1
|
Moscou TT, Veerman SRT. Clozapine/norclozapine plasma level ratio and cognitive functioning in patients with schizophrenia spectrum disorders: a systematic review. Ther Adv Psychopharmacol 2024; 14:20451253241302603. [PMID: 39650250 PMCID: PMC11624563 DOI: 10.1177/20451253241302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Background Extant research on cognitive functioning in treatment-resistant schizophrenia (TRS) is limited and of poor quality. Cognitive impairments in patients with schizophrenia spectrum disorders (SSD) significantly influence quality of life. In patients with TRS, clozapine (CLO) is not consistently associated with improved cognitive functioning. The active metabolite n-desmethylclozapine (norclozapine (NCLO)) potentially exerts procognitive effects due to cholinergic and glutamatergic activity. Unfortunately, research on CLO/NCLO ratio and cognitive functioning is even more scarce. Objectives To review the literature on the effect of the CLO/NCLO ratio on cognitive functioning in patients with SSD. Design This is a systematic review. Data sources and methods A search was carried out in the electronic databases Embase, PsycINFO, PubMed, Cochrane and the Cochrane Controlled Register of Trials with no restrictions in language or publication year. Results We identified 15 relevant studies (longitudinal, k = 4; cross-sectional, k = 11). The study population consisted of adult clozapine users (n = 953) with varying degrees of treatment resistance. Specific cognitive domains and overall cognitive functioning were assessed using various neuropsychological tests and a composite score, respectively. Eleven studies were considered of fair quality (longitudinal: k = 2, cross-sectional: k = 9). In one longitudinal study, a negative causal relationship was found between the CLO/NCLO ratio and attention/vigilance and a negative correlation between social cognition and the composite score (n = 11). No significant correlations were found between the CLO/NCLO ratio and the cognitive domains processing speed, reasoning/problem solving, or for working memory (k = 1, n = 11), verbal learning (k = 1, n = 43) or visual learning (k = 2, n = 54). Study designs and populations were heterogeneous, and the analysis of confounding factors was limited and inconsistent. Conclusion Clinical evidence is too scarce to support the hypothesis of a procognitive effect of NCLO. Personalised CLO treatment by modulating the CLO/NCLO ratio remains a distant prospect. Recommendations for future CLO research and anticipated limitations are discussed. Trial registration This systematic review was preregistered with PROSPERO (CRD42023385244).
Collapse
Affiliation(s)
- Timo T. Moscou
- Department of Community Mental Health, Mental Health Service Noord-Holland Noord, Alkmaar, Oude Hoeverweg 10, Noord Holland 1816 BT, The Netherlands
| | - Selene R. T. Veerman
- Department of Community Mental Health, Mental Health Service Noord-Holland Noord, Alkmaar, The Netherlands
- Dutch Clozapine Collaboration Group, Oegstgeest, The Netherlands
| |
Collapse
|
2
|
Yohn SE, Harvey PD, Brannan SK, Horan WP. The potential of muscarinic M 1 and M 4 receptor activators for the treatment of cognitive impairment associated with schizophrenia. Front Psychiatry 2024; 15:1421554. [PMID: 39483736 PMCID: PMC11525114 DOI: 10.3389/fpsyt.2024.1421554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cognitive impairment is a core symptom of schizophrenia and a major determinant of poor long-term functional outcomes. Despite considerable efforts, we do not yet have any approved pharmacological treatments for cognitive impairment associated with schizophrenia (CIAS). A combination of advances in pre-clinical research and recent clinical trial findings have led to a resurgence of interest in the cognition-enhancing potential of novel muscarinic acetylcholine receptor (mAChR) agonists in schizophrenia. This article provides an overview of the scientific rationale for targeting M1 and M4 mAChRs. We describe the evolution of neuroscience research on these receptors since early drug discovery efforts focused on the mAChR agonist xanomeline. This work has revealed that M1 and M4 mAChRs are highly expressed in brain regions that are implicated in cognition. The functional significance of M1 and M4 mAChRs has been extensively characterized in animal models via use of selective receptor subtype compounds through neuronal and non-neuronal mechanisms. Recent clinical trials of a dual M1/M4 mAChR agonist show promising, replicable evidence of potential pro-cognitive effects in schizophrenia, with several other mAChR agonists in clinical development.
Collapse
Affiliation(s)
| | - Phillip D. Harvey
- Division of Psychology, University of Miami, Miami, FL, United States
| | | | - William P. Horan
- Bristol Myers Squibb, Princeton, NJ, United States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Berneri M, Jha U, O'Halloran S, Salman S, Wickramasinghe S, Kendrick K, Nguyen J, Joyce DA. Validation of Population Pharmacokinetic Models for Clozapine Dosage Prediction. Ther Drug Monit 2024; 46:217-226. [PMID: 38446630 DOI: 10.1097/ftd.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND Clozapine is unique in its capacity to ameliorate severe schizophrenia but at high risk of toxicity. A relationship between blood concentration and clinical response and evidence for concentration-response relationships to some adverse effects justify therapeutic drug monitoring of clozapine. However, the relationship between drug dose and blood concentration is quite variable. This variability is, in part, due to inductive and inhibitory interactions varying the activity of cytochrome P450 1A2 (CYP1A2), the principal pathway for clozapine elimination. Several population pharmacokinetic models have been presented to facilitate dose selection and to identify poor adherence in individual patients. These models have faced little testing for validity in independent populations or even for persisting validity in the source population. METHODS Therefore, we collected a large population of clozapine-treated patients (127 patients, 1048 timed plasma concentrations) in whom dosing and covariate information could be obtained with high certainty. A population pharmacokinetic model was constructed with data collected in the first 6 weeks from study enrolment (448 plasma concentrations), to estimate covariate influences and to allow alignment with previously published models. The model was tested for its performance in predicting the concentrations observed at later time intervals up to 5 years. The predictive performances of 6 published clozapine population models were then assessed in the entire population. RESULTS The population pharmacokinetic model based on the first 6 weeks identified significant influences of sex, smoking, and cotreatment with fluvoxamine on clozapine clearance. The model built from the first 6 weeks had acceptable predictive performance in the same patient population up to the first 26 weeks using individual parameters, with a median predictive error (PE) of -0.1% to -15.9% and median absolute PE of 22.9%-27.1%. Predictive performance fell progressively with time after 26 weeks. Bayesian addition of plasma concentration observations within each prediction period improved individual predictions. Three additional observations extended acceptable predictive performance into the second 6 months of therapy. When the published models were tested with the entire data set, median PE ranged from -8% to +35% with a median absolute PE of >39% in all models. Thus, none of the tested models was successful in external validation. Bayesian addition of single patient observations improved individual predictions from all models but still without achieving acceptable performances. CONCLUSIONS We conclude that the relationship between covariates and blood clozapine concentrations differs between populations and that relationships are not stable over time within a population. Current population models for clozapine are not capturing influential covariates.
Collapse
Affiliation(s)
- Massimo Berneri
- Schools of Medicine & Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Uma Jha
- Schools of Medicine & Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Seán O'Halloran
- Clinical Pharmacology & Toxicology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Sam Salman
- Clinical Pharmacology & Toxicology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Kevin Kendrick
- Fremantle Hospital Mental Health Service, Fremantle, Western Australia, Australia
| | - Jessica Nguyen
- Department of Pharmacy, Graylands Hospital, Mount Claremont, Western Australia, Australia ; and
| | - David A Joyce
- Schools of Medicine & Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Clinical Pharmacology & Toxicology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
- Department of Clinical Pharmacology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Selvaggi P, Fazio L, Toro VD, Mucci A, Rocca P, Martinotti G, Cascino G, Siracusano A, Zeppegno P, Pergola G, Bertolino A, Blasi G, Galderisi S. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr Res 2023; 260:76-84. [PMID: 37633126 DOI: 10.1016/j.schres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Leonardo Fazio
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Veronica Debora Toro
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Tsapakis EM, Diakaki K, Miliaras A, Fountoulakis KN. Novel Compounds in the Treatment of Schizophrenia-A Selective Review. Brain Sci 2023; 13:1193. [PMID: 37626549 PMCID: PMC10452918 DOI: 10.3390/brainsci13081193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Schizophrenia is a chronic neuropsychiatric syndrome that significantly impacts daily function and quality of life. All of the available guidelines suggest a combined treatment approach with pharmacologic agents and psychological interventions. However, one in three patients is a non-responder, the effect on negative and cognitive symptoms is limited, and many drug-related adverse effects complicate clinical management. As a result, discovering novel drugs for schizophrenia presents a significant challenge for psychopharmacology. This selective review of the literature aims to outline the current knowledge on the aetiopathogenesis of schizophrenia and to present the recently approved and newly discovered pharmacological substances in treating schizophrenia. We discuss ten novel drugs, three of which have been approved by the FDA (Olanzapine/Samidorphan, Lumateperone, and Pimavanserin). The rest are under clinical trial investigation (Brilaroxazine, Xanomeline/Trospium, Emraclidine, Ulotaront, Sodium Benzoate, Luvadaxistat, and Iclepertin). However, additional basic and clinical research is required not only to improve our understanding of the neurobiology and the potential novel targets in the treatment of schizophrenia, but also to establish more effective therapeutical interventions for the syndrome, including the attenuation of negative and cognitive symptoms and avoiding dopamine blockade-related adverse effects.
