1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Akurati S, Hanlon EC. Beyond the Scale: Exploring the Endocannabinoid System's Impact on Obesity. Curr Diab Rep 2024; 25:6. [PMID: 39543055 DOI: 10.1007/s11892-024-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of the endocannabinoid system (ECS) in regulating energy balance, food intake, and metabolism, with a focus on how ECS dysregulation contributes to obesity. The goal is to provide insights into the mechanisms underlying obesity and its associated metabolic disorders. RECENT FINDINGS Recent research indicates that the ECS significantly influences food intake, fat storage, insulin sensitivity, and inflammation, all of which are central to the development and progression of obesity. New research areas include the interaction between the ECS and gut microbiota, circadian rhythms of the ECS, and the impact of genetic and epigenetic factors on ECS function. Interest in the therapeutic potential of targeting the ECS has grown, with earlier treatments like CB1 receptor antagonists showing mixed results in efficacy and safety. Evidence from both animal and human studies highlight the impact of elevated levels of the endocannabinoids anandamide and 2-AG on food intake, insulin resistance, visceral fat accumulation, and metabolic disturbances associated with obesity. The review explores the interaction between the ECS and other physiological systems, including gut-brain communication, circadian rhythms, as well as leptin and ghrelin signaling. Additionally, genetic and epigenetic factors influencing ECS function are examined, emphasizing their contribution to obesity susceptibility. While therapeutic approaches targeting the ECS, particularly CB1 receptor antagonism, have shown potential in managing obesity, the review acknowledges the challenges posed by central nervous system side effects in earlier treatments like rimonabant. However, recent advancements in peripherally restricted CB1 antagonists offer renewed hope for safer and more effective obesity treatments. The review concludes by addressing future research directions and therapeutic strategies to combat this global health challenge.
Collapse
Affiliation(s)
- Sneha Akurati
- Leonard M Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Erin C Hanlon
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, 5841 S. Maryland Ave, MC1027, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Dionne O, Abolghasemi A, Corbin F, Çaku A. Implication of the endocannabidiome and metabolic pathways in fragile X syndrome pathophysiology. Psychiatry Res 2024; 337:115962. [PMID: 38763080 DOI: 10.1016/j.psychres.2024.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| | - Armita Abolghasemi
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - François Corbin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| |
Collapse
|
4
|
Almaghrbi H, Bawadi H. Genetic polymorphisms and their association with neurobiological and psychological factors in anorexia nervosa: a systematic review. Front Psychol 2024; 15:1386233. [PMID: 38979077 PMCID: PMC11229080 DOI: 10.3389/fpsyg.2024.1386233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024] Open
Abstract
Background and aims Anorexia nervosa (AN) is a complex neuropsychiatric disorder. This systematic review synthesizes evidence from diverse studies to assess and investigate the association between gene polymorphisms and psychological and neurobiological factors in patients with AN. Methods A systematic search across PubMed, PsycINFO, Scopus, and Web of Science databases, along with manual searching, was conducted. The review protocol was approved by PROSPERO (CRD42023452548). Out of 1,250 articles, 11 met the inclusion criteria. The quality of eligible articles was assessed using the Newcastle-Ottawa Scale (NOS) tool. The systematic review followed the PRISMA guidelines. Results The serotoninergic system, particularly the 5-HTTLPR polymorphism, is consistently linked to altered connectivity in the ventral attention network, impaired inhibitory control, and increased susceptibility to AN. The 5-HTTLPR polymorphism affects reward processing, motivation, reasoning, working memory, inhibition, and outcome prediction in patients with AN. The dopaminergic system, involving genes like COMT, DRD2, DRD3, and DAT1, regulates reward, motivation, and decision-making. Genetic variations in these dopaminergic genes are associated with psychological manifestations and clinical severity in patients with AN. Across populations, the Val66Met polymorphism in the BDNF gene influences personality traits, eating behaviors, and emotional responses. Genes like OXTR, TFAP2B, and KCTD15 are linked to social cognition, emotional processing, body image concerns, and personality dimensions in patients with AN. Conclusion There was an association linking multiple genes to the susceptibly and/or severity of AN. This genetic factor contributes to the complexity of AN and leads to higher diversity of its clinical presentation. Therefore, conducting more extensive research to elucidate the underlying mechanisms of anorexia nervosa pathology is imperative for advancing our understanding and potentially developing targeted therapeutic interventions for the disorder.Systematic review registration: [https://clinicaltrials.gov/], identifier [CRD42023452548].
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Senol E, Mohammad H. Current perspectives on brain circuits involved in food addiction-like behaviors. J Neural Transm (Vienna) 2024; 131:475-485. [PMID: 38216705 DOI: 10.1007/s00702-023-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
There is an emerging view that the increased availability of energy-dense foods in our society is contributing to excessive food consumption which could lead to food addiction-like behavior. Particularly, compulsive eating patterns are predominant in people suffering from eating disorders (binge-eating disorder, bulimia and anorexia nervosa) and obesity. Phenotypically, the behavioral pattern exhibits a close resemblance to individuals suffering from other forms of addiction (drug, sex, gambling). Growing body of evidence in neuroscience research is showing that excessive consumption of energy-dense foods alters the brain circuits implicated in reward, decision-making, control, habit formation, and emotions that are central to drug addiction. Here, we review the current understanding of the circuits of food addiction-like behaviors and highlight the future possibility of exploring those circuits to combat obesity and eating disorders.
