1
|
Witkowska M, Majchrzak A, Robak P, Wolska-Washer A, Robak T. The role of antibody therapies in treating relapsed chronic lymphocytic leukemia: a review. Expert Opin Biol Ther 2024:1-12. [PMID: 39364800 DOI: 10.1080/14712598.2024.2413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adult patients. The landscape of CLL therapy has changed in the last decades with the introduction of antibody-based therapies and novel targeted agents resulting in improved outcomes. AREAS COVERED This article describes the use of monoclonal antibodies, bispecific antibodies and antibody-drug conjugates in the treatment of relapsed and refractory CLL. The mechanism of action and clinical applications and safety of antibody-based therapies, both as monotherapy and in combination with other drugs, are discussed. A literature search was performed using PubMed, Web of Science, and Google Scholar for articles published in English. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Antibody-based therapeutic strategies have drastically changed the treatment of CLL, as they have introduced the concept of boosting immune responses against tumor cells. While immunotherapy is generally effective, some treatment failure can occur due to antigen loss, mutation, or down-regulation, and this remains the main obstacle to cure. The development of novel antibody therapies, including their combinations with targeted drugs and bispecific antibodies, might help to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Agata Majchrzak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
2
|
Frigault MJ, Graham CE, Berger TR, Ritchey J, Horick NK, El-Jawahri A, Scarfò I, Schmidts A, Haradhvala NJ, Wehrli M, Lee WH, Parker AL, Wiggin HR, Bouffard A, Dey A, Leick MB, Katsis K, Elder EL, Dolaher MA, Cook DT, Chekmasova AA, Huang L, Nikiforow S, Daley H, Ritz J, Armant M, Preffer F, DiPersio JF, Nardi V, Chen YB, Gallagher KME, Maus MV. Phase 1 study of CAR-37 T cells in patients with relapsed or refractory CD37+ lymphoid malignancies. Blood 2024; 144:1153-1167. [PMID: 38781564 DOI: 10.1182/blood.2024024104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients. Tumor responses were observed in 4 of 5 patients with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in 2 of these patients, efforts to ablate CAR-37 T cells, which were engineered to coexpress truncated epidermal growth factor receptor, with cetuximab were unsuccessful. Hematopoiesis was restored in these 2 patients after allogeneic hematopoietic stem cell transplantation. No other severe, nonhematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of interleukin-18 (IL-18) with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients than in both cytopenic and noncytopenic cohorts of CAR-19-treated patients. In conclusion, CAR-37 T cells exhibited antitumor activity, with significant CAR expansion and cytokine production. CAR-37 T cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant. This trial was registered at www.ClinicalTrials.gov as #NCT04136275.
Collapse
Affiliation(s)
- Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Charlotte E Graham
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Trisha R Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Julie Ritchey
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nora K Horick
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Areej El-Jawahri
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Nicholas J Haradhvala
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Won-Ho Lee
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Aiyana L Parker
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Hadley R Wiggin
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Amanda Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Aonkon Dey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Katelin Katsis
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Eva L Elder
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Maria A Dolaher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Daniella T Cook
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Alena A Chekmasova
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Lu Huang
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Sarah Nikiforow
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Connell and O'Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Heather Daley
- Connell and O'Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Connell and O'Reilly Families Cell Manipulation Core Facility, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Fred Preffer
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valentina Nardi
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M E Gallagher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Department of Medicine, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
3
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
4
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
5
|
Caulier B, Joaquina S, Gelebart P, Dowling TH, Kaveh F, Thomas M, Tandaric L, Wernhoff P, Katyayini NU, Wogsland C, Gjerstad ME, Fløisand Y, Kvalheim G, Marr C, Kobold S, Enserink JM, Gjertsen BT, McCormack E, Inderberg EM, Wälchli S. CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia. Cell Rep Med 2024; 5:101572. [PMID: 38754420 PMCID: PMC11228397 DOI: 10.1016/j.xcrm.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Animals
- Immunotherapy, Adoptive/methods
- Mice
- Tetraspanins/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Female
- Male
- Antigens, Neoplasm
Collapse
Affiliation(s)
- Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal Gelebart
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Tara Helén Dowling
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Moritz Thomas
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Luka Tandaric
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Niveditha Umesh Katyayini
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cara Wogsland
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - May Eriksen Gjerstad
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Yngvar Fløisand
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Carsten Marr
- Institue of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Jorrit M Enserink
- Institute for Cancer Research, Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Precision Oncology Research Group, University of Bergen, 5021 Bergen, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
6
|
Bobrowicz M, Kusowska A, Krawczyk M, Zhylko A, Forcados C, Slusarczyk A, Barankiewicz J, Domagala J, Kubacz M, Šmída M, Dostalova L, Marhelava K, Fidyt K, Pepek M, Baranowska I, Szumera-Cieckiewicz A, Inderberg EM, Wälchli S, Granica M, Graczyk-Jarzynka A, Majchrzak M, Poreba M, Gehlert CL, Peipp M, Firczuk M, Prochorec-Sobieszek M, Winiarska M. CD20 expression regulates CD37 levels in B-cell lymphoma - implications for immunotherapies. Oncoimmunology 2024; 13:2362454. [PMID: 38846084 PMCID: PMC11155707 DOI: 10.1080/2162402x.2024.2362454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, CD20/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cyclophosphamide/pharmacology
- Cyclophosphamide/therapeutic use
- Doxorubicin/pharmacology
- Doxorubicin/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Immunotherapy/methods
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/drug therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Vincristine/pharmacology
- Vincristine/therapeutic use
Collapse
Affiliation(s)
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Christopher Forcados
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Barankiewicz
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Lenka Dostalova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Pepek
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Baranowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Biobank, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Monika Granica
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Majchrzak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Marcin Poreba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Malgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Ning D, Xue J, Lou X, Shao R, Liu Y, Chen G. Transforming toxins into treatments: the revolutionary role of α-amanitin in cancer therapy. Arch Toxicol 2024; 98:1705-1716. [PMID: 38555326 DOI: 10.1007/s00204-024-03727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Amanita phalloides is the primary species responsible for fatal mushroom poisoning, as its main toxin, α-amanitin, irreversibly and potently inhibits eukaryotic RNA polymerase II (RNAP II), leading to cell death. There is no specific antidote for α-amanitin, which hinders its clinical application. However, with the advancement of precision medicine in oncology, including the development of antibody-drug conjugates (ADCs), the potential value of various toxic small molecules has been explored. These ADCs ingeniously combine the targeting precision of antibodies with the cytotoxicity of small-molecule payloads to precisely kill tumor cells. We searched PubMed for studies in this area using these MeSH terms "Amanitins, Alpha-Amanitin, Therapeutic use, Immunotherapy, Immunoconjugates, Antibodies" and did not limit the time interval. Recent studies have conducted preclinical experiments on ADCs based on α-amanitin, showing promising therapeutic effects and good tolerance in primates. The current challenges include the not fully understood toxicological mechanism of α-amanitin and the lack of clinical studies to evaluate the therapeutic efficacy of ADCs developed based on α-amanitin. In this article, we will discuss the role and therapeutic efficacy of α-amanitin as an effective payload in ADCs for the treatment of various cancers, providing background information for the research and application strategies of current and future drugs.
Collapse
Affiliation(s)
- Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, No 157 Jinbi Road, Xishan District, Kunming, 650032, China.
| |
Collapse
|
8
|
Chakraborty M, Greenberg ZJ, Dong Q, Roundy N, Bednarski JJ, Paracatu LC, Duncavage E, Li W, Schuettpelz LG. Cutting Edge: The Tetraspanin CD53 Promotes CXCR4 Signaling and Bone Marrow Homing in B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1075-1080. [PMID: 38363205 PMCID: PMC10948292 DOI: 10.4049/jimmunol.2300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
B cell trafficking involves the coordinated activity of multiple adhesive and cytokine-receptor interactions, and the players in this process are not fully understood. In this study, we identified the tetraspanin CD53 as a critical regulator of both normal and malignant B cell trafficking. CXCL12 is a key chemokine in B cell homing to the bone marrow and secondary lymphoid organs, and both normal and malignant B cells from Cd53-/- mice have reduced migration toward CXCL12 in vitro, as well as impaired marrow homing in vivo. Using proximity ligation studies, we identified the CXCL12 receptor, CXCR4, as a novel, to our knowledge, CD53 binding partner. This interaction promotes receptor function, because Cd53-/- B cells display reduced signaling and internalization of CXCR4 in response to CXCL12. Together, our data suggest that CD53 interacts with CXCR4 on both normal and malignant B cells to promote CXCL12 signaling, receptor internalization, and marrow homing.