Collapse
Affiliation(s)
| | - Kalliopi Diakaki
- Department of Psychiatry, Academic General Hospital, 711 10 Heraklion, Greece
| | - Apostolos Miliaras
- Department of Psychiatry, Academic General Hospital, 711 10 Heraklion, Greece
| | | |
Collapse
|
6
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
7
|
Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry 2022; 179:611-627. [PMID: 35758639 DOI: 10.1176/appi.ajp.21101083] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia remains a challenging disease to treat effectively with current antipsychotic medications due to their limited efficacy across the entire spectrum of core symptoms as well as their often burdensome side-effect profiles and poor tolerability. An unmet need remains for novel, mechanistically unique, and better tolerated therapeutic agents for treating schizophrenia, especially those that treat not only positive symptoms but also the negative and cognitive symptoms of the disease. Almost 25 years ago, the muscarinic acetylcholine receptor (mAChR) agonist xanomeline was reported to reduce psychotic symptoms and improve cognition in patients with Alzheimer's disease. The antipsychotic and procognitive properties of xanomeline were subsequently confirmed in a small study of acutely psychotic patients with chronic schizophrenia. These unexpected clinical findings have prompted considerable efforts across academia and industry to target mAChRs as a new approach to potentially treat schizophrenia and other psychotic disorders. The authors discuss recent advances in mAChR biology and pharmacology and the current understanding of the relative roles of the various mAChR subtypes, their downstream cellular effectors, and key neural circuits mediating the reduction in the core symptoms of schizophrenia in patients treated with xanomeline. They also provide an update on the status of novel mAChR agonists currently in development for potential treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
|
8
|
Okhuijsen-Pfeifer C, van der Horst MZ, Bousman CA, Lin B, van Eijk KR, Ripke S, Ayhan Y, Babaoglu MO, Bak M, Alink W, van Beek H, Beld E, Bouhuis A, Edlinger M, Erdogan IM, Ertuğrul A, Yoca G, Everall IP, Görlitz T, Grootens KP, Gutwinski S, Hallikainen T, Jeger-Land E, de Koning M, Lähteenvuo M, Legge SE, Leucht S, Morgenroth C, Müderrisoğlu A, Narang A, Pantelis C, Pardiñas AF, Oviedo-Salcedo T, Schneider-Thoma J, Schreiter S, Repo-Tiihonen E, Tuppurainen H, Veereschild M, Veerman S, de Vos M, Wagner E, Cohen D, Bogers JPAM, Walters JTR, Yağcıoğlu AEA, Tiihonen J, Hasan A, Luykx JJ. Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders. Transl Psychiatry 2022; 12:145. [PMID: 35393395 PMCID: PMC8989876 DOI: 10.1038/s41398-022-01884-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10-3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10-4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10-3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10-7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia.
Collapse
Affiliation(s)
- C Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - M Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - C A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - B Lin
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - K R van Eijk
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - S Ripke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Y Ayhan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M O Babaoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M Bak
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Mondriaan, Mental Health Institute, Maastricht, The Netherlands
| | - W Alink
- Multicomplexe Zorg, Pro Persona, Wolfheze, The Netherlands
| | - H van Beek
- Clinical Recovery Clinic, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - E Beld
- Mental Health Organization North-Holland North location Den Helder, Den Helder, The Netherlands
| | - A Bouhuis
- Program for early psychosis & severe mental illness, Pro Persona Mental Healthcare, Wolfheze, The Netherlands
| | - M Edlinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division for Psychiatry I, Medical University Innsbruck, Innsbruck, Austria
| | - I M Erdogan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A Ertuğrul
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - G Yoca
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Şarkışla State Hospital, Ministry of Health, Sivas, Turkey
| | - I P Everall
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - T Görlitz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - K P Grootens
- Reinier van Arkel, s-Hertogenbosch, The Netherlands
- Unit for Clinical Psychopharmacology and Neuropsychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Gutwinski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - T Hallikainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - E Jeger-Land
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - M de Koning
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - M Lähteenvuo
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - S E Legge
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - S Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Morgenroth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - A Müderrisoğlu
- Department of Pharmacology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - A Narang
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - C Pantelis
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - A F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - T Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Schneider-Thoma
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - S Schreiter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
| | - E Repo-Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - H Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | | | - S Veerman
- Mental Health Organization North-Holland North location Alkmaar, Alkmaar, The Netherlands
| | - M de Vos
- GGNet Mental Health, Warnsveld, The Netherlands
| | - E Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - D Cohen
- Mental Health Organization North-Holland North location Heerhugowaard, Heerhugowaard, The Netherlands
| | - J P A M Bogers
- High Care Clinics, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - J T R Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - A E Anil Yağcıoğlu
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - J Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
| | - A Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - J J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
9
|
Bugarski-Kirola D, Arango C, Fava M, Nasrallah H, Liu IY, Abbs B, Stankovic S. Pimavanserin for negative symptoms of schizophrenia: results from the ADVANCE phase 2 randomised, placebo-controlled trial in North America and Europe. Lancet Psychiatry 2022; 9:46-58. [PMID: 34861170 DOI: 10.1016/s2215-0366(21)00386-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Negative symptoms of schizophrenia are associated with adverse clinical outcomes, but there are few effective treatments. We aimed to assess the effects of pimavanserin, a selective 5-HT2A inverse agonist and antagonist, on negative symptoms of schizophrenia. METHODS The ADVANCE study was a phase 2, 26-week, randomised, double-blind, placebo-controlled study of pimavanserin in stable outpatients with schizophrenia aged 18-55 years with predominant negative symptoms. Patients were randomly assigned (1:1) across 83 sites (18 in North America and 65 in Europe) to receive pimavanserin or placebo daily, added to an ongoing antipsychotic medication, per a computer-generated schedule (stratification by geographical region). Eligible patients had a score of at least 20 on the sum of seven Positive and Negative Syndrome Scale (PANSS) Marder negative factor items (and scores of ≥4 on at least three or ≥5 on at least two of negative symptom items). The starting dosage of 20 mg of pimavanserin or placebo could be adjusted to 34 mg or 10 mg within the first 8 weeks of the study, after which dosage remained stable until the end of the study. Both pimavanserin and placebo were administered orally once daily as two individual tablets (pimavanserin tablets were either 10 mg or 17 mg). The primary endpoint was change in total score using the 16-item Negative Symptom Assessment (NSA-16) from baseline to week 26. Primary outcomes were analysed in patients who received at least one dose of the study drug and had NSA-16 assessments at baseline and at least once post-baseline (full analysis set). Safety outcomes were analysed in patients who had received at least one dose of the study drug. This trial is registered with ClinicalTrials.gov, NCT02970305, and is complete. FINDINGS Between Nov 4, 2016, and April 16, 2019, we randomly assigned 403 patients to pimavanserin (n=201; 131 [65%] male; 187 [93%] White) or placebo (n=202; 137 [68%] male, 186 (92%) White), of whom 400 were included in the efficacy analysis (199 in the pimavanserin group, 201 in the placebo group). Mean age was 37·7 years (SD 9·4) in the pimavanserin group and 36·7 (9·2) years in the placebo group. The change in total NSA-16 score from baseline to week 26 was significantly improved with pimavanserin (least squares mean -10·4 [SE 0·67]) versus placebo (least squares mean -8·5 [0·67]; p=0·043; effect size: 0·211). The number of patients with treatment-emergent adverse events (TEAEs) was similar between groups: 80 (40%) patients experienced TEAEs in the pimavanserin group and 71 (35%) in the placebo group. Most TEAEs were headache (6% [n=13] vs 5% [n=10]) and somnolence (5% [n=11] vs 5% [n=10]). One patient from the placebo group reported severe headache (0·5%), rhinorrhoea (0·5%), cough (0·5%), and influenza (0·5%). In the pimavanserin group, one patient reported severe toothache (0·5%), and two patients had worsening of schizophrenia (1%). Mean change in QTcF interval was higher with pimavanerin (4·5 ms [SD 18·0]) than with placebo (0·0 ms [16·0]). INTERPRETATION Stable patients with predominant negative symptoms of schizophrenia showed a reduction in negative symptoms after treatment with pimavanserin. However, given the small effect size, further investigation with optimised dosing is warranted to determine the clinical significance of this effect. FUNDING Acadia Pharmaceuticals.
Collapse
Affiliation(s)
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM. CIBERSAM, Universidad Complutense, School of Medicine, Madrid, Spain
| | - Maurizio Fava
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Henry Nasrallah
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - I-Yuan Liu
- Acadia Pharmaceuticals, San Diego, CA, USA
| | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Valproic acid (VPA) is frequently used with clozapine (CLZ) as mood stabilizer and/or seizure prophylaxis. Valproic acid is known to reduce N-desmethylclozapine (N-DMC) but not CLZ levels. This leads to the hypothesis that VPA induces the CLZ metabolism via non-N-desmethylation pathways. Therefore, we aimed to investigate the effect of concurrent VPA use on the serum concentrations of a spectrum of CLZ metabolites in patients, adjusting for smoking. METHODS In total, 288 patients with an overall number of 737 serum concentration measurements of CLZ and metabolites concurrently using VPA (cases, n = 22) or no interacting drugs (controls, n = 266) were included from a routine therapeutic drug monitoring service. Linear mixed model analyses were performed to compare the dose-adjusted concentrations (C/D) of CLZ, N-DMC, CLZ 5N/N+-glucuronides, and metabolite-to-parent ratios in cases versus controls. RESULTS After adjusting for covariates, the N-DMC (-40%, P < 0.001) and N+-glucuronide C/Ds (-78%, P < 0.001) were reduced in cases versus controls, while the CLZ C/D was unchanged (P > 0.7). In contrast, the 5N-glucuronide C/D (+250%, P < 0.001) and 5N-glucuronide-to-CLZ ratios (+120%, P = 0.01) were increased in cases versus controls. CONCLUSIONS Our findings show that complex changes in CLZ metabolism underly the pharmacokinetic interaction with VPA. The lower levels of N-DMC seem to be caused by VPA-mediated induction of CLZ 5N-glucuronide formation, subsequently leading to reduced substrate availability for N-desmethylation. Whether the changes in CLZ metabolism caused by VPA affects the clinical outcome warrants further investigation.