Collapse
Affiliation(s)
- Esra Senol
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hasan Mohammad
- Centre de Recherche en Biomédicine de Strasbourg (CRBS), L'Institut National de La Santé Et de La Recherche Médicale (Inserm) U1114, University of Strasbourg, Strasbourg, France.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Galmiche M, Déchelotte P. Rôle de l’axe microbiote-intestin-cerveau dans la dérégulation du comportement alimentaire au cours de l’obésité et de l’hyperphagie boulimique : les mécanismes. NUTR CLIN METAB 2023; 37:2S16-2S25. [DOI: 10.1016/s0985-0562(24)00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Baenas I, Solé-Morata N, Granero R, Fernández-Aranda F, Pujadas M, Mora-Maltas B, Lucas I, Gómez-Peña M, Moragas L, del Pino-Gutiérrez A, Tapia J, de la Torre R, Potenza MN, Jiménez-Murcia S. Anandamide and 2-arachidonoylglycerol baseline plasma concentrations and their clinical correlate in gambling disorder. Eur Psychiatry 2023; 66:e97. [PMID: 37937379 PMCID: PMC10755577 DOI: 10.1192/j.eurpsy.2023.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
INTRODUCTION Different components of the endocannabinoid (eCB) system such as their most well-known endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), have been implicated in brain reward pathways. While shared neurobiological substrates have been described among addiction-related disorders, information regarding the role of this system in behavioral addictions such as gambling disorder (GD) is scarce. AIMS Fasting plasma concentrations of AEA and 2-AG were analyzed in individuals with GD at baseline, compared with healthy control subjects (HC). Through structural equation modeling, we evaluated associations between endocannabinoids and GD severity, exploring the potentially mediating role of clinical and neuropsychological variables. METHODS The sample included 166 adult outpatients with GD (95.8% male, mean age 39 years old) and 41 HC. Peripheral blood samples were collected after overnight fasting to assess AEA and 2-AG concentrations (ng/ml). Clinical (i.e., general psychopathology, emotion regulation, impulsivity, personality) and neuropsychological variables were evaluated through a semi-structured clinical interview and psychometric assessments. RESULTS Plasma AEA concentrations were higher in patients with GD compared with HC (p = .002), without differences in 2-AG. AEA and 2-AG concentrations were related to GD severity, with novelty-seeking mediating relationships. CONCLUSIONS This study points to differences in fasting plasma concentrations of endocannabinoids between individuals with GD and HC. In the clinical group, the pathway defined by the association between the concentrations of endocannabinoids and novelty-seeking predicted GD severity. Although exploratory, these results could contribute to the identification of potential endophenotypic features that help optimize personalized approaches to prevent and treat GD.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Neus Solé-Morata
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Roser Granero
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Bernat Mora-Maltas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Ignacio Lucas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Moragas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Amparo del Pino-Gutiérrez
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Miranda-Olivos R, Baenas I, Steward T, Granero R, Pastor A, Sánchez I, Juaneda-Seguí A, Del Pino-Gutiérrez A, Fernández-Formoso JA, Vilarrasa N, Guerrero-Pérez F, Virgili N, López-Urdiales R, Jiménez-Murcia S, de la Torre R, Soriano-Mas C, Fernández-Aranda F. Exploring the influence of circulating endocannabinoids and nucleus accumbens functional connectivity on anorexia nervosa severity. Mol Psychiatry 2023; 28:4793-4800. [PMID: 37759041 PMCID: PMC10914605 DOI: 10.1038/s41380-023-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a harmful persistence of self-imposed starvation resulting in significant weight loss. Research suggests that alterations in the nucleus accumbens (NAcc) and circulating endocannabinoids (eCBs), such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may contribute to increased severity and maladaptive behaviors in AN, warranting an examination of the interplay between central reward circuitry and eCBs. For this purpose, we assessed NAcc functional connectivity and circulating AEA and 2-AG concentrations in 18 individuals with AN and 18 healthy controls (HC) to test associations between circulating eCBs, NAcc functional connectivity, and AN severity, as defined by body mass index (BMI). Decreased connectivity was observed between the NAcc and the right insula (NAcc-insula; pFWE < 0.001) and the left supplementary motor area (NAcc-SMA; pFWE < 0.001) in the AN group compared to HC. Reduced NAcc-insula functional connectivity mediated the association between AEA concentrations and BMI in the AN group. However, in HC, NAcc-SMA functional connectivity had a mediating role between AEA concentrations and BMI. Although no significant differences in eCBs concentrations were observed between the groups, our findings provide insights into how the interaction between eCBs and NAcc functional connectivity influences AN severity. Altered NAcc-insula and NAcc-SMA connectivity in AN may impair the integration of interoceptive, somatosensory, and motor planning information related to reward stimuli. Furthermore, the distinct associations between eCBs concentrations and NAcc functional connectivity in AN and HC could have clinical implications for weight maintenance, with eCBs being a potential target for AN treatment.
Collapse
Affiliation(s)
- Romina Miranda-Olivos
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
| | - Isabel Baenas
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Roser Granero
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Antoni Pastor
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience research group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Isabel Sánchez
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Doctoral Program in Medicine and Translational Research, University of Barcelona, 08036, Barcelona, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto Salud Carlos III, 28029, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Amparo Del Pino-Gutiérrez
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907, Barcelona, Spain
| | - José A Fernández-Formoso
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
| | - Nuria Vilarrasa
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Fernando Guerrero-Pérez
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Nuria Virgili
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Rafael López-Urdiales
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907, Barcelona, Spain
| | - Rafael de la Torre
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience research group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002, Barcelona, Spain
| | - Carles Soriano-Mas
- Ciber de Salud Mental (CIBERSAM), Instituto Salud Carlos III, 28029, Barcelona, Spain.
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, C/Feixa Llarga s/n, 08907, Barcelona, Spain.
- Department of Social Psychology and Quantitative Psychology, School of Psychology, University of Barcelona, 08035, Barcelona, Spain.
| | - Fernando Fernández-Aranda
- Clinical Psychology Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 08907, Barcelona, Spain.
- Psychoneurobiology of Eating and Addictive Behaviors Research Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain.
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907, Barcelona, Spain.
| |
Collapse
|
9
|
Bourdy R, Befort K. The Role of the Endocannabinoid System in Binge Eating Disorder. Int J Mol Sci 2023; 24:ijms24119574. [PMID: 37298525 DOI: 10.3390/ijms24119574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Eating disorders are multifactorial disorders that involve maladaptive feeding behaviors. Binge eating disorder (BED), the most prevalent of these in both men and women, is characterized by recurrent episodes of eating large amounts of food in a short period of time, with a subjective loss of control over eating behavior. BED modulates the brain reward circuit in humans and animal models, which involves the dynamic regulation of the dopamine circuitry. The endocannabinoid system plays a major role in the regulation of food intake, both centrally and in the periphery. Pharmacological approaches together with research using genetically modified animals have strongly highlighted a predominant role of the endocannabinoid system in feeding behaviors, with the specific modulation of addictive-like eating behaviors. The purpose of the present review is to summarize our current knowledge on the neurobiology of BED in humans and animal models and to highlight the specific role of the endocannabinoid system in the development and maintenance of BED. A proposed model for a better understanding of the underlying mechanisms involving the endocannabinoid system is discussed. Future research will be necessary to develop more specific treatment strategies to reduce BED symptoms.
Collapse
Affiliation(s)
- Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Université de Strasbourg, UMR7364, CNRS, 12 Rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
10
|
Mir HD, Giorgini G, Di Marzo V. The emerging role of the endocannabinoidome-gut microbiome axis in eating disorders. Psychoneuroendocrinology 2023; 154:106295. [PMID: 37229916 DOI: 10.1016/j.psyneuen.2023.106295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Among the sources of chemical signals regulating food intake, energy metabolism and body weight, few have attracted recently as much attention as the expanded endocannabinoid system, or endocannabinoidome (eCBome), and the gut microbiome, the two systems on which this review article is focussed. Therefore, it is legitimate to expect that these two systems also play a major role in the etiopathology of eating disorders (EDs), in particular of anorexia nervosa, bulimia nervosa and binge-eating disorder. The major mechanisms through which, also via interactions with other endogenous signaling systems, the eCBome, with its several lipid mediators and receptors, and the gut microbiome, via its variety of microbial kingdoms, phyla and species, and armamentarium of metabolites, intervene in these disorders, are described here, based on several published studies in either experimental models or patients. Additionally, in view of the emerging multi-faceted cross-talk mechanisms between these two complex systems, we discuss the possibility that the eCBome-gut microbiome axis is also involved in EDs.