Collapse
Affiliation(s)
- Mousumi Chakraborty
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qian Dong
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nate Roundy
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J. Bednarski
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luana Chiquetto Paracatu
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Imai K, Takeuchi Y, Terakura S, Okuno S, Adachi Y, Osaki M, Umemura K, Hanajiri R, Shimada K, Murata M, Kiyoi H. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-cell Tumor Models. Mol Cancer Ther 2024; 23:381-393. [PMID: 37828726 DOI: 10.1158/1535-7163.mct-23-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting multiple antigens (Ag), may reduce the risk of immune escape following the loss of the target Ag and further increase the efficacy of treatment. We developed dual-targeting CAR-T cells that target CD19 and CD37 Ags and evaluated their antitumor effects. CD19/CD37 dual CAR-T cells were generated using cotransduction and simultaneous gene transfer of two types of lentiviral vectors transferring CD19CAR or CD37CAR genes, including the intracellular domains of CD28 and CD3ζ signaling domains. These dual CAR-T cells contained three fractions: CD19/CD37 bispecific CAR-T cells, single CD19CAR-T cells, and single CD37CAR-T cells. In the functional evaluation of CAR-T cells in vitro, CD19/CD37 dual CAR-T cells showed adequate proliferation and cytokine production in response to CD19 and CD37 antigen stimulation alone or in combination. Evaluation of intracellular signaling revealed that dual CAR-T cell-mediated signals were comparable with single CAR-T cells in response to CD19- and CD37-positive B-cell tumors. Although the cytotoxicity of CD19/CD37 dual CAR-T cells in both CD19- and CD37-positive B-cell tumors was similar to that of single CD19 and CD37CAR-T cells, against CD19 and CD37 Ag-heterogeneous tumor, dual CAR-T cells demonstrated significantly superior tumor lysis compared with single CAR-T cells. Furthermore, CD19/CD37 dual CAR-T cells effectively suppressed Ag-heterogeneous Raji cells in a xenograft mouse model. Collectively, these results suggest that CD19/CD37 dual CAR-T cells may be effective target-Ag-loss B-cell tumor models in vitro and in vivo, which represents a promising treatment for patients with relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
11
|
Boris E, Theron A, Montagnon V, Rouquier N, Almeras M, Moreaux J, Bret C. Immunophenotypic portrait of leukemia-associated-phenotype markers in B acute lymphoblastic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:45-57. [PMID: 38037221 DOI: 10.1002/cyto.b.22153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Multiparametric flow cytometry (MFC) is an essential diagnostic tool in B acute lymphoblastic leukemia (B ALL) to determine the B-lineage affiliation of the blast population and to define their complete immunophenotypic profile. Most MFC strategies used in routine laboratories include leukemia-associated phenotype (LAP) markers, whose expression profiles can be difficult to interpret. The aim of our study was to reach a better understanding of 7 LAP markers' landscape in B ALL: CD9, CD21, CD66c, CD58, CD81, CD123, and NG2. METHODS Using a 10-color MFC approach, we evaluated the level of expression of 7 LAP markers including CD9, CD21, CD66c, CD58, CD81, CD123, and NG2, at the surface of normal peripheral blood leukocytes (n = 10 healthy donors), of normal precursor B regenerative cells (n = 40 uninvolved bone marrow samples) and of lymphoblasts (n = 100 peripheral blood samples or bone marrow samples from B ALL patients at diagnosis). The expression profile of B lymphoblasts was analyzed according the presence or absence of recurrent cytogenetic aberrations. The prognostic value of the 7 LAP markers was examined using Maxstat R algorithm. RESULTS In order to help the interpretation of the MFC data in routine laboratories, we first determined internal positive and negative populations among normal leukocytes for each of the seven evaluated LAP markers. Second, their profile of expression was evaluated in normal B cell differentiation in comparison with B lymphoblasts to establish a synopsis of their expression in normal hematogones. We then evaluated the frequency of expression of these LAP markers at the surface of B lymphoblasts at diagnosis of B ALL. CD9 was expressed in 60% of the cases, CD21 in only 3% of the cases, CD58 in 96% of the cases, CD66c in 45% of the cases, CD81 in 97% of the cases, CD123 in 72% of the cases, and NG2 in only 2% of the cases. We confirmed the interest of the CD81/CD58 MFI expression ratio as a way to discriminate hematogones from lymphoblasts. We observed a significant lower expression of CD9 and of CD81 at the surface of B lymphoblasts with a t(9;22)(BCR-ABL) in comparison with B lymphoblasts without any recurrent cytogenetic alteration (p = 0.0317 and p = 0.0011, respectively) and with B lymphoblasts harboring other cytogenetic recurrent abnormalities (p = 0.0032 and p < 0.0001, respectively). B lymphoblasts with t(1;19) at diagnosis significantly overexpressed CD81 when compared with B lymphoblasts with other recurrent cytogenetic abnormalities or without any recurrent alteration (p = 0.0001). An overexpression of CD58 was also observed in the cases harboring this abnormal cytogenetic event, when compared with B lymphoblasts with other recurrent cytogenetic abnormalities (p = 0.030), or without any recurrent alteration (p = 0.0002). In addition, a high expression of CD123, of CD58 and of CD81 was associated with a favorable prognosis in our cohort of pediatric and young adult B ALL patients. We finally built a risk score based on the expression of these 3 LAP markers, this scoring approach being able to split these patients into a high-risk group (17%) and a better outcome group (83%, p < 0.0001). CONCLUSION The complexity of the phenotypic signature of lymphoblasts at diagnosis of B ALL is illustrated by the variability in the expression of LAP antigens. Knowledge of the expression levels of these markers in normal leukocytes and during normal B differentiation is crucial for an optimal interpretation of diagnostic cytometry results and serves as a basis for the biological follow-up of B ALL.
Collapse
Affiliation(s)
- Emilia Boris
- Department of Biological Hematology, St Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Alexandre Theron
- Department of Pediatric Onco-Hematology, Arnaud de Villeneuve Hospital, Montpellier University Hospital, Montpellier, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
| | - Valentin Montagnon
- Department of Biological Hematology, St Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Nicolas Rouquier
- Department of Biological Hematology, St Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | | | - Jérôme Moreaux
- Department of Biological Hematology, St Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
- CNRS UMR 9002, Institute of Human Genetics, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Caroline Bret
- Department of Biological Hematology, St Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
- CNRS UMR 9002, Institute of Human Genetics, Montpellier, France
| |
Collapse
|
12
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Tetraspanins set the stage for bone marrow microenvironment-induced chemoprotection in hematologic malignancies. Blood Adv 2023; 7:4403-4413. [PMID: 37561544 PMCID: PMC10432613 DOI: 10.1182/bloodadvances.2023010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Despite recent advances in the treatment of hematologic malignancies, relapse still remains a consistent issue. One of the primary contributors to relapse is the bone marrow microenvironment providing a sanctuary to malignant cells. These cells interact with bone marrow components such as osteoblasts and stromal cells, extracellular matrix proteins, and soluble factors. These interactions, mediated by the cell surface proteins like cellular adhesion molecules (CAMs), induce intracellular signaling that leads to the development of bone marrow microenvironment-induced chemoprotection (BMC). Although extensive study has gone into these CAMs, including the development of targeted therapies, very little focus in hematologic malignancies has been put on a family of cell surface proteins that are just as important for mediating bone marrow interactions: the transmembrane 4 superfamily (tetraspanins; TSPANs). TSPANs are known to be important mediators of microenvironmental interactions and metastasis based on numerous studies in solid tumors. Recently, evidence of their possible role in hematologic malignancies, specifically in the regulation of cellular adhesion, bone marrow homing, intracellular signaling, and stem cell dynamics in malignant hematologic cells has come to light. Many of these effects are facilitated by associations with CAMs and other receptors on the cell surface in TSPAN-enriched microdomains. This could suggest that TSPANs play an important role in mediating BMC in hematologic malignancies and could be used as therapeutic targets. In this review, we discuss TSPAN structure and function in hematologic cells, their interactions with different cell surface and signaling proteins, and possible ways to target/inhibit their effects.
Collapse
Affiliation(s)
- Anthony Quagliano
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Sonali P. Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| |
Collapse
|
13
|
Duan M, Nguyen DC, Joyner CJ, Saney CL, Tipton CM, Andrews J, Lonial S, Kim C, Hentenaar I, Kosters A, Ghosn E, Jackson A, Knechtle S, Maruthamuthu S, Chandran S, Martin T, Rajalingam R, Vincenti F, Breeden C, Sanz I, Gibson G, Lee FEH. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep 2023; 42:112682. [PMID: 37355988 PMCID: PMC10391632 DOI: 10.1016/j.celrep.2023.112682] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.
Collapse
Affiliation(s)
- Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Chester J Joyner
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Celia L Saney
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Caroline Kim
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ian Hentenaar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Astrid Kosters
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Annette Jackson
- Departments of Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | | | - Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tom Martin
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Flavio Vincenti
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Abstract
Chimeric antigen receptor (CAR) modified T cell therapy has transformed the management of relapsed/refractory B cell malignancies. Despite high overall response rates, relapse post CAR T treatment remains a clinical challenge. Loss of target antigen, specifically CD19, is one well-defined mechanism of disease relapse. The mechanism of CD19 loss and which patients are at higher risk of CD19 loss remain poorly understood. To overcome CD19 loss, CARs targeting multiple antigens are being tested in clinical trials. CD19/20 and CD19/22 bispecific CARs demonstrate cytotoxicity against CD19-negative cells in preclinical studies. These CARs have also shown efficacy, safety, and a relatively low rate of CD19-negative relapse in phase I trials. These small studies suggest that multispecific CAR T cells can deprive lymphomas of escape via antigen loss. However, the selection of an ideal target, the right CAR construct, and whether these multispecific CARs can induce long-term remissions are still under investigation.
