1
|
Wang X, Bhandari RK. Methylome profile of medaka eggs and sperm. Epigenetics 2024; 19:2417151. [PMID: 39428969 PMCID: PMC11497970 DOI: 10.1080/15592294.2024.2417151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Eggs and sperm are responsible for the continuation of generations. Following the epigenetic reprogramming of the embryo, core epigenetic information present in the sperm and eggs is transmitted to offspring somatic cells prior to the blastula stage, which specifically influences gene expression in the cells. Differences in the patterns of DNA methylation between the paternal and maternal genomes are critical to regulating allele-specific gene expression in the developing embryo, constituting the basis of genomic imprinting in mammals. While the information on allele-specific epigenetic information has been limited to mammals, it is not clearly understood whether non-mammalian vertebrate gametes possess any sex-specific allelic epigenetic information and whether somatic cells maintain the allele-specific epigenetic information, particularly DNA methylation. To determine the landscape of DNA methylation in paternal and maternal alleles in a non-mammalian vertebrate, we profiled the methylome of egg in medaka fish and compared it with our previously published medaka sperm methylome. We identified a set of gamete-specific differentially methylated regions (DMRs) in the genome- medaka eggs maintained a significantly lower global methylation profile than the sperm. Based on our sequencing depth and data, 10 DMRs were hypermethylated, and 237 DMRs were hypomethylated in the eggs compared to the sperm methylome. Somatic cells in blastula maintained some of those parental gamete-specific DNA methylation profiles. Those DMRs are associated with 70 genes, suggesting that they may have imprinted-like functions and warrant further investigation.
Collapse
Affiliation(s)
- Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell D, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. Alzheimers Dement 2024. [PMID: 39376159 DOI: 10.1002/alz.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS A total of 12 single nucleotide polymorphisms (SNPs) demonstrated suggestive association (P ≤ 5 × 10-4) with cognitive preservation. Genetic linkage analyses identified > 100 significant (logarithm of the odds [LOD] ≥ 3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2. HIGHLIGHTS GWAS and linkage identified over 100 loci associated with cognitive preservation. One locus on Chromosome 2 retained significance over multiple analyses. Predicted TFBSs near rs1402906 regulate genes associated with neurocognition.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Ocklenburg S. Rare variants and handedness: spotlight on TUBB4B. Trends Genet 2024; 40:558-559. [PMID: 38749881 DOI: 10.1016/j.tig.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 07/11/2024]
Abstract
Twin studies suggest that additive genetic effects account for about a quarter of the variance in handedness. Recently, Schijven et al. used exome-wide sequencing to provide evidence for a role of rare protein-coding variants in handedness. These included the gene encoding beta-tubulin, TUBB4B, suggesting that microtubules are relevant for handedness ontogenesis.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Jung M, Jung JS, Pfeifer J, Hartmann C, Ehrhardt T, Abid CL, Kintzel J, Puls A, Navarrete Santos A, Hollemann T, Riemann D, Rujescu D. Neuronal Stem Cells from Late-Onset Alzheimer Patients Show Altered Regulation of Sirtuin 1 Depending on Apolipoprotein E Indicating Disturbed Stem Cell Plasticity. Mol Neurobiol 2024; 61:1562-1579. [PMID: 37728850 PMCID: PMC10896791 DOI: 10.1007/s12035-023-03633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Late-onset Alzheimer's disease (AD) is a complex multifactorial disease. The greatest known risk factor for late-onset AD is the E4 allele of the apolipoprotein E (APOE), while increasing age is the greatest known non-genetic risk factor. The cell type-specific functions of neural stem cells (NSCs), in particular their stem cell plasticity, remain poorly explored in the context of AD pathology. Here, we describe a new model that employs late-onset AD patient-derived induced pluripotent stem cells (iPSCs) to generate NSCs and to examine the role played by APOE4 in the expression of aging markers such as sirtuin 1 (SIRT1) in comparison to healthy subjects carrying APOE3. The effect of aging was investigated by using iPSC-derived NSCs from old age subjects as healthy matched controls. Transcript and protein analysis revealed that genes were expressed differently in NSCs from late-onset AD patients, e.g., exhibiting reduced autophagy-related protein 7 (ATG7), phosphatase and tensin homolog (PTEN), and fibroblast growth factor 2 (FGF2). Since SIRT1 expression differed between APOE3 and APOE4 NSCs, the suppression of APOE function in NSCs also repressed the expression of SIRT1. However, the forced expression of APOE3 by plasmids did not recover differently expressed genes. The altered aging markers indicate decreased plasticity of NSCs. Our study provides a suitable in vitro model to investigate changes in human NSCs associated with aging, APOE4, and late-onset AD.
Collapse
Affiliation(s)
- Matthias Jung
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Jenny Pfeifer
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Carla Hartmann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Toni Ehrhardt
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jenny Kintzel
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Puls
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Dagmar Riemann
- Department Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 2, 06112, Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
5
|
Maly T, Hank M, Verbruggen FF, Clarup C, Phillips K, Zahalka F, Mala L, Ford KR. Relationships of lower extremity and trunk asymmetries in elite soccer players. Front Physiol 2024; 15:1343090. [PMID: 38370013 PMCID: PMC10869622 DOI: 10.3389/fphys.2024.1343090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
In light of previous research highlighting the prevalence of asymmetries in soccer players and possible links to injury risks, there is a crucial gap in the biomechanical understanding of complex relationships between lower extremity and trunk asymmetries in elite soccer players. The purpose of this study was to investigate the level, relationships, and differences among twelve different parameters of strength, morphological, and neuromuscular asymmetries in elite soccer players. Methods: Elite male soccer players (n = 25, age 21.7 ± 3.9 years) were tested in the following tests: bilateral fluid distribution, hip flexor range of motion, postural stability, isokinetic strength of knee extensors and flexors, isometric lateral trunk rotation strength, eccentric strength of knee flexors, isometric bilateral strength of hip adductors, and vertical ground reaction force in counter-movement jump-free arms, counter-movement jump, squat jump, and drop jump tests. One-way ANOVA, Pearson's coefficient (r), and partial eta squared (η p 2) were used for data analysis. Results: Significant differences in asymmetries were found in elite soccer players (F11,299 = 11.01, p < .01). The magnitude of asymmetry over 10% was in postural stability and drop jump parameters. The lowest magnitudes of asymmetries were in the fluid distribution of the lower limbs and the vertical ground reaction force during the take-off phase in squat jumps. The highest asymmetries between the dominant and non-dominant sides were found in postural stability and drop jump. A total of eleven significant correlations (p < 0.05, r = 0.41-0.63, R2 = 0.17-0.40) were detected between the analyzed asymmetries in elite soccer players. The lateral trunk rotation asymmetries were significantly correlated to vertical ground reaction force asymmetries and knee extensors. Conclusion: Long-term exposure in elite soccer leads to unilateral biomechanical loading that induces abnormal strength and morphological adaptations in favor of the dominant side while linking lower limb and trunk strength asymmetries. By unraveling these complex relationships, we strive to contribute novel methods that could inform targeted training regimens and injury prevention strategies in the elite soccer community. The data should encourage future researchers and coaches to monitor and develop trunk strength linked to lower body kinematics.
