1
|
Lori A, Patel AV, Westmaas JL, Diver WR. A novel smoking cessation behavior based on quit attempts may identify new genes associated with long-term abstinence. Addict Behav 2025; 161:108192. [PMID: 39504611 DOI: 10.1016/j.addbeh.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Smoking cessation at any age has been shown to improve quality of life, decrease illness, and reduce mortality. About half of smokers attempt to quit each year, but only ∼ 7 % maintain long-term abstinence unaided. Few genetic factors have been consistently associated with smoking cessation, possibly due to poor phenotype definition. METHODS We performed a genome-wide association study (GWAS) with an alternative phenotype based on the difficulty of quitting smoking (DQS) in the Cancer Prevention Study-3 cohort. Difficult quitters were defined as having made at least ten quit attempts, whether successful or not, and easy quitters as having quit after only one attempt. Only individuals of European ancestry were selected for the study. Among 10,004 smokers (5,071 difficult quitters, 4,933 easy quitters), we assessed the genetic heritability of DQS and evaluated associations between DQS and each genome-wide variant using logistic regression while adjusting for confounders, including smoking intensity (cigarettes per day). RESULTS The genetic heritability of the DQS phenotype was 13 %, comparable to, or higher than, the reported heritability of other smoking behaviors (e.g., smoking intensity, cessation). Although no variants were genome-wide significant, several genes were identified at a subthreshold level (p < 10-4). A variant in MEGF9 (rs149760032), a transmembrane protein largely expressed in the central nervous system, showed the strongest association with DQS (OR = 0.60, p = 1.3x10-7). Additional variants associated with DQS independently by smoking intensity were also detected in GLRA3 (rs73006492, OR = 0.77, p = 5.6x10-7) and FOCAD (rs112251973, OR = 1.96, p = 1.8x10-6) and are plausibly related to smoking cessation through pathways in the brain and respiratory system. CONCLUSIONS The use of an alternative cessation phenotype based on difficulty quitting smoking facilitated the identification of new pathways that could lead to unique smoking treatments.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - J Lee Westmaas
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
2
|
Nianpanich S, Rodsiri R, Islamie R, Limpikirati P, Thanusuwannasak T, Vajragupta O, Kanasuwan A, Sarasamkan J. Evaluation of (S)-T1 and (S)-T2 ligands targeting α3β4 nAChR as potential nicotine addiction pharmacotherapy. Psychopharmacology (Berl) 2024; 241:2485-2495. [PMID: 39177808 DOI: 10.1007/s00213-024-06675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Substance use disorders (SUDs) represent a significant global health concern, demanding the development of effective pharmacological treatments. To address this, an investigation was conducted to examine the anti-addictive properties of two compounds, (S)-T1 and (S)-T2, which specifically target the α3β4 nicotinic acetylcholine receptor (nAChR). METHODS The effects of (S)-T1 and (S)-T2 on nicotine-induced conditioned place preference (CPP), locomotor activity and dopamine levels in particular brain regions associated to addiction were investigated and compared in male C57BL/6N mice. RESULTS The results demonstrate that neither (S)-T1 nor (S)-T2 induced place conditioning or conditioned place aversion (CPA), suggesting the absence of rewarding or aversive effects. Both compounds significantly attenuated nicotine-induced CPP, with (S)-T1 exhibiting a dose-dependent effect. Furthermore, the co-administration of (S)-T2 (10 mg/kg) with nicotine markedly reduced locomotor activity compared to nicotine treatment alone. Additionally, dopamine analysis revealed that nicotine increased dopamine levels in the nucleus accumbens (NAc) and dorsal striatum, whereas the co-administration of (S)-T1 (1, 3, and 10 mg/kg) and (S)-T2 (10 mg/kg) significantly decreased dopamine levels in these brain regions. No significant effects were observed in the prefrontal cortex (PFC). CONCLUSIONS These findings suggest that (S)-T1 and (S)-T2 hold promise for treating nicotine addiction by attenuating nicotine-induced CPP and modulating dopamine release in key reward-related brain regions. Further research is needed to gain insights into the underlying mechanisms behind their anti-addictive effects and substantiate their potential for treating nicotine addiction.
Collapse
Affiliation(s)
- Saranda Nianpanich
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ridho Islamie
- Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya, Surabaya, 60293, Indonesia
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanundorn Thanusuwannasak
- Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Opa Vajragupta
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apinan Kanasuwan
- National Cyclotron and PET Centre, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Jiradanai Sarasamkan
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Tan Q, Xu X, Zhou H, Jia J, Jia Y, Tu H, Zhou D, Wu X. A multi-ancestry cerebral cortex transcriptome-wide association study identifies genes associated with smoking behaviors. Mol Psychiatry 2024; 29:3580-3589. [PMID: 38816585 DOI: 10.1038/s41380-024-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Transcriptome-wide association studies (TWAS) have provided valuable insight in identifying genes that may impact cigarette smoking. Most of previous studies, however, mainly focused on European ancestry. Limited TWAS studies have been conducted across multiple ancestries to explore genes that may impact smoking behaviors. In this study, we used cis-eQTL data of cerebral cortex from multiple ancestries in MetaBrain, including European, East Asian, and African samples, as reference panels to perform multi-ancestry TWAS analyses on ancestry-matched GWASs of four smoking behaviors including smoking initiation, smoking cessation, age of smoking initiation, and number of cigarettes per day in GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN). Multiple-ancestry fine-mapping approach was conducted to identify credible gene sets associated with these four traits. Enrichment and module network analyses were further performed to explore the potential roles of these identified gene sets. A total of 719 unique genes were identified to be associated with at least one of the four smoking traits across ancestries. Among those, 249 genes were further prioritized as putative causal genes in multiple ancestry-based fine-mapping approach. Several well-known smoking-related genes, including PSMA4, IREB2, and CHRNA3, showed high confidence across ancestries. Some novel genes, e.g., TSPAN3 and ANK2, were also identified in the credible sets. The enrichment analysis identified a series of critical pathways related to smoking such as synaptic transmission and glutamate receptor activity. Leveraging the power of the latest multi-ancestry GWAS and eQTL data sources, this study revealed hundreds of genes and relevant biological processes related to smoking behaviors. These findings provide new insights for future functional studies on smoking behaviors.
Collapse
Affiliation(s)
- Qilong Tan
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Xiaohang Xu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Hanyi Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Junlin Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Yubing Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Huakang Tu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xifeng Wu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Al-Eitan L, Shatnawi M, Alghamdi M. Investigating CHRNA5, CHRNA3, and CHRNB4 variants in the genetic landscape of substance use disorder in Jordan. BMC Psychiatry 2024; 24:436. [PMID: 38862938 PMCID: PMC11167846 DOI: 10.1186/s12888-024-05898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Substance use disorder (SUD) is a complex illness that can be attributed to the interaction between environmental and genetic factors. The nicotinic receptor gene cluster on chromosome 15 has a plausible association with SUD, particularly with nicotine dependence. METHODS This study investigated 15 SNPs within the CHRNA5, CHRNA3, and CHRNB4 genes. Sequencing was used for genotyping 495 Jordanian males with SUD and 497 controls matched for age, gender, and descent. RESULTS Our findings revealed that none of the tested alleles or genotypes were correlated with SUD. However, our analysis suggests that the route of substance use was linked to rs1051730 (P value = 0.04), rs8040868 (P value = 0.01) of CHRNA3, and rs16969968 (P value = 0.03) of CHRNA5. Additionally, a correlation was identified between rs3813567 of the CHRNB4 gene and the age at substance use onset (P value = 0.04). CONCLUSIONS Variants in CHRNA5, CHRNA3, and CHRNB4 may interact with SUD features that can influence the development and progression of the disorder among Jordanians.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Mohammad Shatnawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
6
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Ortega LA, Aragon-Carvajal DM, Cortes-Corso KT, Forero-Castillo F. Early developmental risks for tobacco addiction: A probabilistic epigenesis framework. Neurosci Biobehav Rev 2024; 156:105499. [PMID: 38056543 DOI: 10.1016/j.neubiorev.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Considerable progress has been made in elucidating the relationships between early life psychobiological and environmental risk factors and the development of tobacco addiction. However, a comprehensive understanding of the heterogeneity in tobacco addiction phenotypes requires integrating research findings. The probabilistic epigenesis meta-theory offers a valuable framework for this integration, considering systemic, multilevel, developmental, and evolutionary perspectives. In this paper, we critically review relevant research on early developmental risks associated with tobacco addiction and highlight the integrative heuristic value of the probabilistic epigenesis framework for this research. For this, we propose a four-level systems approach as an initial step towards integration, analyzing complex interactions among different levels of influence. Additionally, we explore a coaction approach to examine key interactions between early risk factors. Moreover, we introduce developmental pathways to understand interindividual differences in tobacco addiction risk during development. This integrative approach holds promise for advancing our understanding of tobacco addiction etiology and informing potentially effective intervention strategies.
