials. Cumulative incidence of relapse, event free survival and overall survival were significantly better for MRD-negative (<0.1%) patients compared to MRD-positive patients after cycle 1 and cycle 2 (p ≤ 0.002, for all comparisons). A total of 196 patients (71.8%) were MRD-negative after cycle 1, of which the vast majority remained negative after cycle 2 (180 patients; 91.8%). In contrast, of the 77 MRD-positive patients after cycle 1, only 41 patients (53.2%) remained positive. A cost reduction of –€571,751 per 100 patients could be achieved by initiating the donor search based on the MRD-result after cycle 1. This equals to a 50.7% cost reduction compared to the current care strategy in which the donor search is initiated for all patients. These results show that MRD after cycle 1 has prognostic value and is highly concordant with MRD status after cycle 2. When MRD-MFC is used to guide consolidation treatment (allo vs non-allo) in intermediate risk patients, allogeneic donor search may be postponed or omitted after cycle 1. Since the majority of MRD-negative patients remain negative after cycle 2, this could safely reduce the number of allogeneic donor searches and reduce costs.
Collapse
Affiliation(s)
- Jesse M. Tettero
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- *Correspondence: Jesse M. Tettero,
| | - Waleed K. W. Al-Badri
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Dimitri A. Breems
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Catharina H. M. J. van Elssen
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Thomas Fischer
- Department of Hematology and Oncology, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Bjorn T. Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Gwendolyn N. Y. van Gorkom
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Patrycja Gradowska
- The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) Data Center, Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Marjolein J. E. Greuter
- Department of Epidemiology and Data Science, Amsterdam Univerisity Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laimonas Griskevicius
- Hematology, Oncology, Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Gunnar Juliusson
- Department of Hematology, Skanes University Hospital, Lund, Sweden
| | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Jakob Passweg
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Hematology, University Hospital, Basel, Switzerland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center (MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jeroen J. W. M. Janssen
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
11
|
Röhnert MA, Kramer M, Schadt J, Ensel P, Thiede C, Krause SW, Bücklein V, Hoffmann J, Jaramillo S, Schlenk RF, Röllig C, Bornhäuser M, McCarthy N, Freeman S, Oelschlägel U, von Bonin M. Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia. Leukemia 2022; 36:2208-2217. [PMID: 35851154 PMCID: PMC9417981 DOI: 10.1038/s41375-022-01647-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response by cytomorphology. In responders, the overall survival was shorter for MRDpos patients (HR 3.8, p = 0.006). Overall survival of MRDneg non-responders was comparable to MRDneg responders. The inter-rater-reliability for MRD detection was high with a Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this strategy may provide the base for multicentric immunophenotypic MRD assessment.
Collapse
Affiliation(s)
- Maximilian A Röhnert
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany.
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Jonas Schadt
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Philipp Ensel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- AgenDix GmbH, Dresden, Germany
| | - Stefan W Krause
- Department of Medicine 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Veit Bücklein
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Jörg Hoffmann
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Giessen and Marburg, Marburg, Germany
| | - Sonia Jaramillo
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard F Schlenk
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- National Center of Tumor Diseases, Dresden, Germany
| | - Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Uta Oelschlägel
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
12
|
|
13
|
Vonk CM, Al Hinai ASA, Hanekamp D, Valk PJM. Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:5431. [PMID: 34771594 PMCID: PMC8582498 DOI: 10.3390/cancers13215431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Initial induction chemotherapy to eradicate the bulk of acute myeloid leukemia (AML) cells results in complete remission (CR) in the majority of patients. However, leukemic cells persisting in the bone marrow below the morphologic threshold remain unaffected and have the potential to proliferate and re-emerge as AML relapse. Detection of minimal/measurable residual disease (MRD) is a promising prognostic marker for AML relapse as it can assess an individual patients' risk profile and evaluate their response to treatment. With the emergence of molecular techniques, such as next generation sequencing (NGS), a more sensitive assessment of molecular MRD markers is available. In recent years, the detection of MRD by molecular assays and its association with AML relapse and survival has been explored and verified in multiple studies. Although most studies show that the presence of MRD leads to a worse clinical outcome, molecular-based methods face several challenges including limited sensitivity/specificity, and a difficult distinction between mutations that are representative of AML rather than clonal hematopoiesis. This review describes the studies that have been performed using molecular-based assays for MRD detection in the context of other MRD detection approaches in AML, and discusses limitations, challenges and opportunities.
Collapse
Affiliation(s)
- Christian M Vonk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- National Genetic Center, Ministry of Health, Muscat 111, Oman
| | - Diana Hanekamp
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Hematology, Cancer Center VU University Medical Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
14
|
Single-center experience with venetoclax combinations in patients with newly diagnosed and relapsed AML evolving from MPNs. Blood Adv 2021; 5:2156-2164. [PMID: 33885751 DOI: 10.1182/bloodadvances.2020003934] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
In patients with acute myeloid leukemia evolving from myeloproliferative neoplasms (post-MPN-AML), the clinical activity of the B-cell lymphoma 2 inhibitor venetoclax remains to be determined. We review our experience with venetoclax-based regimens in 14 newly diagnosed (frontline [FL]) and 17 relapsed/refractory (R/R) post-MPN-AML patients. Venetoclax was used in combination with hypomethylating agents in 58% of cases and in 19% with intensive chemotherapy (treatment including cytarabine ≥1 g/m2 or CPX-351); the remaining patients received cladribine and low-dose cytarabine or isocitrate dehydrogenase 1/2 inhibitors. The median dose of venetoclax during the initial cycle was 100 mg in all patients (range, 50-800 mg) and 200 mg (range, 100-800 mg) for FL patients. The venetoclax dose was adjusted when used concomitantly with azole antifungal agents. In FL patients, complete remission with and without count recovery in 6 patients (median duration of 6.4 months) and partial remission in 1 patient was noted, with a median overall survival of 7 months. In R/R patients, no formal responses were seen, with a median overall survival of 3 months. Hematologic toxicities and adverse events were frequent; 83% of patients developed grade 3 or higher infection during the initial cycle. Severe hemorrhagic complications were observed in 14 patients, including 6 cases of intracranial and subdural hemorrhage. Overall 4-week and 8-week mortality were 10% and 32%, respectively. Given the substantial treatment-associated hematologic toxicity and mortality, and modest short-lived responses only in newly diagnosed patients with venetoclax-based regimens, additional treatment options are urgently needed for these patients.
Collapse
|
15
|
Hanekamp D, Tettero JM, Ossenkoppele GJ, Kelder A, Cloos J, Schuurhuis GJ. AML/Normal Progenitor Balance Instead of Total Tumor Load (MRD) Accounts for Prognostic Impact of Flowcytometric Residual Disease in AML. Cancers (Basel) 2021; 13:2597. [PMID: 34073205 PMCID: PMC8198261 DOI: 10.3390/cancers13112597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an important prognostic factor. Progenitors are key populations in defining MRD, and cases of MRD involving these progenitors are calculated as percentage of WBC and referred to as white blood cell MRD (WBC-MRD). Two main compartments of WBC-MRD can be defined: (1) the AML part of the total primitive/progenitor (CD34+, CD117+, CD133+) compartment (referred to as primitive marker MRD; PM-MRD) and (2) the total progenitor compartment (% of WBC, referred to as PM%), which is the main quantitative determinant of WBC-MRD. Both are related as follows: WBC-MRD = PM-MRD × PM%. We explored the relative contribution of each parameter to the prognostic impact. In the HOVON/SAKK study H102 (300 patients), based on two objectively assessed cut-off points (2.34% and 10%), PM-MRD was found to offer an independent prognostic parameter that was able to identify three patient groups with different prognoses with larger discriminative power than WBC-MRD. In line with this, the PM% parameter itself showed no prognostic impact, implying that the prognostic impact of WBC-MRD results from the PM-MRD parameter it contains. Moreover, the presence of the PM% parameter in WBC-MRD may cause WBC-MRD false positivity and WBC-MRD false negativity. For the latter, at present, it is clinically relevant that PM-MRD ≥ 10% identifies a patient sub-group with a poor prognosis that is currently classified as good prognosis MRDnegative using the European LeukemiaNet 0.1% consensus MRD cut-off value. These observations suggest that residual disease analysis using PM-MRD should be conducted.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
- Department of Hematology, Erasmus MC, NL-3000 CA Rotterdam, The Netherlands
| | - Jesse M. Tettero
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Angèle Kelder
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gerrit Jan Schuurhuis
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| |
Collapse
|
16
|
Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Adv 2021; 4:6117-6126. [PMID: 33351107 DOI: 10.1182/bloodadvances.2020002811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
In relapsed/refractory acute myeloid leukemia (AML), the prognostic impact of complete remission (CR) and measurable residual disease (MRD) negativity is not well established. We retrospectively analyzed 141 patients with relapsed/refractory AML who received first salvage therapy and had MRD assessed by multiparameter flow cytometry at the time of response. Patients who achieved CR with full hematologic recovery as best response vs those with incomplete hematology recovery had lower cumulative incidence of relapse (P = .01) and better relapse-free survival (P = .004) but not overall survival (P = .15); a similar trend was observed in patients who achieved MRD negativity vs those who were MRD positive (P = .01, P = .05, and P = .21, respectively). By multivariate analysis, CR and MRD negativity were each independently associated with lower cumulative incidence of relapse (P = .001 and P = .003, respectively) and better relapse-free survival (P < .001 and P = .02) but not overall survival. Patients who achieved CR with MRD negativity had the lowest rates of relapse and best survival (2-year overall survival rate, 37%), which was driven largely by lower rates of early relapse and an increased ability in this group to undergo hematopoietic stem cell transplantation (HSCT); however, post-HSCT outcomes were similar regardless of response to salvage chemotherapy. Overall, in patients with relapsed/refractory AML, CR with MRD negativity was associated with the best outcomes, supporting it as the optimal response in this setting.