Collapse
Affiliation(s)
- Tomas Maly
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | - Mikulas Hank
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Ferdia Fallon Verbruggen
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | | | - Kirk Phillips
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | - Frantisek Zahalka
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Lucia Mala
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kevin R. Ford
- Department of Physical Therapy, High Point University, High Point, NC, United States
| |
Collapse
|
6
|
Wortinger LA, Stavrum AK, Shadrin AA, Szabo A, Rukke SH, Nerland S, Smelror RE, Jørgensen KN, Barth C, Andreou D, Weibell MA, Djurovic S, Andreassen OA, Thoresen M, Ursini G, Agartz I, Le Hellard S. Divergent epigenetic responses to perinatal asphyxia in severe mental disorders. Transl Psychiatry 2024; 14:16. [PMID: 38191519 PMCID: PMC10774425 DOI: 10.1038/s41398-023-02709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Epigenetic modifications influenced by environmental exposures are molecular sources of phenotypic heterogeneity found in schizophrenia and bipolar disorder and may contribute to shared etiopathogenetic mechanisms of these two disorders. Newborns who experienced perinatal asphyxia have suffered reduced oxygen delivery to the brain around the time of birth, which increases the risk of later psychiatric diagnosis. This study aimed to investigate DNA methylation in blood cells for associations with a history of perinatal asphyxia, a neurologically harmful condition occurring within the biological environment of birth. We utilized prospective data from the Medical Birth Registry of Norway to identify incidents of perinatal asphyxia in 643 individuals with schizophrenia or bipolar disorder and 676 healthy controls. We performed an epigenome wide association study to distinguish differentially methylated positions associated with perinatal asphyxia. We found an interaction between methylation and exposure to perinatal asphyxia on case-control status, wherein having a history of perinatal asphyxia was associated with an increase of methylation in healthy controls and a decrease of methylation in patients on 4 regions of DNA important for brain development and function. The differentially methylated regions were observed in genes involved in oligodendrocyte survival and axonal myelination and functional recovery (LINGO3); assembly, maturation and maintenance of the brain (BLCAP;NNAT and NANOS2) and axonal transport processes and neural plasticity (SLC2A14). These findings are consistent with the notion that an opposite epigenetic response to perinatal asphyxia, in patients compared with controls, may contribute to molecular mechanisms of risk for schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runar Elle Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Melissa A Weibell
- TIPS-Network for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health, Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell MD, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299932. [PMID: 38168325 PMCID: PMC10760262 DOI: 10.1101/2023.12.13.23299932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS 12 SNPs demonstrated suggestive association (P≤5×10-4) with cognitive preservation. Genetic linkage analyses identified >100 significant (LOD≥3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - M Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| |
Collapse
|
8
|
Bemben MA, Sandoval M, Le AA, Won S, Chau VN, Lauterborn JC, Incontro S, Li KH, Burlingame AL, Roche KW, Gall CM, Nicoll RA, Diaz-Alonso J. Contrastsing synaptic roles of MDGA1 and MDGA2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542333. [PMID: 37720016 PMCID: PMC10503827 DOI: 10.1101/2023.05.25.542333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.
Collapse
Affiliation(s)
- Michael A. Bemben
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Matthew Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Vivian N. Chau
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Julie C. Lauterborn
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Present address: Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR1072, INSERM, Aix-Marseille University, Marseille, 13015, France
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Christine M. Gall
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
9
|
Handegård KW, Storengen LM, Joergensen D, Lingaas F. Genomic analysis of firework fear and noise reactivity in standard poodles. Canine Med Genet 2023; 10:2. [PMID: 36890545 PMCID: PMC9996964 DOI: 10.1186/s40575-023-00125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Fear of firework noises and other loud, sudden noises (noise reactivity) is a significant problem for many dogs and may have a negative effect on both welfare and, in severe cases, the life expectancy of dogs. A wide range of behavior traits, including fear-related behaviors, have high heritability estimates in dogs. The aim of this study was to estimate genomic heritability for fear of fireworks and loud noises in dogs. RESULTS A genomic heritability estimate was performed based on genome-wide SNPs from standard poodles with records of fear of fireworks and noise reactivity. The study was based on questionnaires answered by owners, who also volunteered to return a cheek swab from their dog for DNA analyses. SNP-based heritability was estimated to be 0.28 for firework fear and 0.16 for noise reactivity. We also identified an interesting region on chromosome 17 that was weakly associated with both traits. CONCLUSIONS We have estimated low to medium genomic heritabilities for fear of fireworks and noise reactivity in standard poodles. We have also identified an interesting region on chromosome 17, which harbors genes that have been shown to be involved in different psychiatric traits with anxiety components in humans. The region was associated with both traits; however, the association was weak and need further verification from other studies.
Collapse
Affiliation(s)
- Karin Westereng Handegård
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Linn Mari Storengen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dina Joergensen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Frode Lingaas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
10
|
de Arce KP, Ribic A, Chowdhury D, Watters K, Thompson GJ, Sanganahalli BG, Lippard ETC, Rohlmann A, Strittmatter SM, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nat Commun 2023; 14:459. [PMID: 36709330 PMCID: PMC9884278 DOI: 10.1038/s41467-023-36042-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.
