1
|
Lukow PB, Lowther M, Pike AC, Yamamori Y, Chavanne AV, Gormley S, Aylward J, McCloud T, Goble T, Rodriguez-Sanchez J, Tuominen EW, Buehler SK, Kirk P, Robinson OJ. Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:1071-1082. [PMID: 39364684 PMCID: PMC11531087 DOI: 10.1177/02698811241286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are used for the treatment of several conditions including anxiety disorders, but the basic neurobiology of serotonin function remains unclear. The amygdala and prefrontal cortex are strongly innervated by serotonergic projections and have been suggested to play an important role in anxiety expression. However, serotonergic function in behaviour and SSRI-mediated neurobiological changes remain incompletely understood. AIMS To investigate the neural correlates of subchronic antidepressant administration. METHODS We investigated whether the 2- to 3-week administration of a highly selective SSRI (escitalopram) would alter brain activation on a task robustly shown to recruit the bilateral amygdala and frontal cortices in a large healthy volunteer sample. Participants performed the task during a functional magnetic resonance imaging acquisition before (n = 96) and after subchronic escitalopram (n = 46, days of administration mean (SD) = 15.7 (2.70)) or placebo (n = 40 days of administration mean (SD) = 16.2 (2.90)) self-administration. RESULTS Compared to placebo, we found an elevation in right amygdala activation to the task after escitalopram administration without significant changes in mood. This effect was not seen in the left amygdala, the dorsomedial region of interest, the subgenual anterior cingulate cortex or the right fusiform area. There were no significant changes in connectivity between the dorsomedial cortex and amygdala or the subgenual anterior cingulate cortex after escitalopram administration. CONCLUSIONS To date, this most highly powered study of subchronic SSRI administration indicates that, contrary to effects often seen in patients with anxiety disorders, subchronic SSRI treatment may increase amygdala activation in healthy controls. This finding highlights important gaps in our understanding of the functional role of serotonin.
Collapse
Affiliation(s)
- Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Millie Lowther
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alice V Chavanne
- Institute of Cognitive Neuroscience, University College London, London, UK
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales Psychiatrie,” Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Siobhan Gormley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Aylward
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tayla McCloud
- Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Division of Psychiatry, Maple House, London, UK
| | - Talya Goble
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Julia Rodriguez-Sanchez
- Institute of Cognitive Neuroscience, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ella W Tuominen
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah K Buehler
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Kirk
- Institute of Cognitive Neuroscience, University College London, London, UK
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
2
|
Khakpai F. Norharmane potentiated anxiolytic- and antidepressant-like responses induced by imipramine and citalopram: an isobologram analysis. Behav Pharmacol 2024; 35:432-441. [PMID: 39361265 DOI: 10.1097/fbp.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
β-carboline compounds display a therapeutic property for treating depression and anxiety behaviors. Imipramine and citalopram play an important role in the modulation of anxiety and depression behaviors. We investigated the effects of norharmane, imipramine, and citalopram on anxiety- and depression-like effects and their interactions. Elevated plus maze and forced swimming test were used for the assessment of anxiety- and depression-like behaviors in male mice. The results revealed that intraperitoneal (i.p.) administration of norharmane (10 mg/kg) increased percentage of open arm time (%OAT) in the elevated plus maze test and decreased immobility time in the forced swimming test, proposing anxiolytic- and antidepressant-like effects. Injection of imipramine (5 mg/kg; i.p.) enhanced %OAT and decreased immobility time, suggesting anxiolytic- and antidepressant-like effects. Moreover, norharmane potentiated the anxiolytic- and antidepressant-like responses induced by imipramine by increasing %OAT and decreasing immobility time. The results revealed additive anxiolytic- and antidepressant-like effects between norharmane and imipramine in mice. Alone, the administration of citalopram (5 mg/kg; i.p.) enhanced %OAT and reduced immobility time, causing anxiolytic- and antidepressant-like effects. When citalopram and norharmane were coinjected, norharmane augmented the anxiolytic- and antidepressant-like effects induced by citalopram by increasing %OAT and reducing immobility time. These results indicated additive anxiolytic- and antidepressant-like effects between norharmane and antidepressant drugs such as imipramine and citalopram on the modulation of anxiety and depression processes in mice.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Näslund J, Landin J, Hieronymus F, Banote RK, Kettunen P. Anxiolytic-like effects of acute serotonin-releasing agents in zebrafish models of anxiety: experimental study and systematic review. Acta Neuropsychiatr 2024:1-19. [PMID: 39463428 DOI: 10.1017/neu.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Though commonly used to model affective disorders, zebrafish display notable differences in terms of the structure and function of the brain serotonin system, including responses to pharmacological interventions, as compared to mammals. For example, elevation of brain serotonin following acute administration of serotonin reuptake inhibitors (SRIs) generally has anxiogenic effects, both in the clinical situation and in rodent models of anxiety, but previous research has indicated the opposite in zebrafish. However, several issues remain unresolved. We conducted a systematic review of SRI effects in zebrafish models of anxiety and, on the basis of these results, performed a series of experiments further investigating the influence of serotonin-releasing agents on anxiety-like behaviour in zebrafish, with sex-segregated wild-type animals being administered either escitalopram, or the serotonin releaser fenfluramine, in the light-dark test. In the systematic review, we find that the available literature indicates an anxiolytic-like effect of SRIs in the novel-tank diving test. Regarding the light-dark test, most studies reported no behavioural effects of SRIs, although the few that did generally saw anxiolytic-like responses. In the experimental studies, consistent anxiolytic-like effects were observed with neither sex nor habituation influencing treatment response. We find that the general effect of acute SRI administration in zebrafish indeed appears to be anxiolytic-like, indicating, at least partly, differences in the functioning of the serotonin system as compared to mammals and that caution is advised when using zebrafish to model affective disorders.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Landin
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hieronymus
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hosp1ital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Malkova L, Forcelli PA. Focal pharmacological manipulation of serotonin signaling in the amygdala does not alter social behavior. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06651-4. [PMID: 39019996 DOI: 10.1007/s00213-024-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates. In rodents, acute systemic administration of drugs that increase serotonin signaling is associated with decreased social interactions. However, in primates, the direct involvement of serotonin signaling in the amygdala, particularly in affiliative social interaction, remains unexplored. Here, we examined the effects of serotonin manipulations within the amygdala on social behavior in eight pairs of familiar male macaques. We microinfused drugs targeting the serotonin system into either the basolateral (BLA) or central (CeA) amygdala and measured changes in social behavior. Surprisingly, the results demonstrated no significant differences in social behavior following the infusion of a selective serotonin reuptake inhibitor, 5-HT1A agonist or antagonist, 5-HT2A agonist or antagonist, or 5-HT3 agonist or antagonist into either the BLA or CeA. These findings suggest that serotonin signaling in the amygdala does not directly contribute to the regulation of social behavior between familiar conspecifics. Future research should explore alternative mechanisms and potential interactions with other brain regions to gain a comprehensive understanding of the complex neural circuitry governing social behavior.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA.
