1
|
Lewis MH, Rajpal H, Muehlmann AM. Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice. Pharmacol Biochem Behav 2019; 181:110-116. [PMID: 31054946 DOI: 10.1016/j.pbb.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
Abstract
Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fos positive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.
Collapse
Affiliation(s)
- Mark H Lewis
- Department of Psychiatry, University of Florida, United States of America
| | - Hemangi Rajpal
- Department of Psychiatry, University of Florida, United States of America
| | - Amber M Muehlmann
- Department of Psychiatry, University of Florida, United States of America.
| |
Collapse
|
2
|
Ferré S, Quiroz C, Guitart X, Rea W, Seyedian A, Moreno E, Casadó-Anguera V, Díaz-Ríos M, Casadó V, Clemens S, Allen RP, Earley CJ, García-Borreguero D. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome. Front Neurosci 2018; 11:722. [PMID: 29358902 PMCID: PMC5766678 DOI: 10.3389/fnins.2017.00722] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory control of glutamatergic neurotransmission in the cortex and other non-striatal brain areas, which altogether determine both PLMS and hyperarousal. Since A1R agonists would be associated with severe cardiovascular effects, it was hypothesized that inhibitors of nucleoside equilibrative transporters, such as dipyridamole, by increasing the tonic A1R activation mediated by endogenous adenosine, could represent a new alternative therapeutic strategy for RLS. In fact, preliminary clinical data indicate that dipyridamole can significantly improve the symptomatology of RLS.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
3
|
Amodeo DA, Cuevas L, Dunn JT, Sweeney JA, Ragozzino ME. The adenosine A 2A receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism Res 2017; 11:223-233. [PMID: 29193861 DOI: 10.1002/aur.1901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/14/2017] [Indexed: 11/11/2022]
Abstract
Restricted interests and repetitive behaviors (RRBs) are a defining feature of autism spectrum disorder (ASD). To date there are limited options for treating this core symptomology. Treatments that stimulate adenosine A2A receptors may represent a promising approach for reducing RRBs in ASD. This is because A2A receptors are expressed on striatal neurons of the basal ganglia indirect pathway. Under activation of this pathway has been associated with RRBs while activation of A2A receptors leads to increased activity of the indirect basal ganglia pathway. The present studies investigated whether acute, systemic treatment with CGS21680, an A2A receptor agonist attenuates elevated self-grooming and a probabilistic reversal learning deficit in the BTBR T+ Itpr3tf /J (BTBR) mouse model of idiopathic autism. The effects of this treatment were also investigated in C57BL/6J (B6) mice as a comparison strain. Using a spatial reversal learning test with 80/20 probabilistic feedback, comparable to one in which ASD individuals exhibit deficits, CGS 21680 (0.005 and 0.01mg/kg) attenuated a reversal learning deficit in BTBR mice. Enhancement in probabilistic reversal learning performance resulted from CGS 21680 improving the consistent maintenance of new adaptive behavioral choice patterns after reversal. CGS 21680 at 0.01 mg, but not 0.005 mg, also reduced self-grooming behavior in BTBR mice. CGS 21680 did not affect self-grooming or reversal learning in B6 mice. These findings demonstrate that A2A receptor agonists may be a promising receptor target in the treatment of RRBs in ASD. Autism Res 2018, 11: 223-233. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY The present experiments determined whether the drug, CGS 21680, that facilitates activation of adenosine A2A receptors in the brain, would reduce repetitive and inflexible behaviors in the BTBR mouse model of idiopathic autism. CGS 21680 treatment in BTBR mice reduced repetitive and inflexible behaviors. In the control C57BL/6J (B6) mouse strain, CGS 21680 did not affect performance. These findings suggest that stimulation of brain adenosine A2A receptors may be a promising therapeutic strategy in ASD.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137.,Department of Psychology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA, 92407-2393
| | - Laura Cuevas
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| | - Jeffrey T Dunn
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| |
Collapse
|
4
|
Whitehouse CM, Lewis MH. Repetitive Behavior in Neurodevelopmental Disorders: Clinical and Translational Findings. THE BEHAVIOR ANALYST 2015; 38:163-178. [PMID: 26543319 PMCID: PMC4629512 DOI: 10.1007/s40614-015-0029-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repetitive behavior refers to a highly heterogeneous set of responses associated with a wide range of conditions, including normative development. Treatment studies for aberrant repetitive behavior are limited although one promising approach involves conceptualizing such behavior as a generalized inflexibility or lack of variability in responding. Relatively little is known about the neurobiological mechanisms that mediate the development and expression of repetitive behavior, information critical to the design of effective pharmacotherapies, early interventions, and prevention strategies. We will review clinical findings in repetitive behavior as well as findings from animal models highlighting environmental factors and the role of cortical-basal ganglia circuitry in mediating the development and expression of these behaviors. Findings from animal models have included identification of a specific neural pathway important in mediating repetitive behavior. Moreover, pharmacological studies that support the importance of this pathway have led to the identification of novel potential therapeutic targets. Expanding the evidence base for environmental enrichment-derived interventions and focusing on generalized variability in responding will aid in addressing the broader problem of rigidity or inflexibility.