Collapse
Affiliation(s)
- Karen Perez de Arce
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Neuroscience Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Katherine Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Garth J Thompson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | | | - Elizabeth T C Lippard
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Texas, Austin, TX, USA
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Dhume SH, Connor SA, Mills F, Tari PK, Au-Yeung SHM, Karimi B, Oku S, Roppongi RT, Kawabe H, Bamji SX, Wang YT, Brose N, Jackson MF, Craig AM, Siddiqui TJ. Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. eLife 2022; 11:64742. [PMID: 35662394 PMCID: PMC9170246 DOI: 10.7554/elife.64742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2022] [Indexed: 01/21/2023] Open
Abstract
LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.
Collapse
Affiliation(s)
- Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Steven A Connor
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parisa Karimi Tari
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Sarah H M Au-Yeung
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Benjamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Shinichiro Oku
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Pharmacology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yu Tian Wang
- Division of Neurology, Department of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ann Marie Craig
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Program in Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
13
|
Odintsova VV, Suderman M, Hagenbeek FA, Caramaschi D, Hottenga JJ, Pool R, Dolan CV, Ligthart L, van Beijsterveldt CEM, Willemsen G, de Geus EJC, Beck JJ, Ehli EA, Cuellar-Partida G, Evans DM, Medland SE, Relton CL, Boomsma DI, van Dongen J. DNA methylation in peripheral tissues and left-handedness. Sci Rep 2022; 12:5606. [PMID: 35379837 PMCID: PMC8980054 DOI: 10.1038/s41598-022-08998-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Catharina E M van Beijsterveldt
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, USA
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Schmitz J, Zheng M, Lui KFH, McBride C, Ho CSH, Paracchini S. Quantitative multidimensional phenotypes improve genetic analysis of laterality traits. Transl Psychiatry 2022; 12:68. [PMID: 35184143 PMCID: PMC8858319 DOI: 10.1038/s41398-022-01834-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Handedness is the most commonly investigated lateralised phenotype and is usually measured as a binary left/right category. Its links with psychiatric and neurodevelopmental disorders prompted studies aimed at understanding the underlying genetics, while other measures and side preferences have been less studied. We investigated the heritability of hand, as well as foot, and eye preference by assessing parental effects (n ≤ 5028 family trios) and SNP-based heritability (SNP-h2, n ≤ 5931 children) in the Avon Longitudinal Study of Parents and Children (ALSPAC). An independent twin cohort from Hong Kong (n = 358) was used to replicate results from structural equation modelling (SEM). Parental left-side preference increased the chance of an individual to be left-sided for the same trait, with stronger maternal than paternal effects for footedness. By regressing out the effects of sex, age, and ancestry, we transformed laterality categories into quantitative measures. The SNP-h2 for quantitative handedness and footedness was 0.21 and 0.23, respectively, which is higher than the SNP-h2 reported in larger genetic studies using binary handedness measures. The heritability of the quantitative measure of handedness increased (0.45) compared to a binary measure for writing hand (0.27) in the Hong Kong twins. Genomic and behavioural SEM identified a shared genetic factor contributing to handedness, footedness, and eyedness, but no independent effects on individual phenotypes. Our analysis demonstrates how quantitative multidimensional laterality phenotypes are better suited to capture the underlying genetics than binary traits.
Collapse
Affiliation(s)
- Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Mo Zheng
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin F H Lui
- Wofoo Joseph Lee Consulting and Counselling Psychology Research Centre, Lingnan University, Hong Kong, China
| | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Connie S-H Ho
- Psychology Department, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
15
|
Schizophrenia-associated LRRTM1 regulates cognitive behavior through controlling synaptic function in the mediodorsal thalamus. Mol Psychiatry 2021; 26:6912-6925. [PMID: 33981006 DOI: 10.1038/s41380-021-01146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.
Collapse
|
16
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
17
|
Ocklenburg S, Metzen D, Schlüter C, Fraenz C, Arning L, Streit F, Güntürkün O, Kumsta R, Genç E. Polygenic scores for handedness and their association with asymmetries in brain structure. Brain Struct Funct 2021; 227:515-527. [PMID: 34235564 PMCID: PMC8844179 DOI: 10.1007/s00429-021-02335-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Dorothea Metzen
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schlüter
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christoph Fraenz
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Fabian Streit
- Medical Faculty Mannheim, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| |
Collapse
|
18
|
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level.
Collapse
|
19
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
20
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
21
|
Cuellar-Partida G, Tung JY, Eriksson N, Albrecht E, Aliev F, Andreassen OA, Barroso I, Beckmann JS, Boks MP, Boomsma DI, Boyd HA, Breteler MMB, Campbell H, Chasman DI, Cherkas LF, Davies G, de Geus EJC, Deary IJ, Deloukas P, Dick DM, Duffy DL, Eriksson JG, Esko T, Feenstra B, Geller F, Gieger C, Giegling I, Gordon SD, Han J, Hansen TF, Hartmann AM, Hayward C, Heikkilä K, Hicks AA, Hirschhorn JN, Hottenga JJ, Huffman JE, Hwang LD, Ikram MA, Kaprio J, Kemp JP, Khaw KT, Klopp N, Konte B, Kutalik Z, Lahti J, Li X, Loos RJF, Luciano M, Magnusson SH, Mangino M, Marques-Vidal P, Martin NG, McArdle WL, McCarthy MI, Medina-Gomez C, Melbye M, Melville SA, Metspalu A, Milani L, Mooser V, Nelis M, Nyholt DR, O'Connell KS, Ophoff RA, Palmer C, Palotie A, Palviainen T, Pare G, Paternoster L, Peltonen L, Penninx BWJH, Polasek O, Pramstaller PP, Prokopenko I, Raikkonen K, Ripatti S, Rivadeneira F, Rudan I, Rujescu D, Smit JH, Smith GD, Smoller JW, Soranzo N, Spector TD, Pourcain BS, Starr JM, Stefánsson H, Steinberg S, Teder-Laving M, Thorleifsson G, Stefánsson K, Timpson NJ, Uitterlinden AG, van Duijn CM, van Rooij FJA, Vink JM, Vollenweider P, Vuoksimaa E, Waeber G, Wareham NJ, Warrington N, Waterworth D, Werge T, Wichmann HE, Widen E, Willemsen G, Wright AF, Wright MJ, Xu M, Zhao JH, Kraft P, Hinds DA, Lindgren CM, Mägi R, Neale BM, Evans DM, Medland SE. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat Hum Behav 2021; 5:59-70. [PMID: 32989287 PMCID: PMC7116623 DOI: 10.1038/s41562-020-00956-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10-8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.