Collapse
Affiliation(s)
- Leonardo A Ortega
- Facultad de Psicologia, Fundacion Universitaria Konrad Lorenz, Colombia.
| | | | | | | |
Collapse
|
8
|
Yang Z, Chen J, Han H, Wang Y, Shi X, Zhang B, Mao Y, Li AN, Yuan W, Yao J, Li MD. Single nucleotide polymorphisms rs148582811 regulates its host gene ARVCF expression to affect nicotine-associated hippocampus-dependent memory. iScience 2023; 26:108335. [PMID: 38025780 PMCID: PMC10679859 DOI: 10.1016/j.isci.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Although numerous susceptibility loci are nominated for nicotine dependence (ND), no report showed any association of ARVCF with ND. Through genome-wide sequencing analysis, we first identified genetic variants associated nominally with ND and then replicated them in an independent sample. Of the six replicated variants, rs148582811 in ARVCF located in the enhancer-associated marker peak is attractive. The effective-median-based Mendelian randomization analysis indicated that ARVCF is a causal gene for ND. RNA-seq analysis detected decreased ARVCF expression in smokers compared to nonsmokers. Luciferase reporter assays indicated that rs148582811 and its located DNA fragment allele-specifically regulated ARVCF expression. Immunoprecipitation analysis revealed that transcription factor X-ray repair cross-complementing protein 5 (XRCC5) bound to the DNA fragment containing rs148582811 and allele-specifically regulated ARVCF expression at the mRNA and protein levels. With the Arvcf knockout mouse model, we showed that Arvcf deletion not only impairs hippocampus-dependent learning and memory, but also alleviated nicotine-induced memory deficits.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Andria N. Li
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianhua Yao
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Ahmadi-Soleimani SM, Amiry GY, Khordad E, Masoudi M, Beheshti F. Omega-3 fatty acids prevent nicotine withdrawal-induced impairment of learning and memory via affecting oxidative status, inflammatory response, cholinergic activity, BDNF and amyloid-B in rat hippocampal tissues. Life Sci 2023; 332:122100. [PMID: 37722588 DOI: 10.1016/j.lfs.2023.122100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In the present study, the main objective was to reveal whether treatment by Omega-3 fatty acids could prevent the adverse effects of adolescent nicotine withdrawal on spatial and avoidance memory in male rats. For this purpose, Morris water maze and passive avoidance tests were performed on male Wistar rats and the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor, nitrite, amyloid-B and acetylcholinesterase (AChE) were measured. Moreover, density of dark neurons were assessed in CA1 and CA3 regions. Results showed that adolescent nicotine exposure followed by a period of drug cessation exacerbates the behavioral indices of learning and memory through affecting a variety of biochemical markers within the hippocampal tissues. These changes lead to elevation of oxidative and inflammatory markers, reduction of neurotrophic capacity and increased AChE activity in hippocampal tissues. In addition, it was observed that co-administration of nicotine with Omega-3 fatty acids significantly prevents nicotine withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. Therefore, we suggest administration of Omega-3 fatty acids as a safe, inexpensive and effective therapeutic strategy for prevention of memory dysfunctions associated with nicotine abstinence during adolescence.
Collapse
Affiliation(s)
- S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Elnaz Khordad
- Department of Anatomical Sciences, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
10
|
Jiang Z, Chen Z, Chen X. Candidate gene-environment interactions in substance abuse: A systematic review. PLoS One 2023; 18:e0287446. [PMID: 37906564 PMCID: PMC10617739 DOI: 10.1371/journal.pone.0287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The abuse of psychogenic drugs can lead to multiple health-related problems. Genetic and environmental vulnerabilities are factors in the emergence of substance use disorders. Empirical evidence regarding the gene-environment interaction in substance use is mixed. Summaries of the latest findings from a candidate gene approach will be useful for revealing the significance of particular gene contributions. Thus, we aim to identify different gene-environment interactions in patterns of substance use and investigate whether any effects trend notably across different genders and races. METHODS We reviewed published studies, until March 1, 2022, on substance use for candidate gene-environment interaction. Basic demographics of the included studies, target genes, environmental factors, main findings, patterns of gene-environment interaction, and other relevant information were collected and summarized. RESULTS Among a total of 44 studies, 38 demonstrated at least one significant interaction effect. About 61.5% of studies on the 5-HTTLPR gene, 100% on the MAOA gene, 42.9% on the DRD2 gene, 50% on the DRD4 gene, 50% on the DAT gene, 80% on the CRHR1 gene, 100% on the OPRM1 gene, 100% on the GABRA1 gene, and 50% on the CHRNA gene had a significant gene-environment interaction effect. The diathesis-stress model represents a dominant interaction pattern (89.5%) in the studies with a significant interaction effect; the remaining significant effect on substance use is found in the differential susceptibility model. The social push and swing model were not reported in the included studies. CONCLUSION The gene-environment interaction research on substance use behavior is methodologically multidimensional, which causes difficulty in conducting pooled analysis, or stated differently-making it hard to identify single sources of significant influence over maladaptive patterns of drug taking. In decreasing the heterogeneity and facilitating future pooled analysis, researchers must (1) replicate the existing studies with consistent study designs and measures, (2) conduct power calculations to report gene-environment correlations, (3) control for covariates, and (4) generate theory-based hypotheses with factorial based experiments when designing future studies.
Collapse
Affiliation(s)
- Zheng Jiang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Zidong Chen
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xi Chen
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Sociology and Social Policy, Lingnan University, Tuen Mun, Hong Kong
| |
Collapse
|
11
|
Kumaraguru M, L L, Priyadharsini VJ, I MA, S R. Identification of Pathogenic Missense Mutations in the CHRNA5 Gene: A Computational Approach. Cureus 2023; 15:e47519. [PMID: 38021533 PMCID: PMC10663970 DOI: 10.7759/cureus.47519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Aim The CHRNA5/A3/B4 gene locus is closely related to nicotine dependence and other smoking-related disorders. Coupling genetic and clinical studies of nicotine dependence and smoking behaviors may open new avenues for medication development. The aim of this study is to investigate the functional missense mutations in the CHRNA5 gene. Methodology The Ensembl database was used to gather data on missense mutations of the human CHRNA5 gene. Computational tools viz. SIFT (Sorting Intolerant From Tolerant), PolyPhen (Polymorphism Phenotyping), PROVEAN (Protein Variation Effect Analyzer), I-Mutant, and MutPred were used to uncover the pathogenic mutations in the gene under investigation. Results Among 161 missense variants reported inthe CHRNA5 gene, 94 variants were found to be highly pathogenic. Moreover, 20 were pathogenic and 4 were not pathogenic. Conclusion The computational analysis disclosed harmful mutations in the CHRNA5 gene which could be potentially associated with smoking-related traits.
Collapse
Affiliation(s)
- Mahalakshmi Kumaraguru
- Public Health Dentistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Leelavathi L
- Public Health Dentistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vijayashree J Priyadharsini
- Clinical Genetics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meignana Arumugham I
- Public Health Dentistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar S
- Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
12
|
Abstract
Diseases associated with nicotine dependence in the form of habitual tobacco use are a major cause of premature death in the United States. The majority of tobacco smokers will relapse within the first month of attempted abstinence. Smoking cessation agents increase the likelihood that smokers can achieve long-term abstinence. Nevertheless, currently available smoking cessation agents have limited utility and fail to prevent relapse in the majority of smokers. Pharmacotherapy is therefore an effective strategy to aid smoking cessation efforts but considerable risk of relapse persists even when the most efficacious medications currently available are used. The past decade has seen major breakthroughs in our understanding of the molecular, cellular, and systems-level actions of nicotine in the brain that contribute to the development and maintenance of habitual tobacco use. In parallel, large-scale human genetics studies have revealed allelic variants that influence vulnerability to tobacco use disorder. These advances have revealed targets for the development of novel smoking cessation agents. Here, we summarize current efforts to develop smoking cessation therapeutics and highlight opportunities for future efforts.