Collapse
Affiliation(s)
- Hayatte-Dounia Mir
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Giada Giorgini
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de nutrition, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
11
|
Baenas I, Miranda-Olivos R, Solé-Morata N, Jiménez-Murcia S, Fernández-Aranda F. Neuroendocrinological factors in binge eating disorder: A narrative review. Psychoneuroendocrinology 2023; 150:106030. [PMID: 36709632 DOI: 10.1016/j.psyneuen.2023.106030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Neuroendocrine mechanisms play a key role in the regulation of eating behavior. In individuals with binge eating disorder (BED), alterations in these mechanisms signaling hunger and satiety have been observed. It has been investigated that these alterations may underlie the development and maintenance of compulsive overeating in BED. The present narrative review examined the current literature related to the neurobiological processes involved in feeding dysregulation in BED with the aim of updating the most relevant aspects with special attention to neuroendocrine signaling. Studies have shown both central and peripheral endocrine dysfunctions in hormones participating in homeostatic and hedonic pathways in BED. Most studies have been especially focused on orexigenic signals, pointing out the existence of a hyperactivated mechanism promoting hunger. Fewer studies have explored anorexigenic pathways, but the findings so far seem to suggest an abnormal satiety threshold. Despite this, to date, it is unable to identify whether these alterations are typical of the BED pathophysiology or are related to an obesogenic pattern due to most studies included patients with BED and obesity. The identification of endophenotypes in BED may provide a new approach to aberrant eating behavior, favoring the implementation of biological therapeutic targets.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Psychiatry, Bellvitge University Hospital, 08907 Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Romina Miranda-Olivos
- Department of Psychiatry, Bellvitge University Hospital, 08907 Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Neus Solé-Morata
- Department of Psychiatry, Bellvitge University Hospital, 08907 Barcelona, Spain.
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital, 08907 Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital, 08907 Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
| |
Collapse
|
12
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Piras C, Pibiri M, Conte S, Ferranti G, Leoni VP, Liggi S, Spada M, Muntoni S, Caboni P, Atzori L. Metabolomics analysis of plasma samples of patients with fibromyalgia and electromagnetic sensitivity using GC-MS technique. Sci Rep 2022; 12:21923. [PMID: 36535959 PMCID: PMC9763344 DOI: 10.1038/s41598-022-25588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and systemic condition that causes widespread chronic pain, asthenia, and muscle stiffness, as well as in some cases depression, anxiety, and disorders of the autonomic system. The exact causes that lead to the development of FM are still unknown today. In a percentage of individuals, the symptoms of FM are often triggered and/or exacerbated by proximity to electrical and electromagnetic devices. Plasma metabolomic profile of 54 patients with fibromyalgia and self-reported electromagnetic sensitivity (IEI-EMF) were compared to 23 healthy subjects using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis techniques. Before the GC-MS analysis the plasma samples were extracted with a modified Folch method and then derivatized with methoxamine hydrochloride in pyridine solution and N-trimethylsilyltrifuoroacetamide. The combined analysis allowed to identify a metabolomic profile able of distinguishing IEI-EMF patients and healthy subjects. IEI-EMF patients were therefore characterized by the alteration of 19 metabolites involved in different metabolic pathways such as energy metabolism, muscle, and pathways related to oxidative stress defense and chronic pain. The results obtained in this study complete the metabolomic "picture" previously investigated on the same cohort of IEI-EMF patients with 1H-NMR spectroscopy, placing a further piece for better understanding the pathophysiological mechanisms in patients with IEI-EMF.
Collapse
Affiliation(s)
- Cristina Piras
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Stella Conte
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Gabriella Ferranti
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Vera Piera Leoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sonia Liggi
- grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Martina Spada
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sandro Muntoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Pierluigi Caboni
- grid.7763.50000 0004 1755 3242Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luigi Atzori
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| |
Collapse
|
14
|
Endocannabinoid System Regulation in Female Rats with Recurrent Episodes of Binge Eating. Int J Mol Sci 2022; 23:ijms232315228. [PMID: 36499556 PMCID: PMC9738776 DOI: 10.3390/ijms232315228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.
Collapse
|
15
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
DONATO KEVIN, CECCARINI MARIARACHELE, DHULI KRISTJANA, BONETTI GABRIELE, MEDORI MARIACHIARA, MARCEDDU GIUSEPPE, PRECONE VINCENZA, XHUFI SUELA, BUSHATI MARSIDA, BOZO DHURATA, BECCARI TOMMASO, BERTELLI MATTEO. Gene variants in eating disorders. Focus on anorexia nervosa, bulimia nervosa, and binge-eating disorder. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E297-E305. [PMID: 36479493 PMCID: PMC9710388 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eating disorders such as anorexia nervosa, bulimia nervosa and binge-eating disorder, have a deep social impact, concluding with death in cases of severe disease. Eating disorders affect up to 5% of the population in the industrialized countries, but probably the phenomenon is under-detection and under-diagnosis. Eating disorders are multifactorial disorders, resulting from the interaction between environmental triggers, psychological factors, but there is also a strong genetic component. In fact, genetic factors predispose for approximately 33-84% to anorexia nervosa, 28-83% to bulimia nervosa, and 41-57% to binge eating disorder. Twins and family studies have provided an unassailable proof on the heritability of these disorders. Other types of genetic studies, including genome-wide association studies, whole genome sequencing and linkage analysis, allowed to identify the genes and their variants associated with eating disorders and moreover global collaborative efforts have led to delineate the etiology of these disorders. Next Generation Sequencing technologies can be considered as an ideal diagnostic approach to identify not only the common variants, such as single nucleotide polymorphism, but also rare variants. Here we summarize the present knowledge on the molecular etiology and genetic determinants of eating disorders including serotonergic genes, dopaminergic genes, opioid genes, appetite regulation genes, endocannabinoid genes and vitamin D3.