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
5
|
Livermore JJA, Skora LI, Adamatzky K, Garfinkel SN, Critchley HD, Campbell-Meiklejohn D. General and anxiety-linked influences of acute serotonin reuptake inhibition on neural responses associated with attended visceral sensation. Transl Psychiatry 2024; 14:241. [PMID: 38844469 PMCID: PMC11156930 DOI: 10.1038/s41398-024-02971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Ordinary sensations from inside the body are important causes and consequences of our affective states and behaviour, yet the roles of neurotransmitters in interoceptive processing have been unclear. With a within-subjects design, this experiment tested the impacts of acute increases of endogenous extracellular serotonin on the neural processing of attended internal sensations and the links of these effects to anxiety using a selective serotonin reuptake inhibitor (SSRI) (20 mg CITALOPRAM) and a PLACEBO. Twenty-one healthy volunteers (fourteen female, mean age 23.9) completed the Visceral Interoceptive Attention (VIA) task while undergoing functional magnetic resonance imaging (fMRI) with each treatment. The VIA task required focused attention on the heart, stomach, or visual sensation. The relative neural interoceptive responses to heart sensation [heart minus visual attention] (heart-IR) and stomach sensation [stomach minus visual attention] (stomach-IR) were compared between treatments. Visual attention subtraction controlled for the general effects of CITALOPRAM on sensory processing. CITALOPRAM was associated with lower interoceptive processing in viscerosensory (the stomach-IR of bilateral posterior insular cortex) and integrative/affective (the stomach-IR and heart-IR of bilateral amygdala) components of interoceptive neural pathways. In anterior insular cortex, CITALOPRAM reductions of heart-IR depended on anxiety levels, removing a previously known association between anxiety and the region's response to attended heart sensation observed with PLACEBO. Preliminary post hoc analysis indicated that CITALOPRAM effects on the stomach-IR of the amygdalae corresponded to acute anxiety changes. This direct evidence of general and anxiety-linked serotonergic influence on neural interoceptive processes advances our understanding of interoception, its regulation, and anxiety.
Collapse
Affiliation(s)
| | - Lina I Skora
- School of Psychology, University of Sussex, Brighton, UK
- Heinrich Heine Universität, Düsseldorf, Germany
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK
| | | | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Hugo D Critchley
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, UK
- Brighton and Sussex Medical School, Brighton, UK
- Sussex Partnership NHS Foundation Trust, Brighton, UK
| | | |
Collapse
|
6
|
Lewis MW, Bradford DE, Akman E, Frederiks K, Rauch SL, Rosso IM. Unconditioned response to a naturally aversive stimulus is associated with sensitized defensive responding and self-reported fearful traits in a PTSD sample. Psychophysiology 2024; 61:e14473. [PMID: 37919832 DOI: 10.1111/psyp.14473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023]
Abstract
Unconditioned responding (UCR) to a naturally aversive stimulus is associated with defensive responding to a conditioned threat cue (CS+) and a conditioned safety cue (CS-) in trauma-exposed individuals during fear acquisition. However, the relationships of UCR with defensive responses during extinction training, posttraumatic stress disorder (PTSD) symptom severity, and fearful traits in trauma-exposed individuals are not known. In a sample of 100 trauma-exposed adults with a continuum of PTSD severity, we recorded startle responses and skin conductance responses (SCR) during fear acquisition and extinction training using a 140 psi, 250-ms air blast to the larynx as the unconditioned stimulus. We explored dimensional associations of two different measures of UCR (unconditioned startle and unconditioned SCR) with conditioned defensive responding to CS+ and CS-, conditioned fear (CS+ minus CS-), PTSD symptom severity, and a measure of fearful traits (composite of fear survey schedule, anxiety sensitivity index, and Connor-Davidson resilience scale). Unconditioned startle was positively associated with startle potentiation to the threat cue and the safety cue across both learning phases (CS+ Acquisition, CS- Acquisition, CS+ Extinction Training, CS- Extinction Training) and with fearful traits. Unconditioned SCR was positively associated with SCR to the CS+ and CS- and SCR difference score during Acquisition. Neither type of UCR was associated with PTSD symptom severity. Our findings suggest that UCR, particularly unconditioned startle to a naturally aversive stimulus, may inform research on biomarkers and treatment targets for symptoms of pervasive and persistent fear in trauma-exposed individuals.
Collapse
Affiliation(s)
- Michael W Lewis
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Bradford
- School of Psychological Science, Oregon State University, Oregon, USA
| | - Eylül Akman
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Kevin Frederiks
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Scott L Rauch
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Hoge EA, Armstrong CH, Mete M, Oliva I, Lazar SW, Lago TR, Grillon C. Attenuation of Anxiety-Potentiated Startle After Treatment With Escitalopram or Mindfulness Meditation in Anxiety Disorders. Biol Psychiatry 2024; 95:85-92. [PMID: 37331547 DOI: 10.1016/j.biopsych.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Biological markers for anxiety disorders may further understanding of disorder pathophysiology and suggest potential targeted treatments. The fear-potentiated startle (FPS) (a measure of startle to predictable threat) and anxiety-potentiated startle (APS) (startle to unpredictable threat) laboratory paradigm has been used to detect physiological differences in individuals with anxiety disorders compared with nonanxious control individuals, and in pharmacological challenge studies in healthy adults. However, little is known about how startle may change with treatment for anxiety disorders, and no data are available regarding alterations due to mindfulness meditation training. METHODS Ninety-three individuals with anxiety disorders and 66 healthy individuals completed 2 sessions of the neutral, predictable, and unpredictable threat task, which employs a startle probe and the threat of shock to assess moment-by-moment fear and anxiety. Between the two testing sessions, patients received randomized 8-week treatment with either escitalopram or mindfulness-based stress reduction. RESULTS APS, but not FPS, was higher in participants with anxiety disorders compared with healthy control individuals at baseline. Further, there was a significantly greater decrease in APS for both treatment groups compared with the control group, with the patient groups showing reductions bringing them into the range of control individuals at the end of the treatment. CONCLUSIONS Both anxiety treatments (escitalopram and mindfulness-based stress reduction) reduced startle potentiation during unpredictable (APS) but not predictable (FPS) threat. These findings further validate APS as a biological correlate of pathological anxiety and provide physiological evidence for the impact of mindfulness-based stress reduction on anxiety disorders, suggesting that there may be comparable effects of the two treatments on anxiety neurocircuitry.