Collapse
|
17
|
Measurable residual disease status and outcome of transplant in acute myeloid leukemia in second complete remission: a study by the acute leukemia working party of the EBMT. Blood Cancer J 2021; 11:88. [PMID: 33980810 PMCID: PMC8116335 DOI: 10.1038/s41408-021-00479-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) prior to hematopoietic cell transplant (HCT) for acute myeloid leukemia (AML) in first complete morphological remission (CR1) is an independent predictor of outcome, but few studies address CR2. This analysis by the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation registry assessed HCT outcomes by declared MRD status in a cohort of 1042 adult patients with AML CR2 at HCT. Patients were transplanted 2006–2016 from human leukocyte antigen (HLA) matched siblings (n = 719) or HLA 10/10 matched unrelated donors (n = 293). Conditioning was myeloablative (n = 610) or reduced-intensity (n = 432) and 566 patients (54%) had in-vivo T cell depletion. At HCT, 749 patients (72%) were MRD negative (MRD NEG) and 293 (28%) were MRD positive (MRD POS). Time from diagnosis to HCT was longer in MRD NEG than MRD POS patients (18 vs. 16 months (P < 0.001). Two-year relapse rates were 24% (95% CI, 21–28) and 40% (95% CI, 34–46) in MRD NEG and MRD POS groups (P < 0.001), respectively. Leukemia-free survival (LFS) was 57% (53–61) and 46% (40–52%), respectively (P = 0.001), but there was no difference in terms of overall survival. Prognostic factors for relapse and LFS were MRD NEG status, good risk cytogenetics, and longer time from diagnosis to HCT. In-vivo T cell depletion predicted relapse.
Collapse
|
18
|
Mohamed MMI, Aref S, Agdar MA, Mabed M, El-Sokkary AMA. Leukemic Stem Cell (CD34 +/CD38 -/TIM3 +) Frequency in Patients with Acute Myeloid Leukemia: Clinical Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:508-513. [PMID: 33931379 DOI: 10.1016/j.clml.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/04/2023]
Abstract
This study aimed to address the prognostic relevance of CD34+/CD38-/TIM3+ leukemic stem cell (LSC) frequency in patients with acute myeloid leukemia (AML) and its impact on patient outcome. We analyzed the expression of LSC markers (CD34+/CD38-/TIM3+) using flow cytometry in bone marrow samples of 53 AML cases before and after induction chemotherapy. The LSC frequency at diagnosis was significantly higher compared with that postinduction (P < .001). Patients were categorized into high LSC expressers (≥ median) and low expressers (< median). Patients with AML with high number of LSCs at diagnosis had significantly lower induction of remission response (P = .0104), shorter disease-free survival, and shorter overall survival (P < .001 for both) compared with those with lower LSC count. Cox regression analysis revealed that LSC frequency at diagnosis is an independent prognostic factor in AML. Assessment of LSCs (CD34+/CD38-/TIM3+) at diagnosis is recommended for refining of AML risk stratification.
Collapse
Affiliation(s)
- Mahmoud M I Mohamed
- Biochemistry Section, Oncology Center Laboratories, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Salah Aref
- Hematology Unit, Clinical Pathology Department, Oncology Center, Mansoura University, Mansoura, Egypt.
| | - Mohamed Al Agdar
- Hematology Unit, Clinical Pathology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Mabed
- Hematology Unit, Internal Medicine Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed M A El-Sokkary
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, Hourigan CS, Huang X, Nogueras Gonzalez G, Hwang H, Qi X, Kantarjian H, Ravandi F. Association of Measurable Residual Disease With Survival Outcomes in Patients With Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol 2020; 6:1890-1899. [PMID: 33030517 PMCID: PMC7545346 DOI: 10.1001/jamaoncol.2020.4600] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Measurable residual disease (MRD) refers to neoplastic cells that cannot be detected by standard cytomorphologic analysis. In patients with acute myeloid leukemia (AML), determining the association of MRD with survival may improve prognostication and inform selection of efficient clinical trial end points. OBJECTIVE To examine the association between MRD status and disease-free survival (DFS) and overall survival (OS) in patients with AML using scientific literature. DATA SOURCES Clinical studies on AML published between January 1, 2000, and October 1, 2018, were identified via searches of PubMed, Embase, and MEDLINE. STUDY SELECTION Literature search and study screening were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Studies that assessed DFS or OS by MRD status in patients with AML were included. Reviews, non-English-language articles, and studies reporting only outcomes after hematopoietic cell transplantation or those with insufficient description of MRD information were excluded. DATA EXTRACTION AND SYNTHESIS Study sample size, median patient age, median follow-up time, MRD detection method, MRD assessment time points, AML subtype, specimen source, and survival outcomes were extracted. Meta-analyses were performed separately for DFS and OS using bayesian hierarchical modeling. MAIN OUTCOMES AND MEASURES Meta-analyses of survival probabilities and hazard ratios (HRs) were conducted for OS and DFS according to MRD status. RESULTS Eighty-one publications reporting on 11 151 patients were included. The average HR for achieving MRD negativity was 0.36 (95% bayesian credible interval [CrI], 0.33-0.39) for OS and 0.37 (95% CrI, 0.34-0.40) for DFS. The estimated 5-year DFS was 64% for patients without MRD and 25% for those with MRD, and the estimated OS was 68% for patients without MRD and 34% for those with MRD. The association of MRD negativity with DFS and OS was significant for all subgroups, with the exception of MRD assessed by cytogenetics or fluorescent in situ hybridization. CONCLUSIONS AND RELEVANCE The findings of this meta-analysis suggest that achievement of MRD negativity is associated with superior DFS and OS in patients with AML. The value of MRD negativity appears to be consistent across age groups, AML subtypes, time of MRD assessment, specimen source, and MRD detection methods. These results support MRD status as an end point that may allow for accelerated evaluation of novel therapies in AML.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Chenqi Fu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Donald A. Berry
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sylvie D. Freeman
- Institute of Infection and Immunity, University of Birmingham, Birmingham, United Kingdom
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Xinyue Qi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
20
|
Valkova V, Vydra J, Markova M, Cerovska E, Vrana M, Marinov I, Cechova H, Cetkovsky P, Vitek A, Salek C. WT1 Gene Expression in Peripheral Blood Before and After Allogeneic Stem Cell Transplantation is a Clinically Relevant Prognostic Marker in AML - A Single-center 14-year Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:e145-e151. [PMID: 33160932 DOI: 10.1016/j.clml.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND This work summarizes our experience with WT1 monitoring before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT). PATIENTS AND METHODS The expression of WT1 gene was measured by real-time polymerase chain reaction in peripheral blood according to the European Leukemia Net recommendations. Between May 2005 and August 2019, we analyzed 147 consecutive patients with acute myeloid leukemia with high WT1 expression at diagnosis, transplanted in first (CR1) or second (CR2) complete remission. RESULTS At the time of allo-HSCT, 107 patients had WT1-normal expression (WT1 ≤ 50 copies), and 40 patients had WT1-high expression. The median follow-up was 21 months. The estimated 5-year overall survival and event-free survival was significantly better in the WT1-normal cohort (65% and 57% vs. 37% and 25%; P = .0003 and P < .0001, respectively) and 5-year cumulative incidence of relapse was significantly lower in the WT1-normal group (19% vs. 53%; P < .0001). Five-year non-relapse mortality was not significantly different (20% and 23%). Multivariate analysis revealed WT1-high expression and acute graft-versus-host disease grade 3/4 as significantly negative prognostic factors for OS. Overall, 49 patients developed WT1 molecular relapse in the post-transplant period; in 14 cases, the therapeutic intervention was done. In all but 1 relapsed patient where WT1 minimal residual disease (MRD) was monitored (38 patients), we detected WT1-high levels (sensitivity of 97%). CONCLUSION The results of the analysis confirmed our previous experience that WT1 status before allo-HSCT is a strong prognostic factor for both OS and relapse risk. In addition, we confirmed the usefulness of this marker for MRD monitoring after allo-HSCT. The main advantage is the possibility of frequent MRD monitoring in peripheral blood and early bone marrow examination based on WT1-high expression.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Disease-Free Survival