Collapse
Affiliation(s)
- Cristina M. Whitehouse
- />Department of Psychiatry, University of Florida, Gainesville, FL 32610 USA
- />McKnight Brain Institute, University of Florida, Gainesville, FL 32610 USA
| | - Mark H. Lewis
- />Department of Psychiatry, University of Florida, Gainesville, FL 32610 USA
- />McKnight Brain Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
5
|
Caffeine induces behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript peptides in mice. Behav Pharmacol 2014; 25:32-43. [PMID: 24366314 DOI: 10.1097/fbp.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study examined whether repeated administration of caffeine would induce behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript (CART) peptides in mice. The involvement of dopaminergic receptors and adenosine receptors in caffeine-induced behavioural sensitization and CART overexpression was studied. The relevance of D₁R and D₂R, and A₁R and A(2A)R in the overexpression of CART peptides in mouse striatum was also evaluated. Repeated administration of caffeine induced behavioural sensitization in mice. Significant increases in CART mRNA levels were observed on day 3 and peaked at day 5 of caffeine administration, and then decreased gradually. Higher proportions of CART⁺ cells were observed in the dorsolateral and ventrolateral part of the caudate putamen than in the nucleus accumbens shell and core. The behavioural sensitization induced by caffeine was inhibited by dopaminergic receptor antagonists and adenosine receptor agonists. D₁R and D₂R, and cyclic AMP (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signalling were activated by caffeine, but A₁R and A(2A)R were inhibited. Overexpression of caffeine-induced CART peptides and pCREB activity were blocked by N-cyclopentyladenosine (CPA, an A₁R agonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680, an A(2A)R agonist), but not by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390, a D₁R antagonist) or raclopride (a D₂R antagonist). Caffeine-induced overexpression of CART peptides was associated with the inhibition of A₁R and A(2A)R, and the activation of cAMP/PKA/pCREB signalling. Moreover, the A(2A)R-D₂R heterodimer might be involved in the overexpression of CART peptides induced by caffeine.
Collapse
|
6
|
Hobson BD, Merritt KE, Bachtell RK. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacology 2012; 63:1172-81. [PMID: 22749927 DOI: 10.1016/j.neuropharm.2012.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A(1) or A(2A) receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15 mg/kg, i.p.). Following one-week withdrawal, the effects of intra-NAc microinjections of the adenosine kinase inhibitor (ABT-702), the adenosine deaminase inhibitor (deoxycoformycin; DCF), the specific A(1) receptor agonist (CPA) and the specific A(2A) receptor agonist (CGS 21680) were tested on the behavioral expression of cocaine sensitization. The results indicate that intra-NAc pretreatment of ABT-702 and DCF dose-dependently blocked the expression of cocaine sensitization while having no effects on acute cocaine sensitivity, suggesting that upregulation of endogenous adenosine in the accumbens is sufficient to non-selectively stimulate adenosine receptors and reverse the expression of cocaine sensitization. Intra-NAc treatment of CPA significantly inhibited the expression of cocaine sensitization, which was reversed by both A(1) and A(2A) receptor antagonism. Intra-NAc treatment of CGS 21680 also significantly inhibited the expression of cocaine sensitization, which was selectively reversed by A(2A), but not A(1), receptor antagonism. Finally, CGS 21680 also inhibited the expression of quinpirole cross-sensitization. Together, these findings suggest that adenosine receptor stimulation in the NAc is sufficient to reverse the behavioral expression of cocaine sensitization and that A(2A) receptors blunt cocaine-induced sensitization of postsynaptic D(2) receptors.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
7
|
Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 2012; 37:1245-56. [PMID: 22169945 PMCID: PMC3306886 DOI: 10.1038/npp.2011.312] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated cocaine administration enhances dopamine D(2) receptor sensitivity in the mesolimbic dopamine system, which contributes to drug relapse. Adenosine A(2A) receptors are colocalized with D(2) receptors on nucleus accumbens (NAc) medium spiny neurons where they antagonize D(2) receptor activity. Thus, A(2A) receptors represent a target for reducing enhanced D(2) receptor sensitivity that contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A(2A) receptor modulation in the NAc on cocaine seeking in rats that were trained to lever press for cocaine. Following at least 15 daily self-administration sessions and 1 week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc core microinjections of the A(2A) receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride), and the A(2A) receptor antagonist, MSX-3 (3,7-dihydro-8-[(1E)-2-(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt hydrate), in modulating cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine- and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic A(2A) receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A(2A) receptor stimulation reduces, while A(2A) blockade amplifies, D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
