1
|
Torner AJ, Baune BT, Folta-Schoofs K, Dietrich DE. Analysis of BoDV-1 status, EEG resting-state alpha activity and pro-inflammatory cytokines in adults with and without major depressive disorder. Front Psychol 2024; 15:1499446. [PMID: 39640040 PMCID: PMC11619436 DOI: 10.3389/fpsyg.2024.1499446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction In severe cases, an infection with the Borna Disease Virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported to be accompanied by cognitive dysfunctions, seizures, deep coma, or severe to fatal encephalitis in humans. In addition, asymptomatic or mild courses of BoDV-1 infection are discussed to act as a co-factor in the etiology of Major Depressive Disorder (MDD). Previously, studies using electroencephalography (EEG) reported BoDV-1-dependent changes in event-related potentials (ERPs), thus indicating the use and added value of non-invasive studies in Borna research. Methods Here, we examined possible connections between BoDV-1 status, EEG restingstate alpha activity, and serum levels of pro-inflammatory Interleukin 6 (IL-6) and Interleukin 8 (IL-8) in MDD patients and in a comparison group of adults without MDD diagnosis. Results Interestingly, for both groups, we revealed a comparable high number of BoDV-1 positive and BoDV-1 negative participants. Compared to adults without MDD diagnosis, MDD patients showed a decrease in their relative EEG alpha power at posterio-central, but increased values at anterio-central electrode sites. Most important, no group-dependent effect of BoDV-1 status on EEG resting-state activity had been observed. Compared to BoDV-1 positive and negative adults without MDD diagnosis, as well as BoDV-1 positive MDD patients, BoDV-1 negative MDD patients revealed a comparatively weak significant negative correlation between relative fronto-central EEG alpha power and concentrations of pro-inflammatory IL-8. Discussion Taken together, our data confirm MDD-dependent alterations in EEG resting-state alpha activity, which, however, were not accompanied by major BoDV-1 dependent neurophysiological or immunological effects. Future - probably more invasive - studies further have to clarify the significance of the observed negative correlation between relative fronto-central EEG alpha power and concentrations of pro-inflammatory IL-8.
Collapse
Affiliation(s)
- Anna J. Torner
- Neurodidactics & NeuroLab, Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristian Folta-Schoofs
- Neurodidactics & NeuroLab, Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | - Detlef E. Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Mental Health, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
2
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|
3
|
Zhang Y, Alwin Prem Anand A, Bode L, Ludwig H, Emrich HM, Dietrich DE. Word recognition memory and serum levels of Borna disease virus specific circulating immune complexes in obsessive-compulsive disorder. BMC Psychiatry 2022; 22:597. [PMID: 36076225 PMCID: PMC9454108 DOI: 10.1186/s12888-022-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that persistently infects mammals including humans. BoDV-1 worldwide occurring strains display highly conserved genomes with overlapping genetic signatures between those of either human or animal origin. BoDV-1 infection may cause behavioral and cognitive disturbances in animals but has also been found in human major depression and obsessive-compulsive disorder (OCD). However, the impact of BoDV-1 on memory functions in OCD is unknown. METHOD To evaluate the cognitive impact of BoDV-1 in OCD, event-related brain potentials (ERPs) were recorded in a continuous word recognition paradigm in OCD patients (n = 16) and in healthy controls (n = 12). According to the presence of BoDV-1-specific circulating immune complexes (CIC), they were divided into two groups, namely group H (high) and L (low), n = 8 each. Typically, ERPs to repeated items are characterized by more positive waveforms beginning approximately 250 ms post-stimulus. This "old/new effect" has been shown to be relevant for memory processing. The early old/new effect (ca. 300-500 ms) with a frontal distribution is proposed to be a neural correlate of familiarity-based recognition. The late old/new effect (post-500 ms) is supposed to reflect memory recollection processes. RESULTS OCD patients were reported to show a normal early old/new effect and a reduced late old/new effect compared to normal controls. In our study, OCD patients with a high virus load (group H) displayed exactly these effects, while patients with a low virus load (group L) did not differ from healthy controls. CONCLUSION These results confirmed that OCD patients had impaired memory recollection processes compared to the normal controls which may to some extent be related to their BoDV-1 infection.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany. .,Present Address: Social Psychiatry Counseling Center, Region Hannover, Podbielskistr. 157, 30177, Hanover, Germany.
| | - A Alwin Prem Anand
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, Beerenstr. 41, 14163 Berlin, Germany
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, Beerenstr. 41, 14163 Berlin, Germany
| | - Hinderk M. Emrich
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany
| | - Detlef E. Dietrich
- grid.10423.340000 0000 9529 9877Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hanover, Germany ,AMEOS Klinikum Hildesheim, Goslarsche Landstr. 60, 31135 Hildesheim, Germany ,grid.412970.90000 0001 0126 6191Center for Systems Neuroscience Hannover, Hanover, Germany
| |
Collapse
|
4
|
Guo Y, He P, Sun L, Zhang X, Xu X, Tang T, Zhou W, Li Q, Zou D, Bode L, Xie P. Full-length genomic sequencing and characterization of Borna disease virus 1 isolates: Lessons in epidemiology. J Med Virol 2020; 92:3125-3137. [PMID: 32343416 DOI: 10.1002/jmv.25951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Borna disease virus 1 (BoDV-1) is a nonsegmented, negative-strand RNA virus that infects mammals including humans. BoDV-1 strains occur globally, dominate the species Mammalian 1 bornavirus, and display highly conserved genomes and persistent infection (brain, blood). Subclinical infections prevail but the rare fatal outcomes even in people need awareness and risk assessment. Although BoDV-1 strains were successfully isolated, only limited full genomic sequences are available. In this study, the entire genomes of two natural BoDV-1 isolates (Hu-H2, Equ-Cres) and one vaccine strain (DessVac) were sequenced. They were compared with 20 genomes and 20 single-gene sequences (N and P) of worldwide human strains from psychiatric and neurologic patients and animal strains from horses with Borna disease available at GenBank. Phylogenetic analyses confirmed a low divergence not exceeding 5.55%, 5.34%, and 4.94% at the genome, P-gene, and N-gene level, respectively, characteristic of BoDV-1. Human viruses tended to cluster at the country level but appeared to be independent of hosts' diseases and/or time of isolation. Notably, our data also indicated that human viruses provided individual genetic signatures but exhibited no distinct genotypes that separated them from animal strains. Sequence similarities thus occurred between different host species and distant geographic regions, supporting global BoDV-1 prevalence. Overall low genetic divergence among BoDV-1 viruses shown here also argued against zoonotic concepts, requiring further clarification beyond sequence similarities. Finally, unlike shared sequence conservation, phenotyping of natural and laboratory variants revealed that they manipulated host cells differently, underpinning the authenticity of the human BoDV-1 strains.