Collapse
Affiliation(s)
- Dana Lengel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute (DDI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Jones SK, Alberg AJ, Wallace K, Froeliger B, Carpenter MJ, Wolf BJ. CHRNA5-A3-B4 and DRD2 Genes and Smoking Cessation Throughout Adulthood: A Longitudinal Study of Women. Nicotine Tob Res 2023; 25:1164-1173. [PMID: 36794842 PMCID: PMC10413434 DOI: 10.1093/ntr/ntad026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Smoking cessation is more than 50% heritable. Genetic studies of smoking cessation have been limited by short-term follow-up or cross-sectional design. AIMS AND METHODS This study tests single nucleotide polymorphism (SNP) associations with cessation during long-term follow-up throughout adulthood in women. The secondary aim tests whether genetic associations differ by smoking intensity. Associations between 10 SNPs in CHRNA5, CHRNA3, CHRNB2, CHRNB4, DRD2, and COMT and the probability of smoking cessation over time were evaluated in two longitudinal cohort studies of female nurses, the Nurses' Health Study (NHS) (n = 10 017) and NHS-2 (n = 2793). Participant follow-up ranged from 2 to 38 years with data collected every 2 years. RESULTS Women with the minor allele of either CHRNA5 SNP rs16969968 or CHRNA3 SNP rs1051730 had lower odds of cessation throughout adulthood [OR = 0.93, p-value = .003]. Women had increased odds of cessation if they had the minor allele of CHRNA3 SNP rs578776 [OR = 1.17, p-value = .002]. The minor allele of DRD2 SNP rs1800497 was associated with lower odds of cessation in moderate-to-heavy smokers [OR = 0.92, p-value = .0183] but increased odds in light smokers [OR = 1.24, p-value = .096]. CONCLUSIONS Some SNP associations with short-term smoking abstinence observed in prior studies were shown in the present study to persist throughout adulthood over decades of follow-up. Other SNP associations with short-term abstinence did not persist long-term. The secondary aim findings suggest genetic associations may differ by smoking intensity. IMPLICATIONS The results of the present study expand on previous studies of SNP associations in relation to short-term smoking cessation to demonstrate some of these SNPs were associated with smoking cessation throughout decades of follow-up, whereas other SNP associations with short-term abstinence did not persist long-term. The rate of relapse to smoking remains high for several years after quitting smoking, and many smokers experience multiple quit attempts and relapse episodes throughout adulthood. Understanding genetic associations with long-term cessation has potential importance for precision medicine approaches to long-term cessation management.
Collapse
Affiliation(s)
- Stephanie K Jones
- Department of Public Health, Baylor University, Waco, TX, USA
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Anthony J Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Kristin Wallace
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Matthew J Carpenter
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Neurobiology and Mechanisms of Nicotine Addiction. Respir Med 2023. [DOI: 10.1007/978-3-031-24914-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Molas S, Zhao-Shea R, Freels TG, Tapper AR. Viral Tracing Confirms Paranigral Ventral Tegmental Area Dopaminergic Inputs to the Interpeduncular Nucleus Where Dopamine Release Encodes Motivated Exploration. eNeuro 2023; 10:ENEURO.0282-22.2022. [PMID: 36599671 PMCID: PMC9840383 DOI: 10.1523/eneuro.0282-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent data indicate that VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive signaling, salience, and novelty, based in part on anatomic location and projection, highlighting a need to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and familiarity, has recently come into question. To verify the existence of this circuit, we combined presynaptic targeted and retrograde viral tracing in the dopamine transporter-Cre mouse line. Consistent with previous reports, synaptic tracing revealed that axon terminals from the VTA innervate the caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral region, project to the nucleus accumbens shell, as well as the IPN. To test whether functional DAergic neurotransmission exists in the IPN, we expressed the genetically encoded DA sensor, dLight 1.2, in the IPN of C57BL/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but not familiar conspecific and during exploration of the anxiogenic open arms of the elevated plus maze. Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in encoding motivated exploration.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
16
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Understanding the Impact of Flavors on Vaping and Nicotine Addiction-Related Behaviors. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Goldberg LR, Gould TJ. Genetic influences impacting nicotine use and abuse during adolescence: Insights from human and rodent studies. Brain Res Bull 2022; 187:24-38. [PMID: 35738503 PMCID: PMC11836905 DOI: 10.1016/j.brainresbull.2022.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Nicotine use continues to be a major public health concern, with an alarming recent rise in electronic cigarette consumption. Heritability estimates of nicotine use and abuse range from 40% to 80%, providing strong evidence that genetic factors impact nicotine addiction-relevant phenotypes. Although nicotine use during adolescence is a key factor in the development of addiction, it remains unclear how genetic factors impact adolescent nicotine use and abuse. This review will discuss studies investigating genetic factors impacting nicotine use during adolescence. Evidence from both rodent and human studies will be summarized and integrated when possible. Human adolescent studies have largely included candidate gene studies for genes identified in adult populations, such as genes involved in nicotine metabolism, nicotinic acetylcholine receptor signaling, dopaminergic signaling, and other neurotransmitter signaling systems. Alternatively, rodent studies have largely taken a discovery-based approach identifying strain differences in adolescent nicotine addiction-relevant behaviors. Here, we aim to answer the following three questions by integrating human and rodent findings: (1) Are there genetic variants that uniquely impact nicotine use during adolescence? (2) Are there genetic variants that impact both adolescent and adult nicotine use? and (3) Do genetic factors in adolescence significantly impact long-term consequences of adolescent nicotine use? Determining answers for these three questions will be critical for the development of preventative measures and treatments for adolescent nicotine use and addiction.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Heatlh, Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Heatlh, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Trybek G, Śmiarowska M, Suchanecka A, Woźniak G, Jaroń A, Grzywacz A. Association of Polymorphism CHRNA5 and CHRNA3 Gene in People Addicted to Nicotine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10478. [PMID: 36078193 PMCID: PMC9517777 DOI: 10.3390/ijerph191710478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Smoking is a chronic and relapsing addictive trait that harms public health. Among the many identified genetic variants of nicotine dependence, the variants in the CHRNA5/A3/B4 gene cluster on chromosome 15 that encode the α5, α3, and β4 subunits have recently received a lot of attention. Importantly, variants in this gene cluster have been associated with nicotine addiction. Among the many significant variants in this cluster, the polymorphism SNP rs16969968 seems to be the most interesting factor in nicotine addiction. This polymorphism causes an amino acid change from aspartate to asparagine at position 398 of the α5 nicotinic receptor protein sequence. Our study aimed to analyze three polymorphic variants: the rs16969968 located in the CHRNA5 gene, the rs578776 and rs1051730 located in the CHRNA3 gene in nicotine-addicted subjects, and in controls. Our study encompasses an association analysis of genotypes and haplotypes. A group of 401 volunteers was recruited for the study and divided into two groups: the study group consisted of addicted smokers and a control group of 200 unrelated non-smokers who were not dependent on any substance and healthy. A statistically significant difference was observed in the frequency of genotypes of the rs1051730 polymorphism of the CHRNA3 gene (χ2 = 6.704 p = 0.035). The T/T genotype was statistically significantly more frequent in the group of nicotine-dependent subjects. The haplotypes rs16969968, rs578776, and rs1051730 were distinguished, of which the G-T-T and G-C-T haplotypes were present only in the study group. With differences in frequencies, statistical significance was noted-for the G-T-T haplotype p = 0.01284 and the G-C-T haplotype p = 0.00775. The research stated that novel haplotypes G-T-T and G-C-T, though with very low-frequency variants in CHRNA3, were associated with nicotine addiction.
Collapse
Affiliation(s)
- Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Woźniak
- Private Dental Practice, 9 Bahnhofstrasse, 3940 Steg, Switzerland
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
19
|
Brynildsen JK, Yang K, Lemchi C, Dani JA, De Biasi M, Blendy JA. A common SNP in Chrna5 enhances morphine reward in female mice. Neuropharmacology 2022; 218:109218. [PMID: 35973602 DOI: 10.1016/j.neuropharm.2022.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
The single nucleotide polymorphism (SNP) D398N (rs16969968) in CHRNA5, the gene encoding the α5 subunit of the nicotinic acetylcholine receptors (nAChR), has been associated with both nicotine and opiate dependence in human populations. Expression of this SNP on presynaptic VTA dopaminergic (DA) neurons is known to cause a reduction in calcium signaling, leading to alterations in transmitter signaling and altered responses to drugs of abuse. To examine the impact of the Chrna5 SNP on opiate reward and underlying dopaminergic mechanisms, mice harboring two copies of the risk-associated allele (Chrna5 A/A) at a location equivalent to human rs16969968 were generated via CRISPR/cas9 genome editing. We sought to determine whether Chrna5 A/A mice show differences in sensitivity to rewarding properties of morphine using the conditioned place preference paradigm. When mice were tested two weeks after conditioning, female Chrna5 A/A mice showed significantly enhanced preference for the morphine-paired chamber relative to WT females, suggesting that this genotype may enhance opioid reward specifically in females. In contrast, Chrna5 genotype had no effect on locomotor sensitization in male or female mice. Relative to WT females, peak amplitude of ACh-gated currents recorded from VTA DA neurons in Chrna5 A/A females was potentiated 1 day after conditioning with morphine. Increased FOS expression was also observed in Chrna5 A/A mice relative to WT mice following exposure to the morphine CPP chamber. We propose that impaired α5 nAChR subunit function alters DA neuron response following repeated morphine exposures, and that this early cellular response could contribute to enhanced opiate reward two weeks after conditioning.