Collapse
Affiliation(s)
- Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- 23andMe, Inc., Sunnyvale, CA, USA
| | | | | | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fazil Aliev
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Karabuk University, Faculty of Business, Karabük, Turkey
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inês Barroso
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jacques S Beckmann
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynn F Cherkas
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London Medical School, and the Centre for Genomic Health, Queen Mary University of London, London, UK
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - David L Duffy
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Neuherberg, Germany
| | - Ina Giegling
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Mental Health Services of Copenhagen, Copenhagen, Denmark
- Danish Headache Center, Copenhagen University Hospital, Glostrup, Denmark
| | - Annette M Hartmann
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Kauko Heikkilä
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jennifer E Huffman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - John P Kemp
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Kay-Tee Khaw
- Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Bettina Konte
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Zoltan Kutalik
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Ruth J F Loos
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Human Genetics, Genentech, South San Francisco, CA, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Vincent Mooser
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mari Nelis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roel A Ophoff
- Department of Human Genetics, University California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cameron Palmer
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Aarno Palotie
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Guillaume Pare
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Leena Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Brenda W J H Penninx
- Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
- Research Unit, Psychiatric Hospital Sveti Ivan, Zagreb, Croatia
| | | | - Inga Prokopenko
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, London, UK
| | - Katri Raikkonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Dan Rujescu
- University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes H Smit
- Amsterdam Public Health research institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | | | - Jordan W Smoller
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | | | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Max Planck Institute for Psycholinguistics, Wundtlaan, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemilogy, University of Edinburgh, Edinburgh, UK
| | | | | | - Maris Teder-Laving
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | | | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jaqueline M Vink
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Nicole Warrington
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation's IPSYCH Initiative, Copenhagen, Denmark
| | | | - Elisabeth Widen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Mousheng Xu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Jing Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Kraft
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | | | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David M Evans
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| | - Sarah E Medland
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia.
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
22
|
Lee AK, Khaled H, Chofflet N, Takahashi H. Synaptic Organizers in Alzheimer's Disease: A Classification Based on Amyloid-β Sensitivity. Front Cell Neurosci 2020; 14:281. [PMID: 32982693 PMCID: PMC7492772 DOI: 10.3389/fncel.2020.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Synaptic pathology is one of the major hallmarks observed from the early stage of Alzheimer’s disease (AD), leading to cognitive and memory impairment characteristic of AD patients. Synaptic connectivity and specificity are regulated by multiple trans-bindings between pre- and post-synaptic organizers, the complex of which exerts synaptogenic activity. Neurexins (NRXs) and Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are the major presynaptic organizers promoting synaptogenesis through their distinct binding to a wide array of postsynaptic organizers. Recent studies have shown that amyloid-β oligomers (AβOs), a major detrimental molecule in AD, interact with NRXs and neuroligin-1, an NRX-binding postsynaptic organizer, to cause synaptic impairment. On the other hand, LAR-RPTPs and their postsynaptic binding partners have no interaction with AβOs, and their synaptogenic activity is maintained even in the presence of AβOs. Here, we review the current evidence regarding the involvement of synaptic organizers in AD, with a focus on Aβ synaptic pathology, to propose a new classification where NRX-based and LAR-RPTP-based synaptic organizing complexes are classified into Aβ-sensitive and Aβ-insensitive synaptic organizers, respectively. We further discuss how their different Aβ sensitivity is involved in Aβ vulnerability and tolerance of synapses for exploring potential therapeutic approaches for AD.
Collapse
Affiliation(s)
- Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Gorynia I, Heinz A, Wüstenberg T. Laterality patterns in relation to schizophrenia patients' age at onset. Laterality 2020; 25:349-362. [DOI: 10.1080/1357650x.2019.1690497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Inge Gorynia
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité –Universitätsmedizin, Berlin, Germany
| |
Collapse
|
25
|
Buenaventura Castillo C, Lynch AG, Paracchini S. Different laterality indexes are poorly correlated with one another but consistently show the tendency of males and females to be more left- and right-lateralized, respectively. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191700. [PMID: 32431871 PMCID: PMC7211879 DOI: 10.1098/rsos.191700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The most common way to assess handedness is based on the preferred hand for writing, leading to a binary (left or right) trait. Handedness can also be assessed as a continuous trait with laterality indexes, but these are not time- and cost-effective, and are not routinely collected. Rarely, different handedness measures are collected for the same individuals. Here, we assessed the relationship of preferred hand for writing with four laterality indexes, reported in previous literature, derived from measures of dexterity (pegboard task, marking squares and sorting matches) and strength (grip strength), available in a range of N = 6664-8069 children from the ALSPAC cohort. Although all indexes identified a higher proportion of individuals performing better with their right hand, they showed low correlation with each other (0.08-0.3). Left handers were less consistent compared to right handers in performing better with their dominant hand, but that varied across indexes, i.e. 13% of left handers performed better with their right hand on marking squares compared to 48% for sorting matches and grip strength. Analysis of sex effects on the laterality indexes showed that males and females tend to be, on all measures, more left- and right-lateralized, respectively. Males were also over-represented among the individuals performing equally with both hands suggesting they had a higher tendency to be weakly lateralized. This study shows that different handedness measures tap into different dimensions of laterality and cannot be used interchangeably. The trends observed across indexes for males and females suggest that sex effects should be taken into account in handedness and laterality studies.