Collapse
Affiliation(s)
- KEVIN DONATO
- Department of Health Sciences, University of Milan, Milan, Italy
- MAGI Euregio, Bolzano, Italy
- Correspondence: Kevin Donato, MAGI EUREGIO, Via Maso della Pieve 60/A, Bolzano (BZ), 39100, Italy. E-mail:
| | - MARIA RACHELE CECCARINI
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy
| | | | | | | | | | | | | | | | | | - TOMMASO BECCARI
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
17
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
18
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
19
|
Berland C, Castel J, Terrasi R, Montalban E, Foppen E, Martin C, Muccioli GG, Luquet S, Gangarossa G. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Mol Psychiatry 2022; 27:2340-2354. [PMID: 35075269 DOI: 10.1038/s41380-021-01428-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE) is characterized by uncontrolled voracious eating. While reward deficit seems to be a major contributor of BE, the physiological and molecular underpinnings of BE establishment remain elusive. Here, we combined a physiologically relevant BE mouse model with multiscale in vivo approaches to explore the functional connection between the gut-brain axis and the reward and homeostatic brain structures. Our results show that BE elicits compensatory adaptations requiring the gut-to-brain axis which, through the vagus nerve, relies on the permissive actions of peripheral endocannabinoids (eCBs) signaling. Selective inhibition of peripheral CB1 receptors resulted in a vagus-dependent increased hypothalamic activity, modified metabolic efficiency, and dampened activity of mesolimbic dopamine circuit, altogether leading to the suppression of palatable eating. We provide compelling evidence for a yet unappreciated physiological integrative mechanism by which variations of peripheral eCBs control the activity of the vagus nerve, thereby in turn gating the additive responses of both homeostatic and hedonic brain circuits which govern homeostatic and reward-driven feeding. In conclusion, we reveal that vagus-mediated eCBs/CB1R functions represent an interesting and innovative target to modulate energy balance and counteract food-reward disorders.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Enrica Montalban
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Ewout Foppen
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Claire Martin
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Serge Luquet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Giuseppe Gangarossa
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
20
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
21
|
Kratz D, Sens A, Schäfer SMG, Hahnefeld L, Geisslinger G, Thomas D, Gurke R. Pre-analytical challenges for the quantification of endocannabinoids in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123102. [PMID: 35026652 DOI: 10.1016/j.jchromb.2022.123102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Endocannabinoids (ECs) are potent lipid mediators with high physiological relevance. They are involved in a wide variety of diseases like depression or multiple sclerosis and are closely connected to metabolic parameters in humans. Therefore, their suitability as a biomarker in different (patho-)physiological conditions is discussed intensively and predominantly investigated by analyzing systemic concentrations in easily accessible matrices like blood. Carefully designed pre-analytical sample handling is of major importance for high-quality data, but harmonization is not achieved yet. Whole blood is either processed to serum or plasma before the onset of analytical workflows and while knowledge about pre-analytical challenges in plasma handling is thorough they were not systematically investigated for serum. Therefore, the ECs AEA and 2-AG, and closely related EC-like substances 1-AG, DHEA, and PEA were examined by LC-MS/MS in serum samples of nine healthy volunteers employing different pre-analytical sample handling protocols, including prolonged coagulation, and storage after centrifugation at room temperature (RT) or on ice. Furthermore, all analytes were also assessed in plasma samples obtained from the same individuals at the same time points to investigate the comparability between those two blood-based matrices regarding obtained concentrations and their 2-AG/1-AG ratio. This study shows that ECs and EC-like substances in serum samples were significantly higher than in plasma and are especially prone to ex vivo changes during initial and prolonged storage for coagulation at RT. Storage on ice after centrifugation is less critical. However, storage at RT further increases 1-AG and 2-AG concentrations, while also lowering the already reduced 2-AG/1-AG ratio due to isomerization. Thus, avoidance of prolonged processing at RT can increase data quality if serum as the matrix of choice is unavoidable. However, serum preparation in itself is expected to initiate changes of physiological concentrations as standard precautionary measures like fast and cooled processing can only be utilized by using plasma, which should be the preferred matrix for analyses of ECs and EC-like substances.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - S M G Schäfer
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Kratz D, Thomas D, Gurke R. Endocannabinoids as potential biomarkers: It's all about pre-analytics. J Mass Spectrom Adv Clin Lab 2021; 22:56-63. [PMID: 34939056 DOI: 10.1016/j.jmsacl.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Arachidonoyl ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG) are central lipid mediators of the endocannabinoid system. They are highly relevant due to their involvement in a wide variety of inflammatory, metabolic or malign diseases. Further elucidation of their modes of action and use as biomarkers in an easily accessible matrix, like blood, is restricted by their susceptibility to deviations during blood sampling and physiological co-dependences, which results in high variability of reported concentrations in low ng/mL ranges. Objectives The objective of this review is the identification of critical parameters during the pre-analytical phase and proposal of minimum requirements for reliable determination of endocannabinoids (ECs) in blood samples. Methods Reported physiological processes influencing the EC concentrations were put into context with published pre-analytical research and stability data from bioanalytical method validation. Results The cause for variability in EC concentrations is versatile. In part, they are caused by inter-individual factors like sex, metabolic status and/or diurnal changes. Nevertheless, enzymatic activity in freshly drawn blood samples is the main reason for changing concentrations of AEA and 2-AG, besides additional non-enzymatic isomerization of the latter. Conclusion Blood samples for EC analyses require immediate processing at low temperatures (>0 °C) to maintain sample integrity. Standardization of the respective blood tube or anti-coagulant, sampling time point, applied centrifugal force and complete processing time can further decrease variability caused by sample handling. Nevertheless, extensive characterization of study participants is needed to reduce distortion of clinical data caused by co-variables and facilitate research on the endocannabinoid system.
Collapse
Key Words
- (U)HPLC, (ultra) high performance liquid chromatography
- 1-AG, 1-arachidonoyl glycerol
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidonoyl glycerol
- AEA, arachidonoyl ethanolamide
- Anandamide
- BMI, body mass index
- Blood sampling
- CBR, cannabinoid receptor
- EC-like, endocannabinoid-like
- ECS, endocannabinoid system
- ECs, endocannabinoids
- EDTA, ethylenediaminetetraacetic acid
- Endocannabinoid
- FAAH, fatty acid amide hydrolase
- FT, freezing temperature
- FTC, freeze–thaw cycles
- HDL, high density lipo protein
- KSCN, potassium thiocyanate
- LLE, liquid–liquid extraction
- MAGL, monoacylglycerol lipase
- MS/MS, tandem mass spectrometry
- O-AEA, virodhamine
- OEA, oleoyl ethanolamide
- PAF, platelet-activating factor
- PEA, palmitoyl ethanolamide
- PMSF, phenylmethylsulfonyl fluoride
- Pre-analytics
- RT, room temperature
- SPE, solid-phase extraction
- WB, whole blood
Collapse
Affiliation(s)
- Daniel Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
23
|
de Ceglia M, Decara J, Gaetani S, Rodríguez de Fonseca F. Obesity as a Condition Determined by Food Addiction: Should Brain Endocannabinoid System Alterations Be the Cause and Its Modulation the Solution? Pharmaceuticals (Basel) 2021; 14:ph14101002. [PMID: 34681224 PMCID: PMC8538206 DOI: 10.3390/ph14101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is a complex disorder, and the number of people affected is growing every day. In recent years, research has confirmed the hypothesis that food addiction is a determining factor in obesity. Food addiction is a behavioral disorder characterized by disruptions in the reward system in response to hedonic eating. The endocannabinoid system (ECS) plays an important role in the central and peripheral control of food intake and reward-related behaviors. Moreover, both obesity and food addiction have been linked to impairments in the ECS function in various brain regions integrating peripheral metabolic signals and modulating appetite. For these reasons, targeting the ECS could be a valid pharmacological therapy for these pathologies. However, targeting the cannabinoid receptors with inverse agonists failed when used in clinical contexts as a consequence of the induction of affective disorders. In this context, new classes of drugs acting either on CB1 and/or CB2 receptors or on synthetic and degradation enzymes of endogenous cannabinoids are being studied. However, further investigation is necessary to find safe and effective treatments that can exert anti-obesity effects, normalizing reward-related behaviors without causing important adverse mood effects.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| |
Collapse
|
24
|
Blanco-Gandia MC, Montagud-Romero S, Rodríguez-Arias M. Binge eating and psychostimulant addiction. World J Psychiatry 2021; 11:517-529. [PMID: 34631457 PMCID: PMC8475000 DOI: 10.5498/wjp.v11.i9.517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Many of the various factors, characteristics, and variables involved in the addictive process can determine an individual’s vulnerability to develop drug addiction. Hedonic eating, based on pleasure rather than energy needs, modulates the same reward circuits, as do drugs of abuse. According to the last report of the World Health Organization, the worldwide obesity rate has more than doubled since 1980, reaching especially critical levels in children and young people, who are overexposed to high-fat, high-sugar, energy-dense foods. Over the past few decades, there has been an increase in the number of studies focused on how eating disorders can lead to the development of drug addiction and on the comorbidity that exists between the two disorders. Herein, we review the most recent research on the subject, focusing especially on animal models of binge eating disorders and drug addiction. The complex profile of patients with substance use and binge eating disorders requires an integrated response to dually diagnosed patients. Nutritional patterns should be considered an important variable in the treatment of substance use disorders, and future studies need to focus on specific treatments and interventions in individuals who show a special vulnerability to shift from one addiction to the other.