|
8
|
Differential effects of the adenosine A₂A agonist CGS-21680 and haloperidol on food-reinforced fixed ratio responding in the rat. Psychopharmacology (Berl) 2012; 220:205-13. [PMID: 21898173 PMCID: PMC3505378 DOI: 10.1007/s00213-011-2467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Previous studies have shown that adenosine A(2A) receptors are colocalized with dopamine D(2) receptors on striatal neurons. Activation of these two receptors has antagonistic effects under a number of conditions suggesting that stimulation of adenosine A(2A) receptors may have behavioral effects resembling those produced by blockade of dopamine D(2) receptors, but this possibility has been investigated in a limited number of situations. OBJECTIVE We compared the effects of the adenosine A(2A) agonist CGS-21680 and the preferential D(2) dopamine antagonist haloperidol in a situation in which dopamine blockade produces a distinctive pattern of behavioral effects. MATERIALS AND METHODS Six rats were trained to lever press for food reward on a fixed ratio 15 schedule of reinforcement and then tested after being injected with various doses of CGS-21680 (0.064, 0.128, and 0.25 mg/kg) and haloperidol (0.25 and 0.1 mg/kg). RESULTS Haloperidol produced a dose-dependent suppression of lever pressing with mean response rates declining across the duration of the test session. CGS-21680 also produced a dose-dependent suppression of responding, but this effect was not temporally graded, and responding was equivalently suppressed across the duration of the session. Additionally, CGS-21680 increased post-reinforcement pause duration to a much greater extent than did haloperidol. CONCLUSIONS On this task, the behavioral effects of CGS-21680 do not resemble those produced by haloperidol. Several explanations of this discrepancy are possible, the most likely being that the observed behavioral effects of CGS-21680 result from an action at a site other than D(2) receptor-expressing striatal neurons.
Collapse
|
9
|
Tanimura Y, Vaziri S, Lewis MH. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 2010; 210:116-22. [PMID: 20178817 DOI: 10.1016/j.bbr.2010.02.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Repetitive behaviors are diagnostic for autism and common in related neurodevelopmental disorders. Despite their clinical importance, underlying mechanisms associated with the expression of these behaviors remain poorly understood. Our lab has previously shown that the rates of spontaneous stereotypy in deer mice (Peromyscus maniculatus) were negatively correlated with enkephalin content, a marker of striatopallidal but not striatonigral neurons. To investigate further the role of the indirect basal ganglia pathway, we examined neuronal activation of the subthalamic nucleus (STN) using cytochrome oxidase (CO) histochemistry in high- and low-stereotypy mice. CO activity in STN was significantly lower in high-stereotypy mice and negatively correlated with the frequency of stereotypy. In addition, exposure to environmental enrichment, which attenuated stereotypy, normalized the activity of STN. Co-administration of the adenosine A(2A) receptor agonist CGS21680 and the A(1) receptor agonist CPA attenuated stereotypy dose-dependently. The significant reduction associated with the lowest dose of the drug combination tested was due to its effects on mice with lower baseline levels of stereotypy. Higher doses of the drug combination were required to show robust behavioral effects, and presumably requisite activation of the indirect pathway, in high-stereotypy mice. These findings support that decreased indirect pathway activity is linked to the expression of high levels of stereotypy in deer mice and that striatal A(1) and A(2A) receptors may provide promising therapeutic targets for the treatment of repetitive behaviors in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoko Tanimura
- Departments of Psychiatry and Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
10
|
Bata-García JL, Tun-Cobá L, Alvarez-Cervera FJ, Villanueva-Toledo JR, Heredia-López FJ, Góngora-Alfaro JL. Improvement of postural adjustment steps in hemiparkinsonian rats chronically treated with caffeine is mediated by concurrent blockade of A1 and A2A adenosine receptors. Neuroscience 2010; 166:590-603. [PMID: 20056138 DOI: 10.1016/j.neuroscience.2009.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