Collapse
Affiliation(s)
- Elizabeth A Hoge
- Department of Psychiatry, Georgetown University Medical Center, Washington, DC.
| | | | - Mihriye Mete
- Center of Biostatistics, Informatics and Data Science, Medstar Health Research Institute, Hyattsville, Maryland
| | - Isabelle Oliva
- Department of Psychiatry, Georgetown University Medical Center, Washington, DC
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tiffany R Lago
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Payet JM, Stevens L, Russo AM, Jaehne EJ, van den Buuse M, Kent S, Lowry CA, Baratta MV, Hale MW. The Role of Dorsal Raphe Nucleus Serotonergic Systems in Emotional Learning and Memory in Male BALB/c Mice. Neuroscience 2023; 534:1-15. [PMID: 37852412 DOI: 10.1016/j.neuroscience.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
Collapse
Affiliation(s)
- Jennyfer M Payet
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Laura Stevens
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Adrian M Russo
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew W Hale
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Groenink L, Verdouw PM, Zhao Y, Ter Heegde F, Wever KE, Bijlsma EY. Pharmacological modulation of conditioned fear in the fear-potentiated startle test: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2023; 240:2361-2401. [PMID: 36651922 PMCID: PMC10593622 DOI: 10.1007/s00213-022-06307-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Fear conditioning is an important aspect in the pathophysiology of anxiety disorders. The fear-potentiated startle test is based on classical fear conditioning and over the years, a broad range of drugs have been tested in this test. Synthesis of the available data may further our understanding of the neurotransmitter systems that are involved in the expression of conditioned fear. METHODS Following a comprehensive search in Medline and Embase, we included 68 research articles that reported on 103 drugs, covering 56 different drug classes. The systematic review was limited to studies using acute, systemic drug administration in naive animals. RESULTS Qualitative data synthesis showed that most clinically active anxiolytics, but not serotonin-reuptake inhibitors, reduced cued fear. Anxiogenic drugs increased fear potentiation in 35% of the experiments, reduced fear potentiation in 29% of the experiments, and were without effect in 29% of the experiments. Meta-analyses could be performed for five drug classes and showed that benzodiazepines, buspirone, 5-HT1A agonists, 5-HT1A antagonists, and mGluR2,3 agonists reduced cued conditioned fear. The non-cued baseline startle response, which may reflect contextual anxiety, was only significantly reduced by benzodiazepines and 5-HT1A antagonists. No associations were found between drug effects and methodological characteristics, except for strain. CONCLUSIONS The fear-potentiated startle test appears to have moderate to high predictive validity and may serve as a valuable tool for the development of novel anxiolytics. Given the limited available data, the generally low study quality and high heterogeneity additional studies are warranted to corroborate the findings of this review.
Collapse
Affiliation(s)
- Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Freija Ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
10
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
11
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
12
|
Jawad MY, Fatima M, Hassan U, Zaheer Z, Ayyan M, Ehsan M, Khan MHA, Qadeer A, Gull AR, Asif MT, Shad MU. Can antidepressant use be associated with emotional blunting in a subset of patients with depression? A scoping review of available literature. Hum Psychopharmacol 2023:e2871. [PMID: 37184083 DOI: 10.1002/hup.2871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Despite frequent recognition of emotional blunting in the published literature, either as a primary symptom of depression or as an adverse effect of antidepressants, there is no systematic synthesis on this topic to our knowledge. We undertook this scoping review to assess the prevalence, clinical features, implicated causes and management of emotional blunting, outlining the phenomenological and clinical gaps in research. METHOD A systematic search was done until March 15, 2022, to include all original studies (i.e., interventional trials, cohort & cross-sectional studies, case reports, and case series). All reviewed data were delineated to answer pertinent clinical, phenomenological, and management questions related to the phenomenon of emotional blunting. RESULTS A total of 25 original studies were included in our scoping review. Emotional blunting was described as a persistent diminution in both positive and negative feelings in depressed patients, who could subjectively differentiate it from their acute symptoms. However, the literature lacked the distinction between emotional blunting as a primary symptom of depression or an adverse effect of antidepressants. Common clinical strategies to manage antidepressant-induced emotional blunting included dose reduction or switching to a different antidepressant. CONCLUSION Emotional blunting was a significant patient-reported concern with antidepressants. Future research should clarify phenomenological and neurobiological constructs underlying emotional blunting to improve diagnostic and management skills.
Collapse
Affiliation(s)
- Muhammad Youshay Jawad
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Umer Hassan
- King Edward Medical University, Lahore, Pakistan
| | | | | | | | | | - Ahsan Qadeer
- King Edward Medical University, Lahore, Pakistan
| | | | | | - Mujeeb U Shad
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Touro University Nevada College of Osteopathic Medicine, Las Vegas, Nevada, USA
- The Valley Health System, Las Vegas, Nevada, USA
| |
Collapse
|
13
|
Allan NP, Gorka SM, Saulnier KG, Bryan CJ. Anxiety Sensitivity and Intolerance of Uncertainty: Transdiagnostic Risk Factors for Anxiety as Targets to Reduce Risk of Suicide. Curr Psychiatry Rep 2023; 25:139-147. [PMID: 37000403 PMCID: PMC10064604 DOI: 10.1007/s11920-023-01413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE OF REVIEW Suicide has a profound impact on individuals, families, and society. One prominent, if understudied, risk factor for suicide is anxiety. More than 70% of people with at least one suicide attempt meet diagnostic criteria for an anxiety disorder. There are several limitations to exploring the associations between anxiety and suicide using diagnosis-based classification systems. A better approach would be to consider transdiagnostic risk factors for anxiety. RECENT FINDINGS Through a negative reinforcement model of suicide, anxiety sensitivity (AS) and intolerance of uncertainty (IU) appear to exacerbate the experience of unpleasant anxiety sensations and likely contribute to chronic suicide risk as well as acute suicidal acts. Although more research is needed to clarify the mechanisms through which AS and IU confer risk, brief interventions may offer an ideal suicide prevention strategy for anxious people.
Collapse
Affiliation(s)
- Nicholas P Allan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA.
- VA Center of Excellence for Suicide Prevention, VA Finger Lakes Health Care System, Canandaigua, USA.
| | - Stephanie M Gorka
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Kevin G Saulnier
- VA Serious Mental Illness Treatment Resource and Evaluation Center (SMITREC), Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig J Bryan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
- VA Center of Excellence for Suicide Prevention, VA Finger Lakes Health Care System, Canandaigua, USA
| |
Collapse
|
14
|
Saldanha BC, Silva PA, Maximino C, Cardoso GC, Trigo S, Soares MC. The role of serotonin in modulating common waxbill behaviour. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a monoaminergic neurotransmitter that is known to influence behaviour in various animal species. Its actions, however, are complex and not well-understood yet. Here, we tested whether and how two 5-HT receptor agonists and a 5-HT receptor antagonist influence behaviour in common waxbills (Estrilda astrild), focusing on aggression, movement and feeding. We applied acute administration of either 8-OH-DPAT (a 5-HT1A receptor agonist), fluoxetine (a selective serotonin reuptake inhibitor; SSRI) or WAY 100,635 (a 5-HT1A receptor antagonist), and then quantified behaviour in the context of competition for food. Waxbills treated with the SSRI fluoxetine showed an overall decrease of aggressive behaviour, activity and feeding, while we found no significant effects of treatment with the other serotonergic enhancer (8-OH-DPAT) or with the antagonist WAY 100,635. Since both 8-OH-DPAT and WAY 100,635 act mainly on 5-HT1A receptor pathways, while fluoxetine more generally affects 5-HT pathways, our results suggest that receptors other than 5-HT1A are important for serotonergic modulation of waxbill behaviour.