Collapse
Affiliation(s)
- Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory medicine, Chongqing Medical University, Chongqing, China
| | - Peng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Sun
- Department of Pain, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liv Bode
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Berlin, Germany
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Bode L, Xie P, Dietrich DE, Zaliunaite V, Ludwig H. Are human Borna disease virus 1 infections zoonotic and fatal? THE LANCET INFECTIOUS DISEASES 2020; 20:650-651. [DOI: 10.1016/s1473-3099(20)30380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
6
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
7
|
Dietrich DE, Bode L, Spannhuth CW, Hecker H, Ludwig H, Emrich HM. Antiviral treatment perspective against Borna disease virus 1 infection in major depression: a double-blind placebo-controlled randomized clinical trial. BMC Pharmacol Toxicol 2020; 21:12. [PMID: 32066504 PMCID: PMC7027224 DOI: 10.1186/s40360-020-0391-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Whether Borna disease virus (BDV-1) is a human pathogen remained controversial until recent encephalitis cases showed BDV-1 infection could even be deadly. This called to mind previous evidence for an infectious contribution of BDV-1 to mental disorders. Pilot open trials suggested that BDV-1 infected depressed patients benefitted from antiviral therapy with a licensed drug (amantadine) which also tested sensitive in vitro. Here, we designed a double-blind placebo-controlled randomized clinical trial (RCT) which cross-linked depression and BDV-1 infection, addressing both the antidepressant and antiviral efficacy of amantadine. Methods The interventional phase II RCT (two 7-weeks-treatment periods and a 12-months follow-up) at the Hannover Medical School (MHH), Germany, assigned currently depressed BDV-1 infected patients with either major depression (MD; N = 23) or bipolar disorder (BD; N = 13) to amantadine sulphate (PK-Merz®; twice 100 mg orally daily) or placebo treatment, and contrariwise, respectively. Clinical changes were assessed every 2–3 weeks by the 21-item Hamilton rating scale for depression (HAMD) (total, single, and combined scores). BDV-1 activity was determined accordingly in blood plasma by enzyme immune assays for antigens (PAG), antibodies (AB) and circulating immune complexes (CIC). Results Primary outcomes (≥25% HAMD reduction, week 7) were 81.3% amantadine vs. 35.3% placebo responder (p = 0.003), a large clinical effect size (ES; Cohen’s d) of 1.046, and excellent drug tolerance. Amantadine was safe reducing suicidal behaviour in the first 2 weeks. Pre-treatment maximum infection levels were predictive of clinical improvement (AB, p = 0.001; PAG, p = 0.026; HAMD week 7). Respective PAG and CIC levels correlated with AB reduction (p = 0,001 and p = 0.034, respectively). Follow-up benefits (12 months) correlated with dropped cumulative infection measures over time (p < 0.001). In vitro, amantadine concentrations as low as 2.4–10 ng/mL (50% infection-inhibitory dose) prevented infection with human BDV Hu-H1, while closely related memantine failed up to 100,000-fold higher concentration (200 μg/mL). Conclusions Our findings indicate profound antidepressant efficacy of safe oral amantadine treatment, paralleling antiviral effects at various infection levels. This not only supports the paradigm of a link of BDV-1 infection and depression. It provides a novel possibly practice-changing low cost mental health care perspective for depressed BDV-1-infected patients addressing global needs. Trial registration The trial was retrospectively registered in the German Clinical Trials Registry on 04th of March 2015. The trial ID is DRKS00007649; https://www.drks.de/drks_web/setLocale_EN.do
Collapse
Affiliation(s)
- Detlef E Dietrich
- Department of Psychiatry, Burghof-Clinic, Ritterstr. 19, 31737, Rinteln, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany. .,Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| | - Liv Bode
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany.
| | - Carsten W Spannhuth
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hartmut Hecker
- Department of Biometrics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Hanns Ludwig
- Joint Senior Scientists, Freelance Bornavirus Workgroup, Beerenstr. 41, 14163, Berlin, Germany
| | - Hinderk M Emrich
- Department of Mental Health, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| |
Collapse
|
8
|
Bornavirus. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:519-532. [DOI: 10.1007/s00103-019-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Arab A, Mohebbi A, Afshar H, Moradi A. Multi-factorial Etiology of Bipolar Disorder and Schizophrenia in Iran: No Evidence of Borna Disease Virus Genome. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.5.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
10
|
Huang Y, Li XM, Chen SG, Deng J, Lei Y, Li WJ, Zhang HZ, Zhang H, Li D, Xie P. Application of antibodies against Borna disease virus phosphoprotein and nucleoprotein on paraffin sections. Mol Med Rep 2018; 17:5416-5422. [PMID: 29363723 DOI: 10.3892/mmr.2018.8467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
In order to study the application of antibodies against recombinant proteins for detecting Borna disease virus (BDV) phosphoprotein (p24) and nucleoprotein (p40) (BDV‑p24/p40) on paraffin sections by immunohistochemistry. The purified fusion p24 and p40 proteins were used for the preparation of polyclonal and monoclonal anti‑p24 and anti‑40 antibodies, which were confirmed by ELISA and western blotting. Paraffin sections were made from BDV‑infected Sprague‑Dawley (SD) rats (n=20), PBS‑injected SD rats (n=20), normal SD rats (n=20) and normal C57 mice (n=20). Immunohistochemical staining was performed according to the EnVision™ two‑step protocol. Heat‑mediated antigen retrieval was performed using the retrieval buffer sodium citrate (1 mM; pH 6.0). All the antibodies against recombinant proteins exhibited good sensitivity and specificity. There were significant differences between the BDV‑infected group and the BDV‑uninfected group for poly‑ and monoclonal anti‑p24 and ‑p40 antibodies. These antibodies against recombinant proteins may be used effectively to detect BDV p24 and p40 in paraffin sections.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao-Mei Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shi-Gang Chen
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Deng
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Lei
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Juan Li
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong-Zhi Zhang
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Zhang
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Xie
- Neuroscience Center, Key Laboratory of Neurobiology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
11
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Borna disease. EFSA J 2017; 15:e04951. [PMID: 32625602 PMCID: PMC7009998 DOI: 10.2903/j.efsa.2017.4951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Borna disease to be listed, Article 9 for the categorisation of Borna disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Borna disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Borna disease cannot be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no compliance on criterion 5 A(v). Consequently, the assessment on compliance of Borna disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is not applicable, as well as which animal species can be considered to be listed for Borna disease according to Article 8(3) of the AHL.
Collapse
|
12
|
Zaliunaite V, Steibliene V, Bode L, Podlipskyte A, Bunevicius R, Ludwig H. Primary psychosis and Borna disease virus infection in Lithuania: a case control study. BMC Psychiatry 2016; 16:369. [PMID: 27809822 PMCID: PMC5093928 DOI: 10.1186/s12888-016-1087-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hypothesis that microbial infections may be linked to mental disorders has long been addressed for Borna disease virus (BDV), but clinical and epidemiological evidence remained inconsistent due to non-conformities in detection methods. BDV circulating immune complexes (CIC) were shown to exceed the prevalence of serum antibodies alone and to comparably screen for infection in Europe (DE, CZ, IT), the Middle East (IR) and Asia (CN), still seeking general acceptance. METHODS We used CIC and antigen (Ag) tests to investigate BDV infection in Lithuania through a case-control study design comparing in-patients suffering of primary psychosis with blood donors. One hundred and six acutely psychotic in-patients with no physical illness, consecutively admitted to the regional mental hospital, and 98 blood donors from the Blood Donation Centre, Lithuania, were enrolled in the study. The severity of psychosis was assessed twice, prior and after acute antipsychotic therapy, by the Brief Psychiatric Rating Scale (BPRS). BDV-CIC and Ag markers were tested once after therapy was terminated. RESULTS What we found was a significantly higher prevalence of CIC, indicating a chronic BDV infection, in patients with treated primary psychosis than in blood donor controls (39.6 % vs. 22.4 %, respectively). Free BDV Ag, indicating currently active infection, did not show significant differences among study groups. Higher severity of psychosis prior to treatment was inversely correlated to the presence of BDV Ag (42.6 vs. 34.1 BPRS, respectively; p = 0.022). CONCLUSIONS The study concluded significantly higher BDV infection rates in psychotic than in healthy Lithuanians, thus supporting similar global trends for other mental disorders. The study raised awareness to consider the integration of BDV infection surveillance in psychiatry research in the future.