Collapse
|
11
|
Shad MU. Underuse and Suboptimal Use of Clozapine in Treatment-Refractory Schizophrenia. Psychiatr Ann 2021. [DOI: 10.3928/00485713-20211105-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Winkler D, Grohmann R, Friedrich ME, Toto S, Bleich S, Seifert J, Konstantinidis A, Shariat SF, Kasper S, Pjrek E. Urological adverse drug reactions of psychotropic medication in psychiatric inpatients - A drug surveillance report from German-speaking countries. J Psychiatr Res 2021; 144:412-420. [PMID: 34741839 DOI: 10.1016/j.jpsychires.2021.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
Urological adverse drug reactions (UADR) are common during treatment with psychotropic medication. The aim of this study was to provide a systematic description of the differential profile of UADR of psychotropic drugs in a large naturalistic population. Data stems from psychiatric hospitals collected by AMSP (Arzneimittelsicherheit in der Psychiatrie), a continuous multi-center pharmacovigilance program in Austria, Germany, and Switzerland. 171 cases of severe UADR (0.037%) among a total population of 462 661 inpatients treated with psychotropic drugs in 99 psychiatric hospitals between 1993 and 2016 were examined. Urinary retention (129 cases, 0.028%) was the most common UADR followed by incontinence (23 cases, 0.005%) and nocturnal enuresis (16 cases, 0.003%). Risk of UADR was higher in patients with mania than in other diagnostic groups. Promethazine and haloperidol were the antipsychotics with the highest rate of UADR. Tricyclic antidepressants had a higher and selective serotonin reuptake inhibitors a lower risk for UADR than the respective other antidepressants. Amitriptyline and clomipramine were the most common causes of urinary retention and clozapine of urinary incontinence. This research improves our knowledge of the urological risk profiles of psychotropic drugs in inpatients and highlights compounds associated with higher or lower risk.
Collapse
Affiliation(s)
- Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | | | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | | | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Austria; Department of Urology, Weill Cornell Medical College, New York, USA; Institute for Urology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Siegfried Kasper
- Center for Brain Research, Medical University of Vienna, Austria
| | - Edda Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
13
|
Yavas E, Trott JM, Fanselow MS. Sexually dimorphic muscarinic acetylcholine receptor modulation of contextual fear learning in the dentate gyrus. Neurobiol Learn Mem 2021; 185:107528. [PMID: 34607024 PMCID: PMC8849609 DOI: 10.1016/j.nlm.2021.107528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
Contextual fear conditioning, where the prevailing situational cues become associated with an aversive unconditional stimulus such as electric shock, is sexually dimorphic. Males typically show higher levels of fear than females. There are two components to contextual fear conditioning. First the multiple cues that encompass the context must be integrated into a coherent representation, a process that requires the hippocampus. The second is that representation must be communicated to the basolateral amygdala where it can be associated with shock. If there is inadequate time for forming the representation prior to shock poor conditioning results and this is called the immediate shock deficit. One can isolate the contextual processing component, as well as alleviate the deficit, by providing an opportunity to explore the context without shock prior to the conditioning session. The purpose of the present study was to determine the extent to which cholinergic processes within the dentate gyrus of the hippocampus during contextual processing contribute to the sexual dimorphism. Clozapine-n-oxide (CNO) is a putatively inactive compound that acts only upon synthetic genetically engineered receptors. However, we found that CNO infused into the dentate gyrus prior to exploration eliminated the sexual dimorphism by selectively decreasing freezing in males to the level of females. Biological activity of CNO is usually attributed to metabolism of CNO to clozapine and we found that clozapine, and the muscarinic cholinergic antagonist, scopolamine, produced results similar to CNO, preferentially affecting males. On the other hand, the muscarinic agonist oxotremorine selectively impaired conditioning in females. Overall, the current experiments reveal significant off-target effects of CNO and implicate muscarinic cholinergic receptors in the dentate gyrus as a significant mediator of the sexual dimorphism in contextual fear conditioning.
Collapse
Affiliation(s)
- Ersin Yavas
- Staglin Center for Brain and Behavioral Health, Department of Psychology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jeremy M Trott
- Staglin Center for Brain and Behavioral Health, Department of Psychology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Michael S Fanselow
- Staglin Center for Brain and Behavioral Health, Department of Psychology, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
14
|
Molden E. Therapeutic drug monitoring of clozapine in adults with schizophrenia: a review of challenges and strategies. Expert Opin Drug Metab Toxicol 2021; 17:1211-1221. [PMID: 34461790 DOI: 10.1080/17425255.2021.1974400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Clozapine (CLZ) is the superior drug in treatment of schizophrenia. Serum concentration of CLZ is associated with clinical response and dose-dependents side effects, where generalized tonic-clonic seizures are most critical. Thus, therapeutic drug monitoring (TDM) of CLZ may guide individual dosing to reach target exposure and prevent dose-dependent side effects. However, current TDM methods are not capable of predicting the risk of agranulocytosis, which is a dose-independent side effect restricting use of CLZ to treatment-resistant schizophrenia (TRS). AREAS COVERED The article provides an overview of clinical, pharmacological, and toxicological aspects of CLZ, and the role of TDM as a tool for dose titration and follow-up in patients with TRS. Main focus is on current challenges and strategies in CLZ TDM, including future perspectives on potential identification/analysis of CLZ metabolite biomarkers reflecting the risk of granulocyte toxicity. EXPERT OPINION The association between CLZ serum concentration, clinical response and risk of seizures is indisputable. TDM should therefore always guide CLZ dose titration. Development of advanced TDM methods, including biomarkers predicting the risk of granulocyte toxicity might extend TDM to be a tool for deciding which patients that can be treated safely with CLZ, potentially increasing its utility beyond TRS.
Collapse
Affiliation(s)
- Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res 2021; 405:113201. [PMID: 33647377 PMCID: PMC8006961 DOI: 10.1016/j.bbr.2021.113201] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by a diverse range of symptoms that can have profound impacts on the lives of patients. Currently available antipsychotics target dopamine receptors, and while they are useful for ameliorating the positive symptoms of the disorder, this approach often does not significantly improve negative and cognitive symptoms. Excitingly, preclinical and clinical research suggests that targeting specific muscarinic acetylcholine receptor subtypes could provide more comprehensive symptomatic relief with the potential to ameliorate numerous symptom domains. Mechanistic studies reveal that M1, M4, and M5 receptor subtypes can modulate the specific brain circuits and physiology that are disrupted in schizophrenia and are thought to underlie positive, negative, and cognitive symptoms. Novel therapeutic strategies for targeting these receptors are now advancing in clinical and preclinical development and expand upon the promise of these new treatment strategies to potentially provide more comprehensive relief than currently available antipsychotics.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Zoey K Bryant
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
16
|
Islam F, Maciukiewicz M, Freeman N, Huang E, Tiwari A, Mulsant BH, Pollock BG, Remington G, Kennedy JL, Müller DJ, Rajji TK. Contributions of cholinergic receptor muscarinic 1 and CYP1A2 gene variants on the effects of plasma ratio of clozapine/N-desmethylclozapine on working memory in schizophrenia. J Psychopharmacol 2021; 35:31-39. [PMID: 33143542 DOI: 10.1177/0269881120946288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clozapine has heterogenous efficacy in enhancing working memory in schizophrenia. We have previously hypothesized that this is due to opposing effects of clozapine and its metabolite, N-desmethylclozapine, at the muscarinic M1 receptor and demonstrated that a lower clozapine/N-desmethylclozapine ratio is associated with better working memory than clozapine or N-desmethylclozapine levels alone. AIMS In this study, we expanded the above hypothesis to explore whether genetic variation in the cholinergic receptor muscarinic 1 gene, encoding the M1 receptor, affects the relationship between clozapine/N-desmethylclozapine and working memory. Further, we explored whether CYP1A2 gene variants affect the ratio of clozapine/N-desmethylclozapine and by this, working memory performance. METHODS We evaluated two functionally significant single nucleotide polymorphisms, rs1942499 and rs2075748, in cholinergic receptor muscarinic 1, with the haplotype T-A associated with lower transcriptional activity than the haplotype C-G. Further, we examined CYP1A2 *1F, with *1F/*1F conferring high inducibility in the presence of smoking. RESULTS In a sample of 30 patients with schizophrenia on clozapine monotherapy, clozapine/N-desmethylclozapine was correlated with working memory only in non-carriers of the haplotype T-A of the cholinergic receptor muscarinic 1 gene. Interaction of CYP1A2 genotype and smoking status significantly affected clozapine concentrations, but there were no significant effects of CYP1A2 genotype and smoking status on the relationship between clozapine/N-desmethylclozapine on working memory. CONCLUSIONS Our finding that the relationship between clozapine/N-desmethylclozapine and working memory is specific to patients with potentially higher transcription of M1 receptor (i.e. non-carriers of the haplotype T-A of cholinergic receptor muscarinic 1) supports a cholinergic mechanism underlying this relationship.