- Feasibility Studies
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Graft vs Host Disease/diagnosis
- Graft vs Host Disease/epidemiology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Incidence
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual
- Prognosis
- Risk Assessment/methods
- Risk Factors
- Severity of Illness Index
- WT1 Proteins/blood
- WT1 Proteins/metabolism
- Young Adult
Collapse
Affiliation(s)
- Veronika Valkova
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jan Vydra
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Markova
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ela Cerovska
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Milena Vrana
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Iuri Marinov
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Cechova
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Cetkovsky
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Antonin Vitek
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Salek
- Department of Bone Marrow Transplant, Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Czyz A, Nagler A. The Role of Measurable Residual Disease (MRD) in Hematopoietic Stem Cell Transplantation for Hematological Malignancies Focusing on Acute Leukemia. Int J Mol Sci 2019; 20:ijms20215362. [PMID: 31661875 PMCID: PMC6862140 DOI: 10.3390/ijms20215362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023] Open
Abstract
The significance of measurable residual disease (MRD) in hematopoietic stem cell transplantation (HSCT) is well recognized in different hematological malignancies, but the evidence indicate that pre-transplant MRD status is of particular importance in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In ALL, inadequate response at the level of MRD is a commonly accepted risk factor for relapse and thus an indication for allogeneic HSCT. Similarly, growing evidence from the literature strongly suggest that MRD detected by multiparameter flow cytometry or molecular techniques should be also used for risk stratification in AML at the time of HSCT. Despite the well-defined association of MRD and outcomes of HSCT in acute leukemias, there are still many open issues such as the role of additional pre-transplant consolidation for MRD eradication, the ability of HSCT to overcome negative influence of MRD positivity on survival, the impact of conditioning regimen intensity on MRD clearance post HSCT, and transplantation outcomes or the selection of optimal donor with regards to MRD status. In addition, the role of MRD assessment in guiding post-transplant maintenance treatment should also be addressed in prospective trials. These open issues mostly awaiting further clinical studies will be discussed in our current review.
Collapse
Affiliation(s)
- Anna Czyz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Ludwik Pasteur 4, 50-367 Wroclaw, Poland.
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Derech Sheba 2, 52-621 Ramat Gan, Israel.
| |
Collapse
|
22
|
Schuurhuis GJ, Ossenkoppele GJ, Kelder A, Cloos J. Measurable residual disease in acute myeloid leukemia using flow cytometry: approaches for harmonization/standardization. Expert Rev Hematol 2019; 11:921-935. [PMID: 30466339 DOI: 10.1080/17474086.2018.1549479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Measurable residual disease (MRD) in acute myeloid leukemia (AML) is a rapidly evolving area with many institutes embarking on it, both in academic and pharmaceutical settings. However, there is a multitude of approaches to design, perform, and report flow cytometric MRD. Together with the long-term experience needed, this makes flow cytometric MRD in AML nonstandardized and time-consuming. Areas covered: This paper briefly summarizes critical issues, like sample preparation and transport, markers and fluorochromes of choice, but in particular focuses on the main issues, which includes specificity and sensitivity, hereby providing a new model that may circumvent the main disadvantages of the present approaches. New approaches that may add to the value of flow cytometric MRD includes assessment of leukemia stem cells, MRD in peripheral blood, and approaches to use multidimensional image analysis. Expert commentary: MRD in AML requires standardization/harmonization on many aspects, for which the present paper offers possible guidelines.
Collapse
Affiliation(s)
- Gerrit J Schuurhuis
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Gert J Ossenkoppele
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Angèle Kelder
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Jacqueline Cloos
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
23
|
Short NJ, Ravandi F. How close are we to incorporating measurable residual disease into clinical practice for acute myeloid leukemia? Haematologica 2019; 104:1532-1541. [PMID: 31273094 PMCID: PMC6669140 DOI: 10.3324/haematol.2018.208454] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Assessment of measurable residual disease, also called "minimal residual disease," in patients with acute myeloid leukemia in morphological remission provides powerful prognostic information and complements pretreatment factors such as cytogenetics and genomic alterations. Based on data that low levels of persistent or recurrent residual leukemia are consistently associated with an increased risk of relapse and worse long-term outcomes, its routine assessment has been recommended by some experts and consensus guidelines. In addition to providing important prognostic information, the detection of measurable residual disease may also theoretically help to determine the optimal post-remission strategy for an individual patient. However, the full therapeutic implications of measurable residual disease are uncertain and thus controversy exists as to whether it should be routinely incorporated into clinical practice. While some evidence supports the use of allogeneic stem cell transplantation or hypomethylating agents for some subgroups of patients in morphological remission but with detectable residual leukemia, the appropriate use of this information in making clinical decisions remains largely speculative at present. To resolve this pressing clinical issue, several ongoing studies are evaluating measurable residual disease-directed treatments in acute myeloid leukemia and may lead to new, effective strategies for patients in these circumstances. This review examines the common technologies used in clinical practice and in the research setting to detect residual leukemia, the major clinical studies establishing the prognostic impact of measurable residual disease in acute myeloid leukemia, and the potential ways, both now and in the future, that such testing may rationally guide therapeutic decision-making.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Camburn AE, Petrasich M, Ruskova A, Chan G. Myeloblasts in normal bone marrows expressing leukaemia-associated immunophenotypes. Pathology 2019; 51:502-506. [PMID: 31262563 DOI: 10.1016/j.pathol.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 01/07/2023]
Abstract
Measurable residual disease (MRD) status of patients undergoing treatment for acute myeloid leukaemia (AML) is important for prognosis and guides treatment. Multicolour flow cytometry (MCF) is a sensitive MRD method. The current approach relies on identification of blasts expressing leukaemia-associated immunophenotypes (LAIP) or by blasts expressing aberrant differentiation/maturation profiles compared to that seen in normal haematopoietic precursor cells at follow-up, i.e., different from normal (DFN). However, expression of LAIP on normal myeloblasts affects the specificity of the result, and the understanding of what is normal is important. Limited published data are currently available. We report findings from 14 normal adult bone marrows. MCF was performed on the residual normal marrow specimens from 14 adults. Expression of CD15, CD11b, CD7, CD4, and CD56 on CD34+ myeloblasts was assessed. Analysis of samples was performed using 4-colour flow cytometry which was the methodology used when this work was done, and is still being used in many clinical flow laboratories worldwide. LAIP is defined by lineage infidelity or asynchronous expression of differentiation markers. The cases of normal myeloblasts with LAIP involving the markers used and above the cut-off levels for MRD detection (0.01%) varies between 43% and 100%, limiting the specificity of the results for MRD. Even if the threshold is raised to 0.1%, there will still be false positive cases using aberrant CD15 or CD7. Our work provided useful information for AML MRD determination in our laboratory. A collaborative database of LAIP on normal myeloblasts using standardised analysis should be useful to determine the optimal diagnostic cut-off for AML MRD using LAIP.