Collapse
Affiliation(s)
- Violeta Zaliunaite
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135, Lithuania.
| | - Vesta Steibliene
- Psychiatry Clinic, Lithuanian University of Health Sciences, Mickeviciaus str. 9, Kaunas, LT-44307 Lithuania
| | - Liv Bode
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| | - Aurelija Podlipskyte
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Robertas Bunevicius
- Behavioral Medicine Institute, Lithuanian University of Health Sciences, Vyduno str. 4, Palanga, LT-00135 Lithuania
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, Joint Senior Scientists, Beerenstr. 41, Berlin, D-14163 Germany
| |
Collapse
|
13
|
Zhang H, He P, Huang R, Sun L, Liu S, Zhou J, Guo Y, Yang D, Xie P. Identification and bioinformatic analysis of dysregulated microRNAs in human oligodendroglial cells infected with borna disease virus. Mol Med Rep 2016; 14:4715-4722. [PMID: 27748825 DOI: 10.3892/mmr.2016.5842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/24/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of gene expression via translational depression or mRNA degradation. Previously, dysregulated miRNAs have been found in neurodegenerative and neuropsychiatric disorders. Borna disease virus (BDV) is a neurotropic, negative single‑stranded RNA virus, which may be a cause of human neuropsychiatric disease. BDV is regarded as an ideal model to analyze the molecular mechanisms of mental disorders caused by viral infection. In the present study, 10 miRNAs were dysregulated in human oligodendrocytes (OL cells) infected with the BDV strain, Hu‑H1 (OL/BDV). The predicted target genes of those different miRNAs were closely associated with DNA binding, receptor activity, cytoplasm and membrane, biopolymer metabolic process and signal transduction, which were ranked highest using Gene Ontology (GO) analysis, and were predominantly involved in 'Immune system and adaptive Immune system pathways' on pathway analysis. Reverse transcription‑quantitative polymerase chain reaction analysis confirmed that seven miRNAs (miR‑1290, miR‑1908, miR‑146a‑5p, miR‑424‑5p, miR‑3676‑3p, miR‑296‑3p and miR‑7‑5p) were significantly downregulated in the OL/BDV cells, whereas two miRNAs (miR‑1244 and miR‑4521) showed no significant differences between the two groups. The present study revealed for the first time, to the best of our knowledge, the miRNA profile of BDV Hu‑H1‑infected human OL cells. Based on GO and pathway analyses, further investigation of the signaling processes in BDV‑infected oligodendrocytes may offer particular promise in improving understanding of the neuropathogenesis of BDV.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Peng He
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jingjing Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yujie Guo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, P.R. China
| |
Collapse
|
14
|
Scordel C, Huttin A, Cochet-Bernoin M, Szelechowski M, Poulet A, Richardson J, Benchoua A, Gonzalez-Dunia D, Eloit M, Coulpier M. Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis. PLoS Pathog 2015; 11:e1004859. [PMID: 25923687 PMCID: PMC4414417 DOI: 10.1371/journal.ppat.1004859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult. When a virus enters the brain, it most often induces inflammation, fever, and brain injury, all signs that are indicative of acute encephalitis. Under certain conditions, however, some neurotropic viruses may cause disease in a subtler manner. The Borna disease virus (BDV) is an excellent example of this second class of viruses, as it impairs neural function without cell lysis and induces neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. In the present study, we identify that a singled-out BDV protein called P causes similar impairment of human neurogenesis, and further show that it leads to diminution in the genesis of a particular neuronal subtype, the GABAergic neurons. We have also found that the expression of several genes involved in the generation and the maturation of neurons is dysregulated by this viral protein, which strongly suggests their implication in P-induced impairment of GABAergic neurogenesis. This study is the first to demonstrate that a viral protein interferes with human GABAergic neurogenesis, a process that is frequently impaired in neuropsychiatric disorders. It may thus contribute to elucidating the molecular bases of psychiatric disorders.
Collapse
Affiliation(s)
- Chloé Scordel
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Alexandra Huttin
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Marielle Cochet-Bernoin
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | - Marion Szelechowski
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5282, Toulouse, France
- Université Paul Sabatier, Toulouse 3, Toulouse, France
| | | | - Jennifer Richardson
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
| | | | - Daniel Gonzalez-Dunia
- Institut National de la Santé et de la Recherche Médicale, UMR 1043, Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5282, Toulouse, France
- Université Paul Sabatier, Toulouse 3, Toulouse, France
| | - Marc Eloit
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
- Pasteur Institute, Pathogen Discovery Laboratory, Biology of Infection Unit, INSERM U1117, Paris, France
| | - Muriel Coulpier
- INRA, UMR 1161, Maisons-Alfort, France
- ANSES, UMR Virologie, Maisons-Alfort, France
- Université Paris-Est, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
15
|
Liu X, Bode L, Zhang L, Wang X, Liu S, Zhang L, Huang R, Wang M, Yang L, Chen S, Li Q, Zhu D, Ludwig H, Xie P. Health care professionals at risk of infection with Borna disease virus - evidence from a large hospital in China (Chongqing). Virol J 2015; 12:39. [PMID: 25888756 PMCID: PMC4357222 DOI: 10.1186/s12985-015-0239-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Human Borna disease virus (BDV) infections have recently been reported in China. BDV causes cognitive and behavioural disturbances in animals. The impact on human mental disorders is subject to debate, but previous studies worldwide have found neuropsychiatric patients more frequently infected than healthy controls. A few isolates were recovered from severely depressed patients, but contagiousness of BDV strain remains unknown. Method We addressed the risk of infection in health care settings at the first affiliated hospital of Chongqing Medical University (CQMU), located in downtown Chongqing, a megacity in Southwest China. Between February 2012 and March 2013, we enrolled 1529 participants, of whom 534 were outpatients with major depressive disorder (MDD), 615 were hospital personnel, and 380 were healthy controls who underwent a health check. Infection was determined through BDV-specific circulating immune complexes (CIC), RNA, and selective antibodies (blood). Results One-fifth of the hospital staff (21.8%) were found to be infected (CIC positive), with the highest prevalence among psychiatry and oncology personnel, which is twice as many as were detected in the healthy control group (11.1%), and exceeds the prevalence detected in MDD patients (18.2%). Conclusion BDV circulates unnoticed in hospital settings in China, putting medical staff at risk and warranting clarification of infection modes and introduction of prevention measures.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, P.R. China, Shanghai, 200063, China.