Chronic treatment with the non-selective adenosine receptor antagonist caffeine produces full recovery of the contralateral adjusting steps in hemiparkinsonian rats. In order to disclose which adenosine receptor subtype mediates this effect, a group of hemiparkinsonian rats (n=9) was treated with caffeine (5.15 mumol/kg/day), or equimolar doses of selective A1 (DPCPX) or A2A (ZM 241385) adenosine receptor antagonists, administered in a counterbalanced order over periods of 3 weeks, interspersed with equivalent washout intervals. Treatment with ZM 241385 caused full recovery (102+/-6%) of the contralateral forepaw stepping, while the maximal effect of DPCPX was only 73+/-7% of that produced by caffeine. The maximal effect of caffeine and ZM 241385 remained stable throughout the treatment period. The response to DPCPX showed more fluctuations, but tolerance did not develop. Stepping improvement was significantly faster with DPCPX than with ZM 241385, while caffeine had intermediate values. Stepping decrease after treatment interruption was faster with ZM 241385 than with caffeine, while DPCPX had intermediate values. In other experiments with the same rats, addition of the A2AR agonist CGS 21680 (5.15 mumol/kg) or the A1R agonist CCPA (2.71 mumol/kg) during the second week of caffeine treatment reversed the improvement of contralateral stepping by 59+/-4% and 30+/-3%, respectively. The combined treatment with CGS 21680 and CCPA caused complete reversal of the contralateral stepping recovery afforded by caffeine, which was more than additive (114+/-5%) compared with the sum of the maximal inhibition produced by either agonist administered alone (89+/-4%). In all cases, after interrupting the adenosine agonists, the effect of caffeine was fully restored. None of the aforementioned treatments induced significant changes in the stepping of the ipsilateral forepaw. Collectively, these results suggest that the improvement of postural adjustments induced by chronic treatment with low doses of caffeine in hemiparkinsonian rats is mediated by concurrent blockade of A1 and A2A adenosine receptors, with a larger involvement of the latter.
Collapse
Affiliation(s)
- J L Bata-García
- Departamento de Neurociencias, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Avenida Itzáes 490 x 59, Mérida, Yucatán, México
| | | | | | | | | | | |
Collapse
|
11
|
Bachtell RK, Self DW. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2009; 206:469-78. [PMID: 19641899 PMCID: PMC2759773 DOI: 10.1007/s00213-009-1624-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/12/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. OBJECTIVES The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. METHODS Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. RESULTS Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. CONCLUSIONS Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.
Collapse
Affiliation(s)
- Ryan K. Bachtell
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309-0345
| | - David W. Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070
| |
Collapse
|
12
|
Sihver W, Schulze A, Wutz W, Stüsgen S, Olsson RA, Bier D, Holschbach MH. Autoradiographic comparison of in vitro binding characteristics of various tritiated adenosine A2A receptor ligands in rat, mouse and pig brain and first ex vivo results. Eur J Pharmacol 2009; 616:107-14. [PMID: 19545560 DOI: 10.1016/j.ejphar.2009.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 02/08/2023]
Abstract
The adenosine A(2A) receptor in the basal ganglia is involved in the control of movement and plays a role in movement disorders such as Parkinsonism. Developing ligands to evaluate that receptor by noninvasive methods such as positron emission tomography has a high priority. In vitro radioligand binding guides the selection of ligands for in vivo application. This study measured the binding of the adenosine A(2A) receptor antagonist [(3)H]MSX-2 (3-(3-hydroxypropyl)-8-m-methoxystyryl)-7-methyl-1-propargylxanthine) to rat, mouse and pig brain by autoradiography. Other studies measured binding to membranes from PC12 pheochromocytoma cells. Those binding parameters were compared to those of the adenosine A(2A) receptor antagonist [(3)H]ZM241385 (4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino)ethyl)phenol), the adenosine A(2A) receptor agonist [(3)H]CGS21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosine) and the unselective adenosine receptor agonist [(3)H]NECA (5'N-ethylcarboxamido)adenosine). The potency order (K(d)) in the three species was [(3)H]ZM241385<[(3)H]MSX-2<[(3)H]NECA<[(3)H]CGS21680. The density of [(3)H]MSX-2 binding sites was greater in the striatum than in the cortex. Preliminary ex vivo experiments showed that by 10min after iv injection, [(3)H]MSX-2 and [(3)H]CGS21680 crossed the blood-brain barrier to the extent of almost 1% ID/g brain tissue, but [(3)H]NECA and [(3)H]ZM241385 to only 0.2% ID/g. The prior administration of unlabeled ZM241385 significantly lowered brain uptake of [(3)H]MSX-2. In conclusion, [(3)H]MSX-2 has a high affinity and sufficient selectivity for the adenosine A(2A) receptor. It penetrates the blood-brain barrier. Sensitivity to photoisomerization is a limitation. Further investigations assess its suitability as a ligand for imaging the brain adenosine A(2A) receptor.