Collapse
Affiliation(s)
| | | | - Anna Ruskova
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - George Chan
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
25
|
Moshaver B, Wouters RF, Kelder A, Ossenkoppele GJ, Westra GAH, Kwidama Z, Rutten AR, Kaspers GJL, Zweegman S, Cloos J, Schuurhuis GJ. Relationship between CD34/CD38 and side population (SP) defined leukemia stem cell compartments in acute myeloid leukemia. Leuk Res 2019; 81:27-34. [PMID: 31002948 DOI: 10.1016/j.leukres.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Leukemic stem cells (LSCs), defined by CD34/CD38 expression, are believed to be essential for leukemia initiation and therapy resistance in acute myeloid leukemia. In addition, the side population (SP), characterized by high Hoechst 33342 efflux, reflecting therapy resistance, has leukemia initiating ability. The purpose of this study is, in both CD34-positive and CD34-negative AML, to integrate both types of LSC compartment into a new more restricted definition. Different CD34/CD38/SP defined putative LSC and normal hematopoietic compartments, with neoplastic or normal nature, respectively, were thus identified after cell sorting, and confirmed by FISH/PCR. Stem cell activity was assessed in the long-term liquid culture stem cell assay. SP fractions harbored the strongest functional stem cell activity in both normal and neoplastic cells in both CD34-positive and CD34-negative AML. Overall, inclusion of SP fraction decreased the size of the putative CD34/CD38 defined LSC compartment by a factor >500. For example, for the important CD34+CD38- LSC compartment, the median SP/CD34+CD38- frequency was 5.1 per million WBC (CD34-positive AML), and median SP/CD34-CD38+ frequency (CD34-negative AML) was 1796 per million WBC. Improved detection of LSC may enable identification of therapy resistant clones, and thereby identification of novel LSC specific, HSC sparing, therapies.
Collapse
Affiliation(s)
- Bijan Moshaver
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Rolf F Wouters
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Angèle Kelder
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Guus A H Westra
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Zinia Kwidama
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Arjo R Rutten
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gert J L Kaspers
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands; Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands
| | - Gerrit J Schuurhuis
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Panyajai P, Tima S, Chiampanichayakul S, Anuchapreeda S. Dietary Turmeric Bisdemethoxycurcumin Suppresses Wilms’ Tumor 1 and CD34 Protein Expressions in KG-1a Leukemic Stem Cells. Nutr Cancer 2019; 71:1189-1200. [DOI: 10.1080/01635581.2019.1598565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pawaret Panyajai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat-Ham JC, Oussoren-Brockhoff YJM, Snel AN, Veldhuizen D, Scholten WJ, Maertens J, Breems DA, Pabst T, Manz MG, van der Velden VHJ, Slomp J, Preijers F, Cloos J, van de Loosdrecht AA, Löwenberg B, Valk PJM, Jongen-Lavrencic M, Ossenkoppele GJ, Schuurhuis GJ. CD34 +CD38 - leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2018; 33:1102-1112. [PMID: 30542144 DOI: 10.1038/s41375-018-0326-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
Current risk algorithms are primarily based on pre-treatment factors and imperfectly predict outcome in acute myeloid leukemia (AML). We introduce and validate a post-treatment approach of leukemic stem cell (LSC) assessment for prediction of outcome. LSC containing CD34+CD38- fractions were measured using flow cytometry in an add-on study of the HOVON102/SAKK trial. Predefined cut-off levels were prospectively evaluated to assess CD34+CD38-LSC levels at diagnosis (n = 594), and, to identify LSClow/LSChigh (n = 302) and MRDlow/MRDhigh patients (n = 305) in bone marrow in morphological complete remission (CR). In 242 CR patients combined MRD and LSC results were available. At diagnosis the CD34+CD38- LSC frequency independently predicts overall survival (OS). After achieving CR, combining LSC and MRD showed reduced survival in MRDhigh/LSChigh patients (hazard ratio [HR] 3.62 for OS and 5.89 for cumulative incidence of relapse [CIR]) compared to MRDlow/LSChigh, MRDhigh/LSClow, and especially MRDlow/LSClow patients. Moreover, in the NPM1mutant positive sub-group, prognostic value of golden standard NPM1-MRD by qPCR can be improved by addition of flow cytometric approaches. This is the first prospective study demonstrating that LSC strongly improves prognostic impact of MRD detection, identifying a patient subgroup with an almost 100% treatment failure probability, warranting consideration of LSC measurement incorporation in future AML risk schemes.
Collapse
Affiliation(s)
- Wendelien Zeijlemaker
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tim Grob
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosa Meijer
- Clinical trial Center- HOVON data center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Angèle Kelder
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jannemieke C Carbaat-Ham
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Alexander N Snel
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Dennis Veldhuizen
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Dimitri A Breems
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Thomas Pabst
- Department of Hematology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Markus G Manz
- Department of Hematology, University and University Hospital Zürich, Zürich, Switzerland
| | | | - Jennichjen Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory for Hematology, Radboud University Nijmegen Medical Center, RUNMC, Nijmegen, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gerrit J Schuurhuis
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Brooimans RA, van der Velden VHJ, Boeckx N, Slomp J, Preijers F, Te Marvelde JG, Van NM, Heijs A, Huys E, van der Holt B, de Greef GE, Kelder A, Schuurhuis GJ. Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: Is multicentric MRD assessment feasible? Leuk Res 2018; 76:39-47. [PMID: 30553189 DOI: 10.1016/j.leukres.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Flow-cytometric detection of now termed measurable residual disease (MRD) in acute myeloid leukemia (AML) has proven to have an independent prognostic impact. In a previous multicenter study we developed protocols to accurately define leukemia-associated immunophenotypes (LAIPs) at diagnosis. It has, however, not been demonstrated whether the use of the defined LAIPs in the same multicenter setting results in a high concordance between centers in MRD assessment. In the present paper we evaluated whether interpretation of list-mode data (LMD) files, obtained from MRD assessment of previously determined LAIPs during and after treatment, could reliably be performed in a multicenter setting. The percentage of MRD positive cells was simultaneously determined in totally 173 LMD files from 77 AML patients by six participating centers. The quantitative concordance between the six participating centers was meanly 84%, with slight variation of 75%-89%. In addition our data showed that the type and number of LAIPs were of influence on the performance outcome. The highest concordance was observed for LAIPs with cross-lineage expression, followed by LAIPs with an asynchronous antigen expression. Our results imply that immunophenotypic MRD assessment in AML will only be feasible when fully standardized methods are used for reliable multicenter assessment.
Collapse
Affiliation(s)
- Rik A Brooimans
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Clinical and Tumor Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Vincent H J van der Velden
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nancy Boeckx
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium
| | - Jennita Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine-Laboratory for Hematology, Radboud UMC, Nijmegen, The Netherlands
| | - Jeroen G Te Marvelde
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ngoc M Van
- Laboratory of Clinical and Tumor Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antoinette Heijs
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Erik Huys
- Department of Laboratory Medicine-Laboratory for Hematology, Radboud UMC, Nijmegen, The Netherlands
| | - Bronno van der Holt
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Georgine E de Greef
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Angele Kelder
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Patkar N, Kodgule R, Kakirde C, Raval G, Bhanshe P, Joshi S, Chaudhary S, Badrinath Y, Ghoghale S, Kadechkar S, Khizer SH, Kannan S, Shetty D, Gokarn A, Punatkar S, Jain H, Bagal B, Menon H, Sengar M, Khattry N, Tembhare P, Subramanian P, Gujral S. Clinical impact of measurable residual disease monitoring by ultradeep next generation sequencing in NPM1 mutated acute myeloid leukemia. Oncotarget 2018; 9:36613-36624. [PMID: 30564301 PMCID: PMC6290958 DOI: 10.18632/oncotarget.26400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Detection of measurable residual disease (MRD) by mutation specific techniques has prognostic relevance in NPM1 mutated AML (NPM1mut AML). However, the clinical utility of next generation sequencing (NGS) to detect MRD in AML remains unproven. We analysed the clinical significance of monitoring MRD using ultradeep NGS (NGS-MRD) and flow cytometry (FCM-MRD) in 137 samples obtained from 83 patients of NPM1mut AML at the end of induction (PI) and consolidation (PC). We could monitor 12 different types of NPM1 mutations at a sensitivity of 0.001% using NGS-MRD. We demonstrated a significant correlation between NGS-MRD and real time quantitative PCR (RQ-PCR). Based upon a one log reduction between PI and PC time points we could classify patients as NGS-MRD positive (<1log reduction) or negative (>1log reduction). NGS-MRD, FCM-MRD as well as DNMT3A mutations were predictive of inferior overall survival (OS) and relapse free survival (RFS). On a multivariate analysis NGS-MRD emerged as an independent, most important prognostic factor predictive of inferior OS (hazard ratio, 3.64; 95% confidence interval [CI] 1.58 to 8.37) and RFS (hazard ratio, 4.8; 95% CI:2.24 to 10.28). We establish that DNA based NPM1 NGS MRD is a highly useful test for prediction of relapse and survival in NPM1mut AML.