Collapse
Affiliation(s)
| | | | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia 46010, Spain
| |
Collapse
|
25
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
26
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
27
|
Vlaardingerbroek H, van den Akker ELT, Hokken-Koelega ACS. Appetite- and weight-inducing and -inhibiting neuroendocrine factors in Prader-Willi syndrome, Bardet-Biedl syndrome and craniopharyngioma versus anorexia nervosa. Endocr Connect 2021; 10:R175-R188. [PMID: 33884958 PMCID: PMC8183618 DOI: 10.1530/ec-21-0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Obesity is reaching an epidemic state and has a major impact on health and economy. In most cases, obesity is caused by lifestyle factors. However, the risk of becoming obese differs highly between people. Individual's differences in lifestyle, genetic, and neuroendocrine factors play a role in satiety, hunger and regulation of body weight. In a small percentage of children and adults with obesity, an underlying hormonal or genetic cause can be found. The aim of this review is to present and compare data on the extreme ends of the obesity and undernutrition spectrum in patients with Prader-Willi syndrome (PWS), Bardet-Biedl syndrome (BBS), acquired hypothalamic obesity in craniopharyngioma patients, and anorexia nervosa. This may give more insight into the role of neuroendocrine factors and might give direction for future research in conditions of severe obesity and underweight.
Collapse
Affiliation(s)
- H Vlaardingerbroek
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence should be addressed to H Vlaardingerbroek:
| | - E L T van den Akker
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - A C S Hokken-Koelega
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Tam FI, Steding J, Steinhäuser JL, Ritschel F, Gao W, Weidner K, Roessner V, Kirschbaum C, Ehrlich S. Hair endocannabinoid concentrations in individuals with acute and weight-recovered anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110243. [PMID: 33444649 DOI: 10.1016/j.pnpbp.2021.110243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The endocannabinoid system has been suggested to modulate energy metabolism and stress response and could be an important factor in the pathophysiology of anorexia nervosa (AN). In the context of AN, excessive physical activity may influence endocannabinoid concentrations. The objective of this study was to investigate hair endocannabinoid concentrations at different stages of the disorder. Measurement in hair allows for a cumulative assessment of endocannabinoid concentrations independent of circadian rhythms. METHODS In a combined cross-sectional and longitudinal design, we measured hair concentrations of the endocannabinoids anandamide and 2-arachidonoylglycerol and the endocannabinoid-related compounds palmitoylethanolamide, oleoylethanolamide, and stearoylethanolamide in female underweight patients with acute AN (n = 67, reassessment of n = 47 after short-term weight restoration with a body mass index increase of at least 14%), individuals long-term recovered from AN (n = 27), and healthy control participants (n = 84). RESULTS Hair concentrations of anandamide and all endocannabinoid-related compounds were elevated in acute AN and decreased over the course of short-term weight restoration. Anandamide concentrations remained elevated in long-term recovered AN patients. In long-term recovered patients, physical activity correlated positively with the concentrations of all endocannabinoid-related compounds. CONCLUSION The current study provides evidence for a significant alteration of the endocannabinoid system in acute AN, which may partly persist into long-term recovery. The endocannabinoid system may be a possible target for pharmaceutical interventions in AN, which should be explored in further preclinical and subsequently clinical randomized controlled trials.
Collapse
Affiliation(s)
- Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julius Steding
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonas L Steinhäuser
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wei Gao
- Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
de Sa Nogueira D, Bourdy R, Filliol D, Awad G, Andry V, Goumon Y, Olmstead MC, Befort K. Binge sucrose-induced neuroadaptations: A focus on the endocannabinoid system. Appetite 2021; 164:105258. [PMID: 33864862 DOI: 10.1016/j.appet.2021.105258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Binge eating, the defining feature of binge eating disorder (BED), is associated with a number of adverse health outcomes as well as a reduced quality of life. Animals, like humans, selectively binge on highly palatable food suggesting that the behaviour is driven by hedonic, rather than metabolic, signals. Given the links to both reward processing and food intake, this study examined the contribution of the endocannabinoid system (ECS) to binge-like eating in rats. Separate groups were given intermittent (12 h) or continuous (24 h) access to 10% sucrose and food over 28 days, with only the 12 h access group displaying excessive sucrose intake within a discrete period of time (i.e., binge eating). Importantly, this group also exhibited alterations in ECS transcripts and endocannabinoid levels in brain reward regions, including an increase in cannabinoid receptor 1 (CB1R) mRNA in the nucleus accumbens as well as changes in endocannabinoid levels in the prefrontal cortex and hippocampus. We then tested whether different doses (1 and 3 mg/kg) of a CB1R antagonist, Rimonabant, modify binge-like intake or the development of a conditioned place preference (CPP) to sucrose. CB1R blockade reduced binge-like intake of sucrose and blocked a sucrose CPP, but only in rats that had undergone 28 days of sucrose consumption. These findings indicate that sucrose bingeing alters the ECS in reward-related areas, modifications that exacerbate the effect of CB1R blockade on sucrose reward. Overall, our results broaden the understanding of neural alterations associated with bingeing eating and demonstrate an important role for CB1R mechanisms in reward processing. In addition, these findings have implications for understanding substance abuse, which is also characterized by excessive and maladaptive intake, pointing towards addictive-like properties of palatable food.