| | - Liv Bode
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Xiao Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Siwen Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Lujun Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Rongzhong Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Mingju Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Liu Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Shigang Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Hanns Ludwig
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| |
Collapse
|
16
|
The Role of Infections and Autoimmune Diseases for Schizophrenia and Depression: Findings from Large-Scale Epidemiological Studies. CURRENT TOPICS IN NEUROTOXICITY 2015. [PMCID: PMC7122152 DOI: 10.1007/978-3-319-13602-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An immunologic component to schizophrenia and depression has been increasingly recognized, which has led to extensive research into the associations with infections and autoimmune diseases. Large-scale nationwide epidemiological studies have displayed an increased prevalence of both autoimmune diseases and infections among persons with schizophrenia and depression. Autoimmune diseases, and especially the number of infections requiring hospitalization, increase the risk of schizophrenia and depression in a dose–response relationship. Infections are a common exposure and a broad spectrum of infections are associated with schizophrenia and depression. Particularly the autoimmune diseases with a potential presence of brain-reactive antibodies were associated with psychiatric disorders. However, the associations seem to be bidirectional, since the risk of autoimmune diseases and infections is also increased after diagnosis with schizophrenia and depression. The risk of autoimmune diseases was particularly increased in individuals with prior hospital contacts for infections. It has been suggested that inflammation and autoimmunity could be involved in the etiology and pathogenesis of some patients with symptoms of schizophrenia and depression. The psychiatric symptoms can be directly triggered by immune components, such as brain-reactive antibodies and cytokines, or infections reaching the central nervous system (CNS), or be secondary to systemic inflammation indirectly affecting the brain. However, the associations could also be caused by shared genetic factors, other environmental factors, or common etiological components. Nonetheless, autoimmune diseases and infections should be considered by clinicians in the treatment of individuals with psychiatric symptoms, since treatment would probably improve the psychiatric symptoms, quality of life, and the survival of the individuals.
Collapse
|
17
|
Mazaheri-Tehrani E, Maghsoudi N, Shams J, Soori H, Atashi H, Motamedi F, Bode L, Ludwig H. Borna disease virus (BDV) infection in psychiatric patients and healthy controls in Iran. Virol J 2014; 11:161. [PMID: 25186971 PMCID: PMC4167498 DOI: 10.1186/1743-422x-11-161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Borna disease virus (BDV) is an evolutionary old RNA virus, which infects brain and blood cells of humans, their primate ancestors, and other mammals. Human infection has been correlated to mood disorders and schizophrenia, but the impact of BDV on mental-health still remains controversial due to poor methodological and cross-national comparability. Method This first report from the Middle East aimed to determine BDV infection prevalence in Iranian acute psychiatric disorder patients and healthy controls through circulating immune complexes (CIC), antibodies (Ab) and antigen (pAg) in blood plasma using a standardized triple enzyme immune assay (EIA). Samples of 314 subjects (114 psychiatric cases, 69 blood donors, and 131 healthy controls) were assayed and data analyzed quantitatively and qualitatively. Results CICs revealed a BDV prevalence of one third (29.5%) in healthy Iranian controls (27.5% controls; 33.3% blood donors). In psychiatric patients CIC prevalence was higher than in controls (40.4%) and significantly correlating with bipolar patients exhibiting overt clinical symptoms (p = 0.005, OR = 1.65). CIC values were significantly elevated in bipolar (p = 0.001) and major depressive disorder (p = 0.029) patients as compared to controls, and in females compared to males (p = 0.031). Conclusion This study supports a similarly high prevalence of subclinical human BDV infections in Iran as reported for central Europe, and provides again an indication for the correlation of BDV infection and mood disorders. Further studies should address the morbidity risk for healthy carriers and those with elevated CIC levels, along with gender disparities.
Collapse
Affiliation(s)
- Elham Mazaheri-Tehrani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P,O, Box 19615-1178, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Glutamate and lipid metabolic perturbation in the hippocampi of asymptomatic borna disease virus-infected horses. PLoS One 2014; 9:e99752. [PMID: 24956478 PMCID: PMC4067290 DOI: 10.1371/journal.pone.0099752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic, enveloped, non-segmented, negative-stranded RNA virus that infects a wide variety of vertebrate species from birds to humans across a broad global geographic distribution. Animal symptomatology range from asymptomatic infection to behavioral abnormalities to acute meningoencephalitis. Asymptomatic BDV infection has been shown to be more frequent than conventionally estimated. However, the molecular mechanism(s) underyling asymptomatic BDV infection remain largely unknown. Here, based on real-time quantitative PCR and Western blotting, a total of 18 horse hippocampi were divided into BDV-infected (n = 8) and non-infected control (n = 10) groups. A gas chromatography coupled with mass spectrometry (GC-MS) metabolomic approach, in conjunction with multivariate statistical analysis, was used to characterize the hippocampal metabolic changes associated with asymptomatic BDV infection. Multivariate statistical analysis showed a significant discrimination between the BDV-infected and control groups. BDV-infected hippocampi were characterized by lower levels of D-myo-inositol-1-phosphate, glutamate, phosphoethanolamine, heptadecanoic acid, and linoleic acid in combination with a higher level of ammonia. These differential metabolites are primarily involved in glutamate and lipid metabolism. These finding provide an improved understanding of hippocampal changes associated with asymptomatic BDV infection.
Collapse
|
19
|
Abstract
Depression is a debilitating psychiatric disorder and a growing global public health issue. However, the relationships between microbial infections and depression remains uncertain. A computerized literature search of Medline, ISI Web of Knowledge, PsycINFO, and the Cochrane Library was conducted up to May 2013, and 6362 studies were initially identified for screening. Case-control studies detected biomarker of microorganism were included. Based on inclusion and exclusion criteria, 28 studies were finally included to compare the detection of 16 infectious agents in unipolar depressed patients and healthy controls with a positive incident being defined as a positive biochemical marker of microbial infection. A customized form was used for data extraction. Pooled analysis revealed that the majority of the 16 infectious agents were not significantly associated with depression. However, there were statistically significant associations between depression and infection with Borna disease virus, herpes simplex virus-1, varicella zoster virus, Epstein-Barr virus, and Chlamydophila trachomatis.
Collapse
|
20
|
Zhang L, Wang X, Zhan Q, Wang Z, Xu M, Zhu D, He F, Liu X, Huang R, Li D, Lei Y, Xie P. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014; 159:1941-9. [PMID: 24573218 DOI: 10.1007/s00705-013-1971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/28/2013] [Indexed: 11/29/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect many vertebrate species, including humans. To date, BDV infection has been reported in a range of animal species across a broad global geographic distribution. However, a systematic epidemiological survey of BDV infection in domesticated animals in China has yet to be performed. In current study, BDV RNA and antibodies in 2353 blood samples from apparently healthy animals of eight species (horse, donkey, dog, pig, rabbit, cattle, goat, sheep) from three areas in western China (Xinjiang province, Chongqing municipality, and Ningxia province) were assayed using reverse transcription qPCR (RT-qPCR) and ELISA assay. Brain tissue samples from a portion of the BDV RNA- and/or antibody-positive animals were subjected to RT-qPCR and western blotting. As a result, varying prevalence of BDV antibodies and/or RNA was demonstrated in various animal species from three areas, ranging from 4.4 % to 20.0 %. Detection of BDV RNA and/or antibodies in Chongqing pigs (9.2 %) provided the first known evidence of BDV infection in this species. Not all brain tissue samples from animals whose blood was BDV RNA and/or antibody positive contained BDV RNA and protein. This study provides evidence that BDV infection among healthy domestic animal species is more widespread in western China than previously believed.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Borna disease virus infection in cats. Vet J 2013; 201:142-9. [PMID: 24480411 DOI: 10.1016/j.tvjl.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023]
Abstract
Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species.