Collapse
Affiliation(s)
- Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Rohan Kodgule
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Goutham Raval
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Y Badrinath
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Sitaram Ghoghale
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Shraddha Kadechkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Syed Hasan Khizer
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sadhana Kannan
- Biostatistics, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Dhanalaxmi Shetty
- Dept of Cytogenetics, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Anant Gokarn
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sachin Punatkar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hasmukh Jain
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Bhausaheb Bagal
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hari Menon
- Haemato-Oncology, CyteCare Cancer Hospital, Bangalore, India
| | - Manju Sengar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Navin Khattry
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | | | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
31
|
Shapira S, Raanani P, Samara A, Nagler A, Lubin I, Arber N, Granot G. Deferasirox selectively induces cell death in the clinically relevant population of leukemic CD34 +CD38 - cells through iron chelation, induction of ROS, and inhibition of HIF1α expression. Exp Hematol 2018; 70:55-69.e4. [PMID: 30414989 DOI: 10.1016/j.exphem.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/21/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
Despite a high remission rate after therapy, only 40-50% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. The main cause of treatment failure is thought to be insufficient eradication of CD34+CD38- AML cells. In order to induce preferential cell death in CD34+CD38- AML cells, two separate events may be necessary: (1) inhibition of survival signals such as nuclear factor kappa-beta (NF-κB) and (2) induction of stress responses such as the oxidative stress response. Therefore, regimens that mediate both effects may be favorable. Deferasirox is a rationally designed oral iron chelator mainly used to reduce chronic iron overload in patients who receive long-term blood transfusions. Our study revealed that clinically relevant concentrations of deferasirox are cytotoxic in vitro to AML progenitor cells, but even more potent against the more primitive CD34+CD38- cell population. In addition, we found that deferasirox exerts its effect, at least in part, by inhibiting the NF-κB/hypoxia-induced factor 1-alpha (HIF1α) pathway and by elevating reactive oxygen species levels. We believe that, pending further characterization, deferasirox can be considered as a potential therapeutic agent for eradicating CD34+CD38- AML cells.
Collapse
Affiliation(s)
- Saar Shapira
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - Aladin Samara
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Nagler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Arber
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Integrated Cancer Prevention Center and Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel.
| |
Collapse
|
32
|
Morsink LM, Walter RB, Ossenkoppele GJ. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev 2018; 34:26-33. [PMID: 30401586 DOI: 10.1016/j.blre.2018.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/17/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
CLEC12A has recently been identified as an antigen, expressed on leukemic stem cells and leukemic blasts. Given the fact that this expression profile seems stable throughout diagnosis, treatment and relapse on leukemic blasts and leukemic stem cells, CLEC12A can be considered a highly potent and reliable marker for the detection of measurable residual disease and therefore applicable for risk stratification and prognostication in AML. Low CLEC12A expression on leukemic blasts seems to be independently associated with lower likelihood of achieving complete remission after 1 cycle of induction chemotherapy, shorter event free survival, as well as overall survival, indicating potential prognostic properties of CLEC12A expression itself. Lack of expression on the normal hematopoietic stem and progenitor cells, in contrast to CD123 and CD33, might result in less toxicity regarding cytopenias, making CLEC12A an interesting target for innovating immunotherapies, including monoclonal and bispecific antibodies, antibody-drug conjugates and CAR-T cells therapy.
Collapse
Affiliation(s)
- Linde M Morsink
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2018; 133:7-17. [PMID: 30361262 DOI: 10.1182/blood-2018-08-868752] [Citation(s) in RCA: 1261] [Impact Index Per Article: 180.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Older patients with acute myeloid leukemia (AML) respond poorly to standard induction therapy. B-cell lymphoma 2 (BCL-2) overexpression is implicated in survival of AML cells and treatment resistance. We report safety and efficacy of venetoclax with decitabine or azacitidine from a large, multicenter, phase 1b dose-escalation and expansion study. Patients (N = 145) were at least 65 years old with treatment-naive AML and were ineligible for intensive chemotherapy. During dose escalation, oral venetoclax was administered at 400, 800, or 1200 mg daily in combination with either decitabine (20 mg/m2, days 1-5, intravenously [IV]) or azacitidine (75 mg/m2, days 1-7, IV or subcutaneously). In the expansion, 400 or 800 mg venetoclax with either hypomethylating agent (HMA) was given. Median age was 74 years, with poor-risk cytogenetics in 49% of patients. Common adverse events (>30%) included nausea, diarrhea, constipation, febrile neutropenia, fatigue, hypokalemia, decreased appetite, and decreased white blood cell count. No tumor lysis syndrome was observed. With a median time on study of 8.9 months, 67% of patients (all doses) achieved complete remission (CR) + CR with incomplete count recovery (CRi), with a CR + CRi rate of 73% in the venetoclax 400 mg + HMA cohort. Patients with poor-risk cytogenetics and those at least 75 years old had CR + CRi rates of 60% and 65%, respectively. The median duration of CR + CRi (all patients) was 11.3 months, and median overall survival (mOS) was 17.5 months; mOS has not been reached for the 400-mg venetoclax cohort. The novel combination of venetoclax with decitabine or azacitidine was effective and well tolerated in elderly patients with AML (This trial was registered at www.clinicaltrials.gov as #NCT02203773).
Collapse
|
34
|
Buccisano F, Maurillo L, Schuurhuis GJ, Del Principe MI, Di Veroli A, Gurnari C, Venditti A. The emerging role of measurable residual disease detection in AML in morphologic remission. Semin Hematol 2018; 56:125-130. [PMID: 30926088 DOI: 10.1053/j.seminhematol.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Despite the increasing knowledge of the genomic landscape of acute myeloid leukemia (AML), prediction merely based on genetics fails to anticipate outcome, presumably due to the heterogeneous composition of the leukemic clone determining complex interactions between different genetic abnormalities. Therefore, the introduction of a post-treatment biomarker exploring the quality of response to therapy such as assessment of measurable (previously minimal) residual disease (MRD) may lead to refinements of the prognostic assessment in AML. In this view, the European LeukemiaNet has recently endorsed the achievement of a MRD negative morphologic complete remission as a purpose the treatment. Techniques like multiparametric flow cytometry and reverse transcriptase-quantitative polymerase chain reaction have reached a level of sensitivity and specificity that make them ready for introduction in clinical practice. In the present review, we will give an update on the efforts in harmonization and/or standardization of MRD assessment in AML, focusing on the newest acquisitions in the clinical applications of MRD, and considering issues like relationship of MRD with leukemic stem cells or MRD assessment in peripheral blood.