Collapse
Affiliation(s)
- Carlos Buenaventura Castillo
- School of Medicine, University of St Andrews, Saint Andrews, Fife, UK
- School of Mathematics and Statistics, University of St Andrews, Saint Andrews, Fife, UK
| | - Andy G. Lynch
- School of Medicine, University of St Andrews, Saint Andrews, Fife, UK
- School of Mathematics and Statistics, University of St Andrews, Saint Andrews, Fife, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, Saint Andrews, Fife, UK
| |
Collapse
|
26
|
Reichman RD, Gaynor SC, Monson ET, Gaine ME, Parsons MG, Zandi PP, Potash JB, Willour VL. Targeted sequencing of the LRRTM gene family in suicide attempters with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:128-139. [PMID: 31854516 PMCID: PMC8380126 DOI: 10.1002/ajmg.b.32767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Glutamatergic signaling is the primary excitatory neurotransmission pathway in the brain, and its relationship to neuropsychiatric disorders is of considerable interest. Our previous attempted suicide genome-wide association study, and numerous studies investigating gene expression, genetic variation, and DNA methylation have implicated aberrant glutamatergic signaling in suicide risk. The glutamatergic pathway gene LRRTM4 was an associated gene identified in our attempted suicide genome-wide association study, with association support seen primarily in females. Recent evidence has also shown that glutamatergic signaling is partly regulated by sex-related hormones. The LRRTM gene family encodes neuronal leucine-rich transmembrane proteins that localize to and promote glutamatergic synapse development. In this study, we sequenced the coding and regulatory regions of all four LRRTM gene members plus a large intronic region of LRRTM4 in 476 bipolar disorder suicide attempters and 473 bipolar disorder nonattempters. We identified two male-specific variants, one female- and five male-specific haplotypes significantly associated with attempted suicide in LRRTM4. Furthermore, variants within significant haplotypes may be brain expression quantitative trait loci for LRRTM4 and some of these variants overlap with predicted hormone response elements. Overall, these results provide supporting evidence for a sex-specific association of genetic variation in LRRTM4 with attempted suicide.
Collapse
Affiliation(s)
- Rachel D. Reichman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sophia C. Gaynor
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Marie E. Gaine
- Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Meredith G. Parsons
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter P. Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
27
|
Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress? Cortex 2020; 125:215-232. [PMID: 32035318 DOI: 10.1016/j.cortex.2019.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hemispheric asymmetries are a major organizational principle of the human brain. In different neurodevelopmental and psychiatric disorders, like schizophrenia, autism spectrum disorders, depression, dyslexia and posttraumatic stress disorder, functional and/or structural hemispheric asymmetries are altered compared to healthy controls. The question, why these disorders all share the common characteristic of altered hemispheric asymmetries despite vastly different etiologies and symptoms remains one of the unsolved mysteries of laterality research. This review is aimed at reviewing potential reasons for why atypical lateralization is so common in many neurodevelopmental and psychiatric disorders. To this end, we review the evidence for overlaps in the genetic and non-genetic factors involved in the ontogenesis of different disorders and hemispheric asymmetries. While there is evidence for genetic overlap between different disorders, only few asymmetry-related loci have also been linked to disorders and importantly, those effects are mostly specific to single disorders. However, there is evidence for shared non-genetic influences between disorders and hemispheric asymmetries. Most neurodevelopmental and psychiatric disorders show alterations in the hypothalamic-pituitary adrenocortical (HPA) axis and maternal as well as early life stress have been implicated in their etiology. Stress has also been suggested to affect hemispheric asymmetries. We propose a model in which early life stress as well as chronic stress not only increases the risk for psychiatric and neurodevelopmental disorders but also changes structural and functional hemispheric asymmetries leading to the aberrant lateralization patterns seen in these disorders. Thus, pathology-related changes in hemispheric asymmetries are not a factor causing disorders, but rather a different phenotype that is affected by partly overlapping ontogenetic factors, primarily stress.
Collapse
|
28
|
Schmitz J, Fraenz C, Schlüter C, Friedrich P, Kumsta R, Moser D, Güntürkün O, Genç E, Ocklenburg S. Schizotypy and altered hemispheric asymmetries: The role of cilia genes. Psychiatry Res Neuroimaging 2019; 294:110991. [PMID: 31683112 DOI: 10.1016/j.pscychresns.2019.110991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022]
Abstract
Schizophrenia patients have a higher probability of altered structural and functional differences between the left and right hemisphere. Schizotypy as its nonclinical manifestation has been related to a higher incidence of non-right-handedness and atypical right-hemispheric language dominance. It has been suggested that genes involved in cilia function might link brain asymmetry and neurodevelopmental disorders. We assessed DNA methylation in the promoter regions of seven candidate genes involved in cilia function and psychiatric disorders from buccal cells and investigated their association with schizotypy and language lateralization in 60 healthy adults. Moreover, we determined microstructural properties of the planum temporale in a subsample of 52 subjects using neurite orientation dispersion and density imaging (NODDI). We found a significant association between schizotypy and DNA methylation in the AHI1 promoter region. Moreover, AHI1 DNA methylation significantly predicted language lateralization and asymmetry in estimated planum temporale neurite density. Finally, stronger leftward asymmetry in estimated neurite density was associated with a more pronounced right ear advantage (left hemisphere dominance) in the forced-right condition of the dichotic listening task, measuring attentional modulation of language lateralization. Our results are in line with a shared molecular basis of schizotypy and functional hemispheric asymmetries that is based on cilia function.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany.
| | - Christoph Fraenz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Caroline Schlüter
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory (BCBLab), Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle (GIN), Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Erhan Genç
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
29
|
Albayay J, Villarroel-Gruner P, Bascour-Sandoval C, Parma V, Gálvez-García G. Psychometric properties of the Spanish version of the Edinburgh Handedness Inventory in a sample of Chilean undergraduates. Brain Cogn 2019; 137:103618. [PMID: 31629000 DOI: 10.1016/j.bandc.2019.103618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 01/10/2023]
Abstract
An individual's nervous and cognitive systems are lateralized, and handedness represents a behavioral manifestation of such organization. Therefore, accurately and reliably measuring handedness has repercussion on our understanding of both the human brain and cognition. The Edinburgh Handedness Inventory (EHI) is the most frequently used instrument to measure handedness both in clinical practice and research. We assessed the psychometric properties of the Spanish version of the EHI in a sample of 348 Chilean university students by confirmatory factor analysis. Cronbach's alpha and composite reliability were calculated to evaluate the internal consistency and reliability of the EHI, while the average variance extracted was estimated to evaluate its convergent validity. A 10-item unifactorial structure was confirmed, with factor loadings ≥0.50, showing excellent goodness-of-fit indicators, very high internal consistency and adequate composite reliability and convergent validity. Socio-demographic variables (sex, area of residence and belonging to an indigenous people or community) did not significantly modulate the EHI scores. Overall, by using this validated version of the EHI to accurately and reliably measure handedness in the greater Spanish population, researchers will be able to produce robust data to tackle the still open questions of lateralization in human cognitive and neural architecture.