Collapse
Affiliation(s)
| | | | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, USA
| | | | - Mariella De Biasi
- Department of Neuroscience, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, USA.
| |
Collapse
|
20
|
CHRNA5 rs16969968 and CHRNA3 rs578776 polymorphisms are associated with multiple nicotine dependence phenotypes in Bangladeshi smokers. Heliyon 2022; 8:e09947. [PMID: 35865987 PMCID: PMC9293740 DOI: 10.1016/j.heliyon.2022.e09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background A recent study has identified the role of CHRNA5-A3-B4 gene cluster variants rs16969968 and rs578776 of nicotinic acetylcholine receptors (nAChRs) on smoking status in Bengali ethnicity. The aim of the current study was to investigate whether these rs16969968-rs578776-rs11072768 single nucleotide polymorphisms (SNPs) of CHRNA5-A3-B4 gene cluster were associated with nicotine dependence (ND) and related phenotypes. Methods The Fagerstrom Test for Nicotine Dependence (FTND) and Cigarette Dependence Scale (CDS-12) were used to assess the degree of ND, and genotyping was done using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method on a cohort of 129 male smokers participating in a structured questionnaire-based survey. Results Smokers with AA genotype of CHRNA5 rs16969968 SNP were at significantly increased risk of developing ND compared to its wild type variant with odds ratio (ORs) of 1.20 (FTND: 95% CI 0.25–5.37, p = 0.253) and 2.48 (CDS-12: 95% CI 0.46–13.26, p = 0.081), respectively. Conversely, smokers with AA genotype of CHRNA3 rs578776 variant had a strong protective effect against ND development (ORs = 0.27, 95% CI 0.09–0.80, p = 0.076). There was no such link reported in CHRNB4 rs11072768 variant carriers. Similarly, G-A/G-A diplotype of rs16969968_rs578776 variants was discovered to be a protective factor against ND. Moreover, demographic features such as age, occupation and dwelling status were found to be significantly associated with ND. Conclusion Taken together, CHRNA5-A3-B4 gene cluster variants rs16969968 and rs578776 as well as specific demographic characteristics regulate ND and related smoking phenotypes in Bangladeshi male smokers. Further studies with large sample sizes are required to substantially validate the significance.
Collapse
|
21
|
Breum AW, Falk S, Svendsen CSA, Nicolaisen TS, Mathiesen CV, Maskos U, Clemmensen C. Divergent Roles of α5 and β4 Nicotinic Receptor Subunits in Food Reward and Nicotine-induced Weight Loss in Male Mice. Endocrinology 2022; 163:6590007. [PMID: 35595472 PMCID: PMC9217964 DOI: 10.1210/endocr/bqac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
A major obstacle to successful smoking cessation is the prospect of weight gain. Despite a clear relationship between cigarette smoking and body weight, surprisingly little is known about the physiological and molecular mechanism by which nicotine affects energy homeostasis and food-motivated behaviors. Here we use loss-of-function mouse models to demonstrate that 2 nicotinic acetylcholine receptor (nAChR) subunits encoded by the CHRNA5-CHRNA3-CHRNB4 gene cluster, α5 and β4, exhibit divergent roles in food reward. We also reveal that β4-containing nAChRs are essential for the weight-lowering effects of nicotine in diet-induced obese mice. Finally, our data support the notion of crosstalk between incretin biology and nAChR signaling, as we demonstrate that the glycemic benefits of glucagon-like peptide-1 receptor activation partially relies on β4-containing nAChRs. Together, these data encourage further research into the role of cholinergic neurotransmission in regulating food reward and the translational pursuit of site-directed targeting of β4-containing nAChRs for treatment of metabolic disease.
Collapse
Affiliation(s)
| | | | - Charlotte Sashi Aier Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Christoffer Clemmensen
- Correspondence: Christoffer Clemmensen, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, Jha P, Hall WD. Tobacco and nicotine use. Nat Rev Dis Primers 2022; 8:19. [PMID: 35332148 DOI: 10.1038/s41572-022-00346-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco's effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
- Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Megan E Piper
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Center for Tobacco Research and Intervention, Madison, WI, USA
| | - Christie D Fowler
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
| | - Serena Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Institute on Drug Dependence, Peking University Health Science Center, Beijing, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Wayne D Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
23
|
Liyanage JSS, Estepp JH, Srivastava K, Li Y, Mori M, Kang G. GMEPS: a fast and efficient likelihood approach for genome-wide mediation analysis under extreme phenotype sequencing. Stat Appl Genet Mol Biol 2022; 21:sagmb-2021-0071. [PMID: 35266368 DOI: 10.1515/sagmb-2021-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Due to many advantages such as higher statistical power of detecting the association of genetic variants in human disorders and cost saving, extreme phenotype sequencing (EPS) is a rapidly emerging study design in epidemiological and clinical studies investigating how genetic variations associate with complex phenotypes. However, the investigation of the mediation effect of genetic variants on phenotypes is strictly restrictive under the EPS design because existing methods cannot well accommodate the non-random extreme tails sampling process incurred by the EPS design. In this paper, we propose a likelihood approach for testing the mediation effect of genetic variants through continuous and binary mediators on a continuous phenotype under the EPS design (GMEPS). Besides implementing in EPS design, it can also be utilized as a general mediation analysis procedure. Extensive simulations and two real data applications of a genome-wide association study of benign ethnic neutropenia under EPS design and a candidate-gene study of neurocognitive performance in patients with sickle cell disease under random sampling design demonstrate the superiority of GMEPS under the EPS design over widely used mediation analysis procedures, while demonstrating compatible capabilities under the general random sampling framework.
Collapse
Affiliation(s)
- Janaka S S Liyanage
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Jeremie H Estepp
- Departments of Global Pediatric Medicine and Hematology, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill 27599, NC, USA
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| |
Collapse
|
24
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
25
|
Meyers E, Werner Z, Wichman D, Mathews HL, Radcliffe RA, Nadeau JH, Stitzel JA. Genetic Modifiers of Oral Nicotine Consumption in Chrna5 Null Mutant Mice. Front Psychiatry 2021; 12:773400. [PMID: 34803779 PMCID: PMC8601376 DOI: 10.3389/fpsyt.2021.773400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The gene CHRNA5 is strongly associated with the level of nicotine consumption in humans and manipulation of the expression or function of Chrna5 similarly alters nicotine consumption in rodents. In both humans and rodents, reduced or complete loss of function of Chrna5 leads to increased nicotine consumption. However, the mechanism through which decreased function of Chrna5 increases nicotine intake is not well-understood. Toward a better understanding of how loss of function of Chrna5 increases nicotine consumption, we have initiated efforts to identify genetic modifiers of Chrna5 deletion-dependent oral nicotine consumption in mice. For this, we introgressed the Chrna5 knockout (KO) mutation onto a panel of C57BL/6J-Chr#A/J/NAJ chromosome substitution strains (CSS) and measured oral nicotine consumption in 18 CSS and C57BL/6 (B6) mice homozygous for the Chrna5 KO allele as well as their Chrna5 wild type littermates. As expected, nicotine consumption was significantly increased in Chrna5 KO mice relative to Chrna5 wildtype mice on a B6 background. Among the CSS homozygous for the Chrna5 KO allele, several exhibited altered nicotine consumption relative to B6 Chrna5 KO mice. Sex-independent modifiers were detected in CSS possessing A/J chromosomes 5 and 11 and a male-specific modifier was found on chromosome 15. In all cases nicotine consumption was reduced in the CSS Chrna5 KO mice relative to B6 Chrna5 KO mice and consumption in the CSS KO mice was indistinguishable from their wild type littermates. Nicotine consumption was also reduced in both Chrna5 KO and wildtype CSS mice possessing A/J chromosome 1 and increased in both KO and wild type chromosome 17 CSS relative to KO and wild type B6 mice. These results demonstrate the presence of several genetic modifiers of nicotine consumption in Chrna5 KO mice as well as identify loci that may affect nicotine consumption independent of Chrna5 genotype. Identification of the genes that underlie the altered nicotine consumption may provide novel insight into the mechanism through which Chrna5 deletion increases nicotine consumption and, more generally, a better appreciation of the neurobiology of nicotine intake.