Collapse
Affiliation(s)
- Fateeha Furqan
- Bone Marrow Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Nirav N Shah
- Bone Marrow Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
15
|
Duan M, Nguyen DC, Joyner CJ, Saney CL, Tipton CM, Andrews J, Lonial S, Kim C, Hentenaar I, Kosters A, Ghosn E, Jackson A, Knechtle S, Maruthamuthu S, Chandran S, Martin T, Rajalingam R, Vincenti F, Breeden C, Sanz I, Gibson G, Eun-Hyung Lee F. Human Bone Marrow Plasma Cell Atlas: Maturation and Survival Pathways Unraveled by Single Cell Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524601. [PMID: 36711623 PMCID: PMC9882341 DOI: 10.1101/2023.01.18.524601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASC) to long-lived plasma cells (LLPC). We provide single cell transcriptional resolution of 17,347 BM ASC from 5 healthy adults. Fifteen clusters were identified ranging from newly minted ASC (cluster 1) expressing MKI67 and high MHC Class II that progressed to late clusters 5-8 through intermediate clusters 2-4. Additional clusters included early and late IgM-predominant ASC of likely extra-follicular origin; IFN-responsive; and high mitochondrial activity ASC. Late ASCs were distinguished by differences in G2M checkpoints, MTOR signaling, distinct metabolic pathways, CD38 expression, and utilization of TNF-receptor superfamily members. They mature through two distinct paths differentiated by the degree of TNF signaling through NFKB. This study provides the first single cell resolution atlas and molecular roadmap of LLPC maturation, thereby providing insight into differentiation trajectories and molecular regulation of these essential processes in the human BM microniche. This information enables investigation of the origin of protective and pathogenic antibodies in multiple diseases and development of new strategies targeted to the enhancement or depletion of the corresponding ASC. One Sentence Summary: The single cell transcriptomic atlas of human bone marrow plasma cell heterogeneity shows maturation of class-switched early and late subsets, specific IgM and Interferon-driven clusters, and unique heterogeneity of the late subsets which encompass the long-lived plasma cells.
Collapse
|
16
|
Assi R, Salman H. Harnessing the Potential of Chimeric Antigen Receptor T-Cell Therapy for the Treatment of T-Cell Malignancies: A Dare or Double Dare? Cells 2022; 11:cells11243971. [PMID: 36552738 PMCID: PMC9776964 DOI: 10.3390/cells11243971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Historical standard of care treatments of T-cell malignancies generally entailed the use of cytotoxic and depleting approaches. These strategies are, however, poorly validated and record dismal long-term outcomes. More recently, the introduction and approval of chimeric antigen receptor (CAR)-T cell therapy has revolutionized the therapy of B-cell malignancies. Translating this success to the T-cell compartment has so far proven hazardous, entangled by risks of fratricide, T-cell aplasia, and product contamination by malignant cells. Several strategies have been utilized to overcome these challenges. These include the targeting of a selective cognate antigen exclusive to T-cells or a subset of T-cells, disruption of target antigen expression on CAR-T constructs, use of safety switches, non-viral transduction, and the introduction of allogeneic compounds and gene editing technologies. We herein overview these historical challenges and revisit the opportunities provided as potential solutions. An in-depth understanding of the tumor microenvironment is required to optimally harness the potential of the immune system to treat T-cell malignancies.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Huda Salman
- Division of Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: Huda Salman, MD, PhD, MA Director, Brown Center for Immunotherapy, Don Brown Professor of Immunotherapy, Professor of Medicine, Program Leader–Leukemia, Indiana University School of Medicine;
| |
Collapse
|
17
|
Jung SH, Park SS, Lim JY, Sohn SY, Kim NY, Kim D, Lee SH, Chung YJ, Min CK. Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness. Exp Mol Med 2022; 54:1967-1978. [PMID: 36380017 PMCID: PMC9723182 DOI: 10.1038/s12276-022-00884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Both the tumor and tumor microenvironment (TME) are crucial for pathogenesis and chemotherapy resistance in multiple myeloma (MM). Bortezomib, commonly used for MM treatment, works on both MM and TME cells, but innate and acquired resistance easily develop. By single-cell RNA sequencing (scRNA-seq), we investigated bone marrow aspirates of 18 treatment-naïve MM patients who later received bortezomib-based treatments. Twelve plasma and TME cell types and their subsets were identified. Suboptimal responders (SORs) to bortezomib exhibited higher copy number alteration burdens than optimal responders (ORs). Forty-four differentially expressed genes for SORs based on scRNA-seq data were further analyzed in an independent cohort of 90 treatment-naïve MMs, where 24 genes were validated. A combined model of three clinical variables (older age, low absolute lymphocyte count, and no autologous stem cell transplantation) and 24 genes was associated with bortezomib responsiveness and poor prognosis. In T cells, cytotoxic memory, proliferating, and dysfunctional subsets were significantly enriched in SORs. Moreover, we identified three monocyte subsets associated with bortezomib responsiveness and an MM-specific NK cell trajectory that ended with an MM-specific subset. scRNA-seq predicted the interaction of the GAS6-MERTK, ALCAM-CD6, and BAG6-NCR gene networks. Of note, tumor cells from ORs and SORs were the most prominent sources of ALCAM on effector T cells and BAG6 on NK cells, respectively. Our results indicate that the complicated compositional and molecular changes of both tumor and immune cells in the bone marrow (BM) milieu are important in the development and acquisition of resistance to bortezomib-based treatment of MM.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- grid.411947.e0000 0004 0470 4224Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Young Lim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea
| | - Seon Yong Sohn
- grid.411947.e0000 0004 0470 4224Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na Yung Kim
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dokyeong Kim
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sug Hyung Lee
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeun-Jun Chung
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
18
|
Gao Q, Chen X, Cherian S, Roshal M. Mature B‐ and plasma‐cell flow cytometric analysis: A review of the impact of targeted therapy. CYTOMETRY PART B: CLINICAL CYTOMETRY 2022; 104:224-242. [PMID: 36321879 DOI: 10.1002/cyto.b.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Flow cytometry has been indispensable in diagnosing B cell lymphoma and plasma cell neoplasms. The advances in novel multicolor flow cytometry have also made this technology a robust tool for monitoring minimal/measurable residual disease in chronic lymphocytic leukemia and multiple myeloma. However, challenges using conventional gating strategies to isolate neoplastic B or plasma cells are emerging due to the rapidly increasing number of antibody therapeutics targeting single or multiple classic B/plasma cell-lineage markers, such as CD19, CD20, and CD22 in B cells and CD38 in plasma cells. This review is the first of a two-part series that summarizes the most current targeted therapies used in B and plasma cell neoplasms and proposes detailed alternative approaches to overcome post-targeted therapy analysis challenges by flow cytometry. The second review in this series (Chen et al.) focuses on challenges encountered in the use of targeted therapy in precursor B cell neoplasms.
Collapse
Affiliation(s)
- Qi Gao
- Hematopathology Service, Department of Pathology and Laboratory Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Xueyan Chen
- Department of Laboratory Medicine and Pathology University of Washington Seattle WA USA
| | - Sindu Cherian
- Department of Laboratory Medicine and Pathology University of Washington Seattle WA USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology and Laboratory Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
19
|
Anti-CD37 α-amanitin-conjugated antibodies as potential therapeutic weapons for Richter syndrome. Blood 2022; 140:1565-1569. [PMID: 35914223 PMCID: PMC9523372 DOI: 10.1182/blood.2022016211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022] Open
|
20
|
Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat Commun 2022; 13:5371. [PMID: 36100608 PMCID: PMC9470561 DOI: 10.1038/s41467-022-33138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The importance of fatty acid (FA) metabolism in cancer is well-established, yet the mechanisms underlying metabolic reprogramming remain elusive. Here, we identify tetraspanin CD37, a prognostic marker for aggressive B-cell lymphoma, as essential membrane-localized inhibitor of FA metabolism. Deletion of CD37 on lymphoma cells results in increased FA oxidation shown by functional assays and metabolomics. Furthermore, CD37-negative lymphomas selectively deplete palmitate from serum in mouse studies. Mechanistically, CD37 inhibits the FA transporter FATP1 through molecular interaction. Consequently, deletion of CD37 induces uptake and processing of exogenous palmitate into energy and essential building blocks for proliferation, and inhibition of FATP1 reverses this phenotype. Large lipid deposits and intracellular lipid droplets are observed in CD37-negative lymphoma tissues of patients. Moreover, inhibition of carnitine palmitoyl transferase 1 A significantly compromises viability and proliferation of CD37-deficient lymphomas. Collectively, our results identify CD37 as a direct gatekeeper of the FA metabolic switch in aggressive B-cell lymphoma. Tetraspanin CD37 deficiency has been reported as a prognostic marker for aggressive B-cell lymphoma. Here, the authors show that CD37 interacts with the fatty acid transporter 1 to inhibit palmitate uptake and its deficiency leads to increased fatty acid metabolism which promotes tumorigenesis in B-cell lymphoma.