Collapse
Affiliation(s)
- Javier Albayay
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Via Venezia 8, 35131 Padova, Italy
| | | | - Claudio Bascour-Sandoval
- Departamento de Medicina Interna, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000 Temuco, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 1090, 4780000 Temuco, Chile
| | - Valentina Parma
- Department of Psychology, Temple University, 1701 N 13th St, Philadelphia, PA 19122, United States; Department of Clinical Neuroscience, Karolinska Institutet, Nobelsväg 9, Solna, 171 77 Stockholm, Sweden
| | - Germán Gálvez-García
- Departamento de Psicología, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000 Temuco, Chile; Département de Psychologie Cognitive, Sciences Cognitives & Neuropsychologie, Institut de Psychologie, Laboratoire d'Étude des Mécanismes Cognitifs, Université Lyon 2, 5 Avenue Pierre Mendès France, 69500 Bron, France.
| |
Collapse
|
30
|
Wiberg A, Ng M, Al Omran Y, Alfaro-Almagro F, McCarthy P, Marchini J, Bennett DL, Smith S, Douaud G, Furniss D. Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain 2019; 142:2938-2947. [PMID: 31504236 PMCID: PMC6763735 DOI: 10.1093/brain/awz257] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Ninety per cent of the human population has been right-handed since the Paleolithic, yet the brain signature and genetic basis of handedness remain poorly characterized. Here, we correlated brain imaging phenotypes from ∼9000 UK Biobank participants with handedness, and with loci found significantly associated with handedness after we performed genome-wide association studies (GWAS) in ∼400 000 of these participants. Our imaging-handedness analysis revealed an increase in functional connectivity between left and right language networks in left-handers. GWAS of handedness uncovered four significant loci (rs199512, rs45608532, rs13017199, and rs3094128), three of which are in-or expression quantitative trait loci of-genes encoding proteins involved in brain development and patterning. These included microtubule-related MAP2 and MAPT, as well as WNT3 and MICB, all implicated in the pathogenesis of diseases such as Parkinson's, Alzheimer's and schizophrenia. In particular, with rs199512, we identified a common genetic influence on handedness, psychiatric phenotypes, Parkinson's disease, and the integrity of white matter tracts connecting the same language-related regions identified in the handedness-imaging analysis. This study has identified in the general population genome-wide significant loci for human handedness in, and expression quantitative trait loci of, genes associated with brain development, microtubules and patterning. We suggest that these genetic variants contribute to neurodevelopmental lateralization of brain organization, which in turn influences both the handedness phenotype and the predisposition to develop certain neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Yasser Al Omran
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Paul McCarthy
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Stephen Smith
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Abstract
The human brain is often characterized in terms of a duality, with the left and right brains serving complementary functions, and even individuals are sometimes classified as either "left-brained" or "right-brained." Recent evidence from brain imaging shows that hemispheric asymmetry is multidimensional, comprised of independent lateralized circuits. Cerebral asymmetries, which include handedness, probably arise in phylogenesis through the fissioning of ancestral systems that divided and lateralized with increasing demand for specialization. They also vary between individuals, with some showing absent or reversed asymmetries. It is unlikely that this variation is controlled by a single gene, as sometimes assumed, but depends rather on complex interplay among several, perhaps many, genes. Hemispheric asymmetry has often been regarded as a unique mark of being human, but it has also become evident that behavioral and cerebral asymmetries are not confined to humans, and are widespread among animal species. They nevertheless exist against a fundamental background of bilateral symmetry, suggesting a tradeoff between the two. Individual differences in asymmetry, moreover, are themselves adaptive, contributing to the cognitive and behavioral specializations necessary for societies to operate efficiently.
Collapse
|
32
|
The neurophysiological correlates of handedness: Insights from the lateralized readiness potential. Behav Brain Res 2019; 364:114-122. [DOI: 10.1016/j.bbr.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
|
33
|
Schmitz J, Güntürkün O, Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front Psychol 2019; 10:982. [PMID: 31133928 PMCID: PMC6524718 DOI: 10.3389/fpsyg.2019.00982] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
The brain is one of the most prominent examples for structural and functional differences between the left and right half of the body. For handedness and language lateralization, the most widely investigated behavioral phenotypes, only a small fraction of phenotypic variance has been explained by molecular genetic studies. Due to environmental factors presumably also playing a role in their ontogenesis and based on first molecular evidence, it has been suggested that functional hemispheric asymmetries are partly under epigenetic control. This review article aims to elucidate the molecular factors underlying hemispheric asymmetries and their association with inner organ asymmetries. While we previously suggested that epigenetic mechanisms might partly account for the missing heritability of handedness, this article extends this idea by suggesting possible alternatives for transgenerational transmission of epigenetic states that do not require germ line epigenetic transmission. This is in line with a multifactorial model of hemispheric asymmetries, integrating genetic, environmental, and epigenetic influencing factors in their ontogenesis.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
34
|
de Kovel CGF, Francks C. The molecular genetics of hand preference revisited. Sci Rep 2019; 9:5986. [PMID: 30980028 PMCID: PMC6461639 DOI: 10.1038/s41598-019-42515-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 01/04/2023] Open
Abstract
Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene MAP2 in handedness.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Witkowski M, Tomczak M, Karpowicz K, Solnik S, Przybyla A. Effects of Fencing Training on Motor Performance and Asymmetry Vary With Handedness. J Mot Behav 2019; 52:50-57. [PMID: 30849297 DOI: 10.1080/00222895.2019.1579167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that motor asymmetries are reduced in left-handers and after a long-term fencing training in right-handers. Interestingly, left-handed athletes are substantially over-represented in elite fencing. These findings have been speculatively explained by imbalance in experience of fighting opposite handedness opponents resulted from skewed distribution of handedness, i.e. lefties encounter more righties than righties encounter lefties. Whereas these assumptions could be accurate, the underlying mechanisms remain ambiguous. In this study, we investigated effects of fencing training on motor performance and asymmetry with respect to handedness. We compared fencing performance of left- and right-handed fencers in both training and combat conditions. In the combat condition, left-handers won seven out of twelve matches consisted of twelve bouts each. They also showed a significantly longer hit detection time, a measure indicating better quality of fencing attack. In the training condition, left-handed fencers completed fencing board tests significantly faster than right-handers. These findings provide additional factor of superior motor performance to be considered when interpreting over-representation of lefties in elite fencing. Furthermore, our left-handers were less lateralized, which could explain that superior motor performance. This idea is consistent with previous findings of reduced asymmetry in right-handed fencers when comparing to non-athletes.