Collapse
Affiliation(s)
- F Buccisano
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy.
| | - L Maurillo
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy
| | - G J Schuurhuis
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - M I Del Principe
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy
| | - A Di Veroli
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy
| | - C Gurnari
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy
| | - A Venditti
- Hematology Unit, Department of Biomedicine and Prevention, University tor Vergata of Rome, Rome, Italy
| |
Collapse
|
35
|
Gilleece MH, Labopin M, Yakoub-Agha I, Volin L, Socié G, Ljungman P, Huynh A, Deconinck E, Wu D, Bourhis JH, Cahn JY, Polge E, Mohty M, Savani BN, Nagler A. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol 2018; 93:1142-1152. [PMID: 29981272 DOI: 10.1002/ajh.25211] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukemia (AML) in morphological first complete remission (CR1) pre-allogeneic hematopoietic cell transplantation (HCT) may have measurable residual disease (MRD) by molecular and immunophenotyping criteria. We assessed interactions of MRD status with HCT conditioning regimen intensity in patients aged <50 years (y) or ≥50y. This was a retrospective study by the European Society for Blood and Marrow Transplantation registry. Patients were >18y with AML CR1 MRD NEG/POS and recipients of HCT in 2000-2015. Conditioning regimens were myeloablative (MAC), reduced intensity (RIC) or non-myeloablative (NMA). Outcomes included leukemia free survival (LFS), overall survival (OS), relapse incidence (RI), non-relapse mortality (NRM), chronic graft-vs-host (cGVHD), and GVHD-free and relapse-free survival (GRFS). The 2292 eligible patients were categorized into four paired groups: <50y MRD POS MAC (N = 240) vs RIC/NMA (N = 58); <50y MRD NEG MAC (N = 665) vs RIC/NMA (N = 195); ≥50y MRD POS MAC (N = 126) vs RIC/NMA (N = 230), and ≥50y MRD NEG MAC (N = 223) vs RIC/NMA (N = 555). In multivariate analysis RIC/NMA was only inferior to MAC for patients in the <50y MRD POS group, with worse RI (HR 1.71) and LFS (HR 1.554). Patients <50Y MRD NEG had less cGVHD after RIC/NMA HCT (HR 0.714). GRFS was not significantly affected by conditioning intensity in any group. Patients aged <50y with AML CR1 MRD POS status should preferentially be offered MAC allo-HCT. Prospective studies are needed to address whether patients with AML CR1 MRD NEG may be spared the toxicity of MAC regimens. New approaches are needed for ≥50y AML CR1 MRD POS.
Collapse
Affiliation(s)
- Maria H. Gilleece
- Department of Haematology; Leeds Teaching Hospitals Trust, University of Leeds; Leeds United Kingdom
| | | | | | - Liisa Volin
- Comprehensive Cancer Center, Stem Cell Transplantation Unit; Helsinki University Hospital; Helsinki Finland
| | - Gerard Socié
- Service d'Hématologie Greffe; Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris; Paris France
| | - Per Ljungman
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital; Stockholm Sweden
| | - Anne Huynh
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole; Toulouse France
| | - Eric Deconinck
- Hematology Department; CHRU Besancon, INSERM UMR1098, Universite de Franche-Comte; Besancon France
| | - Depei Wu
- Department of Hematology; First Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| | | | - Jean Yves Cahn
- Department of Haematology, Centre Hospital; Universitaire Grenoble Alpes; Grenoble France
| | - Emmanuelle Polge
- Acute Leukemia Working Party; European Society for Blood and Marrow Transplantation Paris Study Office/European Center for Biostatistical and Epidemiological Evaluation in Hematopoietic Cell Therapy (CEREST-TC); Paris France
| | - Mohamad Mohty
- Hopital Saint-Antoine, Université Pierre and Marie Curie, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche U938; Paris France
| | - Bipin N. Savani
- Division of Hematology/Oncology, Department of Internal Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Arnon Nagler
- Chaim Sheba Medical Center; Tel Aviv University; Tel-Hashomer Israel
| |
Collapse
|
36
|
Abstract
The presence of measurable ("minimal") residual disease (MRD) after induction and/or consolidation chemotherapy is a significant risk factor for relapse in patients with acute myeloid leukemia (AML). In recognition of the clinical significance of AML MRD, the European LeukemiaNet (ELN) recently recommended the establishment of CR-MRDNegative as a separate category of treatment response. This recommendation represents a major milestone in the integration of AML MRD testing in standard clinical practice. This review article summarizes the methodologies employed in AML MRD detection and their application in clinical studies that provide evidence supporting the clinical utility of AML MRD testing. Future MRD evaluations in AML likely will require an integrated approach combining multi-parameter flow cytometry and high-sensitivity molecular techniques applied to time points during and after completion of therapy in order to provide the most accurate and comprehensive assessment of treatment response.
Collapse
|
37
|
Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, Grimwade D, Haferlach T, Hills RK, Hourigan CS, Jorgensen JL, Kern W, Lacombe F, Maurillo L, Preudhomme C, van der Reijden BA, Thiede C, Venditti A, Vyas P, Wood BL, Walter RB, Döhner K, Roboz GJ, Ossenkoppele GJ. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 2018; 131:1275-1291. [PMID: 29330221 PMCID: PMC5865231 DOI: 10.1182/blood-2017-09-801498] [Citation(s) in RCA: 788] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Measurable residual disease (MRD; previously termed minimal residual disease) is an independent, postdiagnosis, prognostic indicator in acute myeloid leukemia (AML) that is important for risk stratification and treatment planning, in conjunction with other well-established clinical, cytogenetic, and molecular data assessed at diagnosis. MRD can be evaluated using a variety of multiparameter flow cytometry and molecular protocols, but, to date, these approaches have not been qualitatively or quantitatively standardized, making their use in clinical practice challenging. The objective of this work was to identify key clinical and scientific issues in the measurement and application of MRD in AML, to achieve consensus on these issues, and to provide guidelines for the current and future use of MRD in clinical practice. The work was accomplished over 2 years, during 4 meetings by a specially designated MRD Working Party of the European LeukemiaNet. The group included 24 faculty with expertise in AML hematopathology, molecular diagnostics, clinical trials, and clinical medicine, from 19 institutions in Europe and the United States.
Collapse
Affiliation(s)
- Gerrit J Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sylvie Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - David Grimwade
- Division of Genetics & Molecular Medicine, King's College, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | | | - Jeffrey L Jorgensen
- Division of Pathology/Laboratory Medicine, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | | | - Francis Lacombe
- Flow Cytometry Platform, University Hospital, Bordeaux, France
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claude Preudhomme
- Center of Pathology, Laboratory of Hematology, University Hospital of Lille, Lille, France
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiede
- Universitätsklinikum Carl Gustav Garus an der Technischen Universität Dresden, Dresden, Germany
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, Oxford Centre for Haematology, University of Oxford and Oxford University Hospitals National Health Service Trust, Oxford, United Kingdom
| | - Brent L Wood
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany; and
| | - Gail J Roboz
- Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Cloos J, Harris JR, Janssen JJWM, Kelder A, Huang F, Sijm G, Vonk M, Snel AN, Scheick JR, Scholten WJ, Carbaat-Ham J, Veldhuizen D, Hanekamp D, Oussoren-Brockhoff YJM, Kaspers GJL, Schuurhuis GJ, Sasser AK, Ossenkoppele G. Comprehensive Protocol to Sample and Process Bone Marrow for Measuring Measurable Residual Disease and Leukemic Stem Cells in Acute Myeloid Leukemia. J Vis Exp 2018. [PMID: 29553571 PMCID: PMC5931431 DOI: 10.3791/56386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Response criteria in acute myeloid leukemia (AML) has recently been re-established, with morphologic examination utilized to determine whether patients have achieved complete remission (CR). Approximately half of the adult patients who entered CR will relapse within 12 months due to the outgrowth of residual AML cells in the bone marrow. The quantitation of these remaining leukemia cells, known as minimal or measurable residual disease (MRD), can be a robust biomarker for the prediction of these relapses. Moreover, retrospective analysis of several studies has shown that the presence of MRD in the bone marrow of AML patients correlates with poor survival. Not only is the total leukemic population, reflected by cells harboring a leukemia associated immune-phenotype (LAIP), associated with clinical outcome, but so is the immature low frequency subpopulation of leukemia stem cells (LSC), both of which can be monitored through flow cytometry MRD or MRD-like approaches. The availability of sensitive assays that enable detection of residual leukemia (stem) cells on the basis of disease-specific or disease-associated features (abnormal molecular markers or aberrant immunophenotypes) have drastically improved MRD assessment in AML. However, given the inherent heterogeneity and complexity of AML as a disease, methods for sampling bone marrow and performing MRD and LSC analysis should be harmonized when possible. In this manuscript we describe a detailed methodology for adequate bone marrow aspirate sampling, transport, sample processing for optimal multi-color flow cytometry assessment, and gating strategies to assess MRD and LSC to aid in therapeutic decision making for AML patients.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Department of Hematology, VU University Medical Center; Pediatric Oncology/Hematology, VU University Medical Center;
| | | | | | - Angele Kelder
- Department of Hematology, VU University Medical Center