Collapse
Affiliation(s)
- Wiebke Sihver
- Institute of Neuroscience and Medicine, INM-5, (Nuclear Chemistry), Research Center Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Olianas MC, Dedoni S, Boi M, Onali P. Activation of nociceptin/orphanin FQ-NOP receptor system inhibits tyrosine hydroxylase phosphorylation, dopamine synthesis, and dopamine D(1) receptor signaling in rat nucleus accumbens and dorsal striatum. J Neurochem 2008; 107:544-56. [PMID: 18717817 DOI: 10.1111/j.1471-4159.2008.05629.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.
Collapse
Affiliation(s)
- Maria C Olianas
- Department of Neuroscience, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
14
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
15
|
de Vaca SC, Kannan P, Pan Y, Jiang N, Sun Y, Carr KD. The adenosine A2A receptor agonist, CGS-21680, blocks excessive rearing, acquisition of wheel running, and increases nucleus accumbens CREB phosphorylation in chronically food-restricted rats. Brain Res 2007; 1142:100-9. [PMID: 17292868 PMCID: PMC1868560 DOI: 10.1016/j.brainres.2007.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/28/2022]
Abstract
Adenosine A(2A) receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D(2) dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A(2A) and D(2) receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D(1) and D(2) DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A(2A) receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A(2A) agonist, and suggest the involvement of an upregulated A(2A) receptor-linked signaling pathway in NAc. Medications targeting the A(2A) receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse and compulsive exercise.
Collapse
Affiliation(s)
- Soledad Cabeza de Vaca
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA
| | - Pavitra Kannan
- Department of Pharmacology, New York University School of Medicine, New York, New York, 10016, USA
| | - Yan Pan
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA
| | - Nancy Jiang
- Department of Pharmacology, New York University School of Medicine, New York, New York, 10016, USA
| | - Yanjie Sun
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA
| | - Kenneth D. Carr
- Department of Psychiatry, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pharmacology, New York University School of Medicine, New York, New York, 10016, USA
| |
Collapse
|
16
|
Yabuuchi K, Kuroiwa M, Shuto T, Sotogaku N, Snyder GL, Higashi H, Tanaka M, Greengard P, Nishi A. Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2a receptor signaling in the neostriatum. Neuroscience 2006; 141:19-25. [PMID: 16750892 DOI: 10.1016/j.neuroscience.2006.04.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/15/2022]
Abstract
Adenosine is known to modulate the function of neostriatal neurons. Adenosine acting on A(2A) receptors increases the phosphorylation of dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) at Thr34 (the cAMP-dependent protein kinase [PKA] site) in striatopallidal neurons, and opposes dopamine D2 receptor signaling. In contrast, the role of adenosine A(1) receptors in the regulation of dopamine/DARPP-32 signaling is not clearly understood. Here, we investigated the effect of adenosine A(1) receptors on D(1), D(2) and A(2A) receptor signaling using mouse neostriatal slices. An A(1) receptor agonist, 2-chloro-N(6)-cyclopentyladenosine (100 nM), caused a transient increase, followed by a transient decrease, in DARPP-32 Thr34 phosphorylation. Our data support the following model for the actions of the A(1) receptor agonist. The A(1) receptor-induced early increase in Thr34 phosphorylation was mediated by presynaptic inhibition of dopamine release, and the subsequent removal of tonic inhibition by D(2) receptors of A(2A) receptor/G(olf)/cAMP/PKA signaling. The A(1) receptor-induced late decrease in Thr34 phosphorylation was mediated by a postsynaptic G(i) mechanism, resulting in inhibition of D(1) and A(2A) receptor-coupled G(olf)/cAMP/PKA signaling in direct and indirect pathway neurons, respectively. In conclusion, A(1) receptors play a major modulatory role in dopamine and adenosine receptor signaling.
Collapse
Affiliation(s)
- K Yabuuchi
- Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|