Collapse
|
21
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
22
|
Abstract
CD37 is a tetraspanin protein expressed in various B-cell lymphomas that mediates tumor survival signaling. Follicular lymphoma (FL) is a representative B-cell neoplasm composed of germinal center B cells. In recent years, CD37 has been focused on as a therapeutic target for B-cell lymphoma. The purpose of this study was to characterize CD37 expression in FL patients to identify risk factors associated with various prognostic factors. We retrospectively reviewed 167 cases of FL and evaluated the immunohistochemical expression of CD37 and its statistical association with clinicopathological features. Immunohistochemically, CD37 was observed in the cytoplasm and/or membrane of neoplastic cells, mainly in neoplastic follicles to various extents. One hundred cases (100/167, 60.0%) were categorized as CD37-positive, and 67 cases were CD37-negative. In cases with high Follicular Lymphoma International Prognostic Index (FLIPI), CD37-negative cases had a poor overall survival compared with CD37-positive cases (P = 0.047), although no significant differences were observed in other clinicopathologic factors, including histological grade, BCL2-IGH translocation, and immunohistochemical phenotype. Therefore, CD37 protein may play a role in tumor progression and may serve as a therapeutic target. However, further studies are needed to explore its significance.
Collapse
|
23
|
IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Adv 2022; 6:2254-2266. [PMID: 35086136 PMCID: PMC9006271 DOI: 10.1182/bloodadvances.2021004366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
IRF8 is a transcriptional regulator of CD37 expression in DLBCL, which may have implications for anti-CD37 therapies. Patients with poor prognostic CD37-negative DLBCL show significantly lower IRF8 expression compared with patients with CD37-positive DLBCL.
Diffuse large B-cell lymphoma (DLBCL) represents the most common form of non-Hodgkin lymphoma (NHL) that is still incurable in a large fraction of patients. Tetraspanin CD37 is highly expressed on mature B lymphocytes, and multiple CD37-targeting therapies are under clinical development for NHL. However, CD37 expression is nondetectable in ∼50% of DLBCL patients, which correlates with inferior treatment outcome, but the underlying mechanisms for differential CD37 expression in DLBCL are still unknown. Here, we investigated the regulation of the CD37 gene in human DLBCL at the (epi-)genetic and transcriptional level. No differences were observed in DNA methylation within the CD37 promoter region between CD37-positive and CD37-negative primary DLBCL patient samples. On the contrary, CD37-negative DLBCL cells specifically lacked CD37 promoter activity, suggesting differential regulation of CD37 gene expression. Using an unbiased quantitative proteomic approach, we identified transcription factor IRF8 to be significantly higher expressed in nuclear extracts of CD37-positive as compared with CD37-negative DLBCL. Direct binding of IRF8 to the CD37 promoter region was confirmed by DNA pulldown assay combined with mass spectrometry and targeted chromatin immunoprecipitation (ChIP). Functional analysis indicated that IRF8 overexpression enhanced CD37 protein expression, while CRISPR/Cas9 knockout of IRF8 decreased CD37 levels in DLBCL cell lines. Immunohistochemical analysis in a large cohort of primary DLBCL (n = 206) revealed a significant correlation of IRF8 expression with detectable CD37 levels. Together, this study provides new insight into the molecular mechanisms underlying differential CD37 expression in human DLBCL and reveals IRF8 as a transcriptional regulator of CD37 in B-cell lymphoma.
Collapse
|
24
|
Chen Y, Zhao Y, Yin Y, Jia X, Mao L. Mechanism of cargo sorting into small extracellular vesicles. Bioengineered 2021; 12:8186-8201. [PMID: 34661500 PMCID: PMC8806638 DOI: 10.1080/21655979.2021.1977767] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are special membranous structures released by almost every cell type that carry and protect some biomolecules from being degraded. They transport important signaling molecules involved in cell communication, migration, and numerous physiological processes. EVs can be categorized into two main types according to their size: i) small extracellular vesicles (sEVs), such as exosomes (30-150 nm), released from the fusion of multivesicular bodies (MVBs) with the plasma membrane, and ii) large EVs, such as microvesicles (100-1000 nm). These are no longer considered a waste product of cells, but regulators of intercellular communication, as they can transport specific repertoires of cargos, such as proteins, lipids, and nucleic acids to receptor cells to achieve cell-to-cell communication. This indicates the existence of different mechanisms, which controls the cargos sorting into EVs. This review mainly gives a description about the biological roles of the cargo and the sorting mechanisms of sEVs, especially exosomes.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxue Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiqian Yin
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaonan Jia
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Carsetti R, Terreri S, Conti MG, Fernandez Salinas A, Corrente F, Capponi C, Albano C, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in healthy conditions. Cytometry A 2021; 101:131-139. [PMID: 34664397 PMCID: PMC9546334 DOI: 10.1002/cyto.a.24507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
The B cell compartment provides innate and adaptive immune defenses against pathogens. Different B cell subsets, reflecting the maturation stages of B cells, have noninterchangeable functions and roles in innate and adaptive immune responses. In this review, we provide an overview of the B cell subsets present in peripheral blood of healthy individuals. A specific gating strategy is also described to clearly and univocally identify B cell subsets based on the their phenotypic traits by flow cytometric analysis.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Preclinical pharmacology modeling of chimeric antigen receptor T therapies. Curr Opin Pharmacol 2021; 61:49-61. [PMID: 34619442 DOI: 10.1016/j.coph.2021.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have largely been successful in treating hematological malignancies in the clinic but have not been as effective in treating solid tumors, in part, owing to poor access and the immunosuppressive tumor microenvironment. In addition, CAR-T therapy can cause potentially life-threatening side effects, including cytokine release syndrome and neurotoxicity. Current preclinical testing of CAR-T therapy efficacy is typically performed in mouse tumor models, which often fails to predict toxicity. Recent developments in humanized models and transgenic mice as well as in vitro three-dimensional organoids in early development and nonhuman primate models are being adopted for CAR-T cell efficacy and toxicity assessment. However, because no single model perfectly recapitulates the human immune system and tumor microenvironment, careful model selection based on their respective pros and cons is crucial for adequate evaluation of different CAR-T treatments, so that their clinical development can be better supported.
Collapse
|
27
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: Is success a low-hanging fruit? Stem Cell Res Ther 2021; 12:527. [DOI: https:/doi.org/10.1186/s13287-021-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor T-cell (CAR-T) therapy has been prosperous in the treatment of patients with various types of relapsed/refractory (R/R) B-cell malignancies including diffuse large B-cell lymphoma (DLBCL), B-cell acute lymphoblastic leukemia (B-ALL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma (MM). However, this type of therapy has faced serious hindrances in combating T-cell neoplasms. R/R T-cell malignancies are generally associated with poor clinical outcomes, and the available effective treatment approaches are very limited. CAR-T therapy of T-cell malignancies has unique impediments in comparison with that of B-cell malignancies. Fratricide, T-cell aplasia, and product contamination with malignant T cells when producing autologous CAR-Ts are the most important challenges of CAR-T therapy in T-cell malignancies necessitating in-depth investigations. Herein, we highlight the preclinical and clinical efforts made for addressing these drawbacks and also review additional potent stratagems that could improve CAR-T therapy in T-cell malignancies.
Collapse
|
28
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: Is success a low-hanging fruit? Stem Cell Res Ther 2021; 12:527. [PMID: 34620233 PMCID: PMC8499460 DOI: 10.1186/s13287-021-02595-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been prosperous in the treatment of patients with various types of relapsed/refractory (R/R) B-cell malignancies including diffuse large B-cell lymphoma (DLBCL), B-cell acute lymphoblastic leukemia (B-ALL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma (MM). However, this type of therapy has faced serious hindrances in combating T-cell neoplasms. R/R T-cell malignancies are generally associated with poor clinical outcomes, and the available effective treatment approaches are very limited. CAR-T therapy of T-cell malignancies has unique impediments in comparison with that of B-cell malignancies. Fratricide, T-cell aplasia, and product contamination with malignant T cells when producing autologous CAR-Ts are the most important challenges of CAR-T therapy in T-cell malignancies necessitating in-depth investigations. Herein, we highlight the preclinical and clinical efforts made for addressing these drawbacks and also review additional potent stratagems that could improve CAR-T therapy in T-cell malignancies.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Wieland A, Patel MR, Cardenas MA, Eberhardt CS, Hudson WH, Obeng RC, Griffith CC, Wang X, Chen ZG, Kissick HT, Saba NF, Ahmed R. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 2021; 597:274-278. [PMID: 33208941 PMCID: PMC9462833 DOI: 10.1038/s41586-020-2931-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Tumours often contain B cells and plasma cells but the antigen specificity of these intratumoral B cells is not well understood1-8. Here we show that human papillomavirus (HPV)-specific B cell responses are detectable in samples from patients with HPV-positive head and neck cancers, with active production of HPV-specific IgG antibodies in situ. HPV-specific antibody secreting cells (ASCs) were present in the tumour microenvironment, with minimal bystander recruitment of influenza-specific cells, suggesting a localized and antigen-specific ASC response. HPV-specific ASC responses correlated with titres of plasma IgG and were directed against the HPV proteins E2, E6 and E7, with the most dominant response against E2. Using intratumoral B cells and plasma cells, we generated several HPV-specific human monoclonal antibodies, which exhibited a high degree of somatic hypermutation, consistent with chronic antigen exposure. Single-cell RNA sequencing analyses detected activated B cells, germinal centre B cells and ASCs within the tumour microenvironment. Compared with the tumour parenchyma, B cells and ASCs were preferentially localized in the tumour stroma, with well-formed clusters of activated B cells indicating ongoing germinal centre reactions. Overall, we show that antigen-specific activated and germinal centre B cells as well as plasma cells can be found in the tumour microenvironment. Our findings provide a better understanding of humoral immune responses in human cancer and suggest that tumour-infiltrating B cells could be harnessed for the development of therapeutic agents.