Collapse
|
22
|
Zhang L, Xu MM, Zeng L, Liu S, Liu X, Wang X, Li D, Huang RZ, Zhao LB, Zhan QL, Zhu D, Zhang YY, Xu P, Xie P. Evidence for Borna disease virus infection in neuropsychiatric patients in three western China provinces. Eur J Clin Microbiol Infect Dis 2013; 33:621-7. [PMID: 24170181 DOI: 10.1007/s10096-013-1996-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect a wide variety of vertebrate species from birds and primates to humans. Several studies have been carried out to investigate whether BDV is associated with neuropsychiatric diseases. However, this association is still inconclusive. Two panels of subjects consisting of 1,679 various neuropsychiatric patients and healthy people from three western China provinces were enrolled in this study. BDV p24 or p40 RNA in peripheral blood mononuclear cells (PBMCs) were detected in the first panel of 1,481 subjects using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and cerebrospinal fluid (CSF) samples from the BDV RNA-positive individuals were subjected to BDV p24 antibodies testing by enzyme-linked immunosorbent assay (ELISA). BDV p24 or p40 RNA in PBMCs and p24 antibodies in plasma were detected in the second panel of 198 subjects by RT-qPCR and Western blot. A higher prevalence for BDV RNA was demonstrated in patients with viral encephalitis (6.70%), Guillain-Barré syndrome (6.70%), schizophrenia (9.90%) and chronic fatigue syndrome (CFS) (12.70%) compared to healthy controls in the first panel. CSF p24 antibodies were demonstrated in three viral encephalitis patients, two schizophrenia patients and two major depressive disorder (MDD) patients. The prevalences of p24 antibodies in plasma from patients with viral encephalitis (13.24%), multiple sclerosis (25.00%) and Parkinson's disease (22.73%) were significantly higher than healthy controls. This study demonstrates that BDV infection also exists in humans from three western China provinces, and suggests the involvement of the contribution of BDV in the aetiology of Chinese patients with some neuropsychiatric disorders, including viral encephalitis, schizophrenia, CFS, multiple sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- L Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, 400016, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kinnunen PM, Palva A, Vaheri A, Vapalahti O. Epidemiology and host spectrum of Borna disease virus infections. J Gen Virol 2012; 94:247-262. [PMID: 23223618 DOI: 10.1099/vir.0.046961-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Borna disease virus (BDV) has gained lot of interest because of its zoonotic potential, ability to introduce cDNA of its RNA transcripts into host genomes, and ability to cause severe neurobehavioural diseases. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep, known in central Europe for centuries. According to current knowledge, BDV or a close relative also infects several other species, including humans at least occasionally, in central Europe and elsewhere, but the existence of potential 'human Borna disease' with its suspected neuropsychiatric symptoms is highly controversial. The recent detection of endogenized BDV-like genes in primate and various other vertebrate genomes confirms that at least ancient bornaviruses did infect our ancestors. The epidemiology of BDV is largely unknown, but accumulating evidence indicates vectors and reservoirs among small wild mammals. The aim of this review is to bring together the current knowledge on epidemiology of BDV infections. Specifically, geographical and host distribution are addressed and assessed in the critical light of the detection methods used. We also review some salient clinical aspects.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Antti Vaheri
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland
| | - Olli Vapalahti
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
24
|
Hornig M, Briese T, Licinio J, Khabbaz RF, Altshuler LL, Potkin SG, Schwemmle M, Siemetzki U, Mintz J, Honkavuori K, Kraemer HC, Egan MF, Whybrow PC, Bunney WE, Lipkin WI. Absence of evidence for bornavirus infection in schizophrenia, bipolar disorder and major depressive disorder. Mol Psychiatry 2012; 17:486-93. [PMID: 22290118 PMCID: PMC3622588 DOI: 10.1038/mp.2011.179] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 1983, reports of antibodies in subjects with major depressive disorder (MDD) to an as-yet uncharacterized infectious agent associated with meningoencephalitis in horses and sheep led to molecular cloning of the genome of a novel, negative-stranded neurotropic virus, Borna disease virus (BDV). This advance has enabled the development of new diagnostic assays, including in situ hybridization, PCR and serology based on recombinant proteins. Since these assays were first implemented in 1990, more than 80 studies have reported an association between BDV and a wide range of human illnesses that include MDD, bipolar disorder (BD), schizophrenia (SZ), anxiety disorder, chronic fatigue syndrome, multiple sclerosis, amyotrophic lateral sclerosis, dementia and glioblastoma multiforme. However, to date there has been no blinded case-control study of the epidemiology of BDV infection. Here, in a United States-based, multi-center, yoked case-control study with standardized methods for clinical assessment and blinded serological and molecular analysis, we report the absence of association of psychiatric illness with antibodies to BDV or with BDV nucleic acids in serially collected serum and white blood cell samples from 396 subjects, a study population comprised of 198 matched pairs of patients and healthy controls (52 SZ/control pairs, 66 BD/control pairs and 80 MDD/control pairs). Our results argue strongly against a role for BDV in the pathogenesis of these psychiatric disorders.
Collapse
Affiliation(s)
- Mady Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Thomas Briese
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Julio Licinio
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Rima F. Khabbaz
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Ulrike Siemetzki
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jim Mintz
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Kirsi Honkavuori
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Helena C. Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael F. Egan
- Clinical Neuroscience, Merck & Company, North Wales, PA, USA
| | - Peter C. Whybrow
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
25
|
Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, Gutierrez B, Gutierrez J. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res 2012; 136:128-36. [PMID: 22104141 DOI: 10.1016/j.schres.2011.10.026] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/11/2011] [Accepted: 10/29/2011] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a highly disabling and limiting disorder for patients and the possibility that infections by some microorganisms may be associated to its development may allow prevention and recovery. In the current study we have done a meta-analysis of studies that have assessed the possible association between detection of different infectious agents and schizophrenia. We report results that support the idea that there is a statistically significant association between schizophrenia and infection by Human Herpesvirus 2 (OR=1.34; CI 95%: 1.09-1.70; p=0.05), Borna Disease Virus (OR=2.03; CI 95%: 1.35-3.06; p<0.01), Human Endogenous Retrovirus W (OR=19.31; CI 95%: 6.74-55.29; p<0.001), Chlamydophila pneumoniae (OR=6.34; CI 95%: 2.83-14.19; p<0.001), Chlamydophila psittaci (OR=29.05; CI 95%: 8.91-94.70; p<0.001) and Toxoplasma gondii (OR=2.70; CI 95%: 1.34-4.42; p=0.005). The implications of these findings are discussed and further research options are also explicated.