Significance statement
The serotonergic system is of interest for current behavioural research due to its influence on a range of behaviours, including aggression, affiliative behaviour, feeding and locomotion in various species. There are, however, numerous discrepancies regarding the behavioural effects of serotonin across studies. We used acute pharmacological manipulations of the serotonergic system in common waxbills, using two serotonin enhancers (8-OH-DPAT and fluoxetine) and a serotonin blocker (WAY 100,635). Behavioural effects of these pharmacological manipulations on aggressiveness, movement and feeding, during tests of competition over food, indicated an anxiogenic-like effect of fluoxetine, but not of 8-OH-DPAT and WAY 100,635. This suggests a distinct role for different serotonergic pathways on waxbill behaviour.
Collapse
|
15
|
Saadati N, Bananej M, Khakpai F, Zarrindast MR, Alibeik H. The effects of citalopram, SB-334867 and orexin-1, alone or in various combinations, on the anxiogenic-like effects of REM sleep deprivation in male mice. Behav Pharmacol 2022; 33:559-566. [PMID: 36165531 DOI: 10.1097/fbp.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation may induce anxiety. On the other hand, anxiety disorders elicit main changes in the quality of sleep. Moreover, orexin and citalopram play a role in the modulation of insomnia and mood diseases. Thus, we planned preclinical research to evaluate the effect of combinations of orexin agents and citalopram on anxiety behavior in rapid eye movement (REM) sleep-deprived mice. For drug intracerebroventricular (i.c.v.) infusion, the guide cannula was surgically implanted in the left lateral ventricle of mice. REM sleep deprivation was conducted via water tank apparatus for 24 h. The anxiety behavior of mice was evaluated using the elevated plus maze (EPM). Our results revealed that REM sleep deprivation reduced the percentage of open arm time (%OAT) and the percentage of the open arm entries (%OAE) but not closed arm entries (locomotor activity) in the EPM test, presenting an anxiogenic response ( P < 0.05). We found a sub-threshold dose of SB-334867, orexin-1 receptor antagonist, and orexin-1 which did not alter anxiety reaction in the REM sleep-deprived mice ( P > 0.05). Intraperitoneal (i.p.) injections of citalopram (5 and 10 mg/kg) increased both %OAT and %OAE ( P < 0.001) representing an anxiolytic effect, but not locomotor activity in the REM sleep-deprived mice. Interestingly, co-treatment of citalopram (1, 5 and 10 mg/kg; i.p.) and SB-334867 (0.1 µg/mouse; i.c.v.) potentiated the anxiolytic effect in the REM sleep-deprived mice. On the other hand, co-treatment of different dosages of citalopram along with a sub-threshold dose of orexin-1 did not alter %OAT, %OAE, and locomotor activity in the REM sleep-deprived mice. We found a synergistic anxiolytic effect of citalopram and SB-334867 in the REM sleep-deprived mice. These results suggested an interaction between citalopram and SB-334867 to prevent anxiogenic behavior in the REM sleep-deprived mice.
Collapse
Affiliation(s)
- Naghmeh Saadati
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine
- Iranian National Center for Addiction Studies
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Alibeik
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch
| |
Collapse
|
16
|
Mohammadi-Mahdiabadi-Hasani MH, Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. Isobolographic analysis of the antidepressant interaction in two-drug combinations of citalopram, bupropion, and scopolamine in mice. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:827-837. [PMID: 35438334 DOI: 10.1007/s00210-022-02242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Depression and anxiety are psychiatric diseases that commonly occur together, and the patient burden and complexity increase when both are present. Comorbid anxiety and depression are often more resistant to common drug treatments such as antidepressants. Combination therapy is a suggested approach in treating these patients, where a decline of doses could reduce undesirable outcomes and still achieve optimal effects. We, therefore, conducted a preclinical study to assess the effect of two-drug combinations of citalopram, bupropion, and scopolamine on anxiety- and antidepressive-like behaviors in male NMRI mice and aimed to determine the nature of the interaction between components. Anxiety- or antidepressive-like activity of mice was assessed by the hole-board or forced swim test (FST), respectively. Our results revealed that citalopram (0.01-0.25 mg/kg; i.p.), bupropion (1-9 mg/kg; i.p.), or scopolamine (0.01-0.1 mg/kg; i.p.) diminished immobility time in the FST, suggesting an antidepressive-like effect. Citalopram decreased dead-dip counts in the hole-board, indicating an anxiogenic-like activity. All two-drug combinations, at inactive doses, exerted an antidepressive-like behavior. Only bupropion/scopolamine combination increased head-dip counts compared to the bupropion/saline group. Isobolographic analysis revealed an antidepressive synergy effect between citalopram plus bupropion, and an antidepressive additive impact between scopolamine plus citalopram or bupropion. It should be noted that the higher dose of each drug alone declined locomotor activity, while two-drug combinations did not affect this parameter. These results suggest a stronger antidepressive effect for citalopram/bupropion combination than other two-drug combinations.
Collapse
Affiliation(s)
| | | | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Neuroendocrinology, Endocrinology, and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Brunner LM, Maurer F, Weber K, Weigl J, Milenkovic VM, Rupprecht R, Nothdurfter C, Mühlberger A. Differential effects of the translocator protein 18 kDa (TSPO) ligand etifoxine and the benzodiazepine alprazolam on startle response to predictable threat in a NPU-threat task after acute and short-term treatment. Psychopharmacology (Berl) 2022; 239:2233-2244. [PMID: 35278124 PMCID: PMC9205810 DOI: 10.1007/s00213-022-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Benzodiazepines have been extensively investigated in experimental settings especially after single administration, which mostly revealed effects on unpredictable threat (U-threat) rather than predictable threat (P-threat). Given the need for pharmacological alternatives with a preferable side-effect profile and to better represent clinical conditions, research should cover also other anxiolytics and longer application times. OBJECTIVES The present study compared the acute and short-term effects of the translocator protein 18 kDa (TSPO) ligand etifoxine and the benzodiazepine alprazolam on P-threat and U-threat while controlling for sedation. METHODS Sixty healthy male volunteers, aged between 18 and 55 years, were randomly assigned to receive a daily dose of either 150 mg etifoxine, 1.5 mg alprazolam, or placebo for 5 days. On days 1 and 5 of intake, they performed a NPU-threat task including neutral (N), predictable (P), and unpredictable (U) conditions, while startle responsivity and self-reports were studied. Sedative effects were assessed using a continuous performance test. RESULTS Neither alprazolam nor etifoxine affected startle responsivity to U-threat on any of the testing days. While etifoxine reduced the startle response to P-threat on day 1 of treatment for transformed data, a contrary effect of alprazolam was found for raw values. No effects on self-reports and no evidence of sedation could be observed for either drug. CONCLUSIONS None of the anxiolytic substances had an impact on startle potentiation to U-threat even after several days of intake. The effects of the anxiolytics on startle responsivity to P-threat as well as implications for future studies are discussed.