Collapse
Affiliation(s)
- Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA,corresponding authors: Material requests and correspondence should be directed to Rafi Ahmed () or Andreas Wieland ()
| | - Mihir R. Patel
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Maria A. Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christiane S. Eberhardt
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - William H. Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca C. Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C. Griffith
- Winship Cancer Institute of Emory University, Atlanta, GA, USA,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhuo G. Chen
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA,Winship Cancer Institute of Emory University, Atlanta, GA, USA,Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F. Saba
- Winship Cancer Institute of Emory University, Atlanta, GA, USA,Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA,Winship Cancer Institute of Emory University, Atlanta, GA, USA,corresponding authors: Material requests and correspondence should be directed to Rafi Ahmed () or Andreas Wieland ()
| |
Collapse
|
30
|
Marofi F, Rahman HS, Achmad MH, Sergeevna KN, Suksatan W, Abdelbasset WK, Mikhailova MV, Shomali N, Yazdanifar M, Hassanzadeh A, Ahmadi M, Motavalli R, Pathak Y, Izadi S, Jarahian M. A Deep Insight Into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front Immunol 2021; 12:681984. [PMID: 34248965 PMCID: PMC8261235 DOI: 10.3389/fimmu.2021.681984] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a cancer that starts in the lymphatic system. In NHL, the important part of the immune system, a type of white blood cells called lymphocytes become cancerous. NHL subtypes include marginal zone lymphoma, small lymphocytic lymphoma, follicular lymphoma (FL), and lymphoplasmacytic lymphoma. The disease can emerge in either aggressive or indolent form. 5-year survival duration after diagnosis is poor among patients with aggressive/relapsing form of NHL. Therefore, it is necessary to understand the molecular mechanisms of pathogenesis involved in NHL establishment and progression. In the next step, we can develop innovative therapies for NHL based on our knowledge in signaling pathways, surface antigens, and tumor milieu of NHL. In the recent few decades, several treatment solutions of NHL mainly based on targeted/directed therapies have been evaluated. These approaches include B-cell receptor (BCR) signaling inhibitors, immunomodulatory agents, monoclonal antibodies (mAbs), epigenetic modulators, Bcl-2 inhibitors, checkpoint inhibitors, and T-cell therapy. In recent years, methods based on T cell immunotherapy have been considered as a novel promising anti-cancer strategy in the treatment of various types of cancers, and particularly in blood cancers. These methods could significantly increase the capacity of the immune system to induce durable anti-cancer responses in patients with chemotherapy-resistant lymphoma. One of the promising therapy methods involved in the triumph of immunotherapy is the chimeric antigen receptor (CAR) T cells with dramatically improved killing activity against tumor cells. The CAR-T cell-based anti-cancer therapy targeting a pan-B-cell marker, CD19 is recently approved by the US Food and Drug Administration (FDA) for the treatment of chemotherapy-resistant B-cell NHL. In this review, we will discuss the structure, molecular mechanisms, results of clinical trials, and the toxicity of CAR-T cell-based therapies. Also, we will criticize the clinical aspects, the treatment considerations, and the challenges and possible drawbacks of the application of CAR-T cells in the treatment of NHL.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Muhammad Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Klunko Nataliya Sergeevna
- Department of Economics and Industrial Engineering, St. Petersburg University of Management and Economics, St. Petersburg, Russia
- Department of Postgraduate and Doctoral Studies, Russian New University, Moscow, Russia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ali Hassanzadeh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Department of Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Subaraya, Indonesia
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
31
|
Okuno S, Adachi Y, Terakura S, Julamanee J, Sakai T, Umemura K, Miyao K, Goto T, Murase A, Shimada K, Nishida T, Murata M, Kiyoi H. Spacer Length Modification Facilitates Discrimination between Normal and Neoplastic Cells and Provides Clinically Relevant CD37 CAR T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2862-2874. [PMID: 34099546 DOI: 10.4049/jimmunol.2000768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
Despite the remarkable initial efficacy of CD19 chimeric Ag receptor T (CAR-T) cell therapy, a high incidence of relapse has been observed. To further increase treatment efficacy and reduce the rate of escape of Ag-negative cells, we need to develop CAR-T cells that target other Ags. Given its restricted expression pattern, CD37 was considered a preferred novel target for immunotherapy in hematopoietic malignancies. Therefore, we designed a CD37-targeting CAR-T (CD37CAR-T) using the single-chain variable fragment of a humanized anti-CD37 Ab, transmembrane and intracellular domains of CD28, and CD3ζ signaling domains. High levels of CD37 expression were confirmed in B cells from human peripheral blood and bone marrow B cell precursors at late developmental stages; by contrast, more limited expression of CD37 was observed in early precursor B cells. Furthermore, we found that human CD37CAR-T cells with longer spacer lengths exhibited high gene transduction efficacy but reduced capacity to proliferate; this may be due to overactivation and fratricide. Spacer length optimization resulted in a modest transduction efficiency together with robust capacity to proliferate. CD37CAR-T cells with optimized spacer length efficiently targeted various CD37+ human tumor cell lines but had no impact on normal leukocytes both in vitro and in vivo. CD37CAR-T cells effectively eradicated Raji cells in xenograft model. Collectively, these results suggested that spacer-optimized CD37CAR-T cells could target CD37-high neoplastic B cells both in vitro and in vivo, with only limited interactions with their normal leukocyte lineages, thereby providing an additional promising therapeutic intervention for patients with B cell malignancies.
Collapse
Affiliation(s)
- Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Jakrawadee Julamanee
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and.,Division of Clinical Hematology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Kotaro Miyao
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Tatsunori Goto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Atsushi Murase
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| |
Collapse
|
32
|
CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Adv 2021; 4:4393-4405. [PMID: 32926125 DOI: 10.1182/bloodadvances.2020001592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022] Open
Abstract
Relapse remains a major obstacle to achieving 100% overall survival rate in pediatric hematologic malignancies like acute lymphoblastic leukemia (ALL). Relapse often results from the development of chemoresistance. One of the mechanisms of chemoresistance involves ALL cell interactions with the bone marrow (BM) microenvironment, providing a sanctuary. This phenomenon is known as BM microenvironment-induced chemoprotection. Members of the transmembrane 4 superfamily (tetraspanins; TSPANs) are known to mediate microenvironmental interactions and have been extensively studied in solid tumors. Although the TSPAN family member CD81 is a minimal residual disease marker, its biological role in ALL is not well characterized. We show for the first time that CD81 knockout induces chemosensitivity, reduces cellular adhesion, and disrupts in vivo BM homing and engraftment in B-ALL. This chemosensitization is mediated through control of Bruton tyrosine kinase signaling and induction of p53-mediated cell death. We then show how CD81-related signaling can be disrupted by treatment with the epigenetic drug combination of DNA hypomethylating agent azacitidine (aza) and histone deacetylase inhibitor panobinostat (pano), which we previously used to sensitize ALL cells to chemotherapy under conditions that promote BM microenvironment-induced chemoprotection. Aza/pano-mediated modulation of CD81 surface expression is involved in decreasing BM load by promoting ALL cell mobilization from BM to peripheral blood and increasing response to chemotherapy in disseminated patient-derived xenograft models. This study identifies the novel role of CD81 in BM microenvironment-induced chemoprotection and delineates the mechanism by which aza/pano successfully sensitizes ALL cells via modulation of CD81.
Collapse
|
33
|
In Vitro Characterization of Human CD24 hiCD38 hi Regulatory B Cells Shows CD9 Is Not a Stable Breg Cell Marker. Int J Mol Sci 2021; 22:ijms22094583. [PMID: 33925530 PMCID: PMC8123770 DOI: 10.3390/ijms22094583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Regulatory B (Breg) cells are endowed with immune suppressive functions. Various human and murine Breg subtypes have been reported. While interleukin (IL)-10 intracellular staining remains the most reliable way to identify Breg cells, this technique hinders further essential functional studies. Recent findings suggest that CD9 is an effective surface marker of murine IL-10 competent Breg cells. However, the stability of CD9 and its relevance as a unique marker for human Breg cells, which have been widely characterized as CD24hiCD38hi, have not been investigated. Here, we demonstrate that CD9 expression is sensitive to in vitro B cell stimulations. CD9 expression could either be re-expressed or downregulated in purified CD9-negative B cells and CD9-positive B cells, respectively. We found no significant differences in the Breg differentiation capacity of the CD9-negative and CD9-positive B cells. Furthermore, CD9-positive B cells co-express CD40 and CD86, suggesting their nature as B cell activation or co-stimulatory molecules, rather than regulatory ones. Therefore, we report the relatively unstable CD9 as a distinct surface molecule, indicating the need for further research for a more reliable marker to purify human Breg cells.