Collapse
Affiliation(s)
- Farhana Islam
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Malgorzata Maciukiewicz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Eric Huang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Arun Tiwari
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Gary Remington
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Kır Y, Baskak B, Kuşman A, Sayar-Akaslan D, Özdemir F, Sedes-Baskak N, Süzen HS, Baran Z. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia. Psychiatry Res Neuroimaging 2020; 303:111128. [PMID: 32593951 DOI: 10.1016/j.pscychresns.2020.111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Studies that examined the effect of clozapine on cognitive functions in schizophrenia provided contradictory results. N-desmethylclozapine (NDMC) is the major metabolite of clozapine and have procognitive effects via agonistic activity in the M1 cholinergic receptors. The rs2067477 polymorphism in the M1 receptors may play role in cognitive profile in schizophrenia. We investigated the association of plasma clozapine (PClz), NDMC (PNdmc) levels and the rs2067477 polymorphism with cognitive functions and cortical activity measured by functional near infrared spectroscopy during the N-Back task in subjects with schizophrenia (N = 50) who are under antipsychotic monotherapy with clozapine. We found that PClz and PNdmc levels were negatively, PNdmc/PClz ratio was positively correlated with immediate recall score in the Rey Auditory Verbal Learning Test. PNdmc/PClz ratio was positively correlated with cortical activity during the N-back task. M1 wild-type group (CC: wild-type) produced higher cortical activity than M1 non wild-type group (CA: heterozygote / AA: mutant) in cortical regions associated with working memory (WM). These results suggest that individual differences in clozapine's effect on short term episodic memory may be associated with PClz and PNdmc. Higher activity in the M1 wild-type group may indicate inefficient use of cortical resources and/or excessive use of certain cognitive strategies during WM performance.
Collapse
Affiliation(s)
- Yağmur Kır
- Ankara University, Brain Research Center, Ankara, Turkey
| | - Bora Baskak
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey.
| | - Adnan Kuşman
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Damla Sayar-Akaslan
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Fezile Özdemir
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Nilay Sedes-Baskak
- Yildirim Beyazit University, Yenimahalle Training and Research Hospital, Department of Psychiatry, Ankara, Turkey
| | | | - Zeynel Baran
- Hacettepe University, Department of Psychology, Ankara, Turkey
| |
Collapse
|
18
|
Chen Z, Xu X, Piao L, Chang S, Liu J, Kong R. Identify old drugs as selective bacterial β-GUS inhibitors by structural-based virtual screening and bio-evaluations. Chem Biol Drug Des 2019; 95:368-379. [PMID: 31834987 DOI: 10.1111/cbdd.13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 01/18/2023]
Abstract
Irinotecan (CPT-11) is a cytotoxic drug that has wide applicability and usage in cancer treatment. Despite its success, patients suffer dose-dependent diarrhea, limiting the drug's efficacy. No effective therapy is available for this unmet medical need. The bacterial β-glucuronidase (β-GUS) plays pivotal role in CPT-11-induced diarrhea (CID) via activating the non-toxic SN-38G to toxic SN-38 inside intestine. By using structural-based virtual screening, three old drugs (N-Desmethylclozapine, Aspartame, and Gemifloxacin) were firstly identified as selective bacterial β-GUS inhibitors. The IC50 values of the compounds in the enzyme-based and cell-based assays range from 0.0389 to 3.6040 and 0.0105 to 5.3730 μM, respectively. The compounds also showed good selectivity against mammalian β-GUS and no significant cytotoxicity in bacteria. Molecular docking and molecular dynamics simulations were performed to further investigate the binding modes of compounds with bacterial β-GUS. Binding free energy decomposition revealed that the compounds formed strong interactions with E413 in catalytic trail from primary monomer and F365' on the bacterial loop from the other monomer of bacterial β-GUS, explaining the selectivity against mammalian β-GUS. The old drugs identified here may be used as bacterial β-GUS inhibitors for CID or other bacterial β-GUS-related disorders.
Collapse
Affiliation(s)
- Zhou Chen
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
19
|
A comparison of the effects of clozapine and its metabolite norclozapine on metabolic dysregulation in rodent models. Neuropharmacology 2019; 175:107717. [PMID: 31348941 DOI: 10.1016/j.neuropharm.2019.107717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023]
Abstract
RATIONALE The second generation antipsychotic drug clozapine is a psychotherapeutic agent with superior efficacy for treatment-resistant schizophrenia. Clozapine is associated with a low likelihood of neurological side-effects, but a high propensity to induce weight gain and metabolic dysregulation. The primary metabolite of clozapine is norclozapine (N-Desmethylclozapine), which has psychoactive properties itself, but its effects on metabolic function remains unknown. The goal of the present study was to determine whether directly administered norclozapine could cause metabolic dysregulation, similar to clozapine. METHODS Adult female rats were treated with a range of doses of clozapine and norclozapine (0.5, 2, 8 & 20 mg/kg, i.p.) and then subjected to the intraperitoneal glucose tolerance test (IGTT), where glucose levels were recorded for 2 h following a glucose challenge. In parallel, rats were tested with two doses of clozapine and norclozapine (2 & 20 mg/kg, i.p.) in the hyperinsulinemic-euglycemic clamp (HIEC), to measure whole body insulin resistance. RESULTS In the IGTT, clozapine demonstrated dose-dependent effects on fasting glucose levels and total glucose area-under-the-curve following the glucose challenge, with the two highest doses strongly increasing glucose levels. Only the highest dose of norclozapine increased fasting glucose levels, and caused a non-significant increase in glucose levels following the challenge. By contrast, both doses of clozapine and norclozapine caused a potent and long-lasting decrease in the glucose infusion rate in the HIEC, indicating that both compounds cause whole body insulin resistance. ABSTRACT While not as potent as its parent compound, norclozapine clearly exerts acute metabolic effects, particularly on insulin resistance. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
20
|
Tian L, Liu X, Mei X, Cui R, Li X. The role of dopamine D1- and D2-like receptors related to muscarinic M1 receptors in impulsive choice in high-impulsive and low-impulsive rats. Pharmacol Biochem Behav 2019; 176:43-52. [DOI: 10.1016/j.pbb.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
21
|
Effect of Valproate and Antidepressant Drugs on Clozapine Metabolism in Patients With Psychotic Mood Disorders. Ther Drug Monit 2018; 40:443-451. [DOI: 10.1097/ftd.0000000000000513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
He N, Mao LM, Sturich AW, Jin DZ, Wang JQ. Inhibition of basal and amphetamine-stimulated extracellular signal-regulated kinase (ERK) phosphorylation in the rat forebrain by muscarinic acetylcholine M4 receptors. Brain Res 2018; 1688:103-112. [PMID: 29577888 PMCID: PMC5903569 DOI: 10.1016/j.brainres.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/05/2018] [Accepted: 03/14/2018] [Indexed: 01/06/2023]
Abstract
The mitogen-activated protein kinase (MAPK), especially its extracellular signal-regulated kinase (ERK) subfamily, is a group of kinases enriched in the mammalian brain. While ERK is central to cell signaling and neural activities, the regulation of ERK by transmitters is poorly understood. In this study, the role of acetylcholine in the regulation of ERK was investigated in adult rat striatum in vivo. We focused on muscarinic M1 and M4 receptors, two principal muscarinic acetylcholine (mACh) receptor subtypes in the striatum. A systemic injection of the M1-preferring antagonist telenzepine did not alter ERK phosphorylation in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. Similarly, telenzepine did not affect ERK phosphorylation in the medial prefrontal cortex (mPFC), hippocampus, and cerebellum. Moreover, telenzepine had no effect on the ERK phosphorylation induced by dopamine stimulation with the psychostimulant amphetamine. In contrast to telenzepine, the M4-preferring antagonist tropicamide consistently increased ERK phosphorylation in the striatum and mPFC. This increase was rapid and transient. Tropicamide and amphetamine when coadministered at subthreshold doses induced a significant increase in ERK phosphorylation. These results demonstrate that mACh receptors exert a subtype-specific modulation of ERK in striatal and mPFC neurons. While the M1 receptor antagonist has no effect on ERK phosphorylation, M4 receptors inhibit constitutive and dopamine-stimulated ERK phosphorylation in these dopamine-innervated brain regions.
Collapse
Affiliation(s)
- Nan He
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - Adrian W Sturich
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
23
|
Abstract
Clozapine is the first second generation antipsychotic with different receptor profile of action. Clozapine is the most efficacious drug for the treatment of psychotic disorder and is the drug of choice in treatment resistant schizophrenia. Clozapine is used in elderly patients infrequently owing to its adverse effects profile and tolerability. There is paucity of literature with respect to clozapine use in late life. In this narrative review, we discuss clozapine use in elderly and challenges associated with its use.