Collapse
Affiliation(s)
- David de Sa Nogueira
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, 12 rue Goethe, F-67000, Strasbourg France; Current Address: Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Romain Bourdy
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, 12 rue Goethe, F-67000, Strasbourg France
| | - Dominique Filliol
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, 12 rue Goethe, F-67000, Strasbourg France
| | - Gaëlle Awad
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, 12 rue Goethe, F-67000, Strasbourg France
| | - Virginie Andry
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Katia Befort
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, 12 rue Goethe, F-67000, Strasbourg France.
| |
Collapse
|
30
|
Kotańska M, Mika K, Szafarz M, Kubacka M, Müller CE, Sapa J, Kieć-Kononowicz K. Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals (Basel) 2021; 14:ph14030270. [PMID: 33809564 PMCID: PMC8002110 DOI: 10.3390/ph14030270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022] Open
Abstract
GPR18 has been proposed to play a role in the progression of metabolic disease and obesity. Therefore, the aim of this study was to determine the effects of selective GRP18 ligands (the antagonists PSB-CB5 and PSB-CB27 and the agonist PSB-KK1415) on body mass and the development of metabolic disorders commonly accompanying obesity. Experiments were carried out on female Wistar rats. In order to determine the anorectic activity of the investigated ligands, their effect on food and water intake in a model of excessive eating was assessed. Lipid profile, glucose and insulin levels as well as alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase activity in plasma were also evaluated. Potential side effects were examined in rat models of pica behavior and conditioned taste aversion. Animals treated with different ligands gained significantly less weight than rats from the obese control group. Effects of GPR18 antagonists on food intake and body weight were specific and unrelated to visceral illness, stress or changes in spontaneous activity. However, the GPR18 agonist is likely to affect body weight by inducing gastrointestinal disorders such as nausea. The presented preliminary data support the idea that the search for selective GPR18 antagonists for the treatment of obesity might be promising.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
- Correspondence: ; Tel./Fax: +48-12-6205530
| | - Kamil Mika
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland;
| | - Monika Kubacka
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany;
| | - Jacek Sapa
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (K.M.); (M.K.); (J.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| |
Collapse
|
31
|
Late effects of early weaning on food preference and the dopaminergic and endocannabinoid systems in male and female rats. J Dev Orig Health Dis 2021; 13:90-100. [PMID: 33650480 DOI: 10.1017/s2040174421000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.
Collapse
|
32
|
Rosager EV, Møller C, Sjögren M. Treatment studies with cannabinoids in anorexia nervosa: a systematic review. Eat Weight Disord 2021; 26:407-415. [PMID: 32240516 DOI: 10.1007/s40519-020-00891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/14/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Anorexia nervosa (AN) is a psychiatric disorder with a high mortality and unknown etiology, and effective treatment is lacking. For decades, cannabis has been known to cause physical effects on the human body, including increasing appetite, which may be beneficial in the treatment of AN. OBJECTIVE To systematically review the literature for evidence of an effect of cannabinoids on (1) weight gain, and (2) other outcomes, in AN. METHOD A systematic review was done using three databases Embase, PubMed and Psychinfo. The review was registered in PROSPERO with ID number CRD42019141293 and was done according to PRISMA guidelines. RESULTS There were 1288 studies identified and after thorough review and exclusion of copies, 4 studies met the inclusion criteria. Three studies used the same AN population and utilized data from one original study, leaving only two original studies. Both of these were Randomized Controlled Trials that explored the effects of delta-9-tetrahydrocannabinol (Δ9-THC) or dronabinol in AN, whereof one study was properly designed and powered and showed a weight increase of an added 1 kg over 4 weeks over placebo. DISCUSSION AND CONCLUSION There are few studies and the level of evidence is low. The only properly designed, low bias and highly powered study found a weight increasing effect of dronabinol in AN, while the other, using Δ9-THC at a high dose, found no effect and where the dose may have counteracted the weight gaining effects due to adverse events. More research on cannabinoids in anorexia nervosa is warranted, especially its effects on psychopathology. LEVEL OF EVIDENCE Level I, systematic review.
Collapse
Affiliation(s)
- Emilie Vangsgaard Rosager
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Christian Møller
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark
| | - Magnus Sjögren
- Mental Health Center Ballerup, Copenhagen University, Institute for Clinical Medicine, Maglevaenget 32, 2750, Ballerup, Denmark.
| |
Collapse
|
33
|
Fonseca BM, Moreira-Pinto B, Costa L, Felgueira E, Oliveira P, Rebelo I. Concentrations of the endocannabinoid N-arachidonoylethanolamine in the follicular fluid of women with endometriosis: the role of M1 polarised macrophages. Reprod Fertil Dev 2021; 33:270-278. [DOI: 10.1071/rd20247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Although N-arachidonoylethanolamine (AEA; also known as anandamide) is present in human follicular fluid (FF), its regulation remains unknown. Therefore, the aims of the present study were to: (1) investigate the relationships between FF AEA concentrations in women undergoing assisted reproductive technology and their age, body mass index, ART characteristics and fertility treatment outcomes; and (2) assess how different inflammatory patterns may trigger AEA production by human granulosa cells (hGCs). FF AEA concentrations were higher in women undergoing IVF than in those undergoing intracytoplasmic sperm injection group. FF AEA median concentrations were lower in women undergoing ART because of male factor infertility than in women with endometriosis (1.6 vs 2.5nM respectively), but not women with tubal, hormonal or unexplained infertility (1.6, 2.4 and 1.9nM respectively). To evaluate the effects of macrophages on AEA production by hGCs, hGCs were cocultured with monocyte-derived macrophages. The conditioned medium from M1 polarised macrophages increased AEA production by hGCs. This was accompanied by an increase in AEA-metabolising enzymes, particularly N-acyl phosphatidylethanolamine-specific phospholipase D. The results of the present study show that high FF AEA concentrations in patients with endometriosis may be associated with the recruitment of inflammatory chemokines within the ovary, which together may contribute to the decreased reproductive potential of women with endometriosis. Collectively, these findings add a new player to the hormone and cytokine networks that regulate fertility in women.