Collapse
Affiliation(s)
- Lisa-Marie Brunner
- Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053, Regensburg, Germany. .,Department of Psychology, Clinical Psychology and Psychotherapy, University Regensburg, Regensburg, Germany.
| | - Franziska Maurer
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Kevin Weber
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Johannes Weigl
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Vladimir M. Milenkovic
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Caroline Nothdurfter
- grid.7727.50000 0001 2190 5763Department of Medicine, Psychiatry and Psychotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Andreas Mühlberger
- grid.7727.50000 0001 2190 5763Department of Psychology, Clinical Psychology and Psychotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
A single oral dose of citalopram increases interoceptive insight in healthy volunteers. Psychopharmacology (Berl) 2022; 239:2289-2298. [PMID: 35325257 PMCID: PMC9205807 DOI: 10.1007/s00213-022-06115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE Interoception is the signalling, perception, and interpretation of internal physiological states. Many mental disorders associated with changes of interoception, including depressive and anxiety disorders, are treated with selective serotonin reuptake inhibitors (SSRIs). However, the causative link between SSRIs and interoception is not yet clear. OBJECTIVES To ascertain the causal effect of acute changes of serotonin levels on cardiac interoception. METHODS Using a within-participant placebo-controlled design, forty-seven healthy human volunteers (31 female, 16 male) were tested on and off a 20 mg oral dose of the commonly prescribed SSRI, citalopram. Participants made judgements on the synchrony between their heartbeat and auditory tones and then expressed confidence in each judgement. We measured three types of interoceptive cognition. RESULTS Citalopram increased cardiac interoceptive insight, measured as correspondence of self-reported confidence to the likelihood that interoceptive judgements were actually correct. This effect was driven by enhanced confidence for correct interoceptive judgements and was independent of measured cardiac and reported subjective effects of the drug. CONCLUSIONS An acute change of serotonin levels can increase insight into the reliability of inferences made from cardiac interoceptive sensations.
Collapse
|
19
|
Sklivanioti Greenfield M, Wang Y, Msghina M. Behavioral, cortical and autonomic effects of single-dose escitalopram on the induction and regulation of fear and disgust: Comparison with single-session psychological emotion regulation with reappraisal. Front Psychiatry 2022; 13:988893. [PMID: 36684004 PMCID: PMC9845894 DOI: 10.3389/fpsyt.2022.988893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Adaptive and successful emotion regulation, the ability to flexibly exert voluntary control over emotional experience and the ensuing behavior, is vital for optimal daily functioning and good mental health. In clinical settings, pharmacological and psychological interventions are widely employed to modify pathological emotion processing and ameliorate its deleterious consequences. METHODS In this study, we investigated the acute effects of single-dose escitalopram on the induction and regulation of fear and disgust in healthy subjects. Furthermore, we compared these pharmacological effects with psychological emotion regulation that utilized a cognitive strategy with reappraisal. Emotion induction and regulation tasks were performed before and 4 h after ingestion of placebo or 10 mg escitalopram in a randomized, double-blind design. The International Affective Picture System (IAPS) was used as a source of images, with threat-related pictures selected for fear and disease and contamination-related pictures for disgust. Behavioral data, electrodermal activity (EDA), and functional near-infrared spectroscopy (fNIRS) recordings were collected. RESULTS Escitalopram significantly reduced emotion intensity for both fear and disgust during emotion induction, albeit with differing electrodermal and hemodynamic activity patterns for the two negative emotions. At rest, i.e., in the absence of emotive stimuli, escitalopram increased sympathetic activity during the fear but not during the disgust experiments. For both fear and disgust, emotion regulation with reappraisal was more effective in reducing emotion intensity compared to pharmacological intervention with escitalopram or placebo. DISCUSSION We concluded that emotion regulation with reappraisal and acute administration of escitalopram, but not placebo, reduce emotion intensity for both fear and disgust, with cognitive regulation being significantly more efficient compared to pharmacological regulation under the conditions of this study. Results from the fNIRS and EDA recordings support the concept of differential mechanisms of emotion regulation that could be emotion-specific.
Collapse
Affiliation(s)
| | - Yanlu Wang
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden.,MR Physics, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mussie Msghina
- Department of Clinical Neuroscience (CNS), Karolinska Institute, Stockholm, Sweden.,Department of Psychiatry, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Lago TR, Brownstein MJ, Page E, Beydler E, Manbeck A, Beale A, Roberts C, Balderston N, Damiano E, Pineles SL, Simon N, Ernst M, Grillon C. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study. Psychopharmacology (Berl) 2021; 238:2393-2403. [PMID: 33970290 PMCID: PMC8376758 DOI: 10.1007/s00213-021-05861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Arginine vasopressin (AVP) is a neuropeptide that modulates both physiological and emotional responses to threat. Until recently, drugs that target vasopressin receptors (V1a) in the human central nervous system were unavailable. The development of a novel V1a receptor antagonist, SRX246, permits the experimental validation of vasopressin's role in the regulation of anxiety and fear in humans. OBJECTIVES Here, we examined the effects of SRX246 in a proof-of-concept translational paradigm of fear (phasic response to imminent threat) and anxiety (prolonged response to potential threat). METHODS Healthy volunteers received both SRX246 and placebo in a randomized, double-blind, counter-balanced order separated by a 5-7-day wash-out period. Threat consisted of unpleasant electric shocks. The "NPU" threat test probed startle reactivity during predictable threat (i.e., fear-potentiated startle) and unpredictable threat (i.e., anxiety-potentiated startle). RESULTS As predicted, SRX246 decreased anxiety-potentiated startle independent of fear-potentiated startle. CONCLUSIONS As anxiety-potentiated startle is elevated in anxiety and trauma-associated disorders and decreased by traditional anxiolytics such as SSRIs and benzodiazepines, the V1a receptor is a promising novel treatment target.