Collapse
Affiliation(s)
- Isabel Arias
- CAP El Clot, Institut Català de la Salut, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wu K, Hanna GL, Rosenberg DR, Arnold PD. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 2011; 100:726-35. [PMID: 22024159 DOI: 10.1016/j.pbb.2011.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/23/2011] [Accepted: 10/03/2011] [Indexed: 01/16/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a common and often debilitating neuropsychiatric condition characterized by persistent intrusive thoughts (obsessions), repetitive ritualistic behaviors (compulsions) and excessive anxiety. While the neurobiology and etiology of OCD has not been fully elucidated, there is growing evidence that disrupted neurotransmission of glutamate within corticalstriatal-thalamocortical (CSTC) circuitry plays a role in OCD pathogenesis. This review summarizes the findings from neuroimaging, animal model, candidate gene and treatment studies in the context of glutamate signaling dysfunction in OCD. First, studies using magnetic resonance spectroscopy are reviewed demonstrating altered glutamate concentrations in the caudate and anterior cingulate cortex of patients with OCD. Second, knockout mouse models, particularly the DLGAP3 and Sltrk5 knockout mouse models, display remarkably similar phenotypes of compulsive grooming behavior associated with glutamate signaling dysfunction. Third, candidate gene studies have identified associations between variants in glutamate system genes and OCD, particularly for SLC1A1 which has been shown to be associated with OCD in five independent studies. This converging evidence for a role of glutamate in OCD has led to the development of novel treatment strategies involving glutamatergic compounds, particularly riluzole and memantine. We conclude the review by outlining a glutamate hypothesis for OCD, which we hope will inform further research into etiology and treatment for this severe neuropsychiatric condition.
Collapse
Affiliation(s)
- Ke Wu
- Program in Genetics and Genomic Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | | | | | | |
Collapse
|
27
|
Lipkin WI, Briese T, Hornig M. Borna disease virus - fact and fantasy. Virus Res 2011; 162:162-72. [PMID: 21968299 DOI: 10.1016/j.virusres.2011.09.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
The occasion of Brian Mahy's retirement as editor of Virus Research provides an opportunity to reflect on the work that led one of the authors (Lipkin) to meet him shortly after the molecular discovery and characterization of Borna disease virus in the late 1980s, and work with authors Briese and Hornig to investigate mechanisms of pathogenesis and its potential role in human disease. This article reviews the history, molecular biology, epidemiology, and pathobiology of bornaviruses.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St., 17th Floor, New York, NY 10032, United States.
| | | | | |
Collapse
|
28
|
Rackova S, Janu L, Kabickova H. Borna disease virus (BDV) circulating immunocomplex positivity in addicted patients in the Czech Republic: a prospective cohort analysis. BMC Psychiatry 2010; 10:70. [PMID: 20825673 PMCID: PMC2944235 DOI: 10.1186/1471-244x-10-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Borna disease virus (BDV) is an RNA virus belonging to the family Bornaviridae. Borna disease virus is a neurotropic virus that causes changes in mood, behaviour and cognition. BDV causes persistent infection of the central nervous system. Immune changes lead to activation of infection. Alcohol and drug dependence are associated with immune impairment. METHODS We examined the seropositivity of BDV circulating immunocomplexes (CIC) in patients with alcohol and drug dependence and healthy individuals (blood donors). We examined 41 addicted patients for the presence of BDV CIC in the serum by ELISA at the beginning of detoxification, and after eight weeks of abstinence. This is the first such study performed in patients with alcohol and drug dependence. RESULTS BDV CIC positivity was detected in 36.59% of addicted patients on day 0 and in 42.86% on day 56. The control group was 37.3% positive. However, we did not detect higher BDV CIC positivity in addicted patients in comparison with blood donors (p = 0.179). The significantly higher level of BDV CIC was associated with lower levels of GGT (gamma glutamyl transferase) (p = 0.027) and approached statistical significance with the lower age of addicted patients (p = 0.064). We did not find any association between BDV CIC positivity and other anamnestic and demographic characteristics. CONCLUSIONS In our study addicted patients did not have significantly higher levels of BDV CIC than the control group. The highest levels of BDV CIC were detected in patients with lower levels of GGT and a lower age. TRIAL REGISTRATION This study was approved by the ethical committee of the University Hospital Medical Faculty of Charles University in Pilsen, Czech Republic (registration number 303/2001).
Collapse
Affiliation(s)
- Sylva Rackova
- Psychiatric Department, University Hospital, Medical Faculty Charles University in Pilsen, Alej svobody 80, Pilsen 301 00, Czech Republic.
| | - Lubos Janu
- Psychiatric Department, University Hospital, Medical Faculty Charles University in Pilsen, Alej svobody 80, Pilsen, 301 00, Czech Republic
| | - Hana Kabickova
- Klinlab s.r.o, Department of Molecular Biology and Parasitology, U Vojenské nemocnice 1200, Prague, 100 00, Czech Republic
| |
Collapse
|
29
|
Heinrich A, Adamaszek M. Anti-Borna disease virus antibody responses in psychiatric patients: long-term follow up. Psychiatry Clin Neurosci 2010; 64:255-61. [PMID: 20408992 DOI: 10.1111/j.1440-1819.2010.02073.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Data suggesting a pathogenetic role for Borna disease virus (BDV) in neuropsychiatric diseases are still inconclusive and it is unknown whether humans become persistently infected or clear the virus infection. The aim of the present study was therefore to investigate long-term BDV-specific antibody responses in psychiatric patients in order to gain new insights into human BDV infection and its pathogenicity. METHODS BDV-specific antibody titers and associations with clinical conditions were studied retrospectively in 94 seropositive patients with schizophrenia (n = 46), affective disorders (n = 19) and other psychiatric disorders (n = 29) who had been repeatedly tested for the presence of BDV-specific antibodies on indirect immunofluorescence assay between 1985 and 2006. Long-term titer dynamics were studied in 46 patients followed up for a period of >36 months. RESULTS A total of 25 of these 46 patients (54.3%) had persistent seropositivity, whereas seroreversion from positive to negative was observed in 21 (45.7%). Patients in the early course of schizophrenia had lower antibody titers compared to patients in the advanced course (P = 0.017), while a higher proportion of patients in the early course had titer increases (P < 0.05). There were no significant differences in antibody titers between patient subgroups with clinically stable and acute psychiatric disorders. CONCLUSION Persistent seropositivity in a subgroup of psychiatric patients in the long-term analysis suggests chronic BDV infection in humans.
Collapse
Affiliation(s)
- Alexander Heinrich
- Department of Neurology and Clinical Neurophysiology, Henriettenstiftung Hannover, Hannover, Germany.
| | | |
Collapse
|
30
|
Rotge JY, Aouizerate B, Tignol J, Bioulac B, Burbaud P, Guehl D. The glutamate-based genetic immune hypothesis in obsessive-compulsive disorder. An integrative approach from genes to symptoms. Neuroscience 2010; 165:408-17. [PMID: 19861150 DOI: 10.1016/j.neuroscience.2009.10.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
Recent advances in multiple areas of research have contributed to the identification of several pathophysiological factors underlying obsessive-compulsive disorder (OCD). In particular, the glutamate transporter gene SLC1A1 has been associated with the diagnosis of OCD. Immunological and infectious studies have reported alterations of the immune system and the presence of immune complexes directed against the Borna disease virus in OCD patients. In addition, neuroimaging of OCD patients has demonstrated abnormalities in the anterior cingulate cortex, orbitofrontal cortex, thalamus, and the basal ganglia. Neuropsychological assessments have found several cognitive disruptions that have been identified in OCD, especially impairments in cognitive flexibility. Here, we attempt to bridge the gap between these remarkable findings through several previously unpredicted pathophysiological mechanisms. We propose an integrative hypothesis that indicates how genetic and environmental factors may contribute to the structural and functional alterations of cortico-subcortical circuits, leading to the characteristic cognitive disruptions underlying OCD symptoms.