Collapse
|
34
|
Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB 1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 2020; 9:60771. [PMID: 33210603 PMCID: PMC7728447 DOI: 10.7554/elife.60771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP. When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body’s energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Wesley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergő Szanda
- MTA-SE Laboratory of Molecular Physiology, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Yagin NL, Aliasgari F, Alizadeh M, Aliasgharzadeh S, Mahdavi R. Comparison of endocannabinoids levels, FAAH gene polymorphisms, and appetite regulatory substances in women with and without binge eating disorder: a cross- sectional study. Nutr Res 2020; 83:86-93. [DOI: 10.1016/j.nutres.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
|
36
|
Rochefort G, Provencher V, Castonguay-Paradis S, Perron J, Lacroix S, Martin C, Flamand N, Di Marzo V, Veilleux A. Intuitive eating is associated with elevated levels of circulating omega-3-polyunsaturated fatty acid-derived endocannabinoidome mediators. Appetite 2020; 156:104973. [PMID: 32971226 DOI: 10.1016/j.appet.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Collapse
Affiliation(s)
- Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Véronique Provencher
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Sébastien Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Cyril Martin
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Nicolas Flamand
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada.
| |
Collapse
|
37
|
Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:259-269. [PMID: 33162769 PMCID: PMC7605024 DOI: 10.31887/dcns.2020.22.3/vdimarzo] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocannabinoid (eCB) system encompasses the eCBs anandamide and 2-arachidonoylglycerol, their anabolic/catabolic enzymes, and the cannabinoid CB1 and CB2 receptors. Its expansion to include several eCB-like lipid mediators, their metabolic enzymes, and their molecular targets, forms the endocannabinoidome (eCBome). This complex signaling system is deeply involved in the onset, progress, and symptoms of major neuropsychiatric disorders and provides a substrate for future therapeutic drugs against these diseases. Such drugs may include not only THC, the major psychotropic component of cannabis, but also other, noneuphoric plant cannabinoids. These compounds, unlike THC, possess a wide therapeutic window, possibly due to their capability of hitting several eCBome and non-eCBome receptors. This is particularly true for cannabidiol, which is one of the most studied cannabinoids and shows promise for the treatment of a wide range of mental and mood disorders. The eCBome plays a role also in the microbiota-gut-brain axis, which is emerging as an important actor in the control of affective and cognitive functions and in their pathological alterations.
.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Canada; Joint International Unit between Université Laval and Consiglio Nazionale delle Ricerche of Italy on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|
38
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
39
|
Lotfi Yagin N, Aliasgharzadeh S, Alizadeh M, Aliasgari F, Mahdavi R. The association of circulating endocannabinoids with appetite regulatory substances in obese women. Obes Res Clin Pract 2020; 14:321-325. [PMID: 32580926 DOI: 10.1016/j.orcp.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Endocannabinoids especially anadamide (AEA) and 2‑arachidonoylglycerol (2-AG) together with appetite modulators have recently been of great importance in body weight regulation and obesity incidence. The present study was carried out to investigate AEA and 2-AG levels and their association with leptin, insulin, orexin - A, and anthropometric indices in obese women. METHODS The demographic and anthropometric data of 180 overweight/ obese women with mean age 34.2±8.27 years old, and mean BMI 32.54±3.73kg/m2 were evaluated. The plasma levels of anadamide and 2‑arachidonoylglycerol levels and also serum levels of leptin, insulin and orexin- A concentrations were measured. Pearson and spearmen correlation tests along with hieratical regression test were used to assess the association of endocannabinoids levels with anthropometric indices and appetite modulators. RESULTS Significant correlations were revealed between AEA and 2-AG with leptin, BMI, waist circumference (WC) and body fat percent (BF%) (P<0.001). 2-AG levels correlated positively with mean insulin levels (P<0.001). Neither AEA nor 2-AG correlated significantly with serum orexin - A levels. Leptin, insulin, BMI, WC, and BF% were significant independent predictors of AEA and 2-AG in the hierarchical regression model (P<.001) and explained 65% and 68% of variance in AEA and 2-AG respectively (P<0.001). CONCLUSION The findings showed that levels of AEA and 2-AG were associated with BMI, WC, BF%, and leptin and insulin levels. Also, BMI, WC, BF%, leptin and, insulin levels can have predictive value for determining AEA and 2-AG.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Paolacci S, Kiani AK, Manara E, Beccari T, Ceccarini MR, Stuppia L, Chiurazzi P, Dalla Ragione L, Bertelli M. Genetic contributions to the etiology of anorexia nervosa: New perspectives in molecular diagnosis and treatment. Mol Genet Genomic Med 2020; 8:e1244. [PMID: 32368866 PMCID: PMC7336737 DOI: 10.1002/mgg3.1244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Anorexia nervosa is a multifactorial eating disorder that manifests with self‐starvation, extreme anxiety, hyperactivity, and amenorrhea. Long‐term effects include organ failure, disability, and in extreme cases, even death. Methods Through a literature search, here we summarize what is known about the molecular etiology of anorexia nervosa and propose genetic testing for this condition. Results Anorexia nervosa often has a familial background and shows strong heritability. Various genetic studies along with genome‐wide association studies have identified several genetic loci involved in molecular pathways that might lead to anorexia. Conclusion Anorexia nervosa is an eating disorder with a strong genetic component that contributes to its etiology. Various genetic approaches might help in the molecular diagnosis of this disease and in devising novel therapeutic options. Anorexia nervosa is a multifactorial eating disorder with a strong genetic component that manifests with self‐starvation, extreme anxiety, hyperactivity, and amenorrhea. Through a literature search, here we summarize what is known about the molecular etiology of anorexia nervosa and propose genetic testing for this condition.
Collapse
Affiliation(s)
| | | | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy.,UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Laura Dalla Ragione
- Center for the Treatment of Eating Disorders, Residenza Palazzo Francisci, Todi, Perugia, Italy
| | - Matteo Bertelli
- MAGI'S LAB, Rovereto, Trento, Italy.,MAGI EUREGIO, Bolzano, Italy.,EBTNA-LAB, Rovereto, Trento, Italy
| |
Collapse
|
41
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
42
|
Increasing Warmth in Adolescents with Anorexia Nervosa: A Randomized Controlled Crossover Trial Examining the Efficacy of Mustard and Ginger Footbaths. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2416582. [PMID: 32076439 PMCID: PMC7013347 DOI: 10.1155/2020/2416582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023]
Abstract
Objective To analyze the thermogenic effects of footbaths with medicinal powders in adolescents with anorexia nervosa (AN) in comparison to healthy controls (HCs). Intervention and Outcomes. Forty-one female participants (21 AN, 20 HCs; 14.22 ± 1.54 years) received three footbaths-warm water and mustard (MU, Sinapis nigra), warm water and ginger (GI, Zingiber officinale), or warm water only (WA), in random order within a crossover design. Data were collected before (t1), immediately after foot immersion (maximum 20 minutes) (t2), and after 10 minutes subsequently (t3). Actual skin temperature (high resolution thermography) and perceived warmth (HeWEF questionnaire) were assessed at each time point for various body parts. The primary outcome measure was self-perceived warmth at the feet at t3. Secondary outcome measures were objective skin temperature and subjective warmth at the face, hands, and feet. Results Perceived warmth at the feet at t3 was significantly higher after GI compared to WA (mean difference -1.02) and MU (-1.07), with no differences between those with AN and HC (-0.29). For the secondary outcome measures, a craniocaudal temperature gradient for the skin temperature (thermography) was noted at t1 for patients with AN and HC (AN with colder feet). The craniocaudal gradient for subjective warmth was only seen for patients with AN. Conclusion Footbaths with ginger increased warmth perception at the feet longer than with mustard or warm water only for adolescents with AN as well as for HC. The impact of ginger footbaths on recovery of thermoregulatory disturbances in patients with AN repeated over extended periods merits further investigation.