Collapse
|
34
|
CD37 high expression as a potential biomarker and association with poor outcome in acute myeloid leukemia. Biosci Rep 2021; 40:224123. [PMID: 32400873 PMCID: PMC7253400 DOI: 10.1042/bsr20200008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND CD37, a member of the transmembrane 4 superfamilies (TM4SF), has been proved to be abnormally expressed in a range of malignancies. Herein, we investigate the effects of CD37 expression and analyze its clinical outcome in acute myeloid leukemia (AML) patients. METHODS The RNA-seq and clinical data of AML patients were obtained from cBioPortal database. CD37 correlated genes, the expression prolife and survival curve of eight key genes were acquired from Gene Expression Profiling Interactive Analysis (GEPIA) and UALCAN. Pathway enrichment and protein-protein interaction (PPI) network analysis were performed based on metascape databases. RESULTS Our results showed that CD37 mRNA expression level was significantly up-regulated in patients with AML compared with healthy persons. Patients with high CD37 expression had shorter overall survival (OS) and disease-free survival (DFS). Pathway analysis data showed that CD37 is involved in DNA replication, RNA transport, Salmonella infection, ribonucleoprotein complex biogenesis, cell cycle phase transition and so on. Furthermore, we found eight genes correlated with CD37 are all highly expressed in AML patients, and high expression is associated with poor prognosis. CONCLUSION Our study described systematical expression profiles and the prognostic values of CD37 in AML; our data suggested CD37 might be novel therapeutic target and promising prognostic biomarker in the patients.
Collapse
|
35
|
Balzarotti M, Magagnoli M, Canales MÁ, Corradini P, Grande C, Sancho JM, Zaja F, Quinson AM, Belsack V, Maier D, Carlo-Stella C. A phase Ib, open-label, dose-escalation trial of the anti-CD37 monoclonal antibody, BI 836826, in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma. Invest New Drugs 2021; 39:1028-1035. [PMID: 33523334 PMCID: PMC8279964 DOI: 10.1007/s10637-020-01054-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
Background BI 836826 is a chimeric mouse–human monoclonal antibody directed against human CD37, a transmembrane protein expressed on mature B lymphocytes. This open-label, phase I dose-escalation trial (NCT02624492) was conducted to determine the maximum tolerated dose (MTD), safety/tolerability, and preliminary efficacy of BI 836826 in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Methods Eligible patients received intravenous infusions of BI 836826 on day 8 and gemcitabine 1000 mg/m2 plus oxaliplatin 100 mg/m2 on day 1, for up to six 14-day treatment cycles. Dose escalation followed the standard 3 + 3 design. Results Of 21 treated patients, 17 had relapsed/refractory DLBCL and four had follicular lymphoma transformed to DLBCL. BI 836826 dosing started at 25 mg and proceeded through 50 mg and 100 mg. Two dose-limiting toxicities (DLTs) occurred during cycle 1, both grade 4 thrombocytopenia lasting > 7 days, affecting 1/6 evaluable patients (17%) in both the 50 mg and 100 mg cohorts. Due to early termination of the study, the MTD was not determined. The most common adverse events related to BI 836826 treatment were neutropenia (52%), thrombocytopenia (48%), and anemia (48%). Eight patients (38%) experienced BI 836826-related infusion-related reactions (two grade 3). Overall objective response rate was 38%, including two patients (10%) with complete remission and six patients (29%) with partial remission. Conclusions BI 836826 in combination with GemOx was generally well tolerated but did not exceed the MTD at doses up to 100 mg given every 14 days.
Collapse
Affiliation(s)
- Monica Balzarotti
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Massimo Magagnoli
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | | | - Paolo Corradini
- University of Milan, Milan, Italy
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Juan-Manuel Sancho
- Clinical Hematology Department, ICO-IJC-Hospital Germans Trias i Pujol, Badalona, Spain
| | - Francesco Zaja
- University of Trieste, Ospedale Maggiore, Piazza dell'Ospitale 1, Trieste, Italy
| | | | | | - Daniela Maier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carmelo Carlo-Stella
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
36
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
37
|
Zhao H, Wang Y, Yin ETS, Zhao K, Hu Y, Huang H. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma. Front Med 2020; 14:711-725. [DOI: 10.1007/s11684-020-0808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
AbstractThe combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T (CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50% of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19 CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two years after the CAR-T cell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20, CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore, optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients with lymphoma after the CAR-T cell therapy.
Collapse
|
38
|
Kroschinsky F, Middeke JM, Janz M, Lenz G, Witzens-Harig M, Bouabdallah R, La Rosée P, Viardot A, Salles G, Kim SJ, Kim TM, Ottmann O, Chromik J, Quinson AM, von Wangenheim U, Burkard U, Berk A, Schmitz N. Phase I dose escalation study of BI 836826 (CD37 antibody) in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Invest New Drugs 2020; 38:1472-1482. [PMID: 32172489 PMCID: PMC7497676 DOI: 10.1007/s10637-020-00916-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
BI 836826 is a chimeric immunoglobulin G1 antibody targeting CD37, a tetraspanin transmembrane protein predominantly expressed on normal and malignant B cells. This phase I, open-label study used a modified 3 + 3 design to evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary activity of BI 836826 in patients with relapsed/refractory B cell non-Hodgkin lymphoma (NHL; NCT01403948). Eligible patients received up to three courses comprising an intravenous infusion (starting dose: 1 mg) once weekly for 4 weeks followed by an observation period of 27 (Course 1, 2) or 55 days (Course 3). Patients had to demonstrate clinical benefit before commencing treatment beyond course 2. Forty-eight patients were treated. In the dose escalation phase (1-200 mg) involving 37 Caucasian patients, the MTD was 100 mg. Dose-limiting toxicities occurred in four patients during the MTD evaluation period, and included stomatitis, febrile neutropenia, hypocalcemia, hypokalemia, and hypophosphatemia. The most common adverse events were neutropenia (57%), leukopenia (57%), and thrombocytopenia (41%), and were commonly of grade 3 or 4. Overall, 18 (38%) patients experienced infusion-related reactions, which were mostly grade 1 or 2. Preliminary evidence of anti-tumor activity was seen; three patients responded to treatment, including one complete remission in a Korean patient with diffuse large B cell lymphoma. BI 836826 plasma exposure increased more than proportionally with increasing doses. BI 836826 demonstrated preliminary activity; the most frequent adverse events were hematotoxicity and infusion-related reactions which were manageable after amending the infusion schedule. Although BI 856826 will not undergo further clinical development, these results confirm CD37 as a valid therapeutic target in B cell NHL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antigens, Neoplasm
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/blood
- Antineoplastic Agents, Immunological/pharmacokinetics
- Drug Resistance, Neoplasm
- Female
- Humans
- Infusions, Intravenous
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Male
- Maximum Tolerated Dose
- Middle Aged
- Receptors, IgG/genetics
- Recurrence
- Tetraspanins/antagonists & inhibitors
- Treatment Outcome
- beta 2-Microglobulin/blood
Collapse
Affiliation(s)
- Frank Kroschinsky
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jan Moritz Middeke
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Georg Lenz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Mathias Witzens-Harig
- Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Reda Bouabdallah
- Department of Hematology, Institute Paoli Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Paul La Rosée
- Klinik für Innere Medizin II, Universitätsklinikum, Jena, Germany
- Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schweningen, Germany
| | - Andreas Viardot
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Gilles Salles
- Department of Hematology, University Hospital of South Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| | - Seok Jin Kim
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Irwon-dong, Gangnam-gu, Seoul, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Oliver Ottmann
- Division of Cancer and Genetics, Department of Haematology, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Joerg Chromik
- Universitätsklinikum Frankfurt, Johann-Wolfgang-Goethe-Universität, Theodor-W.-Adorno-Platz 1, 60323, Frankfurt, Germany
| | - Anne-Marie Quinson
- Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Ute von Wangenheim
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Ute Burkard
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Andreas Berk
- ClinTriCare GmbH & Co. KG, Untere Illereicher Str. 10, 89281, Altenstadt, Germany
| | - Norbert Schmitz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
39
|
Xing C, Xu W, Shi Y, Zhou B, Wu D, Liang B, Zhou Y, Gao S, Feng J. CD9 knockdown suppresses cell proliferation, adhesion, migration and invasion, while promoting apoptosis and the efficacy of chemotherapeutic drugs and imatinib in Ph+ ALL SUP‑B15 cells. Mol Med Rep 2020; 22:2791-2800. [PMID: 32945456 PMCID: PMC7453647 DOI: 10.3892/mmr.2020.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Philadelphia chromosome‑positive acute lymphoblastic leukemia (Ph+ ALL) is regarded as a prognostically unfavorable subgroup, as this ALL subgroup has an increased risk of relapse/refractory disease. CD9, which belongs to the tetraspanin membrane proteins, is implicated in several pathological processes, including tumor progression. However, the role of CD9 in the pathogenesis of Ph+ ALL and the potential benefit of applying CD9‑targeted RNA interference strategies for treatment of Ph+ ALL require further investigation. The aim of the present study was to determine the effects of CD9 on leukemic cell progression and the efficacy of therapeutic agents in Ph+ ALL cells, in addition to assessing the in vitro anti‑leukemia activity of CD9‑targeted RNA interference in Ph+ ALL cells. In the present study, a lentiviral short hairpin RNA (shRNA) expression vector targeting CD9 gene in Ph+ ALL SUP‑B15 cells was constructed. The present results demonstrated that treatment of SUP‑B15 cells with lentiviral‑mediated shRNA against CD9 decreased CD9 mRNA and protein expression compared with the shControl cells transduced with a blank vector. In addition, CD9 knockdown could suppress cell proliferation, adhesion, migration and invasion, and promote apoptosis and the efficacy of chemotherapeutic drugs (such as vincristine, daunorubicin, cyclophosphamide and dexamethasone) and the tyrosine kinase inhibitor imatinib in SUP‑B15 cells. Furthermore, CD9 knockdown suppressed cell proliferation and promoted apoptosis in SUP‑B15 cells via a p53‑dependent pathway. These findings suggested that gene silencing of CD9 using a shRNA‑expressing lentivirus vector may provide a promising treatment for Ph+ ALL.