Collapse
Affiliation(s)
- Shiva Shanker Reddy Mukku
- Geriatric Clinic & Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - P T Sivakumar
- Geriatric Clinic & Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - Mathew Varghese
- Geriatric Clinic & Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| |
Collapse
|
24
|
Miyauchi M, Neugebauer NM, Sato T, Ardehali H, Meltzer HY. Muscarinic receptor signaling contributes to atypical antipsychotic drug reversal of the phencyclidine-induced deficit in novel object recognition in rats. J Psychopharmacol 2017; 31:1588-1604. [PMID: 28946779 DOI: 10.1177/0269881117731278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhancement of cholinergic function via muscarinic acetylcholine receptor M1 agonism improves cognition in some schizophrenia patients. Most atypical antipsychotic drugs, including clozapine and its active metabolite, N-desmethylclozapine, and lurasidone, enhance the release of acetylcholine in key brain regions involved in cognition (e.g. hippocampus). We determined the effect of muscarinic acetylcholine receptor M1 stimulation on novel object recognition and its contribution to the ability of atypical antipsychotic drugs to reverse the novel object recognition deficit in rats withdrawn from subchronic phencyclidine, a rodent model of cognitive impairment in schizophrenia. In control rats, the non-specific muscarinic acetylcholine receptor antagonist, scopolamine, and the M1 selective antagonist, VU0255035, induced a novel object recognition deficit, which was reversed by the M1 agonist, AC260584. Scopolamine fully blocked the effect of clozapine and N-desmethylclozapine, but not lurasidone, to restore novel object recognition in subchronic phencyclidine-treated rats. VU0255035 also blocked these effects of clozapine and N-desmethylclozapine, but not lurasidone; however, the blockade was not as complete as that achieved with scopolamine. Furthermore, subchronic phencyclidine increased hippocampal M1 mRNA expression. These data suggest that M1 agonism is required for clozapine and N-desmethylclozapine to ameliorate the phencyclidine-induced deficit in novel object recognition, additional evidence that M1 agonism is a potential target for treating cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Masanori Miyauchi
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA.,2 Sumitomo Dainippon Pharma Co., Ltd, Suita, Japan
| | - Nichole M Neugebauer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Tatsuya Sato
- 3 Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Hossein Ardehali
- 3 Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Herbert Y Meltzer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
25
|
Sharghi H, Aboonajmi J, Mozaffari M, Doroodmand MM, Aberi M. Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Mozhdeh Mozaffari
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | | | - Mahdi Aberi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| |
Collapse
|
26
|
Matsumoto Y, Niwa M, Mouri A, Noda Y, Fukushima T, Ozaki N, Nabeshima T. Adolescent stress leads to glutamatergic disturbance through dopaminergic abnormalities in the prefrontal cortex of genetically vulnerable mice. Psychopharmacology (Berl) 2017; 234:3055-3074. [PMID: 28756461 PMCID: PMC8034555 DOI: 10.1007/s00213-017-4704-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress during the adolescent period influences postnatal maturation and behavioral patterns in adulthood. Adolescent stress-induced molecular and functional changes in neurons are the key clinical features of psychiatric disorders including schizophrenia. OBJECTIVE In the present study, we exposed genetically vulnerable mice to isolation stress to examine the molecular changes in the glutamatergic system involving N-methyl-d-aspartate (NMDA) receptors via dopaminergic disturbance in the prefrontal cortex (PFc). RESULTS We report that late adolescent stress in combination with Disrupted-in-Schizophrenia 1 (DISC1) genetic risk elicited alterations in glutamatergic neurons in the PFc, such as increased expression of glutamate transporters, decreased extracellular levels of glutamate, decreased concentration of d-serine, and impaired activation of NMDA-Ca2+/calmodulin kinase II signaling. These changes resulted in behavioral deficits in locomotor activity, forced swim, social interaction, and novelty preference tests. The glutamatergic alterations in the PFc were prevented if the animals were treated with an atypical antipsychotic drug clozapine and a dopamine D1 agonist SKF81297, which suggests that the activation of dopaminergic neurons is involved in the regulation of the glutamatergic system. CONCLUSION Our results suggest that adolescent stress combined with dopaminergic abnormalities in the PFc of genetically vulnerable mice induces glutamatergic disturbances, which leads to behavioral deficits in the young adult stage.
Collapse
Affiliation(s)
- Yurie Matsumoto
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Minae Niwa
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Science, Toyoake, 470-1192, Japan
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan
| | - Yukihiro Noda
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Science, Toho University, Chiba, 274-8510, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Science, Toyoake, 470-1192, Japan.
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan.
- Aino University, Ibaragi, Osaka, 567-0012, Japan.
| |
Collapse
|
27
|
Piatkov I, Caetano D, Assur Y, Lau SL, Coelho M, Jones T, Nguyen T, Boyages S, McLean M. CYP2C19*17 protects against metabolic complications of clozapine treatment. World J Biol Psychiatry 2017; 18:521-527. [PMID: 28664816 DOI: 10.1080/15622975.2017.1347712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Clozapine (CZ) is the most effective drug for managing treatment-resistant schizophrenic disorders. Its use has been limited due to adverse effects, which include weight gain and new-onset diabetes, but the incidence of these varies between patients. METHODS We investigated 187 Clozapine Clinic patients (of whom 137 consented for genotyping) for the presence of CYP2C19*17 and its association with CZ and norclozapine (NCZ) levels, and clinical outcomes. RESULTS Thirty-nine percent of genotyped patients were carriers of the CYP2C 19*17 polymorphism. This group demonstrated significantly higher NCZ serum levels, and significantly lower fasting glucose (5.66 ± 1.19 vs 6.72 ± 3.01 mmol/l, P = 0.009) and Hb1Ac (35.36 ± 4.78 vs 49.40 ± 20.60 mmol/mol, P = 0.006) levels compared to non-carriers of this polymorphism. CZ-treated patients with CYP2C19*17/*17 had a significantly lower prevalence of diabetes as well as a higher likelihood of clinical improvement of their schizophrenia, compared to those without this polymorphism (P = 0.012 and P = 0.031, respectively). CONCLUSIONS Our data suggest that CYP2C19*17 ultra-rapid-metaboliser status is a protective factor against the development of diabetes during clozapine treatment, and increases the likelihood of improvement in schizophrenia. The role of NCZ in treatment response and side effects, including metabolic syndrome, warrants further pharmacogenetic, pharmacokinetic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Irina Piatkov
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Dorgival Caetano
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia.,c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Yolinda Assur
- c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Sue Lynn Lau
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Micheline Coelho
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Trudi Jones
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Tristan Nguyen
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Steven Boyages
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Mark McLean
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| |
Collapse
|
28
|
Every-Palmer S, Lentle RG, Reynolds G, Hulls C, Chambers P, Dunn H, Ellis PM. Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner. Front Pharmacol 2017; 8:209. [PMID: 28484390 PMCID: PMC5401895 DOI: 10.3389/fphar.2017.00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Clozapine, an antipsychotic used in treatment-resistant schizophrenia, has adverse gastrointestinal effects with significant associated morbidity and mortality. However, its effects on defined patterns of colonic contractile activity have not been assessed. Method: We used novel radial and longitudinal spatiotemporal mapping techniques, combined with and monitoring of ambient lumen pressure, in ex vivo preparations of triply and of singly haustrated portions of rabbit colon. We identified the contractile patterns of mass peristalses, fast phasic, and ripple contractions and directly qualified the effects of clozapine, at concentrations of 10 μmol/L, 20 μmol/L, and 30 μmol/L, and of norclozapine, the main metabolite of clozapine, on contractile patterns. The effects of carbachol, serotonin and naloxone on clozapine-exposed preparations were also determined. Tetradotoxin was used to distinguish neurogenic from myogenic contractions. Results: At 10 μmol/L, clozapine temporarily abolished the longitudinal contractile components of mass peristalsis, which on return were significantly reduced in number and amplitude, as was maximal mass peristaltic pressure. These effects were reversed by carbachol (1 μmol/L) and to some extent by serotonin (15 μmol/L). At 10 μmol/L, myogenic ripple contractions were not affected. At 20 μmol/L, clozapine had a similar but more marked effect on mass peristalses with both longitudinal and radial components and corresponding maximal pressure greatly reduced. At 30 μmol/L, clozapine suppressed the radial and longitudinal components of mass peristalses for over 30 min, as well as ripple contractions. Similar dose-related effects were observed on addition of clozapine to the mid colon. At 20 μmol/L, norclozapine had opposite effects to those of clozapine, causing an increase in the frequency of mass peristalsis with slight increases in basal tone. These slightly augmented contractions were abolished on addition of clozapine. Concentrations of norclozapine below 20 μmol/L had no discernible effects. Conclusion: Clozapine, but not norclozapine, has potent effects on the motility of the rabbit colon, inhibiting neurogenic contractions at lower concentrations and myogenic contractions at higher concentrations. This is the likely mechanism for the serious and life-threatening gastrointestinal complications seen in human clozapine-users. These effects appear to be mediated by cholinergic and serotonergic mechanisms. Spatiotemporal mapping is useful in directly assessing the effects of pharmaceuticals on particular patterns of gastrointestinal motility.