Collapse
Affiliation(s)
- Tiffany R Lago
- National Institute of Mental Health, Bethesda, MD, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Emily Page
- National Institute of Mental Health, Bethesda, MD, USA
| | - Emily Beydler
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Alexis Beale
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Nicholas Balderston
- National Institute of Mental Health, Bethesda, MD, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Eve Damiano
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
| | - Suzanne L Pineles
- Boston University School of Medicine, Boston, MA, USA
- National Center, PTSD At VA Boston Healthcare System, Boston, MA, USA
| | - Neal Simon
- Azevan Pharmaceuticals Inc, Bethlehem, PA, USA
- Lehigh University, Bethelhem, PA, USA
| | - Monique Ernst
- National Institute of Mental Health, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Karakaya M, Scaramuzzi A, Macrì S, Porfiri M. Acute Citalopram administration modulates anxiety in response to the context associated with a robotic stimulus in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110172. [PMID: 33188831 PMCID: PMC8026524 DOI: 10.1016/j.pnpbp.2020.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Anxiety represents one of the most urgent health challenges in Western Countries, where it is associated with major medical and societal costs. A common therapeutic approach is the use of selective serotonin reuptake inhibitors, such as Citalopram. However, this treatment of choice is characterized by incomplete efficacy and potential side effects. Preclinical research is needed to detail the mechanisms underlying therapeutic efficacy of available treatments. METHODS Zebrafish, a rapidly emerging model species, constitutes an excellent candidate for high-throughput studies in behavioral pharmacology. Here, we present a robotics-based experimental paradigm to investigate the effects of acute Citalopram administration on conditioned place aversion. We trained adult subjects in a three-partitioned tank, consisting of one central and two lateral compartments: the latter were associated either with a fear eliciting robotic stimulus or with an empty environment. Following training, we implemented an automated three-dimensional tracking system to assess the spatial association and detail individual phenotype in a stimulus-free test session. RESULTS We observed a linear dose-response profile with respect to geotaxis, with increasing Citalopram concentrations reducing the tendency to swim near the bottom of the tank. Although control subjects failed to exhibit the predicted conditioned aversion, we found preliminary evidence that Citalopram may affect sexes differentially, with male subjects showing increased conditioned aversion at low Citalopram concentration. CONCLUSIONS Experimental paradigms based on robotics and three-dimensional tracking can contribute methodological advancements in zebrafish behavioral psychopharmacology.
Collapse
Affiliation(s)
- Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Andrea Scaramuzzi
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
22
|
Livermore JJA, Holmes CL, Cutler J, Levstek M, Moga G, Brittain JRC, Campbell-Meiklejohn D. Selective effects of serotonin on choices to gather more information. J Psychopharmacol 2021; 35:631-640. [PMID: 33601931 PMCID: PMC8278551 DOI: 10.1177/0269881121991571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gathering and evaluating information leads to better decisions, but often at cost. The balance between information seeking and exploitation features in neurodevelopmental, mood, psychotic and substance-related disorders. Serotonin's role has been highlighted by experimental reduction of its precursor, tryptophan. AIMS We tested the boundaries and applicability of this role by asking whether changes to information sampling would be observed following acute doses of serotonergic and catecholaminergic clinical treatments. We used a variant of the Information Sampling Task (IST) to measure how much information a person requires before they make a decision. This task allows participants to sample information until satisfied to make a choice. METHODS In separate double-blind placebo-controlled experiments, we tested 27 healthy participants on/off 20 mg of the serotonin reuptake inhibitor (SRI) citalopram, and 22 participants on/off 40 mg of the noradrenergic reuptake inhibitor atomoxetine. The IST variant minimised effects of temporal impulsivity and loss aversion. Analyses used a variety of participant prior expectations of sampling spaces in the IST, including a new prior that accounts for learning of likely states across trials. We analysed behaviour by a new method that also accounts for baseline individual differences of risk preference. RESULTS Baseline preferences demonstrated risk aversion. Citalopram decreased the expected utility of choices and probability of being correct based on informational content of samples collected, suggesting participants collected less useful information before making a choice. Atomoxetine did not influence information seeking. CONCLUSION Acute changes of serotonin activity by way of a single SRI dose alter information-seeking behaviour.
Collapse
Affiliation(s)
- James JA Livermore
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clare L Holmes
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - Jo Cutler
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Maruša Levstek
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - Gyorgy Moga
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - James RC Brittain
- Brighton and Sussex Medical School, Brighton, UK
- Chelsea and Westminster Hospital, London, UK
| | | |
Collapse
|
23
|
Perez-Tejada J, Labaka A, Vegas O, Larraioz A, Pescador A, Arregi A. Anxiety and depression after breast cancer: The predictive role of monoamine levels. Eur J Oncol Nurs 2021; 52:101953. [PMID: 33813184 DOI: 10.1016/j.ejon.2021.101953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Despite the fact that the prevalence of anxiety and depression in breast cancer survivors is higher than in the general female population, the psychobiological substrate of this phenomenon has yet to be elucidated. We aimed to examine the predictive role of peripheral dopamine (DA), noradrenaline (NA), serotonin (5-HT) and kynurenine (KYN) in anxiety and depression among breast cancer survivors. METHOD We evaluated 107 women using the Hospital Anxiety and Depression Scale, and monoamine levels were analyzed via high-performance liquid chromatography. RESULTS High KYN levels predicted both disorders, while low NA and DA predicted anxiety and depressive symptoms, respectively. A negative conditional effect of 5-HT was found for anxiety and depression among younger women only, while being both middle-aged and younger influenced the negative conditional effect of DA on depression. CONCLUSION Monoamine variations may render breast cancer survivors more vulnerable to anxiety and depression, with young women being especially vulnerable to the detrimental effect of low DA and 5-HT. Assessing subclinical psychobiological markers allows mental health nurses to identify vulnerable survivors prior to the onset of anxiety and depression, and to adjust nursing interventions accordingly.
Collapse
Affiliation(s)
- Joana Perez-Tejada
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Ainitze Labaka
- Department of Nursing II, University of the Basque Country, 105 Begiristain, 20014, San Sebastian, Spain.
| | - Oscar Vegas
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 70 Tolosa Av., 20018, San Sebastian, Spain.
| | - Aitziber Larraioz
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Ane Pescador
- Oncologic Center (Onkologikoa), 121 Begiristain, 20014, San Sebastian, Spain.
| | - Amaia Arregi
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 70 Tolosa Av., 20018, San Sebastian, Spain.