Collapse
Affiliation(s)
- Chongyun Xing
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wanling Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianhua Feng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Pediatric Hematology-Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
40
|
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, Li W. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J 2020; 39:e105246. [PMID: 32974937 PMCID: PMC7507038 DOI: 10.15252/embj.2020105246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.
Collapse
Affiliation(s)
- Yihu Yang
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Zev J Greenberg
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Fengbo Zhou
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Peng He
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Lingling Fan
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Shixuan Liu
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Guomin Shen
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Takeshi Egawa
- Department of Pediatrics Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | | | - Laura G Schuettpelz
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Weikai Li
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
41
|
Sanoja-Flores L, Flores-Montero J, Pérez-Andrés M, Puig N, Orfao A. Detection of Circulating Tumor Plasma Cells in Monoclonal Gammopathies: Methods, Pathogenic Role, and Clinical Implications. Cancers (Basel) 2020; 12:E1499. [PMID: 32521788 PMCID: PMC7352573 DOI: 10.3390/cancers12061499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer dissemination and distant metastasis most frequently require the release of tumor cells into the blood circulation, both in solid tumors and most hematological malignancies, including plasma cell neoplasms. However, detection of blood circulating tumor cells in solid tumors and some hematological malignancies, such as the majority of mature/peripheral B-cell lymphomas and monoclonal gammopathies, has long been a challenge due to their very low frequency. In recent years, the availability of highly-sensitive and standardized methods for the detection of circulating tumor plasma cells (CTPC) in monoclonal gammopathies, e.g., next-generation flow cytometry (NGF), demonstrated the systematic presence of CTPC in blood in virtually every smoldering (SMM) and symptomatic multiple myeloma (MM) patient studied at diagnosis, and in the majority of patients with newly-diagnosed monoclonal gammopathies of undetermined significance (MGUS). These methods set the basis for further detailed characterization of CTPC vs. their bone marrow counterpart in monoclonal gammopathies, to investigate their role in the biology of the disease, and to confirm their strong impact on patient outcome when measured both at diagnosis and after initiating therapy. Here, we review the currently available techniques for the detection of CTPC, and determine their biological features, physiopathological role and clinical significance in patients diagnosed with distinct diagnostic categories of plasma cell neoplasms.
Collapse
Affiliation(s)
- Luzalba Sanoja-Flores
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- University of Salamanca, 37007 Salamanca, Spain; (L.S.-F.); (J.F.-M.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBER-ONC number CB16/12/00400, Instituto Carlos III, 28029 Madrid, Spain
| | - Juan Flores-Montero
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- University of Salamanca, 37007 Salamanca, Spain; (L.S.-F.); (J.F.-M.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBER-ONC number CB16/12/00400, Instituto Carlos III, 28029 Madrid, Spain
| | - Martín Pérez-Andrés
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- University of Salamanca, 37007 Salamanca, Spain; (L.S.-F.); (J.F.-M.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBER-ONC number CB16/12/00400, Instituto Carlos III, 28029 Madrid, Spain
| | - Noemí Puig
- Department of Hematology, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Cáncer, CIBER-ONC number CB16/12/00233, Instituto Carlos III, 28029 Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)- University of Salamanca, 37007 Salamanca, Spain; (L.S.-F.); (J.F.-M.); (M.P.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBER-ONC number CB16/12/00400, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|
42
|
Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv 2020; 3:1230-1243. [PMID: 30979721 DOI: 10.1182/bloodadvances.2018029678] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
T cells modified to express chimeric antigen receptor (CAR) targeting CD19 (CD19CAR) have produced remarkable clinical responses in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. CD19CAR T-cell therapy has also demonstrated prominent effects in B-cell non-Hodgkin lymphoma (B-NHL) patients. However, a subset of patients who relapse after CD19CAR T-cell therapy have outgrowth of CD19- tumor cells. Hence, development of alternative CARs targeting other B-cell markers represents an unmet medical need for B-cell acute lymphoblastic leukemia and B-NHL. Here, we confirmed previous data by showing that, overall, B-NHL has high expression of CD37. A second-generation CD37CAR was designed, and its efficacy in T cells was compared with that of CD19CAR. In vitro assessment of cytotoxicity and T-cell function upon coculture of the CAR T cells with different target B-cell lymphoma cell lines demonstrated comparable efficacy between the 2 CARs. In an aggressive B-cell lymphoma xenograft model, CD37CAR T cells were as potent as CD19CAR T cells in controlling tumor growth. In a second xenograft model, using U2932 lymphoma cells containing a CD19- subpopulation, CD37CAR T cells efficiently controlled tumor growth and prolonged survival, whereas CD19CAR T cells had limited effect. We further show that, unlike CD19CAR, CD37CAR was not sensitive to antigen masking. Finally, CD37CAR reactivity was restricted to B-lineage cells. Collectively, our results demonstrated that CD37CAR T cells also can effectively eradicate B-cell lymphoma tumors when CD19 antigen expression is lost and support further clinical testing for patients with relapsed/refractory B-NHL.
Collapse
|
43
|
Don MD, Lim W, Lo A, Cox B, Huang Q, Kitahara S, Lopategui J, Alkan S. Improved Recognition of Hematogones From Precursor B-Lymphoblastic Leukemia by a Single Tube Flow Cytometric Analysis. Am J Clin Pathol 2020; 153:790-798. [PMID: 32068791 DOI: 10.1093/ajcp/aqaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To improve diagnostic accuracy in differentiating hematogones from leukemic blasts in cases of precursor B-lymphoblastic leukemia/lymphoma (B-ALL), particularly those that are posttreatment or after bone marrow transplant, and to provide an algorithmic approach to this diagnostic challenge. METHODS A seven-color antibody panel including CD10, CD19, CD45, CD38, CD34, CD58, and CD81 was generated to assess the feasibility of a single tube panel and provide an algorithmic approach to distinguish hematogones from B-ALL. Fifty-three cases were analyzed, and results were correlated with histology and ancillary studies. RESULTS There was a significant difference in mean fluorescent intensity (MFI) for CD81 and CD58 when comparing hematogones and B-ALL populations (P < .001). B-ALL cases had a mean (SD) MFI of 24.6 (27.5; range, 2-125) for CD81 and 135.6 (72.6; range, 48-328) for CD58. Hematogones cases had a mean (SD) MFI of 70.2 (19.2; range, 42-123) for CD81 and 38.8 (9.4; range, 23-58) for CD58. CONCLUSIONS The flow cytometry panel with the above markers and utilization of the proposed algorithmic approach provide differentiation of hematogones from B-ALL. This includes rare cases of hematogones and B-ALL overlap where additional ancillary studies are necessary.
Collapse
Affiliation(s)
- Michelle D Don
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Washington Lim
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Amanda Lo
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Brian Cox
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Qin Huang
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sumire Kitahara
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jean Lopategui
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Serhan Alkan
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
44
|
DuoHexaBody-CD37 ®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J 2020; 10:30. [PMID: 32341336 PMCID: PMC7186228 DOI: 10.1038/s41408-020-0292-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
Tetraspanin CD37 has recently received renewed interest as a therapeutic target for B-cell malignancies. Although complement-dependent cytotoxicity (CDC) is a powerful Fc-mediated effector function for killing hematological cancer cells, CD37-specific antibodies are generally poor inducers of CDC. To enhance CDC, the E430G mutation was introduced into humanized CD37 monoclonal IgG1 antibodies to drive more efficient IgG hexamer formation through intermolecular Fc-Fc interactions after cell surface antigen binding. DuoHexaBody-CD37, a bispecific CD37 antibody with the E430G hexamerization-enhancing mutation targeting two non-overlapping epitopes on CD37 (biparatopic), demonstrated potent and superior CDC activity compared to other CD37 antibody variants evaluated, in particular ex vivo in patient-derived chronic lymphocytic leukemia cells. The superior CDC potency was attributed to enhanced IgG hexamerization mediated by the E430G mutation in combination with dual epitope targeting. The mechanism of action of DuoHexaBody-CD37 was shown to be multifaceted, as it was additionally capable of inducing efficient antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in vitro. Finally, potent anti-tumor activity in vivo was observed in cell line- and patient-derived xenograft models from different B-cell malignancy subtypes. These encouraging preclinical results suggest that DuoHexaBody-CD37 (GEN3009) may serve as a potential therapeutic antibody for the treatment of human B-cell malignancies.