Collapse
Affiliation(s)
- Mateusz Witkowski
- School of Physical Education and Sport, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Maciej Tomczak
- Department of Psychology, Poznan University of Physical Education, Poznan, Poland
| | - Krzysztof Karpowicz
- Department of Theory of Sport, Poznan University of Physical Education, Poznan, Poland
| | - Stanislaw Solnik
- Department of Team Sports Games, University School of Physical Education, Wroclaw, Poland.,Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| |
Collapse
|
36
|
Prieur J, Lemasson A, Barbu S, Blois‐Heulin C. History, development and current advances concerning the evolutionary roots of human right‐handedness and language: Brain lateralisation and manual laterality in non‐human primates. Ethology 2018. [DOI: 10.1111/eth.12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Prieur
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Alban Lemasson
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Stéphanie Barbu
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Catherine Blois‐Heulin
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| |
Collapse
|
37
|
Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:99-106. [DOI: 10.1016/j.cbd.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
|
38
|
Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3-GENES GENOMES GENETICS 2018; 8:3447-3468. [PMID: 30171036 PMCID: PMC6222572 DOI: 10.1534/g3.118.200135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ×C57Bl/6J and C57Bl/6J×NOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.
Collapse
|
39
|
Liu J, Misra A, Reddy MVVVS, White MA, Ren G, Rudenko G. Structural Plasticity of Neurexin 1α: Implications for its Role as Synaptic Organizer. J Mol Biol 2018; 430:4325-4343. [PMID: 30193986 PMCID: PMC6223652 DOI: 10.1016/j.jmb.2018.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/24/2022]
Abstract
α-Neurexins are synaptic organizing molecules implicated in neuropsychiatric disorders. They bind and arrange an array of different partners in the synaptic cleft. The extracellular region of neurexin 1α (n1α) contains six LNS domains (L1-L6) interspersed by three Egf-like repeats. N1α must encode highly evolved structure-function relationships in order to fit into the narrow confines of the synaptic cleft, and also recruit its large, membrane-bound partners. Internal molecular flexibility could provide a solution; however, it is challenging to delineate because currently no structural methods permit high-resolution structure determination of large, flexible, multi-domain protein molecules. To investigate the structural plasticity of n1α, in particular the conformation of domains that carry validated binding sites for different protein partners, we used a panel of structural techniques. Individual particle electron tomography revealed that the N-terminally and C-terminally tethered domains, L1 and L6, have a surprisingly limited range of conformational freedom with respect to the linear central core containing L2 through L5. A 2.8-Å crystal structure revealed an unexpected arrangement of the L2 and L3 domains. Small-angle X-ray scattering and electron tomography indicated that incorporation of the alternative splice insert SS6 relieves the restricted conformational freedom between L5 and L6, suggesting that SS6 may work as a molecular toggle. The architecture of n1α thus encodes a combination of rigid and flexibly tethered domains that are uniquely poised to work together to promote its organizing function in the synaptic cleft, and may permit allosterically regulated and/or concerted protein partner binding.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M V V V Sekhar Reddy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark Andrew White
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
40
|
Jang Y, Lee ST, Bae JY, Kim TJ, Jun JS, Moon J, Jung KH, Park KI, Irani SR, Chu K, Lee SK. LGI1 expression and human brain asymmetry: insights from patients with LGI1-antibody encephalitis. J Neuroinflammation 2018; 15:279. [PMID: 30253786 PMCID: PMC6156957 DOI: 10.1186/s12974-018-1314-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022] Open
Abstract
Background While brain asymmetry has been a fascinating issue in neuroscience, the critical mechanism remains to be elucidated. Based on some index cases with asymmetric 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) uptake in leucine-rich glioma-inactivated 1 (LGI1)-antibody encephalitis, we hypothesized LGI1 expression could be asymmetrically distributed in the human brain. Methods We enrolled 13 patients who were diagnosed with LGI1-antibody encephalitis between June 2012 and January 2018 at Seoul National University Hospital. Their pretreatment 18F-FDG-PET images were analyzed to find asymmetry between the left and right hemispheres. Guided by these observations, expression of LGI1 in the human hippocampus and the globus pallidus of both cerebral hemispheres was studied in nine post-mortem human brains. Results Eleven of the 13 LGI1-antibody encephalitis patients (84.6%) showed asymmetrical FDG high uptake in the hippocampus: nine (81.8%) on the left hippocampus and two (18.2%) on the right. In the basal ganglia, seven patients (53.8%) showed asymmetry: four (57.1%) on the left and three (42.9%) on the right. The asymmetry was not evident in the laterality of faciobrachial dystonic seizures, brain MRI, and EEG. When the expression of LGI1 protein was analyzed in nine post-mortem human brains by western blotting, LGI1 expression was higher on eight left globus pallidus samples (88.89%, P = 0.019) and on four left hippocampal samples (44.44%, P = 0.652), compared to their right hemisphere samples. Conclusions Imaging parameters from patients with LGI1-antibody encephalitis and studies of LGI1 protein expression suggest that LGI1 is asymmetrically distributed in the human brain. These observations have implications for our understanding of human brain development. Electronic supplementary material The online version of this article (10.1186/s12974-018-1314-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoonhyuk Jang
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ji-Yeon Bae
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurology, National Center for Mental Health, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurosurgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
41
|
McCann SJH. Handedness predicts Conservative-Republican preference and eliminates relations of Big Five personality to political orientation using the 48 contiguous American states as analytical units. Laterality 2018; 24:289-319. [PMID: 30080438 DOI: 10.1080/1357650x.2018.1508214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The two present nomothetic studies focused on the period from 1996 to 2012 to determine relations between handedness and political orientation using the 48 contiguous American states as analytical units. The estimated percentage of left-handers in each state operationally defined handedness. A composite measure of Conservative-Republican preference was created from CBS/New York Times/Gallup polls of state resident conservatism and the percent in each state voting Republican in each presidential election from 1996 to 2012. Study 1 showed that state levels of left-handedness correlated to an extremely high degree with Conservative-Republican preference (r = -.80). As well, with common demographic differences between states reflected in socioeconomic status, White population percent, and urban population percent controlled through multiple regression, handedness still accounted for an additional 37.2% of the variance in Conservative-Republican preference. Study 2 found that each of the Big Five personality variables correlated significantly with handedness and with Conservative-Republican preference, but in the opposite direction. Furthermore, Study 2 demonstrated quite surprisingly that all Big Five personality relations to Conservative-Republican preference were eliminated when handedness was controlled in multiple regression equations. For all regression equations, the global Moran's I test specifically developed for detecting residual spatial autocorrelation indicated no significant spatial autocorrelation.