| |
Collapse
|
24
|
Kanen JW, Arntz FE, Yellowlees R, Christmas DM, Price A, Apergis-Schoute AM, Sahakian BJ, Cardinal RN, Robbins TW. Effect of Tryptophan Depletion on Conditioned Threat Memory Expression: Role of Intolerance of Uncertainty. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:590-598. [PMID: 33631385 PMCID: PMC8099731 DOI: 10.1016/j.bpsc.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022]
Abstract
Background Responding emotionally to danger is critical for survival. Normal functioning also requires flexible alteration of emotional responses when a threat becomes safe. Aberrant threat and safety learning occur in many psychiatric disorders, including posttraumatic stress disorder, obsessive-compulsive disorder, and schizophrenia, in which emotional responses can persist pathologically. While there is evidence that threat and safety learning can be modulated by the serotonin systems, there have been few studies in humans. We addressed a critical clinically relevant question: How does lowering serotonin affect memory retention of conditioned threat and safety memory? Methods Forty-seven healthy participants underwent conditioning to two stimuli predictive of threat on day 1. One stimulus but not the other was subsequently presented in an extinction session. Emotional responding was assessed by the skin conductance response. On day 2, we employed acute dietary tryptophan depletion to lower serotonin temporarily, in a double-blind, placebo-controlled, randomized between-groups design. We then tested for the retention of conditioned threat and extinction memory. We also measured self-reported intolerance of uncertainty, known to modulate threat memory expression. Results The expression of emotional memory was attenuated in participants who had undergone tryptophan depletion. Individuals who were more intolerant of uncertainty showed even greater attenuation of emotion following depletion. Conclusions These results support the view that serotonin is involved in predicting aversive outcomes and refine our understanding of the role of serotonin in the persistence of emotional responsivity, with implications for individual differences in vulnerability to psychopathology.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederique E Arntz
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, Leiden University, Leiden, the Netherlands
| | - Robyn Yellowlees
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David M Christmas
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annabel Price
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annemieke M Apergis-Schoute
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
26
|
Grillon C, Ernst M. A way forward for anxiolytic drug development: Testing candidate anxiolytics with anxiety-potentiated startle in healthy humans. Neurosci Biobehav Rev 2020; 119:348-354. [PMID: 33038346 DOI: 10.1016/j.neubiorev.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
This review introduces a research strategy that may radically transform the pursuit of new anxiolytics, via the use of human models of anxiety in healthy individuals. Despite enormous investments in developing novel pharmacological treatments for anxiety disorders, pharmacotherapy for these conditions remains suboptimal. Most candidate anxiolytics from animal studies fail in clinical trials. We propose an additional screening step to help select candidate anxiolytics before launching clinical trials. This intermediate step moves the evidence for the potential anxiolytic property of candidate drugs from animals to humans, using experimental models of anxiety in healthy individuals. Anxiety-potentiated startle is a robust translational model of anxiety. The review of its face, construct, and predictive validity as well as its psychometric properties in humans establishes it as a promising tool for anxiolytic drug development. In conclusion, human models of anxiety may stir a faster, more efficient path for the development of clinically effective anxiolytics.
Collapse
Affiliation(s)
- Christian Grillon
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| | - Monique Ernst
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| |
Collapse
|
27
|
Manganiello-Terra FA, Correa-Netto NF, Masukawa MY, Ruzzi A, Linardi A, Santos-Junior JG. Inhaled Lavandula angustifolia essential oil enhances extinction learning and inhibits memory updating in mice submitted to the contextual fear conditioning. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113048. [PMID: 32525067 DOI: 10.1016/j.jep.2020.113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lavender (Lavandula angustifolia) essential oil (EO) has a long history of use in emotional illness, including anxiety disorders. Cognitive mechanisms of learning and memory play a pivotal role in the etiology and maintenance of anxiety since exposure to cues related to aversive situations induces high arousal and anticipatory anxiety. Memory become labile after its reactivation and can be modulated by reconsolidation or extinction. Inhibition of memory reconsolidation or facilitation of memory extinction may be effective in preventing or minimizing the effect of contextual cues on anticipatory anxiety. AIM OF THE STUDY We investigated the effect of Lavandula angustifolia EO in the memory updating of conditioned contextual fear. MATERIALS AND METHODS Adult male C57Bl6 mice were submitted to fear conditioning. Two days after conditioning the mice underwent a reactivation session in a hybrid context and were then immediately exposed to vaporized water or essential oil at concentrations of 1%, 2.5% or 5% for 3 h. Two days later, the mice were tested in the original or an altered context and their freezing behavior was measured. In addition, mice were subjected to a fear memory recovery protocol followed by a reinstatement session. RESULTS In the contextual fear test, 1% essential oil, but not 2.5% or 5%, reduced the freezing behavior response, whereas after a reinstatement session, exposure to 1% essential oil increased the freezing behavior response. CONCLUSIONS These results suggest that Lavandula angustifolia essential oil enhances memory extinction and, consequently, inhibits memory updating.
Collapse
Affiliation(s)
- Fabiana Aparecida Manganiello-Terra
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil
| | - Nelson Francisco Correa-Netto
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil
| | - Márcia Yuriko Masukawa
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil
| | - André Ruzzi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil
| | - Jair Guilherme Santos-Junior
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, 01221-020, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Morriss J, Biagi N, Dodd H. Your guess is as good as mine: A registered report assessing physiological markers of fear and anxiety to the unknown in individuals with varying levels of intolerance of uncertainty. Int J Psychophysiol 2020; 156:93-104. [DOI: 10.1016/j.ijpsycho.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
|
29
|
Bernabe CS, Caliman IF, Truitt WA, Molosh AI, Lowry CA, Hay-Schmidt A, Shekhar A, Johnson PL. Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. J Psychopharmacol 2020; 34:400-411. [PMID: 32153226 PMCID: PMC9678127 DOI: 10.1177/0269881119900981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The central serotonergic system originating from the dorsal raphe nucleus (DR) plays a critical role in anxiety and trauma-related disorders such as posttraumatic stress disorder. Although many studies have investigated the role of serotonin (5-HT) within pro-fear brain regions such as the amygdala, the majority of these studies have utilized non-selective pharmacological approaches or poorly understood lesioning techniques which limit their interpretation. AIM Here we investigated the role of amygdala-projecting 5-HT neurons in the DR in innate anxiety and conditioned fear behaviors. METHODS To achieve this goal, we utilized (1) selective lesion of 5-HT neurons projecting to the amygdala with saporin toxin conjugated to anti-serotonin transporter (SERT) injected into the amygdala, and (2) optogenetic excitation of amygdala-projecting DR cell bodies with a combination of a retrogradely transported canine adenovirus-expressing Cre-recombinase injected into the amygdala and a Cre-dependent-channelrhodopsin injected into the DR. RESULTS While saporin treatment lesioned both local amygdalar 5-HT fibers and neurons in the DR as well as reduced conditioned fear behavior, optical activation of amygdala-projecting DR neurons enhanced anxious behavior and conditioned fear response. CONCLUSION Collectively, these studies support the hypothesis that amygdala-projecting 5-HT neurons in the DR represent an anxiety and fear-on network.