| | - F Huang
- Janssen Research & Development, LLC
| | - Gerrit Sijm
- Department of Hematology, VU University Medical Center
| | - Maike Vonk
- Department of Hematology, VU University Medical Center
| | | | | | | | | | | | | | | | - Gertjan J L Kaspers
- Pediatric Oncology/Hematology, VU University Medical Center; Princess Máxima Center for Pediatric Oncology
| | | | | | | |
Collapse
|
39
|
Xu J, Jorgensen JL, Wang SA. How Do We Use Multicolor Flow Cytometry to Detect Minimal Residual Disease in Acute Myeloid Leukemia? Clin Lab Med 2017; 37:787-802. [DOI: 10.1016/j.cll.2017.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
van Solinge TS, Zeijlemaker W, Ossenkoppele GJ, Cloos J, Schuurhuis GJ. The interference of genetic associations in establishing the prognostic value of the immunophenotype in acute myeloid leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017. [DOI: 10.1002/cyto.b.21539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thomas S. van Solinge
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Wendelien Zeijlemaker
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Jacqueline Cloos
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
- Department of Pediatric Oncology/Hematology; VU University Medical Center; Amsterdam The Netherlands
| | - Gerrit J. Schuurhuis
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
41
|
Mosna F, Capelli D, Gottardi M. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress? J Clin Med 2017; 6:jcm6060057. [PMID: 28587190 PMCID: PMC5483867 DOI: 10.3390/jcm6060057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
Minimal residual disease evaluation refers to a series of molecular and immunophenotypical techniques aimed at detecting submicroscopic disease after therapy. As such, its application in acute myeloid leukemia has greatly increased our ability to quantify treatment response, and to determine the chemosensitivity of the disease, as the final product of the drug schedule, dose intensity, biodistribution, and the pharmakogenetic profile of the patient. There is now consistent evidence for the prognostic power of minimal residual disease evaluation in acute myeloid leukemia, which is complementary to the baseline prognostic assessment of the disease. The focus for its use is therefore shifting to individualize treatment based on a deeper evaluation of chemosensitivity and residual tumor burden. In this review, we will summarize the results of the major clinical studies evaluating minimal residual disease in acute myeloid leukemia in adults in recent years and address the technical and practical issues still hampering the spread of these techniques outside controlled clinical trials. We will also briefly speculate on future developments and offer our point of view, and a word of caution, on the present use of minimal residual disease measurements in “real-life” practice. Still, as final standardization and diffusion of the methods are sorted out, we believe that minimal residual disease will soon become the new standard for evaluating response in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit, Ospedale Centrale "San Maurizio", Azienda Sanitaria dell'Alto Adige, via L. Bohler 5, 39100 Bolzano, Italy.
| | - Debora Capelli
- Hematology, Ospedali Riuniti di Ancona, 60121 Ancona, Italy.
| | - Michele Gottardi
- Hematology, Ospedale "Ca' Foncello", AULSS 2, 31100 Treviso, Italy.
| |
Collapse
|
42
|
Jentzsch M, Bill M, Nicolet D, Leiblein S, Schubert K, Pless M, Bergmann U, Wildenberger K, Schuhmann L, Cross M, Pönisch W, Franke GN, Vucinic V, Lange T, Behre G, Mrózek K, Bloomfield CD, Niederwieser D, Schwind S. Prognostic impact of the CD34+/CD38- cell burden in patients with acute myeloid leukemia receiving allogeneic stem cell transplantation. Am J Hematol 2017; 92:388-396. [PMID: 28133783 DOI: 10.1002/ajh.24663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023]
Abstract
In acute myeloid leukemia (AML), leukemia-initiating cells exist within the CD34+/CD38- cell compartment. They are assumed to be more resistant to chemotherapy, enriched in minimal residual disease cell populations, and responsible for relapse. Here we evaluated clinical and biological associations and the prognostic impact of a high diagnostic CD34+/CD38- cell burden in 169 AML patients receiving an allogeneic stem cell transplantation in complete remission. Here, the therapeutic approach is mainly based on immunological graft-versus-leukemia effects. Percentage of bone marrow CD34+/CD38- cell burden at diagnosis was measured using flow cytometry and was highly variable (median 0.5%, range 0%-89% of all mononuclear cells). A high CD34+/CD38- cell burden at diagnosis associated with worse genetic risk and secondary AML. Patients with a high CD34+/CD38- cell burden had shorter relapse-free and overall survival which may be mediated by residual leukemia-initiating cells in the CD34+/CD38- cell population, escaping the graft-versus-leukemia effect after allogeneic transplantation. Evaluating the CD34+/CD38- cell burden at diagnosis may help to identify patients at high risk of relapse after allogeneic transplantation. Further studies to understand leukemia-initiating cell biology and develop targeting therapies to improve outcomes of AML patients are needed.
Collapse
Affiliation(s)
- Madlen Jentzsch
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Marius Bill
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center; Columbus Ohio USA
| | - Sabine Leiblein
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Karoline Schubert
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Martina Pless
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Ulrike Bergmann
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Kathrin Wildenberger
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Luba Schuhmann
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Michael Cross
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Wolfram Pönisch
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Georg-Nikolaus Franke
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Vladan Vucinic
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Thoralf Lange
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Gerhard Behre
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center; Columbus Ohio USA
| | | | - Dietger Niederwieser
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| | - Sebastian Schwind
- Department of Hematology; Oncology and Hemostaseology, University of Leipzig; Leipzig Germany
| |
Collapse
|
43
|
Horne GA, Copland M. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments. Expert Opin Drug Discov 2017; 12:465-474. [DOI: 10.1080/17460441.2017.1303477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int 2017; 2017:6962379. [PMID: 28197208 PMCID: PMC5288537 DOI: 10.1155/2017/6962379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023] Open
Abstract
Adult acute myeloid leukemia (AML) clinically is a disparate disease that requires intensive treatments ranging from chemotherapy alone to allogeneic hematopoietic cell transplantation (allo-HCT). Historically, cytogenetic analysis has been a useful prognostic tool to classify patients into favorable, intermediate, and unfavorable prognostic risk groups. However, the intermediate-risk group, consisting predominantly of cytogenetically normal AML (CN-AML), itself exhibits diverse clinical outcomes and requires further characterization to allow for more optimal treatment decision-making. The recent advances in clinical genomics have led to the recategorization of CN-AML into favorable or unfavorable subgroups. The relapsing nature of AML is thought to be due to clonal heterogeneity that includes founder or driver mutations present in the leukemic stem cell population. In this article, we summarize the clinical outcomes of relevant molecular mutations and their cooccurrences in CN-AML, including NPM1, FLT3ITD, DNMT3A, NRAS, TET2, RUNX1, MLLPTD, ASXL1, BCOR, PHF6, CEBPAbiallelic, IDH1, IDH2R140, and IDH2R170, with an emphasis on their relevance to the leukemic stem cell compartment. We have reviewed the available literature and TCGA AML databases (2013) to highlight the potential role of stem cell regulating factor mutations on outcome within newly defined AML molecular subgroups.
Collapse
|
45
|
Ossenkoppele G, Schuurhuis GJ. MRD in AML: does it already guide therapy decision-making? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:356-365. [PMID: 27913502 PMCID: PMC6142473 DOI: 10.1182/asheducation-2016.1.356] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Prognostic factors determined at diagnosis are predictive for outcome whereas achievement of morphological complete remission (CR) is still an important end point during treatment. Residual disease after therapy may reflect the sum of all diagnosis and postdiagnosis resistance mechanisms/factors; its measurement could hypothetically be very instrumental for guiding treatment. The possibility of defining residual disease (minimal residual disease [MRD]) far below the level of 5% blast cells is changing the landscape of risk classification. In this manuscript, the various methods, all different in sensitivity, specificity, and phase of development, to assess MRD are discussed. Currently, the 2 methods mostly used are flow cytometry-based immune MRD (multiparameter flow cytometry [MPFC]) and molecular MRD assessed by real-time quantitative polymerase chain reaction. Both have advantages and disadvantages that are summarized in detail. Many studies in children as well as adults already demonstrated that MRD detection by MPFC or molecular MRD provides strong prognostic information in acute myeloid leukemia (AML) after both induction and consolidation. These studies are summarized in this review. The general conclusion of this review is that a better definition of disease burden than morphological CR is now emerging. MRD assessed by flow or molecular techniques should become standard in every clinical trial in AML. Harmonization of antibody panels, introduction of single-cell tube systems (for determination of residual leukemic stem cells), and standardized analytical programs will pave the way for individual risk assessment and become a surrogate end point for survival in studies investigating new drugs, hopefully resulting in faster drug approval in AML.