Collapse
|
42
|
Deletion of LRRTM1 and LRRTM2 in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proc Natl Acad Sci U S A 2018; 115:E5382-E5389. [PMID: 29784826 DOI: 10.1073/pnas.1803280115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leucine-rich repeat transmembrane (LRRTM) proteins are synaptic cell adhesion molecules that influence synapse formation and function. They are genetically associated with neuropsychiatric disorders, and via their synaptic actions likely regulate the establishment and function of neural circuits in the mammalian brain. Here, we take advantage of the generation of a LRRTM1 and LRRTM2 double conditional knockout mouse (LRRTM1,2 cKO) to examine the role of LRRTM1,2 at mature excitatory synapses in hippocampal CA1 pyramidal neurons. Genetic deletion of LRRTM1,2 in vivo in CA1 neurons using Cre recombinase-expressing lentiviruses dramatically impaired long-term potentiation (LTP), an impairment that was rescued by simultaneous expression of LRRTM2, but not LRRTM4. Mutation or deletion of the intracellular tail of LRRTM2 did not affect its ability to rescue LTP, while point mutations designed to impair its binding to presynaptic neurexins prevented rescue of LTP. In contrast to previous work using shRNA-mediated knockdown of LRRTM1,2, KO of these proteins at mature synapses also caused a decrease in AMPA receptor-mediated, but not NMDA receptor-mediated, synaptic transmission and had no detectable effect on presynaptic function. Imaging of recombinant photoactivatable AMPA receptor subunit GluA1 in the dendritic spines of cultured neurons revealed that it was less stable in the absence of LRRTM1,2. These results illustrate the advantages of conditional genetic deletion experiments for elucidating the function of endogenous synaptic proteins and suggest that LRRTM1,2 proteins help stabilize synaptic AMPA receptors at mature spines during basal synaptic transmission and LTP.
Collapse
|
43
|
Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity. Exp Mol Med 2018; 50:1-9. [PMID: 29628503 PMCID: PMC5938020 DOI: 10.1038/s12276-017-0023-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits. Further analysis of synaptic proteins will provide insights into the functioning of neural circuits and associated brain disorders. The brain houses numerous highly specialized neuron types, which transfer and process information via a complex network of synaptic connections. Every neuron develops its own distinctive synapses with specific functions, but exactly how this is achieved is not clear. Joris de Wit and Anna Schroeder at the VIB Center for Brain and Disease Research in Leuven, Belgium, reviewed recent research into the leucine-rich repeat-containing (LRR) proteins, which are thought to be major organizers of synaptic connectivity and key regulators of healthy neural circuit development. Further investigations into the functionality of LRR proteins in the brain will not only improve understanding of neural circuitry but also provide insights into synaptic impairments in brain disorders like schizophrenia.
Collapse
|
44
|
Hermans MP, Ahn SA, Rousseau MF. Lipoprotein(a) levels are doubled in left-handed patients with diabetes. DIABETES & METABOLISM 2018; 46:169-172. [PMID: 29653761 DOI: 10.1016/j.diabet.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Affiliation(s)
- M P Hermans
- Division of Endocrinology & Nutrition, Cliniques universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - S A Ahn
- Division of Cardiology, Cliniques universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - M F Rousseau
- Division of Cardiology, Cliniques universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Uomini NT, Ruck L. Manual laterality and cognition through evolution: An archeological perspective. PROGRESS IN BRAIN RESEARCH 2018; 238:295-323. [DOI: 10.1016/bs.pbr.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene 2018; 641:367-375. [DOI: 10.1016/j.gene.2017.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
47
|
Papadatou-Pastou M. Handedness and cognitive ability: Using meta-analysis to make sense of the data. PROGRESS IN BRAIN RESEARCH 2018; 238:179-206. [DOI: 10.1016/bs.pbr.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
48
|
Atypical structural and functional motor networks in autism. PROGRESS IN BRAIN RESEARCH 2018; 238:207-248. [DOI: 10.1016/bs.pbr.2018.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Ntolka E, Papadatou-Pastou M. Right-handers have negligibly higher IQ scores than left-handers: Systematic review and meta-analyses. Neurosci Biobehav Rev 2018; 84:376-393. [DOI: 10.1016/j.neubiorev.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
|
50
|
Parma V, Brasselet R, Zoia S, Bulgheroni M, Castiello U. The origin of human handedness and its role in pre-birth motor control. Sci Rep 2017; 7:16804. [PMID: 29196664 PMCID: PMC5711880 DOI: 10.1038/s41598-017-16827-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/17/2017] [Indexed: 11/16/2022] Open
Abstract
The vast majority of humans are right-handed, but how and when this bias emerges during human ontogenesis is still unclear. We propose an approach that explains postnatal handedness starting from 18 gestational weeks using a kinematic analysis of different fetal arm movements recorded during ultrasonography. Based on the hand dominance reported postnatally at age 9, the fetuses were classified as right-handed (86%) or left-handed, in line with population data. We revealed that both right-handed and left-handed fetuses were faster to reach to targets requiring greater precision (i.e., eye and mouth), with their dominant (vs. non-dominant) hand. By using either movement times or deceleration estimates, handedness can be inferred with a classification accuracy ranging from 89 to 100% from gestational week 18. The reliability of this inference hints to the yet unexplored potential of standard ultrasonography to advance our understanding of prenatal life.
Collapse
Affiliation(s)
- Valentina Parma
- International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Romain Brasselet
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Stefania Zoia
- Struttura Complessa Tutela Salute Bambini Adolescenti Donne Famiglia, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | | | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy.
- Centro di Neuroscienze, University of Padova, Padova, Italy.
- Centro Linceo Beniamino Segre, Rome, Italy.
| |
Collapse
|