Collapse
Affiliation(s)
- Susanna Every-Palmer
- Te Korowai Whāriki Central Regional Forensic Service, Capital and Coast District Health BoardWellington, New Zealand.,Department of Psychological Medicine, University of OtagoWellington, New Zealand
| | - Roger G Lentle
- Institute of Food, Nutrition and Human Health, Massey UniversityPalmerston North, New Zealand
| | - Gordon Reynolds
- Institute of Food, Nutrition and Human Health, Massey UniversityPalmerston North, New Zealand
| | - Corrin Hulls
- Institute of Food, Nutrition and Human Health, Massey UniversityPalmerston North, New Zealand
| | - Paul Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey UniversityPalmerston North, New Zealand
| | - Helen Dunn
- Pharmacy Department, Capital and Coast District Health BoardWellington South, New Zealand
| | - Pete M Ellis
- Department of Psychological Medicine, University of OtagoWellington, New Zealand
| |
Collapse
|
29
|
Kang M, Kim E, Winkler TE, Banis G, Liu Y, Kitchen CA, Kelly DL, Ghodssi R, Payne GF. Reliable clinical serum analysis with reusable electrochemical sensor: Toward point-of-care measurement of the antipsychotic medication clozapine. Biosens Bioelectron 2017; 95:55-59. [PMID: 28412661 DOI: 10.1016/j.bios.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
Clozapine is one of the most promising medications for managing schizophrenia but it is under-utilized because of the challenges of maintaining serum levels in a safe therapeutic range (1-3μM). Timely measurement of serum clozapine levels has been identified as a barrier to the broader use of clozapine, which is however challenging due to the complexity of serum samples. We demonstrate a robust and reusable electrochemical sensor with graphene-chitosan composite for rapidly measuring serum levels of clozapine. Our electrochemical measurements in clinical serum from clozapine-treated and clozapine-untreated schizophrenia groups are well correlated to centralized laboratory analysis for the readily detected uric acid and for the clozapine which is present at 100-fold lower concentration. The benefits of our electrochemical measurement approach for serum clozapine monitoring are: (i) rapid measurement (≈20min) without serum pretreatment; (ii) appropriate selectivity and sensitivity (limit of detection 0.7μM); (iii) reusability of an electrode over several weeks; and (iv) rapid reliability testing to detect common error-causing problems. This simple and rapid electrochemical approach for serum clozapine measurements should provide clinicians with the timely point-of-care information required to adjust dosages and personalize the management of schizophrenia.
Collapse
Affiliation(s)
- Mijeong Kang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Thomas E Winkler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, MD 20742, United States
| | - George Banis
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, MD 20742, United States
| | - Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Christopher A Kitchen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Reza Ghodssi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, MD 20742, United States; Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
30
|
Jakobsen MI, Larsen JR, Svensson CK, Johansen SS, Linnet K, Nielsen J, Fink-Jensen A. The significance of sampling time in therapeutic drug monitoring of clozapine. Acta Psychiatr Scand 2017; 135:159-169. [PMID: 27922183 DOI: 10.1111/acps.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Therapeutic drug monitoring (TDM) of clozapine is standardized to 12-h postdose samplings. In clinical settings, sampling time often deviates from this time point, although the importance of the deviation is unknown. To this end, serum concentrations (s-) of clozapine and its metabolite N-desmethyl-clozapine (norclozapine) were measured at 12 ± 1 and 2 h postdose. METHOD Forty-six patients with a diagnosis of schizophrenia, and on stable clozapine treatment, were enrolled for hourly, venous blood sampling at 10-14 h postdose. RESULTS Minor changes in median percentage values were observed for both s-clozapine (-8.4%) and s-norclozapine (+1.2%) across the 4-h time span. Maximum individual differences were 42.8% for s-clozapine and 38.4% for s-norclozapine. Compared to 12-h values, maximum median differences were 8.4% for s-clozapine and 7.3% for s-norclozapine at deviations of ±2 h. Maximum individual differences were 52.6% for s-clozapine and 105.0% for s-norclozapine. The magnitude of s-clozapine differences was significantly associated with age, body mass index and the presence of chronic basophilia or monocytosis. CONCLUSION The impact of deviations in clozapine TDM sampling time, within the time span of 10-14 h postdose, seems of minor importance when looking at median percentage differences. However, substantial individual differences were observed, which implies a need to adhere to a fixed sampling time.
Collapse
Affiliation(s)
- M I Jakobsen
- Psychiatric Centre Copenhagen and Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, Rigshospitalet, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - J R Larsen
- Psychiatric Centre Copenhagen and Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, Rigshospitalet, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - C K Svensson
- Psychiatric Centre Copenhagen and Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, Rigshospitalet, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - S S Johansen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen O, Denmark
| | - K Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen O, Denmark
| | - J Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - A Fink-Jensen
- Psychiatric Centre Copenhagen and Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, Rigshospitalet, Copenhagen O, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
31
|
Dean B, Scarr E. COMT genotype is associated with differential expression of muscarinic M1 receptors in human cortex. Am J Med Genet B Neuropsychiatr Genet 2016; 171:784-9. [PMID: 26954460 DOI: 10.1002/ajmg.b.32440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/10/2016] [Indexed: 01/18/2023]
Abstract
Catechol-O-methyltransferase (COMT) genotype has been associated with varying levels of cognitive functioning and an altered risk of schizophrenia. COMT regulates the breakdown of catecholamines, particularly dopamine, which is thought critical in maintaining cognitive function and the aetiology of schizophrenia. This hypothesis gained support from reports that the VAL allele at rs4680 was associated with poorer performance on cognitive tests and a slightly increased risk of schizophrenia. More recently, genotype at rs4818, part of a hapblock with rs4680, has been shown to impact on cognitive ability more than genotype at rs4680 but, as yet, not the risk for schizophrenia. Here, we determined if COMT genotype at rs4680 or rs4818, as well as rs165519 and rs737865, two synonymous single nucleotide polymorphisms (SNPs) with no known functional consequences, were associated with an altered risk of schizophrenia and if genotype at the four COMT SNPs was related to expression of the cortical muscarinic M1 receptor (CHRM1) because the expression of the cortical CHRM1 has been reported to be lower in schizophrenia and is important in maintaining cognitive functioning in humans. We report that the variation in gene sequence at the four COMT SNPs studied was not associated with an altered the risk of schizophrenia but genotype at rs4680 and rs4818, but not rs165519 and rs737865, were associated with varying levels of cortical CHRM1 expression in the human dorsolateral prefrontal cortex (DLPFC). These data are the first to suggest that levels of CHRM1 in the human DLPFC are, in part, determined by COMT gene sequence. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.,The CRC for Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.,The CRC for Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, University of Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Higashino K, Ago Y, Umeki T, Hasebe S, Onaka Y, Hashimoto H, Takuma K, Matsuda T. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice. Psychopharmacology (Berl) 2016; 233:521-8. [PMID: 26518025 DOI: 10.1007/s00213-015-4123-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. OBJECTIVES We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. METHODS Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. RESULTS Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. CONCLUSIONS Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.
Collapse
Affiliation(s)
- Kosuke Higashino
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Umeki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Onaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
33
|
Carruthers SP, Gurvich CT, Rossell SL. The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev 2015; 55:393-402. [PMID: 26003527 DOI: 10.1016/j.neubiorev.2015.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
An increasing body of evidence has implicated the central muscarinic system as contributing to a number of symptoms of schizophrenia and serving as a potential target for pharmaceutical interventions. A theoretical review is presented that focuses on the central muscarinic system's contribution to the cognitive symptoms of schizophrenia. The aim is to bridge the void between pertinent neuropsychological and neurobiological research to provide an explanatory account of the role that the central muscarinic system plays in the symptoms of schizophrenia. First, there will be a brief overview of the relevant neuropsychological schizophrenia literature, followed by a concise introduction to the central muscarinic system. Subsequently, we will draw from animal, neuropsychological and pharmacological literature, and discuss the findings in relation to cognition, schizophrenia and the muscarinic system. Whilst unifying the multiple domains of research into a concise review will act as a useful line of enquiry into the central muscarinic systems contribution to the symptoms of schizophrenia, it will be made apparent that more research is needed in this field.
Collapse
Affiliation(s)
- Sean P Carruthers
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia.
| | - Caroline T Gurvich
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia
| | - Susan L Rossell
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne 3065, VIC, Australia
| |
Collapse
|
34
|
Takeuchi I, Suzuki T, Kishi T, Kanamori D, Hanya M, Uno J, Fujita K, Kamei H. Effect of Scopolamine Butylbromide on Clozapine-induced Hypersalivation in Schizophrenic Patients: A Case Series. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:109-12. [PMID: 25912544 PMCID: PMC4423163 DOI: 10.9758/cpn.2015.13.1.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022]
Abstract
Clozapine has been demonstrated to be useful for treating refractory schizophrenia. However, hypersalivation occurs in 31.0–97.4% of the patients treated with clozapine. Accordingly, some patients who are disturbed by their hypersalivation refuse to continue with clozapine treatment. This study investigated the efficacy of the anticholinergic agent scopolamine butylbromide against clozapine-induced hypersalivation. Five schizophrenia patients were coadministered scopolamine butylbromide (30–60 mg/day) for 4 weeks. At the baseline and after 4 weeks’ treatment, we subjectively evaluated hypersalivation using a visual analog scale and objectively assessed it using the Drooling Severity Scale and Drooling Frequency Scale. As a result, improvements in the patients’ Drooling Severity Scale and Drooling Frequency Scale scores, but no improvements in their visual analog scale scores, were observed after scopolamine butylbromide treatment. These results indicate that at least some schizophrenic patients with clozapine-induced hypersalivation would benefit from scopolamine butylbromide treatment. We conclude that clozapine-induced hypersalivation is one factor of stress to patients. Subjective hypersalivation was not improved, but objective hypersalivation was, by scopolamine butylbromide treatment. However, scopolamine butylbromide and clozapine possess anticholinergic effects so clinicians should closely monitor patients who take scopolamine butylbromide.