Collapse
|
45
|
Susa KJ, Seegar TCM, Blacklow SC, Kruse AC. A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. eLife 2020; 9:e52337. [PMID: 32338599 PMCID: PMC7228769 DOI: 10.7554/elife.52337] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
CD81 and its binding partner CD19 are core subunits of the B cell co-receptor complex. While CD19 belongs to the extensively studied Ig superfamily, CD81 belongs to a poorly understood family of four-pass transmembrane proteins called tetraspanins. Tetraspanins play important physiological roles by controlling protein trafficking and other processes. Here, we show that CD81 relies on its ectodomain to traffic CD19 to the cell surface. Moreover, the anti-CD81 antibody 5A6, which binds selectively to activated B cells, recognizes a conformational epitope on CD81 that is masked when CD81 is bound to CD19. Mutations of CD81 in this interface suppress its CD19 export activity. These data indicate that the CD81 - CD19 interaction is dynamically regulated upon B cell activation and this dynamism can be exploited to regulate B cell function. These results are not only valuable for understanding B cell biology, but also have important implications for understanding tetraspanin function generally.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Tom CM Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Dana Farber Cancer Institute, Department of Cancer BiologyBostonUnited States
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
46
|
Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21041377. [PMID: 32085659 PMCID: PMC7073093 DOI: 10.3390/ijms21041377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of oncogenic gene expression by transcription factors that function as tumor suppressors is one of the major mechanisms that regulate leukemogenesis. Understanding this complex process is essential for explaining the pathogenesis of leukemia as well as developing targeted therapies. Here, we provide an overview of the role of Ikaros tumor suppressor and its role in regulation of gene transcription in acute leukemia. Ikaros (IKZF1) is a DNA-binding protein that functions as a master regulator of hematopoiesis and the immune system, as well as a tumor suppressor in acute lymphoblastic leukemia (ALL). Genetic alteration or functional inactivation of Ikaros results in the development of high-risk leukemia. Ikaros binds to the specific consensus binding motif at upstream regulatory elements of its target genes, recruits chromatin-remodeling complexes and activates or represses transcription via chromatin remodeling. Over the last twenty years, a large number of Ikaros target genes have been identified, and the role of Ikaros in the regulation of their expression provided insight into the mechanisms of Ikaros tumor suppressor function in leukemia. Here we summarize the role of Ikaros in the regulation of the expression of the genes whose function is critical for cellular proliferation, development, and progression of acute lymphoblastic leukemia.
Collapse
|
47
|
Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 2019; 12:141. [PMID: 31884955 PMCID: PMC6936092 DOI: 10.1186/s13045-019-0801-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in treating B cell malignancies in clinical trials; however, fewer studies have evaluated CAR T cell therapy for the treatment of T cell malignancies. There are many challenges in translating this therapy for T cell disease, including fratricide, T cell aplasia, and product contamination. To the best of our knowledge, no tumor-specific antigen has been identified with universal expression on cancerous T cells, hindering CAR T cell therapy for these malignancies. Numerous approaches have been assessed to address each of these challenges, such as (i) disrupting target antigen expression on CAR-modified T cells, (ii) targeting antigens with limited expression on T cells, and (iii) using third party donor cells that are either non-alloreactive or have been genome edited at the T cell receptor α constant (TRAC) locus. In this review, we discuss CAR approaches that have been explored both in preclinical and clinical studies targeting T cell antigens, as well as examine other potential strategies that can be used to successfully translate this therapy for T cell disease.
Collapse
Affiliation(s)
- Lauren C Fleischer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
48
|
Greenberg ZJ, Monlish DA, Bartnett RL, Yang Y, Shen G, Li W, Bednarski JJ, Schuettpelz LG. The Tetraspanin CD53 Regulates Early B Cell Development by Promoting IL-7R Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 204:58-67. [PMID: 31748347 DOI: 10.4049/jimmunol.1900539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/25/2019] [Indexed: 11/19/2022]
Abstract
The tetraspanin CD53 has been implicated in B cell development and function. CD53 is a transcriptional target of EBF1, a critical transcription factor for early B cell development. Further, human deficiency of CD53 results in recurrent infections and reduced serum Igs. Although prior studies have indicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. In this study, we show that CD53 expression, which is minimal on hematopoietic stem and progenitor cells, increases throughout bone marrow B cell maturation, and mice lacking CD53 have significantly decreased bone marrow, splenic, lymphatic, and peripheral B cells. Mixed bone marrow chimeras show that CD53 functions cell autonomously to promote B lymphopoiesis. Cd53-/- mice have reduced surface expression of IL-7Rα and diminished phosphatidylinositol 3 kinase and JAK/STAT signaling in prepro- and pro-B cells. Signaling through these pathways via IL-7R is essential for early B cell survival and transition from the pro-B to pre-B cell developmental stage. Indeed, we find increased apoptosis in developing B cells and an associated reduction in pre-B and immature B cell populations in the absence of CD53. Coimmunoprecipitation and proximity ligation studies demonstrate physical interaction between CD53 and IL-7R. Together, these data, to our knowledge, suggest a novel role for CD53 during IL-7 signaling to promote early B cell differentiation.
Collapse
Affiliation(s)
- Zev J Greenberg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Darlene A Monlish
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Rachel L Bartnett
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Guomin Shen
- College of Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
49
|
High frequency of inactivating tetraspanin C D37 mutations in diffuse large B-cell lymphoma at immune-privileged sites. Blood 2019; 134:946-950. [PMID: 31366619 DOI: 10.1182/blood.2019001185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022] Open
Abstract
Tetraspanin CD37 is predominantly expressed on the cell surface of mature B lymphocytes and is currently being studied as novel therapeutic target for B-cell lymphoma. Recently, we demonstrated that loss of CD37 induces spontaneous B-cell lymphoma in Cd37-knockout mice and correlates with inferior survival in patients with diffuse large B-cell lymphoma (DLBCL). Here, CD37 mutation analysis was performed in a cohort of 137 primary DLBCL samples, including 44 primary immune-privileged site-associated DLBCL (IP-DLBCL) samples originating in the testis or central nervous system. CD37 mutations were exclusively identified in IP-DLBCL cases (10/44, 23%) but absent in non-IP-DLBCL cases. The aberrations included 10 missense mutations, 1 deletion, and 3 splice-site CD37 mutations. Modeling and functional analysis of CD37 missense mutations revealed loss of function by impaired CD37 protein expression at the plasma membrane of human lymphoma B cells. This study provides novel insight into the molecular pathogenesis of IP-DLBCL and indicates that anti-CD37 therapies will be more beneficial for DLBCL patients without CD37 mutations.
Collapse
|
50
|
Salem DA, Scott D, McCoy CS, Liewehr DJ, Venzon DJ, Arons E, Kreitman RJ, Stetler-Stevenson M, Yuan CM. Differential Expression of CD43, CD81, and CD200 in Classic Versus Variant Hairy Cell Leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:275-282. [PMID: 31077558 DOI: 10.1002/cyto.b.21785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/05/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hairy cell leukemia (HCL) and hairy cell leukemia variant (HCLv) are rare diseases with overlapping clinicopathological features. Features distinguishing HCL from HCLv include expression of CD25, CD123, CD200, annexin-A1, and the presence of BRAF V600E mutation. HCLv typically lacks these markers, but they may occur in a subgroup of HCL patients with an aggressive clinical course. We examined CD43, CD81, CD79b, and CD200 expression in HCL and HCLv. METHODS Multiparametric flow cytometry (FCM) was performed on blood from 59 HCL and 15 HCLv patients for protocol entry. Mean fluorescent intensity (MFI) of CD43, CD79b, CD81, and CD200 was determined (for CD200, n = 17 and 7, respectively). RESULTS Median MFI of HCL vs HCLv was 545 vs 272 for CD43, 602 vs 2,450 for CD81, 4,962 vs 1,969 for CD79b, and 11,652 vs 1,405 for CD200, respectively. Analysis of the median differences, HCL minus HCLv (and their 95% confidence intervals and P-values) indicated that CD43 MFI (estimated median difference (95% CI): 212 [72-413; P = 0.0027) and CD200 MFI (9,883 [3,514-13,434]; P < 0.0001) were higher in HCL than in HCLv, while CD81 MFI (-1,858 [-2,604 to -1,365]; P < 0.0001) was lower in HCL than in HCLv. CD79b MFI HCL median was more than double that of HCLv, but the observed difference (1,571 [-739 to 4,417]) was consistent with the null hypothesis of no difference (P = 0.13). CONCLUSIONS CD200, CD43, and CD81 are likely differentially expressed between HCL and HCLv, reflecting their differing disease biology. Inclusion of these markers in FCM is potentially informative. © 2019 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Dalia A Salem
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, Maryland.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Drake Scott
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, Maryland
| | | | - David J Liewehr
- Biostatistics and Data Management Section, CCR, NCI, NIH, Bethesda, Maryland
| | - David J Venzon
- Biostatistics and Data Management Section, CCR, NCI, NIH, Bethesda, Maryland
| | - Evgeny Arons
- Laboratory of Molecular Biology, Clinical Immunotherapy Section, CCR, NCI, NIH, Bethesda, Maryland
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Clinical Immunotherapy Section, CCR, NCI, NIH, Bethesda, Maryland
| | | | | |
Collapse
|