Collapse
Affiliation(s)
- Erin Meyers
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Zachary Werner
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - David Wichman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Hunter L. Mathews
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseph H. Nadeau
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
26
|
Adjangba C, Border R, Romero Villela PN, Ehringer MA, Evans LM. Little Evidence of Modified Genetic Effect of rs16969968 on Heavy Smoking Based on Age of Onset of Smoking. Nicotine Tob Res 2021; 23:1055-1063. [PMID: 33165565 DOI: 10.1093/ntr/ntaa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tobacco smoking is the leading cause of preventable death globally. Smoking quantity, measured in cigarettes per day, is influenced both by the age of onset of regular smoking (AOS) and by genetic factors, including a strong effect of the nonsynonymous single-nucleotide polymorphism rs16969968. A previous study by Hartz et al. reported an interaction between these two factors, whereby rs16969968 risk allele carriers who started smoking earlier showed increased risk for heavy smoking compared with those who started later. This finding has yet to be replicated in a large, independent sample. METHODS We performed a preregistered, direct replication attempt of the rs16969968 × AOS interaction on smoking quantity in 128 383 unrelated individuals from the UK Biobank, meta-analyzed across ancestry groups. We fit statistical association models mirroring the original publication as well as formal interaction tests on multiple phenotypic and analytical scales. RESULTS We replicated the main effects of rs16969968 and AOS on cigarettes per day but failed to replicate the interaction using previous methods. Nominal significance of the rs16969968 × AOS interaction term depended strongly on the scale of analysis and the particular phenotype, as did associations stratified by early/late AOS. No interaction tests passed genome-wide correction (α = 5e-8), and all estimated interaction effect sizes were much smaller in magnitude than previous estimates. CONCLUSIONS We failed to replicate the strong rs16969968 × AOS interaction effect previously reported. If such gene-moderator interactions influence complex traits, they likely depend on scale of measurement, and current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. IMPLICATIONS We failed to replicate the strong rs16969968 × AOS interaction effect on smoking quantity previously reported. If such gene-moderator interactions influence complex traits, current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. Furthermore, many potential interaction effects are likely to depend on the scale of measurement employed.
Collapse
Affiliation(s)
- Christine Adjangba
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO
| | - Richard Border
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO
| | - Pamela N Romero Villela
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| |
Collapse
|
27
|
Jha MK, Kim JW, Kenny PJ, Chin Fatt C, Minhajuddin A, Salas R, Ely BA, Klein M, Abdallah CG, Xu J, Trivedi MH. Smoking status links habenular volume to glycated hemoglobin: Findings from the Human Connectome Project-Young Adult. Psychoneuroendocrinology 2021; 131:105321. [PMID: 34157587 DOI: 10.1016/j.psyneuen.2021.105321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The habenula-pancreas axis regulates the stimulatory effects of nicotine on blood glucose levels and may participate in the emergence of type 2 diabetes in human tobacco smokers. This secondary analysis of young adults from the Human Connectome Project (HCP-YA) evaluated whether smoking status links the relationship between habenular volume and glycated hemoglobin (HbA1c), a marker of long-term glycemic control. METHODS Habenula segmentation was performed using a fully-automated myelin content-based approach in HCP-YA participants and the results were inspected visually (n = 693; aged 22-37 years). A linear regression analysis was used with habenular volume as the dependent variable, the smoking-by-HbA1c interaction as the independent variable of interest, and age, gender, race, ethnicity, education, income, employment status, body mass index, and total gray matter volume as covariates. RESULTS Habenula volume and HbA1c were similar in smokers and nonsmokers. There was a significant interaction effect (F(1, 673)= 5.03, p = 0.025) indicating that habenular volume was related to HbA1c in a manner that depended on smoking status. Among participants who were smokers (n = 120), higher HbA1c was associated with apparently larger habenular volume (β = 6.74, standard error=2.36, p = 0.005). No such association between habenular volume and HbA1c was noted among participants who were nonsmokers (n = 573). DISCUSSION Blood glucose levels over an extended time period, reflected by HbA1c, were correlated with habenular volume in smokers, consistent with a relationship between the habenula and blood glucose homeostasis in smokers. Future studies are needed to evaluate how habenular function relates to glycemic control in smokers and nonsmokers.
Collapse
Affiliation(s)
- Manish K Jha
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Joo-Won Kim
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States; Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cherise Chin Fatt
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ramiro Salas
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States; Michael E DeBakey VA Medical Center, Houston, TX, United States; The Menninger Clinic, Houston, TX, United States
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Matthew Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States; Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Junqian Xu
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States; Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
28
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
29
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
30
|
Abstract
Tobacco smoking results in more than five million deaths each year and accounts for ∼90% of all deaths from lung cancer.3 Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and three β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice, in which expression of α5 or β4 subunits has been genetically modified, have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here, we review recent insights into the behavioral actions of nicotine, and the nAChR subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
31
|
Brynildsen JK, Blendy JA. Linking the CHRNA5 SNP to drug abuse liability: From circuitry to cellular mechanisms. Neuropharmacology 2021; 186:108480. [PMID: 33539855 PMCID: PMC7958463 DOI: 10.1016/j.neuropharm.2021.108480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Genetics are known to be a significant risk factor for drug abuse. In human populations, the single nucleotide polymorphism (SNP) D398N in the gene CHRNA5 has been associated with addiction to nicotine, opioids, cocaine, and alcohol. In this paper, we review findings from studies in humans, rodent models, and cell lines and provide evidence that collectively suggests that the Chrna5 SNP broadly influences the response to drugs of abuse in a manner that is not substance-specific. This finding has important implications for our understanding of the role of the cholinergic system in reward and addiction vulnerability. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Nicotinic acetylcholine gene cluster CHRNA5-A3-B4 variants influence smoking status in a Bangladeshi population. Pharmacol Rep 2021; 73:574-582. [PMID: 33675519 DOI: 10.1007/s43440-021-00243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Past studies have established the association of CHRNA5-A3-B4 gene cluster variants with various smoking behaviors in different ethnicities, yet no such study has been reported in Bengali ethnicity to date. METHODS A case-control study with 129 smokers and 111 non-smokers was conducted and genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method aimed to manifest the association of three SNPs in this gene cluster with smoking status (SS) in a Bangladeshi population. RESULTS The non-synonymous CHRNA5 rs1s6969968 and 3'-UTR variant CHRNA3 rs578776 polymorphisms were found to have a strong association with SS. Carriers of polymorphic 'A' allele of rs16969968 showed 1.51-fold more risk of being smokers (adjusted OR = 1.51, 95% CI 0.88-2.57, p = 0.128); whereas, rs578776 polymorphic 'A' allele carriers showed 0.595-fold less risk of being smokers (adjusted OR = 1.51, 95% CI 0.88-2.57, p = 0.006). Comparing smokers and non-smokers, A/A mutant homozygous genotypes of rs578776 and rs16969968 variants pose 0.369-fold (95% CI 0.177-0.77, p = 0.008) and 3.3-fold (95% CI 0.66-16.46, p = 0.14) more risk for positive SS, respectively. No genotypic association for SS was found with intronic variant CHRNB4 rs11072768 (T/G; adjusted OR = 0.827, 95% CI 0.457-1.499, p = 0.532 and G/G; adjusted OR = 0.992, 95% CI 0.455-2.167, p = 0.985). Combination of rs16969968-positive/rs578776-negative polymorphic variants possesses the risk of positive SS in young adults. Furthermore, two new haplotypes (AAT and AAG) were identified in Bangladeshi population and GAG (OR = 0.45, 95% CI 0.25-0.8, p = 0.006) haplotype was found to be a protective factor for SS. CONCLUSION Nicotinic acetylcholine gene cluster CHRNA5-A3-B4 variants rs16969968 and rs578776 are associated with SS in a Bangladeshi population. Large-scale studies are warranted to establish this genotype-phenotype correlation.