Collapse
Affiliation(s)
- Gert Ossenkoppele
- Department of Hematology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities. World J Stem Cells 2016; 8:316-331. [PMID: 27822339 PMCID: PMC5080639 DOI: 10.4252/wjsc.v8.i10.316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.
Collapse
|
47
|
Chantepie SP, Parienti JJ, Salaun V, Benabed K, Cheze S, Gac AC, Johnson-Ansah H, Macro M, Damaj G, Vilque JP, Reman O. The prognostic value of hematogones in patients with acute myeloid leukemia. Am J Hematol 2016; 91:566-70. [PMID: 26934680 DOI: 10.1002/ajh.24350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/09/2022]
Abstract
In acute myeloid leukemia (AML), new prognostic tools are needed to assess the risk of relapse. Hematogones (HGs) are normal B-lymphocyte precursors that increase in hematological diseases and may influence remission duration in AML. HG detection was prospectively investigated in 262 AML patients to determine its prognostic value. Flow cytometric HG detection was performed in bone marrow aspiration after intensive chemotherapy at the time of hematological recovery. Patients with HGs in bone marrow samples had a significantly better relapse-free survival (RFS) and overall survival (OS) than patients without HGs (P = 0.0021, and P = 0.0016). Detectable HGs independently predicted RFS (HR = 0.61, 95%CI: 0.42 - 0.89, P = 0.012) and OS (HR = 0.59, 95%CI: 0.38 - 0.92, 0.019) controlling for age, ELN classification, the number of chemotherapy cycles to achieve CR, performance status, secondary AML and flow cytometric minimal residual disease (MRD). In intensively treated AML, individual determination of HGs could be useful to stratify the optimal risk-adapted therapeutic strategy after induction chemotherapy. Am. J. Hematol. 91:566-570, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jean-Jacques Parienti
- Department of Biostatistics and Clinical Research; CHU Caen, Cote de Nacre Avenue; 14000 France
- Caen Normandie University, Medical school; Caen F-14000 France
| | - Véronique Salaun
- Hematology Laboratory; CHU Caen, Cote de Nacre Avenue; 14000 France
| | - Khaled Benabed
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
| | - Stéphane Cheze
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
| | - Anne-Claire Gac
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
| | | | - Margaret Macro
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
| | - Gandhi Damaj
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
- Caen Normandie University, Medical school; Caen F-14000 France
| | - Jean-Pierre Vilque
- Department of Hematology; Baclesse Cancer Centre; Caen, General Harris Avenue 14000 France
| | - Oumedaly Reman
- Department of Hematology; CHU Caen, Cote de Nacre Avenue; 14000 France
| |
Collapse
|
48
|
Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol 2016; 7:3-16. [PMID: 26834951 DOI: 10.1177/2040620715614529] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several disease-monitoring techniques are available for the physician treating acute myeloid leukaemia (AML). Besides immunohistochemistry assisted light microscopy, the past 20 years have seen the development and preclinical perfection of a number of techniques, most notably quantitative polymerase chain reaction (PCR) and multicolor flow cytometry. Late additions to the group of applicable assays include next generation sequencing and digital PCR. In this review the principles of use of these modalities at three different time points during the AML disease course are discussed, namely at the time of treatment evaluation, pretransplantation and postconsolidation. The drawbacks and pitfalls of each different technique are delineated. The evidence or lack of evidence for minimal residual disease guided treatment decisions is discussed. Lastly, future strategies in the MRD field are suggested and commented upon.
Collapse
Affiliation(s)
- Hans Beier Ommen
- Department of Hematology, Aarhus University Hospital, Tage-Hansens gade 2, Aarhus C, 8000, Denmark
| |
Collapse
|
49
|
Kersten B, Valkering M, Wouters R, van Amerongen R, Hanekamp D, Kwidama Z, Valk P, Ossenkoppele G, Zeijlemaker W, Kaspers G, Cloos J, Schuurhuis GJ. CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. Br J Haematol 2016; 173:219-35. [PMID: 26814163 DOI: 10.1111/bjh.13941] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/20/2015] [Indexed: 12/24/2022]
Abstract
Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34(+) CD38(-) LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34(+) CD38(-) LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34(+) CD38(-) phenotype. Patients with low (<10%) or intermediate (10-90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment.
Collapse
Affiliation(s)
- Bas Kersten
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Matthijs Valkering
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Rolf Wouters
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Rosa van Amerongen
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Diana Hanekamp
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Zinia Kwidama
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Peter Valk
- Department of Haematology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Gert Ossenkoppele
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | | | - Gertjan Kaspers
- Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands.,Department of Paediatric Oncology/Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Gerrit J Schuurhuis
- Department of Haematology, VU University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Wojtuszkiewicz A, Schuurhuis GJ, Kessler FL, Piersma SR, Knol JC, Pham TV, Jansen G, Musters RJP, van Meerloo J, Assaraf YG, Kaspers GJL, Zweegman S, Cloos J, Jimenez CR. Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis. Mol Cell Proteomics 2016; 15:1281-98. [PMID: 26801919 DOI: 10.1074/mcp.m115.052944] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/28/2022] Open
Abstract
Expression of apoptosis-regulating proteins (B-cell CLL/lymphoma 2 - BCL-2, Myeloid Cell Leukemia 1 - MCL-1, BCL-2 like 1 - BCL-X and BCL-2-associated X protein - BAX) in acute myeloid leukemia (AML) blasts at diagnosis is associated with disease-free survival. We previously found that the initially high apoptosis-resistance of AML cells decreased after therapy, while regaining high levels at relapse. Herein, we further explored this aspect of dynamic apoptosis regulation in AML. First, we showed that the intraindividualex vivoapoptosis-related profiles of normal lymphocytes and AML blasts within the bone marrow of AML patients were highly correlated. The expression values of apoptosis-regulating proteins were far beyond healthy control lymphocytes, which implicates the influence of microenvironmental factors. Second, we demonstrated that apoptosis-resistant primary AML blasts, as opposed to apoptosis-sensitive cells, were able to up-regulate BCL-2 expression in sensitive AML blasts in contact cultures (p= 0.0067 andp= 1.0, respectively). Using secretome proteomics, we identified novel proteins possibly engaged in apoptosis regulation. Intriguingly, this analysis revealed that major functional protein clusters engaged in global gene regulation, including mRNA splicing, protein translation, and chromatin remodeling, were more abundant (p= 4.01E-06) in secretomes of apoptosis-resistant AML. These findings were confirmed by subsequent extracellular vesicle proteomics. Finally, confocal-microscopy-based colocalization studies show that splicing factors-containing vesicles secreted by high AAI cells are taken up by low AAI cells. The current results constitute the first comprehensive analysis of proteins released by apoptosis-resistant and sensitive primary AML cells. Together, the data point to vesicle-mediated release of global gene regulatory protein clusters as a plausible novel mechanism of induction of apoptosis resistance. Deciphering the modes of communication between apoptosis-resistant blasts may in perspective lead to the discovery of prognostic tools and development of novel therapeutic interventions, aimed at limiting or overcoming therapy resistance.
Collapse
Affiliation(s)
| | | | | | | | - Jaco C Knol
- ¶OncoProteomics Laboratory, Dept. of Medical Oncology
| | - Thang V Pham
- ¶OncoProteomics Laboratory, Dept. of Medical Oncology
| | - Gerrit Jansen
- ‖Dept. of Rheumatology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - René J P Musters
- **Dept. of Physiology, ICaR-VU, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | | | - Yehuda G Assaraf
- ‡‡Dept. of Biology, Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel, Institute of Technology, Haifa 3200003, Israel
| | | | | | - Jacqueline Cloos
- From the ‡Dept. of Pediatric Oncology/Hematology, §Dept. of Hematology
| | | |
Collapse
|