Collapse
Affiliation(s)
- Ippei Takeuchi
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan.,Office of Clinical Pharmacy Practice and Health Care Management Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tatsuyo Suzuki
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Taro Kishi
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Daisuke Kanamori
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Manako Hanya
- Office of Clinical Pharmacy Practice and Health Care Management Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Junji Uno
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan
| | - Hiroyuki Kamei
- Office of Clinical Pharmacy Practice and Health Care Management Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
35
|
Llorca PM, Lançon C, Brignone M, Rive B, Salah S, Ereshefsky L, Francois C. Relative efficacy and tolerability of vortioxetine versus selected antidepressants by indirect comparisons of similar clinical studies. Curr Med Res Opin 2014; 30:2589-606. [PMID: 25249164 DOI: 10.1185/03007995.2014.969566] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Vortioxetine is an antidepressant with multimodal activity which has shown efficacy in major depressive disorder (MDD) patients in six of ten short-term, randomized, placebo-controlled trials (completed end 2012). METHODS We performed meta-regression analyses to indirectly compare vortioxetine to seven marketed antidepressants with different mechanisms of action. To ensure study comparability, only experimental drug and placebo arms from placebo-controlled registration studies were included in primary analyses. The main outcomes were efficacy (standardized mean difference in change from baseline to 2 months on primary endpoint [MADRS/HAM-D]), and tolerability (withdrawal rate due to adverse events). RESULTS For efficacy, estimates of treatment effect (negative estimates favor vortioxetine) for vortioxetine versus comparators were: agomelatine, -0.16 (p = 0.11); desvenlafaxine, 0.03 (p = 0.80); duloxetine, 0.09 (p = 0.42); escitalopram, -0.05 (p = 0.70); sertraline, -0.04 (p = 0.83); venlafaxine IR/XR, 0.12 (p = 0.33); and vilazodone, -0.25 (p = 0.11). For tolerability, all but one combination was numerically in favor of vortioxetine (odds ratio < 1), although not all differences were statistically significant: agomelatine, 1.77 (p = 0.03); desvenlafaxine, 0.58 (p = 0.04); duloxetine, 0.75 (p = 0.26); escitalopram, 0.67 (p = 0.28); sertraline, 0.30 (p = 0.01); venlafaxine, 0.47 (p = 0.01); and vilazodone, 0.64 (p = 0.18). Sensitivity analyses did not significantly alter antidepressant effect estimates or relative ranking. CONCLUSION These meta-regression data show that vortioxetine offers a comparable or favorable combination of efficacy (measured by MADRS/HAM-D) and tolerability (measured by withdrawal rate due to adverse events) versus other antidepressants in registration studies in MDD. Alternative methods like mixed-treatment comparison and inclusion of all randomized studies and active reference arms may provide complementary information to this analysis (more evidence but also more heterogeneity). Key messages: Indirect comparisons based on registration studies allow a useful comparison between a recently approved antidepressant and an approved drug. Vortioxetine offers a comparable or favorable combination of efficacy (measured by MADRS/HAM-D assessments) and tolerability (measured by withdrawal rate due to adverse events) versus other antidepressants in registration studies in MDD.
Collapse
|
36
|
Scarr E, Dean B. Role of the cholinergic system in the pathology and treatment of schizophrenia. Expert Rev Neurother 2014; 9:73-86. [DOI: 10.1586/14737175.9.1.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Adverse Effects of Clozapine in Older Patients: Epidemiology, Prevention and Management. Drugs Aging 2013; 31:11-20. [DOI: 10.1007/s40266-013-0144-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Zhang Q, Deng C, Huang XF. The role of ghrelin signalling in second-generation antipsychotic-induced weight gain. Psychoneuroendocrinology 2013; 38:2423-38. [PMID: 23953928 DOI: 10.1016/j.psyneuen.2013.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
Based on clinical and animal studies, this review suggests a tri-phasic effect of second-generation antipsychotics (SGAs) on circulating ghrelin levels: an initial increase exerted by the acute effect of SGAs; followed by a secondary decrease possibly due to the negative feedback from the SGA-induced body weight gain or hyperphagia; and a final re-increase to reach the new equilibrium. Moreover, the results can also vary depending on individual SGAs, other hormonal states, dietary choices, and other confounding factors including medical history, co-treatments, age, gender, and ghrelin measurement techniques. Interestingly, rats treated with olanzapine, an SGA with high weight gain liabilities, are associated with increased hypothalamic ghrelin receptor (GHS-R1a) levels. In addition, expressions of downstream ghrelin signalling parameters at the hypothalamus, including neuropeptide Y (NPY)/agouti-related peptide (AgRP) and proopiomelanocortin (POMC) are also altered under SGA treatments. Thus, understanding the role of ghrelin signalling in antipsychotic drug-induced weight gain should offer potential novel pharmacological targets for tackling the obesity side-effect of SGAs and its associated metabolic syndrome.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
39
|
Wenthur CJ, Lindsley CW. Classics in chemical neuroscience: clozapine. ACS Chem Neurosci 2013; 4:1018-25. [PMID: 24047509 PMCID: PMC3715841 DOI: 10.1021/cn400121z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022] Open
Abstract
Clozapine was the first true breakthrough in schizophrenia treatment since the discovery of chlorpromazine in 1950, effectively treating positive, negative, and some cognitive symptoms, as well as possessing unprecedented efficacy in treatment-resistant patients. Despite over 30 years of intense study, the precise molecular underpinnings that account for clozapine's unique efficacy remain elusive. In this Viewpoint, we will showcase the history and importance of clozapine to neuroscience in general, as well as for the treatment of schizophrenia, and review the synthesis, pharmacology, drug metabolism, and adverse events of clozapine.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, United States.
| | | |
Collapse
|
40
|
Shi J, Xue W, Zhao WJ, Li KX. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats. Acta Pharmacol Sin 2013. [PMID: 23202798 DOI: 10.1038/aps.2012.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory, and to clarify the neurochemical mechanisms underlying its anti-dementia activity. METHODS Microdialysis was conducted on awake, freely moving adult male SD rats with dialysis probes implanted into the hippocampus, medial prefrontal cortex (mPFC) or the third ventricle. The concentrations of Re, dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS. RESULTS Subcutaneous administration of a single dose of Re (12.5, 25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics. The peak concentration (C(max)) occurred at 60 min for all doses. Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg. At the same time, Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC, and more prominent effects were observed in the hippocampus. CONCLUSION The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh, particularly in the hippocampus, may contribute, at least in part, to the anti-dementia activity of Re.
Collapse
|
41
|
Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine. Potential importance of the UGT1A1 A(TA)₇TAA and UGT1A4 L48V polymorphisms. Pharmacogenet Genomics 2012; 22:561-76. [PMID: 22565219 DOI: 10.1097/fpc.0b013e328354026b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Clozapine (CLZ) is an FDA approved second-generation antipsychotic for refractory schizophrenia, and glucuronidation is an important pathway in its metabolism. The aim of this study was to fully characterize the CLZ glucuronidation pathway and examine whether polymorphisms in active glucuronidating enzymes could contribute to variability in CLZ metabolism. METHODS Cell lines overexpressing wild-type or variant uridine diphosphate-glucuronosyltransferase (UGT) enzymes were used to determine which UGTs show activity against CLZ and its major active metabolite N-desmethylclozapine (dmCLZ). Human liver microsomes (HLM) were used to compare hepatic glucuronidation activity against the UGT genotype. RESULTS Several UGTs including 1A1 and 1A4 were active against CLZ; only UGT1A4 showed activity against dmCLZ. UGT1A1 showed a 2.1-fold (P <0.0001) higher V(max)/K(M) for formation of the CLZ-N⁺-glucuronide than UGT1A4; UGT1A4 was the only UGT for which CLZ-5-N-glucuronide kinetics could be determined. The UGT1A4(24Pro/48Val) variant showed a 5.2-, 2.0-, and 3.4-fold (P < 0.0001 for all) higher V(max)/K(M) for the formation of CLZ-5-N-glucuronide, CLZ-N⁺-glucuronide, and dmCLZ-5-N-glucuronide, respectively, as compared with that of wild-type UGT1A4(24Pro/48Leu). There was a 37% (P< 0.05) decrease in the rate of CLZ-N⁺-glucuronide formation in HLM with the UGT1A1 (*28/*28)/UGT1A4 (*1/*1) genotype, and a 2.2- and 1.8-fold (P < 0.05 for both) increase in the formation of CLZ-5-N-glucuronide and CLZ-N⁺-glucuronide in UGT1A1 (*1/*1)/UGT1A4 (*3/*3) HLM compared with UGT1A1 (*1/*1)/UGT1A4 (*1/*1) HLM. The UGT1A1*28 allele was a significant (P = 0.045) predictor of CLZ-N⁺-glucuronide formation; the UGT1A4*3 allele was a significant (P < 0.0001) predictor of CLZ-5-N-glucuronide and dmCLZ-glucuronide formation. CONCLUSION These data suggest that the UGT1A1*28 and UGT1A4*3 alleles contribute significantly to the interindividual variability in CLZ and dmCLZ metabolism.