Collapse
|
33
|
Fan R, Cui W, Chen J, Ma Y, Yang Z, Payne TJ, Ma JZ, Li MD. Gene-based association analysis reveals involvement of LAMA5 and cell adhesion pathways in nicotine dependence in African- and European-American samples. Addict Biol 2021; 26:e12898. [PMID: 32281736 DOI: 10.1111/adb.12898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Nicotine dependence (ND) is a chronic brain disorder that causes heavy social and economic burdens. Although many susceptibility genetic loci have been reported, they can explain only approximately 5%-10% of the genetic variance for the disease. To further explore the genetic etiology of ND, we genotyped 242 764 SNPs using an exome chip from both European-American (N = 1572) and African-American (N = 3371) samples. Gene-based association analysis revealed 29 genes associated significantly with ND. Of the genes in the AA sample, six (i.e., PKD1L2, LAMA5, MUC16, MROH5, ATP8B1, and FREM1) were replicated in the EA sample with p values ranging from 0.0031 to 0.0346. Subsequently, gene enrichment analysis revealed that cell adhesion-related pathways were significantly associated with ND in both the AA and EA samples. Considering that LAMA5 is the most significant gene in cell adhesion-related pathways, we did in vitro functional analysis of this gene, which showed that nicotine significantly suppressed its mRNA expression in HEK293T cells (p < 0.001). Further, our cell migration experiment showed that the migration rate was significantly different in wild-type and LAMA5-knockout (LAMA5-KO)-HEK293T cells. Importantly, nicotine-induced cell migration was abolished in LAMA5-KO cells. Taken together, these findings indicate that LAMA5, as well as cell adhesion-related pathways, play an important role in the etiology of smoking addiction, which warrants further investigation.
Collapse
Affiliation(s)
- Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Thomas J. Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences University of Mississippi Medical Center Jackson Mississippi USA
| | - Jennie Z. Ma
- Department of Public Health Sciences University of Virginia Charlottesville Virginia USA
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Research Center for Air Pollution and Health Zhejiang University Hangzhou China
| |
Collapse
|
34
|
Perez-Paramo YX, Lazarus P. Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism. Expert Opin Drug Metab Toxicol 2021; 17:333-349. [PMID: 33322962 PMCID: PMC8049967 DOI: 10.1080/17425255.2021.1863948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful.Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy.Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
35
|
α3* Nicotinic Acetylcholine Receptors in the Habenula-Interpeduncular Nucleus Circuit Regulate Nicotine Intake. J Neurosci 2020; 41:1779-1787. [PMID: 33380469 DOI: 10.1523/jneurosci.0127-19.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
Allelic variation in CHRNA3, the gene encoding the α3 nicotinic acetylcholine receptor (nAChR) subunit, increases vulnerability to tobacco dependence and smoking-related diseases, but little is known about the role for α3-containing (α3*) nAChRs in regulating the addiction-related behavioral or physiological actions of nicotine. α3* nAChRs are densely expressed by medial habenula (mHb) neurons, which project almost exclusively to the interpeduncular nucleus (IPn) and are known to regulate nicotine avoidance behaviors. We found that Chrna3tm1.1Hwrt hypomorphic mice, which express constitutively low levels of α3* nAChRs, self-administer greater quantities of nicotine (0.4 mg kg-1 per infusion) than their wild-type littermates. Microinfusion of a lentivirus vector to express a short-hairpin RNA into the mHb or IPn to knock-down Chrna3 transcripts markedly increased nicotine self-administration behavior in rats (0.01-0.18 mg kg-1 per infusion). Using whole-cell recordings, we found that the α3β4* nAChR-selective antagonist α-conotoxin AuIB almost completely abolished nicotine-evoked currents in mHb neurons. By contrast, the α3β2* nAChR-selective antagonist α-conotoxin MII only partially attenuated these currents. Finally, micro-infusion of α-conotoxin AuIB (10 μm) but not α-conotoxin MII (10 μm) into the IPn in rats increased nicotine self-administration behavior. Together, these data suggest that α3β4* nAChRs regulate the stimulatory effects of nicotine on the mHb-IPn circuit and thereby regulate nicotine avoidance behaviors. These findings provide mechanistic insights into how CHRNA3 risk alleles can increase the risk of tobacco dependence and smoking-related diseases in human smokers.SIGNIFICANCE STATEMENT Allelic variation in CHRNA3, which encodes the α3 nicotinic acetylcholine receptor (nAChR) subunit gene, increases risk of tobacco dependence but underlying mechanisms are unclear. We report that Chrna3 hypomorphic mice consume greater quantities of nicotine than wild-type mice and that knock-down of Chrna3 gene transcripts in the habenula or interpeduncular nucleus (IPn) increases nicotine intake in rats. α-Conotoxin AuIB, a potent antagonist of the α3β4 nAChR subtype, reduced the stimulatory effects of nicotine on habenular neurons, and its infusion into the IPn increased nicotine intake in rats. These data suggest that α3β4 nAChRs in the habenula-IPn circuit regulate the motivational properties of nicotine.
Collapse
|
36
|
α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs 2020; 18:md18120646. [PMID: 33339145 PMCID: PMC7765617 DOI: 10.3390/md18120646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/14/2023] Open
Abstract
Tobacco smoking has become a prominent health problem faced around the world. The α3β4 nicotinic acetylcholine receptor (nAChR) is strongly associated with nicotine reward and withdrawal symptom. α-Conotoxin TxID, cloned from Conus textile, is a strong α3β4 nAChR antagonist, which has weak inhibition activity of α6/α3β4 nAChR. Meanwhile, its analogue [S9K]TxID only inhibits α3β4 nAChR (IC50 = 6.9 nM), and has no inhibitory activity to other nAChRs. The present experiment investigates the effect of α3β4 nAChR antagonists (TxID and [S9K]TxID) on the expression and reinstatement of nicotine-induced conditioned place preference (CPP) and explores the behaviors of acute nicotine in mice. The animal experimental results showed that TxID and [S9K] TxID could inhibit the expression and reinstatement of CPP, respectively. Moreover, both had no effect in acute nicotine experiment and the locomotor activity in mice. Therefore, these findings reveal that the α3β4 nAChR may be a potential target for anti-nicotine addiction treatment. [S9K]TxID, α3β4 nAChR antagonist, exhibit a superior effect for anti-nicotine addiction, which is promising to develop a novel smoking cessation drug.
Collapse
|
37
|
Rovný R, Besterciová D, Riečanský I. Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis? Front Psychiatry 2020; 11:550225. [PMID: 33324248 PMCID: PMC7723973 DOI: 10.3389/fpsyt.2020.550225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Deficits in the gating of sensory stimuli, i.e., the ability to suppress the processing of irrelevant sensory input, are considered to play an important role in the pathogenesis of several neuropsychiatric disorders, in particular schizophrenia. Gating is disrupted both in schizophrenia patients and their unaffected relatives, suggesting that gating deficit may represent a biomarker associated with a genetic liability to the disorder. To assess the strength of the evidence for the etiopathogenetic links between genetic variation, gating efficiency, and schizophrenia, we carried out a systematic review of human genetic association studies of sensory gating (suppression of the P50 component of the auditory event-related brain potential) and sensorimotor gating (prepulse inhibition of the acoustic startle response). Sixty-three full-text articles met the eligibility criteria for inclusion in the review. In total, 117 genetic variants were reported to be associated with gating functions: 33 variants for sensory gating, 80 variants for sensorimotor gating, and four variants for both sensory and sensorimotor gating. However, only five of these associations (four for prepulse inhibition-CHRNA3 rs1317286, COMT rs4680, HTR2A rs6311, and TCF4 rs9960767, and one for P50 suppression-CHRNA7 rs67158670) were consistently replicated in independent samples. Although these variants and genes were all implicated in schizophrenia in research studies, only two polymorphisms (HTR2A rs6311 and TCF4 rs9960767) were also reported to be associated with schizophrenia at a meta-analytic or genome-wide level of evidence. Thus, although gating is widely considered as an important endophenotype of schizophrenia, these findings demonstrate that evidence for a common genetic etiology of impaired gating functions and schizophrenia is yet unsatisfactory, warranting further studies in this field.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Besterciová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
39
|
Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020; 177:108256. [PMID: 32738308 PMCID: PMC7554201 DOI: 10.1016/j.neuropharm.2020.108256] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
Nicotine is a highly addictive drug found in tobacco that drives its continued use despite the harmful consequences. The initiation of nicotine abuse involves the mesolimbic dopamine system, which contributes to the rewarding sensory stimuli and associative learning processes in the beginning stages of addiction. Nicotine binds to neuronal nicotinic acetylcholine receptors (nAChRs), which come in a diverse collection of subtypes. The nAChRs that contain the α4 and β2 subunits, often in combination with the α6 subunit, are particularly important for nicotine's ability to increase midbrain dopamine neuron firing rates and phasic burst firing. Chronic nicotine exposure results in numerous neuroadaptations, including the upregulation of particular nAChR subtypes associated with long-term desensitization of the receptors. When nicotine is no longer present, for example during attempts to quit smoking, a withdrawal syndrome develops. The expression of physical withdrawal symptoms depends mainly on the α2, α3, α5, and β4 nicotinic subunits in the epithalamic habenular complex and its target regions. Thus, nicotine affects diverse neural systems and an array of nAChR subtypes to mediate the overall addiction process. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Ruthie E Wittenberg