Collapse
|
43
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
44
|
Marciello F, Monteleone AM, Cascino G, Monteleone P. Neuroendocrine Correlates of Binge Eating. BINGE EATING 2020:165-180. [DOI: 10.1007/978-3-030-43562-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Piccolo M, Claussen MC, Bluemel S, Schumacher S, Cronin A, Fried M, Goetze O, Martin-Soelch C, Milos G. Altered circulating endocannabinoids in anorexia nervosa during acute and weight-restored phases: A pilot study. EUROPEAN EATING DISORDERS REVIEW 2019; 28:46-54. [PMID: 31713283 DOI: 10.1002/erv.2709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by a low food intake and often exceeding exercise, leading to a particularly low body × weight proportion. Patients with AN usually report less hunger than healthy controls. Endogenous endocannabinoids (eCBs), specifically the anandamide, have been associated to hunger, as a meal initiator, but research regarding AN and eCB and inconclusive. In this pilot study, we investigated plasma levels of eCB in inpatients with AN during fasting and after eating, both during the acute AN phase and after weight recovery. After an 8-hr fasting period, blood sample was collected from all participants. After that, participants were given a muffin test meal. Blood samples for the investigation of endogenous eCBs anandamide (N-arachidonoylethanolamide [AEA]) and 2-arachidonoylglycerol (2-AG) were then collected after 120 and 240 min. Participants were only allowed to eat and drink what was offered them during the research. AN reported less hunger than controls during fasting and at the end of the experiment. Also, plasma levels of AEA were significantly smaller in AN in comparison with controls in all time points. No significant difference was found for 2-AG plasma levels. After recovery, no significant difference was found for eCB levels. These findings could be interpreted as an AEA deregulation in AN before and after food intake, which persists after weight recovery. These findings may have implications to the pharmacological treatment of AN and to relapse occurring in the disorder.
Collapse
Affiliation(s)
- Mayron Piccolo
- Unit of Clinical and Health Psychology, University of Fribourg, Fribourg, Switzerland
| | | | - Sena Bluemel
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Sonja Schumacher
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Cronin
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Oliver Goetze
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Chantal Martin-Soelch
- Unit of Clinical and Health Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Milos
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Collu R, Scherma M, Piscitelli F, Giunti E, Satta V, Castelli MP, Verde R, Fratta W, Bisogno T, Fadda P. Impaired brain endocannabinoid tone in the activity-based model of anorexia nervosa. Int J Eat Disord 2019; 52:1251-1262. [PMID: 31456239 DOI: 10.1002/eat.23157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.
Collapse
Affiliation(s)
- Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Valentina Satta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.,Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Traslational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.,Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
47
|
Russell J, Mulvey B, Bennett H, Donnelly B, Frig E. Harm minimization in severe and enduring anorexia nervosa. Int Rev Psychiatry 2019; 31:391-402. [PMID: 31074662 DOI: 10.1080/09540261.2019.1601073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For many sufferers of anorexia nervosa, the time course is long, and the prospect of disability and family burden great. This is all too often the case, even with early diagnosis and treatment. The term severe and enduring anorexia nervosa has been applied to these survivors. Yet, a majority of patients do eventually recover and, even where this is not the case, adaptive medical stability and function can be maintained despite alarming dilapidation. Managing the years of illness so as to have the best outcome physically and psychologically, even where full weight recovery does not occur, or has not yet occurred, is the topic of this article. Literature pertaining to harm minimization in chronic, severe, enduring, and long-standing anorexia nervosa was selectively reviewed using an Ovid data base and Google Scholar. The authors' own clinical experience over almost four decades in public and private hospital and community settings has also informed much of what has been written. The authors would like to think that it is possible to do better than the familiar injunction (variously attributed to Hippocrates, Galen, and others) of 'primum non nocere'-although this is a good place to start.
Collapse
Affiliation(s)
- Janice Russell
- a Professor Marie Bashir Centre , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| | - Bridget Mulvey
- a Professor Marie Bashir Centre , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| | - Hayley Bennett
- a Professor Marie Bashir Centre , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| | - Brooke Donnelly
- a Professor Marie Bashir Centre , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| | - Elizabeth Frig
- a Professor Marie Bashir Centre , Royal Prince Alfred Hospital , Camperdown , NSW , Australia
| |
Collapse
|
48
|
Tarragon E, Moreno JJ. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders. Chem Senses 2019; 43:3-16. [PMID: 29293950 DOI: 10.1093/chemse/bjx062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Germany
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| |
Collapse
|
49
|
Amodeo G, Cuomo A, Bolognesi S, Goracci A, Trusso MA, Piccinni A, Neal SM, Baldini I, Federico E, Taddeucci C, Fagiolini A. Pharmacotherapeutic strategies for treating binge eating disorder. Evidence from clinical trials and implications for clinical practice. Expert Opin Pharmacother 2019; 20:679-690. [PMID: 30696303 DOI: 10.1080/14656566.2019.1571041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giovanni Amodeo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessandro Cuomo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simone Bolognesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Arianna Goracci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria A Trusso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Armando Piccinni
- UniCamillus - Saint Camillus International University of Health Sciences, Roma, Italy
| | - Stephen M Neal
- Department of Psychiatry, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Irene Baldini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eugenio Federico
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Costanza Taddeucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
50
|
Støving RK. MECHANISMS IN ENDOCRINOLOGY: Anorexia nervosa and endocrinology: a clinical update. Eur J Endocrinol 2019; 180:R9-R27. [PMID: 30400050 PMCID: PMC6347284 DOI: 10.1530/eje-18-0596] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa is a syndrome, that is collections of symptoms, which is not defined by its etiology. The severe cases are intractable. The syndrome is associated with multiple, profound endocrine alterations which may be adaptive, reactive or etiologic. Adaptive changes potentially may be inappropriate in clinical settings such as inpatient intensive re-nutrition or in a setting with somatic comorbidity. Electrolyte levels must be closely monitored during the refeeding process, and the need for weight gain must be balanced against potentially fatal refeeding complications. An important focus of clinical research should be to identify biomarkers associated with different stages of weight loss and re-nutrition combined with psychometric data. Besides well-established peripheral endocrine actions, several hormones also are released directly to different brain areas, where they may exert behavioral and psychogenic actions that could offer therapeutic targets. We need reliable biomarkers for predicting outcome and to ensure safe re-nutrition, however, first of all we need them to explore the metabolism in anorexia nervosa to open new avenues with therapeutic targets. A breakthrough in our understanding and treatment of this whimsical disease remains. Considering this, the aim of the present review is to provide an updated overview of the many endocrine changes in a clinical perspective.
Collapse
Affiliation(s)
- René Klinkby Støving
- Nutrition Clinic, Center for Eating Disorders, Odense University Hospital
- Endocrine Elite Research Centre, Institute of Clinical Research, University of South Denmark, Faculty of Health Sciences
- Psychiatric Services in the Region of Southern Denmark, Odense, Denmark
- Correspondence should be addressed to R K Støving;
| |
Collapse
|