Collapse
Affiliation(s)
- J Y Rotge
- Laboratoire Mouvement Adaptation Cognition, CNRS UMR 5227, Université Bordeaux 2, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
31
|
Thakur R, Sarma S, Sharma B. Role of Borna disease virus in neuropsychiatric illnesses: are we inching closer? Indian J Med Microbiol 2009; 27:191-201. [PMID: 19584498 DOI: 10.4103/0255-0857.53200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The biological cause of psychiatric illnesses continues to be under intense scrutiny. Among the various neurotropic viruses, Borna disease virus (BDV) is another virus that preferentially targets the neurons of the limbic system and has been shown to be associated with behavioural abnormalities. Presence of various BDV markers, including viral RNA, in patients with affective and mood disorders have triggered ongoing debate worldwide regarding its aetiopathogenic relationship. This article analyses its current state of knowledge and recent advances in diagnosis in order to prove or refute the association of BDV in causation of human neuropsychiatric disorders. This emerging viral causative association of behavioural disorders, which seems to be inching closer, has implication not only for a paradigm shift in the treatment and management of neuropsychiatric illnesses but also has an important impact on the public health systems.
Collapse
Affiliation(s)
- R Thakur
- Department of Microbiology, IHBAS, Dilshad Garden, Delhi, India.
| | | | | |
Collapse
|
32
|
Flower RLP, Kamhieh S, McLean L, Bode L, Ludwig H, Ward CM. Human Borna disease virus infection in Australia: serological markers of infection in multi-transfused patients. APMIS 2008:89-93. [PMID: 18771108 DOI: 10.1111/j.1600-0463.2008.00m17.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borna disease virus (BDV) causes neurological disease in horses, however, there is no consensus as to the extent or significance of human infection. BDV antigen levels in plasma (BDVpAg) and anti-BDV were measured by ELISAs. Confirmation was by Western blot (WB), immunofluorescence assay (IFA) or BDV-peptide-epitope ELISA. For 42 volunteers psychiatrically-defined as non-depressed (82 samples) neither BDVpAg nor anti-BDV was detected. For 104 patients with diagnosed depression (290 samples) 1 was BDVpAg positive and 5 anti-BDV positive, one epitope-e8 positive and 4 IFA positive, with 96% concordance for repeat samples. No BDVpAg was detected in 214 pregnant women, 2 were anti-BDV positive, one WB-confirmed (p24/p40). For 219 donors 2 were BDVpAg positive with anti-BDV detected in 5 (2.3%) one IFA 1:10, another IFA 1:40/epitope-e8 positive. In multitransfused patients, 3/168 were BDV pAg positive, with 14/168 anti-BDV positive, 1 epitope-e8 positive, 2 WB positive and 1 IFA 1:10. In BDVpAg positive multi-transfused patients there was an elevated risk of transaminitis. In one case, a patient BDV-negative prior to transfusion was BDVpAg positive for several months posttransfusion (associated with transaminitis). These data provide serological evidence, supported by confirmatory assays and repeat-sample concordance, of BDV infection in Australia, particularly in multi-transfused patients.
Collapse
Affiliation(s)
- Robert L P Flower
- Northern Blood Research Centre, University of Sydney, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Patti AM, Vulcano A, Candelori E, Ludwig H, Bode L. Borna disease virus infection in the population of Latium (Italy). APMIS 2008:74-6. [PMID: 18771104 DOI: 10.1111/j.1600-0463.2008.00m13.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anna Maria Patti
- Dept. of Science of public Health, University La Sapienza of Rome, Italy.
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Nunes SOV, Itano EN, Amarante MK, Reiche EMV, Miranda HC, de Oliveira CEC, Matsuo T, Vargas HO, Watanabe MAE. RNA from Borna disease virus in patients with schizophrenia, schizoaffective patients, and in their biological relatives. J Clin Lab Anal 2008; 22:314-20. [PMID: 18623121 DOI: 10.1002/jcla.20261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous interactions of the immune system with the central nervous system have been described recently. Mood and psychotic disorders, such as severe depression and schizophrenia, are both heterogeneous disorders regarding clinical symptomatology, the acuity of symptoms, the clinical course, the treatment response, and probably also the etiology. Detection of p24 RNA from Borna disease virus (BDV) by the reverse transcriptase polymerase chain reaction in patients with schizophrenia, schizoaffective disorder, and in their biological relatives was evaluated. The subjects were 27 schizophrenic and schizoaffective patients, 27 healthy controls, 20 relatives without psychiatric disease, and 24 relatives with mood disorder, who attended the Psychiatric Ambulatory of Londrina State University, Paraná, Brazil. The subjects were interviewed by structured diagnostic criteria categorized according to the Diagnostic and Statistical Manual of Mental Disorders-IV, axis I, (SCID-IV). The mean duration of illness in schizophrenic and schizoaffective patients was 15.341+/-1.494 years and the median age at onset was 22.4+/-7.371 years. There were no significant differences in gender (P=0.297), age (P=0.99), albumin (P=0.26), and body mass index (kg/m(2)) (p=0.28), among patients, controls, and relatives. Patients and biological relatives had significantly higher positive p24 RNA BDV detection than controls (P=0.04); however, the clinical significance of BDV remains to be clarified.