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shannon L Wolfman
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariella De Biasi
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Ramsey AT, Bourdon JL, Bray M, Dorsey A, Zalik M, Pietka A, Salyer P, Chen LS, Baker TB, Munafò MR, Bierut LJ. Proof of Concept of a Personalized Genetic Risk Tool to Promote Smoking Cessation: High Acceptability and Reduced Cigarette Smoking. Cancer Prev Res (Phila) 2020; 14:253-262. [PMID: 32958583 DOI: 10.1158/1940-6207.capr-20-0328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Relatively little is known about the possible effects of personalized genetic risk information on smoking, the leading preventable cause of morbidity and mortality. We examined the acceptability and potential behavior change associated with a personalized genetically informed risk tool (RiskProfile) among current smokers. Current smokers (n = 108) were enrolled in a pre-post study with three visits. At visit 1, participants completed a baseline assessment and genetic testing via 23andMe. Participants' raw genetic data (CHRNA5 variants) and smoking heaviness were used to create a tailored RiskProfile tool that communicated personalized risks of smoking-related diseases and evidence-based recommendations to promote cessation. Participants received their personalized RiskProfile intervention at visit 2, approximately 6 weeks later. Visit 3 involved a telephone-based follow-up assessment 30 days after intervention. Of enrolled participants, 83% were retained across the three visits. Immediately following intervention, acceptability of RiskProfile was high (M = 4.4; SD = 0.6 on scale of 1 to 5); at 30-day follow-up, 89% of participants demonstrated accurate recall of key intervention messages. In the full analysis set of this single-arm trial, cigarettes smoked per day decreased from intervention to 30-day follow-up [11.3 vs. 9.8; difference = 1.5; 95% confidence interval (0.6-2.4); P = 0.001]. A personalized genetically informed risk tool was found to be highly acceptable and associated with a reduction in smoking, although the absence of a control group must be addressed in future research. This study demonstrates proof of concept for translating key basic science findings into a genetically informed risk tool that was used to promote progress toward smoking cessation.Prevention Relevance: This study demonstrates that personal genetic information can be incorporated into a risk feedback tool that was highly acceptable to current smokers and associated with reductions in smoking. These findings may pave the way for effectiveness and implementation research on genetically-informed behavior change interventions to enhance cancer prevention efforts.
Collapse
Affiliation(s)
- Alex T Ramsey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.
| | - Jessica L Bourdon
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Bray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Amelia Dorsey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Maia Zalik
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Amanda Pietka
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Patricia Salyer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy B Baker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, England, United Kingdom.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, England, United Kingdom
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
41
|
Low-Dose Nicotine Activates EGFR Signaling via α5-nAChR and Promotes Lung Adenocarcinoma Progression. Int J Mol Sci 2020; 21:ijms21186829. [PMID: 32957649 PMCID: PMC7555382 DOI: 10.3390/ijms21186829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotine in tobacco smoke is considered carcinogenic in several malignancies including lung cancer. The high incidence of lung adenocarcinoma (LAC) in non-smokers, however, remains unexplained. Although LAC has long been less associated with smoking behavior based on previous epidemiological correlation studies, the effect of environmental smoke contributing to low-dose nicotine exposure in non-smoking population could be underestimated. Here we provide experimental evidence of how low-dose nicotine promotes LAC growth in vitro and in vivo. Screening of nicotinic acetylcholine receptor subunits in lung cancer cell lines demonstrated a particularly high expression level of nicotinic acetylcholine receptor subunit α5 (α 5-nAChR) in LAC cell lines. Clinical specimen analysis revealed up-regulation of α 5-nAChR in LAC tumor tissues compared to non-tumor counterparts. In LAC cell lines α 5-nAChR interacts with epidermal growth factor receptor (EGFR), positively regulates EGFR pathway, enhances the expression of epithelial-mesenchymal transition markers, and is essential for low-dose nicotine-induced EGFR phosphorylation. Functionally, low-dose nicotine requires α 5-nAChR to enhance cell migration, invasion, and proliferation. Knockdown of α 5-nAChR inhibits the xenograft tumor growth of LAC. Clinical analysis indicated that high level of tumor α 5-nAChR is correlated with poor survival rates of LAC patients, particularly in those expressing wild-type EGFR. Our data identified α 5-nAChR as an essential mediator for low-dose nicotine-dependent LAC progression possibly through signaling crosstalk with EGFR, supporting the involvement of environmental smoke in tumor progression in LAC patients.
Collapse
|
42
|
Cooper SY, Henderson BJ. The Impact of Electronic Nicotine Delivery System (ENDS) Flavors on Nicotinic Acetylcholine Receptors and Nicotine Addiction-Related Behaviors. Molecules 2020; 25:E4223. [PMID: 32942576 PMCID: PMC7571084 DOI: 10.3390/molecules25184223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, combustible cigarette smoking has slowly declined by nearly 11% in America; however, the use of electronic cigarettes has increased tremendously, including among adolescents. While nicotine is the main addictive component of tobacco products and a primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette users. Accordingly, there are few studies that examine the impact of flavors on health and behavior. Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus, there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and function, and altering midbrain neuron excitability. Although flavors other than menthol were banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes. This review seeks to summarize the current knowledge on nicotine addiction and the various brain regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and vaping-related behaviors.
Collapse
Affiliation(s)
| | - Brandon J. Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25703, USA;
| |
Collapse
|
43
|
Culverhouse RC, Chen LS, Saccone NL, Ma Y, Piper ME, Baker TB, Bierut LJ. Variants in the CHRNA5-CHRNA3-CHRNB4 Region of Chromosome 15 Predict Gastrointestinal Adverse Events in the Transdisciplinary Tobacco Use Research Center Smoking Cessation Trial. Nicotine Tob Res 2020; 22:248-255. [PMID: 30882151 DOI: 10.1093/ntr/ntz044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/16/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Reducing adverse events from pharmacologic treatment is an important goal of precision medicine and identifying genetic predictors of adverse events is a step toward this goal. In 2012, King et al. reported associations between genetic variants and adverse events in a placebo-controlled smoking cessation trial of varenicline and bupropion. Strong associations were found between gastrointestinal adverse events and 11 variants in the CHRNA5-CHRNA3-CHRNB4 region of chromosome 15, a region repeatedly associated with smoking-related phenotypes. Our goal was to replicate, in an independent sample, the impact of variants in the CHRNA5-CHRNA3-CHRNB4 region on gastrointestinal adverse events and to extend the analyses to adherence and smoking cessation. METHODS The University of Wisconsin Transdisciplinary Tobacco Use Research Center (TTURC) conducted a multiarmed, placebo-controlled smoking cessation trial of bupropion and nicotine replacement therapy that included 985 genotyped European-ancestry participants. We evaluated relationships between our key variables using logistic regression. RESULTS Gastrointestinal adverse events were experienced by 31.6% TTURC participants. Each of the CHRNA5-CHRNA3-CHRNB4 associations from the King et al. study was found in TTURC, with the same direction of effect. Neither these variants nor the gastrointestinal adverse events themselves were associated with adherence to medication or successful smoking cessation. CONCLUSIONS Variants in the CHRNA5-CHRNA3-CHRNB4 region of chromosome 15 are associated with gastrointestinal adverse events in smoking cessation. Additional independent variants in this region strengthen the association. The consistency between the results of these two independent studies supports the conclusion that these findings reflect biological response to the use of smoking cessation medication. IMPLICATIONS The fact that our findings from the TTURC smoking cessation trial support the independent findings of King et al. suggest that associations of variants in the CHRNA5-CHRNA3-CHRNB4 region of chromosome 15 with gastrointestinal adverse events while taking medications for smoking cessation reflect biology. However, although adherence to medication was a strong predictor of successful smoking cessation in TTURC, neither adverse events nor the genetic variants associated with them predicted either adherence or successful cessation in this study. Thus, although we should strive to minimize adverse events during treatment, we should not expect that to increase successful smoking cessation substantially.