Collapse
|
42
|
Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:62-8. [PMID: 22640753 DOI: 10.1016/j.pnpbp.2012.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 12/31/2022]
Abstract
We compared the effects of subchronic clozapine and haloperidol administration on the expression of SNAP-25 and synaptophysin in an animal model of schizophrenia based on the glutamatergic hypothesis. Mice were first treated with a non-competitive NMDA antagonist MK-801 (0.3 mg/kg/day) or saline for 5 days, and then clozapine (5 mg/kg/day), haloperidol (1 mg/kg/day) or saline was administered for two weeks. The locomotion test, as a behavioral model of the positive symptoms of schizophrenia, was applied after MK-801/saline administration on day 6 for acute effects and after antipsychotic/saline administration on day 19 for enduring effects on mice activity. Memory function was assessed by the Novel Object Recognition (NOR) test, one day after the last day of antipsychotic/saline administration (day 20). Western Blotting technique was used to determine SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Both antipsychotics reversed the enhanced locomotion effects of MK-801. MK-801 and haloperidol decreased recognition memory performance. On the other hand, clozapine did not compromise memory. It also did not reverse the negative effects of MK-801 on memory performance. MK-801 did not change SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Clozapine increased hippocampal SNAP-25, decreased hippocampal synaptophysin expression, whereas frontal SNAP-25 and synaptophysin expressions remained unchanged. Haloperidol had no effects on levels of SNAP-25 and synaptophysin in the frontal cortex and hippocampus. These findings support the idea that the differential effects of clozapine might be related to its plastic effects and synaptic reorganization of the hippocampus.
Collapse
|
43
|
Chronic phencyclidine (PCP)-induced modulation of muscarinic receptor mRNAs in rat brain : Impact of antipsychotic drug treatment. Neuropharmacology 2012; 62:1554-63. [DOI: 10.1016/j.neuropharm.2011.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 02/04/2023]
|
44
|
Zhou FC, Xiang YT, Wang CY, Dickerson F, Au RWC, Zhou JJ, Zhou Y, Shum DHK, Chiu HFK, Man D, Lee EHM, Yu X, Chan RCK, Ungvari GS. Characteristics and clinical correlates of prospective memory performance in first-episode schizophrenia. Schizophr Res 2012; 135:34-9. [PMID: 22222379 DOI: 10.1016/j.schres.2011.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE The aim of this study was to examine prospective memory (PM) and its socio-demographic, clinical, and neurocognitive correlates in first episode schizophrenia (FES). METHODS Fifty-one FES patients and 42 healthy controls formed the study sample. Time- and event-based PM (TBPM and EBPM) performance were measured with the Chinese version of the Cambridge Prospective Memory Test (C-CAMPROMPT). A battery of neuropsychological tests was also administered. Patients' clinical symptoms were evaluated with the Positive and Negative Symptom Scale (PANSS). RESULTS Patients performed significantly worse in both TBPM (8.7 ± 5.3 vs. 14.8 ± 3.5) and EBPM (11.3 ± 4.7 vs. 15.7 ± 2.7) than the controls. After controlling for age, gender, education level and neurocognitive test score, the difference in performance on the two types of PM tasks between patients and controls was no longer present. In multiple linear regression analyses, longer duration of untreated psychosis (DUP), lower scores of the Hopkins Verbal Learning Test-Revised (HVLT-R) and the categories completed of the Wisconsin Card Sorting Test (WCST-CC) and higher score of the Color Trails Test-2 (CTT-2) contributed to poorer TBPM performance, while lower score of HVLT-R, higher score of the perseverative errors of the Wisconsin Card Sorting Test (WCST-PE) and longer DUP contributed to worse performance on EBPM. CONCLUSIONS Both subtypes of PM are impaired in first-episode schizophrenia suggesting that PM deficits are an integral part of the cognitive dysfunction in the disease process.
Collapse
Affiliation(s)
- Fu-Chun Zhou
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liégeois JF, Deville M, Dilly S, Lamy C, Mangin F, Résimont M, Tarazi FI. New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation. J Med Chem 2012; 55:1572-82. [DOI: 10.1021/jm2013419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jean-François Liégeois
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Marine Deville
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Sébastien Dilly
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Cédric Lamy
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Floriane Mangin
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Mélissa Résimont
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Frank I. Tarazi
- Department of
Psychiatry and
Neuroscience Program, Harvard Medical School and McLean Hospital, Boston, Massachusetts, United States
| |
Collapse
|
46
|
Bolbecker AR, Shekhar A. Muscarinic agonists and antagonists in schizophrenia: recent therapeutic advances and future directions. Handb Exp Pharmacol 2012:167-190. [PMID: 22222699 DOI: 10.1007/978-3-642-23274-9_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Existing therapies for schizophrenia have limited efficacy, and significant residual positive, negative, and cognitive symptoms remain in many individuals with the disorder even after treatment with the current arsenal of antipsychotic drugs. Preclinical and clinical data suggest that selective activation of the muscarinic cholinergic system may represent novel therapeutic mechanisms for the treatment of schizophrenia. The therapeutic relevance of earlier muscarinic agonists was limited by their lack of receptor selectivity and adverse event profile arising from activation of nontarget muscarinic receptors. Recent advances in developing compounds that are selective to muscarinic receptor subtypes or activate allosteric receptor sites offer tremendous promise for therapeutic targeting of specific muscarinic receptor subtypes in schizophrenia.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, IN 47405-7007, USA
| | | |
Collapse
|
47
|
Discovery of potential antipsychotic agents possessing pro-cognitive properties. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:313-23. [PMID: 22083558 DOI: 10.1007/s00210-011-0702-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 10/10/2011] [Indexed: 12/11/2022]
Abstract
Current antipsychotic drug therapies for schizophrenia have limited efficacy and are notably ineffective at addressing the cognitive deficits associated with this disorder. The present study was designed to develop effective antipsychotic agents that would also ameliorate the cognitive deficits associated with this disease. In vitro studies comprised of binding and functional assays were utilized to identify compounds with the receptor profile that could provide both antipsychotic and pro-cognitive features. Antipsychotic and cognitive models assessing in vivo activity of these compounds included locomotor activity assays and novel object recognition assays. We developed a series of potential antipsychotic agents with a novel receptor activity profile comprised of muscarinic M(1) receptor agonism in addition to dopamine D(2) antagonism and serotonin 5-HT(2A) inverse agonism. Like other antipsychotic agents, these compounds reverse both amphetamine and dizocilpine-induced hyperactivity in animals. In addition, unlike other antipsychotic drugs, these compounds demonstrate pro-cognitive actions in the novel object recognition assay. The dual attributes of antipsychotic and pro-cognitive actions distinguish these compounds from other antipsychotic drugs and suggest that these compounds are prototype molecules in the development of novel pro-cognitive antipsychotic agents.
Collapse
|
48
|
Maehara S, Hikichi H, Ohta H. Behavioral effects of N-desmethylclozapine on locomotor activity and sensorimotor gating function in mice—Possible involvement of muscarinic receptors. Brain Res 2011; 1418:111-9. [DOI: 10.1016/j.brainres.2011.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
49
|
Lipina TV, Rasquinha R, Roder JC. Parametric and pharmacological modulations of latent inhibition in mouse inbred strains. Pharmacol Biochem Behav 2011; 100:244-52. [PMID: 21903127 DOI: 10.1016/j.pbb.2011.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/05/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Latent inhibition (LI) is a cross species selective attention phenomenon, which is disrupted by amphetamine and enhanced by antipsychotic drugs (APDs). Accumulating data of LI in gene-modified mice as well as in mouse inbred strains suggest genetic component of LI. Here we study modulation of LI in mouse inbred strains with spontaneously disrupted LI by parametric manipulations (number of pre-exposures and conditioning trials) and pharmacological treatments with antipsychotics and NMDA modulator, D-serine. C3H/He and CBA/J inbred mice showed disrupted LI under conditions with 40 pre-exposures (PE) and 2 trials of the conditioned stimulus-unconditioned stimulus (CS-US) due to either loss of the pre-exposure effect or a ceiling effect of poor learning, respectively. The increased number of pre-exposures and/or number of conditioning trials corrected expression of LI in these inbred mice. The disrupted LI was also reversed by haloperidol in both inbred strains at 1.2 mg/kg but not at 0.4 mg/kg, as well as by clozapine (at 3 mg/kg in C3H/He and at 9 mg/kg in CBA/J mice). D-serine potentiated LI in C3H/He mice at 600 mg/kg, but not in the CBA/J at both studied doses (600 and 1800 mg/kg). Desipramine (10 mg/kg) had no effect on LI in both inbred mouse strains. Our findings demonstrated some resemblance between the effects of parametric and pharmacological manipulations on LI, suggesting that APDs may affect the capacity of the brain processes environmental stimuli in LI. Taken together, LI may offer a translational strategy that allows prediction of drug efficacy for cognitive impairments in schizophrenia.
Collapse
|
50
|
Maehara S, Satow A, Hikichi H, Ohta H. Antipsychotic effects of N-desmethylclozapine on sensorimotor gating function in rats — Possible involvement of activation of M1 muscarinic receptors. Eur J Pharmacol 2011; 667:242-9. [DOI: 10.1016/j.ejphar.2011.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 12/01/2022]
|