Collapse
|
36
|
DIETRICH DETLEFE, BODE LIV. Human Borna disease virus-infection and its therapy in affective disorders. APMIS 2008:61-5. [DOI: 10.1111/j.1600-0463.2008.00m10.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
PATTI ANNAMARIA, VULCANO ANTONELLA, CANDELORI ELISA, DONFRANCESCO RENATO, LUDWIG HANNS, BODE LIV. Borna disease virus infection in Italian children. A potential risk for the developing brain? APMIS 2008:70-3. [DOI: 10.1111/j.1600-0463.2008.00m12.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
|
39
|
|
40
|
DONFRANCESCO RENATO, GREGORI PAOLA, VULCANO ANTONELLA, CANDELORI ELISA, RONCHETTI ROBERTO, MIANO SILVIA, PAGANI JACOPO, VILLA MARIAPIA, PATTI ANNAMARIA. Borna Disease Virus infection in children with psychiatric disorders. APMIS 2008:80-2. [DOI: 10.1111/j.1600-0463.2008.00m15.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Kamhieh S, Hodgson JL, Bode L, Ludwig H, Flower RLP. Borna disease virus: evidence of naturally-occurring infection in cats in Australia. APMIS 2008:50-2. [PMID: 18771098 DOI: 10.1111/j.1600-0463.2008.000m7.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sundrela Kamhieh
- Northern Blood Research Centre, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
42
|
PATTI ANNAMARIA, VULCANO ANTONELLA, CANDELORI ELISA, TRAVALI SALVATORE. Serological evidence for Borna Disease Virus infection in children, cats and horses in Sicily (Italy). APMIS 2008:77-9. [DOI: 10.1111/j.1600-0463.2008.00m14.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Pisoni G, Nativi D, Bronzo V, Codazza D. Sero-epidemiological study of Borna disease virus infection in the Italian equine population. Vet Res Commun 2007; 31 Suppl 1:245-8. [PMID: 17682886 DOI: 10.1007/s11259-007-0016-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G Pisoni
- Department of Veterinary Pathology, Hygiene and Public Health, Institute of Infectious Diseases, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
44
|
|
45
|
Kinnunen PM, Billich C, Ek-Kommonen C, Henttonen H, Kallio RKE, Niemimaa J, Palva A, Staeheli P, Vaheri A, Vapalahti O. Serological evidence for Borna disease virus infection in humans, wild rodents and other vertebrates in Finland. J Clin Virol 2006; 38:64-9. [PMID: 17129759 DOI: 10.1016/j.jcv.2006.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 05/30/2006] [Accepted: 10/12/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Borna disease virus (BDV) can infect many vertebrate species, including humans. BDV infection may lead to meningoencephalomyelitis in animals. An association with human neuropsychiatric diseases has been reported, but the causal relationship between BDV and human disease remains unclear. OBJECTIVES AND STUDY DESIGN To find out whether BDV is present in Finland and to look for a potential reservoir, we examined a large panel of blood samples from different vertebrate species with immunofluorescence assay. Samples from horses, cats, dogs, sheep, cattle, large predators, grouse, wild rodents and humans were included. Most positive results were confirmed by other specific methods and in other laboratories. RESULTS AND CONCLUSIONS BDV-specific antibodies were detected in 10 horses, 2 cats, as well as 2 horses and 1 dog from farms housing a previously detected seropositive horse. Interestingly, BDV-specific antibodies were further detected in three wild rodents. In humans, BDV-specific antibodies were detected in a veterinarian and in two patients suspected to have a Puumala hantavirus infection. Our serological analysis suggests that BDV infects various vertebrates in Finland, including humans. Furthermore, our data indicate for the first time that BDV infects also wild rodents.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Division of Microbiology and Epidemiology, Faculty of Veterinary Medicine, P.O. Box 66, 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Flower R, Ludwig H. Presence of Borna disease virus (BDV)-specific structural components in human blood plasma. J Clin Virol 2006; 36:312-3; author reply 314. [PMID: 16829182 DOI: 10.1016/j.jcv.2006.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Wolff T, Heins G, Pauli G, Burger R, Kurth R. Failure to detect Borna disease virus antigen and RNA in human blood. J Clin Virol 2006; 36:309-11. [PMID: 16822717 DOI: 10.1016/j.jcv.2006.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/13/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Borna disease virus (BDV) is the etiological agent of a rare progressive meningoencephalitis that affects mostly horses and sheep. There is an unresolved debate whether also humans are susceptible to infection with BDV and if so, whether this might be associated with neuropsychiatric diseases. One recent key publication employing an ELISA-based sandwich assay reported prevalences of BDV-specific circulating immune complexes in human blood as high as 30% in the normal population and up to 100% in psychiatric patients [Bode L, Reckwald P, Severus WE, Stoyloff R, Ferszt R, Dietrich DE, et al. Borna disease virus-specific circulating immune complexes, antigenemia, and free antibodies--the key marker triplet determining infection and prevailing in severe mood disorders. Mol Psychiatry 2001;6(4):481-91]. However, this report did not examine for the physical presence of BDV antigens in human blood, and therefore, these seemingly high prevalences may not reflect Borna virus-specific signals. OBJECTIVES We attempted to correlate string plasma signals in the particular sandwich ELISA system with the presence of BDV antigens. STUDY DESIGN Four preselected plasma samples with high reactivity in the described assay were analysed by immunoaffinity purification and highly sensitive real-time RT-PCR. RESULTS Neither method did provide any evidence for the presence of viral proteins or nucleic acids. CONCLUSIONS Our findings argue against the concept that the described sandwich ELISA reliably detects BDV-specific antigens in human blood, therefore do not support the hypothesis that BDV is a pathogen of humans.
Collapse
|
49
|
Miranda HC, Nunes SOV, Calvo ES, Suzart S, Itano EN, Watanabe MAE. Detection of Borna disease virus p24 RNA in peripheral blood cells from Brazilian mood and psychotic disorder patients. J Affect Disord 2006; 90:43-7. [PMID: 16324750 DOI: 10.1016/j.jad.2005.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/08/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Borna disease virus (BDV) is a virus that naturally infects a broad range of warm-blooded animals. BDV is an enveloped virus, non-segmented, negative-stranded RNA genome and has an organization characteristic of a member of Bornaviridae in the order of Mononegavirale. In the present work we investigated the presence of BDV p24 RNA in peripheral blood cells from 30 psychiatric patients (19 with mood disorder and 11 with psychotic disorder) and 30 healthy volunteers as the control group. METHODS All subjects were interviewed by structured diagnostic criteria categorized according to the DSM-IV, Axis I (SCID-V). The presence of BDV p24 RNA was investigated by nested reverse transcriptase PCR (RT-PCR) using specific primers to p24 from BDV. The specificity of the detection was analyzed by the sequencing of PCR products. RESULTS The mean duration of illness in mood and psychotic patients with p24 RNA of BDV was 25 (+/-12.3) years and the median age was 43.77 (+/-15.2) years. There were no significant differences in gender and age among patients and control group, neither duration of illness among patients with mood and psychotic disorders in the presence or absence of p24 RNA of BDV. We found a frequency of 33.33% (10/30) of BDV-RNA on patient's group and 13.33% (4/30) on control group. The given sequences revealed identity with GenBank database sequence for BDV. CONCLUSION The detection of a higher level of BDV-RNA in the peripheral blood cells of patients than on control group should help our understanding of the pathogenesis in the disease.
Collapse
Affiliation(s)
- Helen Cristina Miranda
- Department of Pathological Sciences-Immunology, Londrina State University, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Kamhieh S, Hodgson J, Bode L, Ludwig H, Ward C, Flower RLP. No evidence of endemic Borna disease virus infection in Australian horses in contrast with endemic infection in other continents. Arch Virol 2005; 151:709-19. [PMID: 16328145 DOI: 10.1007/s00705-005-0655-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Borna disease virus (BDV) is a unique RNA virus that is a cause of neurological disease in horses, sheep and cats. The finding that BDV also infects humans has raised concern related to the impact of infection with this virus. The extent to which BDV may be endemic in geographical regions outside Europe is of interest in management of international movement of animals including horses. Sera from Australian horses (N = 553) sampled in Sydney, New South Wales (NSW), were analysed for BDV antigen, circulating immune complexes (CICs), and antibodies by monoclonal antibody-based ELISAs. One-tenth of the samples were investigated by further antibody tests, namely immunofluorescence (IFA) and a peptide ELISA, as well as for BDV RNA. The study revealed a very low frequency of serological markers that may be associated with exposure to BDV in Australian horses from NSW with a few sera (0.7%) displaying low range positive results in the CIC assay, and no detectable BDV RNA. This pattern is inconsistent with endemic BDV infection and strongly contrasts with the pattern of endemic infection, particularly in Europe.
Collapse
Affiliation(s)
- S Kamhieh
- Northern Blood Research Centre, St. Leonards, NSW, Australia
| | | | | | | | | | | |
Collapse
|