Collapse
Affiliation(s)
- Robert C Culverhouse
- John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO.,Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Yinjiao Ma
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Megan E Piper
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Timothy B Baker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
44
|
Icick R, Forget B, Cloëz-Tayarani I, Pons S, Maskos U, Besson M. Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution. Neuropharmacology 2020; 177:108234. [PMID: 32738310 DOI: 10.1016/j.neuropharm.2020.108234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand Widal, Assistance-Publique Hôpitaux de Paris, Paris, F-75010, France; INSERM UMR-S1144, Paris, F-75006, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Génétique Humaine et Fonctions Cognitives, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Isabelle Cloëz-Tayarani
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France.
| |
Collapse
|
45
|
Shi XY, Wang G, Li T, Li Z, Leo P, Liu Z, Wu G, Zhu H, Zhang Y, Li D, Gao L, Yang L, Wang W, Liao J, Wang J, Zhou S, Wang H, Li X, Gao J, Zhang L, Shu X, Li D, Li Y, Chen C, Zhang X, Partida GC, Lundberg M, Reutens D, Bartlett P, Brown MA, Zou LP, Xu H. Identification of susceptibility variants to benign childhood epilepsy with centro-temporal spikes (BECTS) in Chinese Han population. EBioMedicine 2020; 57:102840. [PMID: 32580138 PMCID: PMC7317238 DOI: 10.1016/j.ebiom.2020.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Benign Childhood Epilepsy with Centro-temporal Spikes (BECTS) is the most common form of idiopathic epilepsy in children, accounting for up to 23% of pediatric epilepsy. The pathogenesis of BECTS is unknown, but it is thought that genetic factors play a role in susceptibility to the disease. METHODS To investigate the role of common genetic variants in BECTS pathogenesis, a 2-stage genome-wide association study (GWAS) was performed in 1,800 Chinese Han BECTS patients, and 7,090 healthy controls. Genetic findings were used in a Mendelian Randomization study in the UK Biobank dataset to investigate the potential role of smoking in BECTS. FINDINGS Definitive evidence of a role for common-variant heritability was demonstrated, with heritability of BECTS of >10% observed even with conservative disease prevalence assumptions. Although no individual locus achieved genome-wide significance, twelve loci achieved suggestive evidence of association (5 × 10-8<P<10-5). Using combined genetic and brain tissue gene expression data analyzed by Summary-data-based Mendelian Randomization (SMR), causative association of BECTS was demonstrated with SNP rs1948 and the CHRNA5 t3603436 transcript (Peqtl = 2·10 × 10-12, Psmr = 7·9 × 10-5). This finding indicates rs1948 is significantly associated with BECTS through effects on expression of CHRNA5 in brain tissue. The identification of novel loci suggests involvements of KALRN and the CHRNA5-A3-B4 cluster in BECTS. Using a generalized SMR approach we demonstrate that maternal smoking around birth is significantly associated with increased risk of BECTS (odds ratio = 3·90, P = 0·0099). INTERPRETATION This study shows that BECTS risk is at least partially heritable and due to common genetic variants. Additionally, we demonstrate that BECTS risk is substantially increased by maternal smoking around birth.
Collapse
Affiliation(s)
- Xiu-Yu Shi
- Department of Pediatrics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian district, Beijing, China
| | - Geng Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Gefei Wu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Hongmin Zhu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Yuqin Zhang
- Department of Neurology, Tian Jin Children's hospital, 238 Longyan road, Beichen district, Tianjin, China
| | - Dong Li
- Department of Neurology, Tian Jin Children's hospital, 238 Longyan road, Beichen district, Tianjin, China
| | - Li Gao
- Department of Pediatrics, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, China
| | - Liu Yang
- Department of Pediatrics, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Neurology, Harbin Children's Hospital, 57 YouYi Road, DaoLi District, Harbin, Heilongjiang Province, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 7019 Yitian Road Futian, Shenzhen, Guangdong Province, China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, New Pudong district, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, China
| | - Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Tianhe district, Guangzhou, Guangdong Province, China
| | - Jingyun Gao
- Department of Pediatric Neurology, Hebei Tangshan City maternal and child health care hospital,14 South Jianhe Road, Tangshan, Hebei Province, China
| | - Li Zhang
- Department of Pediatrics, Linyi People's Hospital, 130 Yizhou Road, Lanshan, Linyi, Shandong Province, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Zunyi, Guizhou Province, China
| | - Dan Li
- Department of Pediatrics, the Second affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi Province, China
| | - Yan Li
- Department of Neurology, Children's Hospital Affiliated to Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu Province, China
| | - Chunhong Chen
- Department of Neurology, Beijing Children's Hospital, 56 South Lishi Road, Xicheng District, Beijing, China
| | - Xiuju Zhang
- Department of Pediatrics, Xingtai People's Hospital,16 Hongxing Street, Xingtai, Hebei Province, China
| | - Gabriel Cuellar Partida
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Mischa Lundberg
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Perry Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London, NIHR Biomedical Research Centre, London, England United Kingdom.
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian district, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Chen J, Loukola A, Gillespie NA, Peterson R, Jia P, Riley B, Maes H, Dick DM, Kendler KS, Damaj MI, Miles MF, Zhao Z, Li MD, Vink JM, Minica CC, Willemsen G, Boomsma DI, Qaiser B, Madden PAF, Korhonen T, Jousilahti P, Hällfors J, Gelernter J, Kranzler HR, Sherva R, Farrer L, Maher B, Vanyukov M, Taylor M, Ware JJ, Munafò MR, Lutz SM, Hokanson JE, Gu F, Landi MT, Caporaso NE, Hancock DB, Gaddis NC, Baker TB, Bierut LJ, Johnson EO, Chenoweth M, Lerman C, Tyndale R, Kaprio J, Chen X. Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. Nicotine Tob Res 2020; 22:900-909. [PMID: 31294817 PMCID: PMC7249921 DOI: 10.1093/ntr/ntz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION FTND (Fagerstrӧm test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.
Collapse
Affiliation(s)
- Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nathan A Gillespie
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roseann Peterson
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Peilin Jia
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Brien Riley
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Hermine Maes
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Daniella M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA
| | - Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Zhongming Zhao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jacqueline M Vink
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Camelia C Minica
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Beenish Qaiser
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Tellervo Korhonen
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | | | - Jenni Hällfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Richard Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Lindsay Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins University, Baltimore, MD
| | - Michael Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Jenifer J Ware
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John E Hokanson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Fangyi Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Maria T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Neil E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Dana B Hancock
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
| | - Nathan C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, NC
| | - Timothy B Baker
- Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO
| | - Eric O Johnson
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
- Fellow Program, RTI International, Research Triangle Park, NC
| | - Meghan Chenoweth
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Rachel Tyndale
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
47
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
48
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
49
|
Ma ZG, Jiang N, Huang YB, Ma XK, Brek Eaton J, Gao M, Chang YC, Lukas RJ, Whiteaker P, Neisewander J, Wu J. Cocaine potently blocks neuronal α 3β 4 nicotinic acetylcholine receptors in SH-SY5Y cells. Acta Pharmacol Sin 2020; 41:163-172. [PMID: 31399700 PMCID: PMC7471406 DOI: 10.1038/s41401-019-0276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023] Open
Abstract
Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3β4-nAChR expressed in native SH-SY5Y cells. α3β4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 μM. Kinetic analysis showed that cocaine accelerated α3β4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 μM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-βS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 μM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3β2β3-nAChRs and α4β2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3β4-nAChRs expressed in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ze-Gang Ma
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Nan Jiang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Xiao-Kuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yong-Chang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Jie Wu
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China.
| |
Collapse
|
50
|
Abstract
Human behavior can be controlled by physical or psychological dependencies associated with addiction. One of the most insidious addictions in our society is the use of tobacco products which contain nicotine. This addiction can be associated with specific receptors in the brain that respond to the natural neurotransmitter acetylcholine. These nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels formed by the assembly of one or multiple types of nAChR receptor subunits. In this paper, we review the structure and diversity of nAChR subunits and our understanding for how different nAChR subtypes play specific roles in the phenomenon of nicotine addiction. We focus on receptors containing β2 and/or α6 subunits and the special significance of α5-containing receptors. These subtypes all have roles in regulating dopamine-mediated neurotransmission in the mesolimbic reward pathways of the brain. We also discuss the unique roles of homomeric α7 nAChR in behavioral responses to nicotine and how our knowledge of nAChR functional diversity may help guide pharmacotherapeutic approaches for treating nicotine addiction. While nicotine addiction is a truly global problem, the use of areca nut (betel) products is also a serious addiction associated with public health issues across most of South Asia, impacting as many as 600 million people. We discuss how cholinergic receptors of the brain are also involved with areca addiction and the unique challenges for dealing with addiction to this substance.
Collapse
|