Collapse
Affiliation(s)
- Cristian S. Bernabe
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Izabela F. Caliman
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A. Truitt
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I. Molosh
- Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | | - Anantha Shekhar
- Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L. Johnson
- Department of Anatomy & Cell Biology, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Stark Neurosciences Research Institute, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
30
|
Abela AR, Browne CJ, Sargin D, Prevot TD, Ji XD, Li Z, Lambe EK, Fletcher PJ. Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology 2020; 168:107985. [PMID: 32035145 DOI: 10.1016/j.neuropharm.2020.107985] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
Anxiety disorders may be mediated in part by disruptions in serotonin (5-hydroxytryptamine, 5-HT) system function. Behavioral measures of approach-avoidance conflict suggest that serotonin neurons within the median raphe nucleus (MRN) promote an anxiogenic state, and some evidence indicates this may be mediated by serotonergic signaling within the dorsal hippocampus. Here, we test this hypothesis using an optogenetic approach to examine the contribution of MRN 5-HT neurons and 5-HT innervation of the dorsal hippocampus (dHC) to anxiety-like behaviours in female mice. Mice expressing the excitatory opsin ChR2 were generated by crossing the ePet-cre serotonergic cre-driver line with the conditional Ai32 ChR2 reporter line, resulting in selective expression of ChR2 in 5-HT neurons. Electrophysiological recordings confirmed that this approach enabled reliable optogenetic stimulation of MRN 5-HT neurons, and this stimulation produced downstream 5-HT release in the dHC as measured by in vivo microdialysis. Optogenetic stimulation of the MRN elicited behavioral responses indicative of an anxiogenic effect in three behavioural tests: novelty-suppressed feeding, marble burying and exploration on the elevated-plus maze. These effects were shown to be behaviourally-specific. Stimulation of 5-HT terminals in the dHC recapitulated the anxiety-like behaviour in the novelty-suppressed feeding and marble burying tests. These results show that activation of 5-HT efferents from the MRN rapidly induces expression of anxiety-like behaviour, in part via projections to the dHC. These findings reveal an important neural circuit implicated in the expression of anxiety in female mice.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Caleb J Browne
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychology, University of Toronto, Toronto, ON, Canada; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Derya Sargin
- Dept. of Physiology, University of Toronto, Toronto, ON, Canada; Dept. of Psychology, University of Calgary, Calgary, AB, Canada
| | - Thomas D Prevot
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Xiao Dong Ji
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Zhaoxia Li
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Evelyn K Lambe
- Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. of Physiology, University of Toronto, Toronto, ON, Canada; Dept. of Obstetrics and Gynaecology, University of Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada; Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Tomasi J, Lisoway AJ, Zai CC, Harripaul R, Müller DJ, Zai GCM, McCabe RE, Richter MA, Kennedy JL, Tiwari AK. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J Psychiatr Res 2019; 119:33-47. [PMID: 31563039 DOI: 10.1016/j.jpsychires.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Generalized anxiety disorder (GAD) is a prevalent and chronic mental disorder that elicits widespread functional impairment. Given the high degree of non-response/partial response among patients with GAD to available pharmacological treatments, there is a strong need for novel approaches that can optimize outcomes, and lead to medications that are safer and more effective. Although investigations have identified interesting targets predicting treatment response through pharmacogenetics (PGx), pharmaco-epigenetics, and neuroimaging methods, these studies are often solitary, not replicated, and carry several limitations. This review provides an overview of the current status of GAD genetics and PGx and presents potential strategies to improve treatment response by combining better phenotyping with PGx and improved analytical methods. These strategies carry the dual benefit of delivering data on biomarkers of treatment response as well as pointing to disease mechanisms through the biology of the markers associated with response. Overall, these efforts can serve to identify clinical, genetic, and epigenetic factors that can be incorporated into a pharmaco(epi)genetic test that may ultimately improve treatment response and reduce the socioeconomic burden of GAD.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C M Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Margaret A Richter
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Acute prazosin administration does not reduce stressor reactivity in healthy adults. Psychopharmacology (Berl) 2019; 236:3371-3382. [PMID: 31197436 PMCID: PMC6832815 DOI: 10.1007/s00213-019-05297-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE Norepinephrine plays a critical role in the stress response. Clarifying the psychopharmacological effects of norepinephrine manipulation on stress reactivity in humans has important implications for basic neuroscience and treatment of stress-related psychiatric disorders, such as posttraumatic stress disorder and alcohol use disorders. Preclinical research implicates the norepinephrine alpha-1 receptor in responses to stressors. The No Shock, Predictable Shock, Unpredictable Shock (NPU) task is a human laboratory paradigm that is well positioned to test cross-species neurobiological stress mechanisms and advance experimental therapeutic approaches to clinical trials testing novel treatments for psychiatric disorders. OBJECTIVES We hypothesized that acute administration of prazosin, a noradrenergic alpha-1 antagonist, would have a larger effect on reducing stress reactivity during unpredictable, compared to predictable, stressors in the NPU task. METHODS We conducted a double-blind, placebo-controlled, crossover randomized controlled trial in which 64 healthy adults (32 female) completed the NPU task at two visits (2 mg prazosin vs. placebo). RESULTS A single acute dose of 2 mg prazosin did not reduce stress reactivity in a healthy adult sample. Neither NPU startle potentiation nor self-reported anxiety was reduced by prazosin (vs. placebo) during unpredictable (vs. predictable) stressors. CONCLUSIONS Further research is needed to determine whether this failure to translate preclinical neuroscience to human laboratory models is due to methodological factors (e.g., acute vs. chronic drug administration, brain penetration, study population) and/or suggests limited clinical utility of noradrenergic alpha-1 antagonists for treating stress-related psychiatric disorders.
Collapse
|
33
|
Godlewska BR. Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacol Ther 2018; 197:38-51. [PMID: 30578809 DOI: 10.1016/j.pharmthera.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New antidepressants and individualized approaches to treatment, matching specific therapies to individual patients, are urgently needed. For this, a better understanding of processes underpinning the development of depressive symptoms and response to medications are required. The cognitive neuropsychological model offers a novel approach uniquely combining biological and psychological approaches to explain how antidepressants exert their effect, why there is a delay in the onset of their clinical effect, and how changes in emotional processing are an essential step for a clinical antidepressant effect to take place. The paper presents the model and its underpinnings in the form of research in both healthy and depressed individuals, as well as the potential for its practical use.
Collapse
Affiliation(s)
- Beata R Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Lago TR, Hsiung A, Leitner BP, Duckworth CJ, Chen KY, Ernst M, Grillon C. Exercise decreases defensive responses to unpredictable, but not predictable, threat. Depress Anxiety 2018; 35:868-875. [PMID: 29637654 PMCID: PMC6314494 DOI: 10.1002/da.22748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Research supports the anxiolytic effect of exercise, but the mechanism underlying this effect is unclear. This study examines the influence of exercise in healthy controls on two distinct defensive states implicated in anxiety disorders: fear, a phasic response to a predictable threat, and anxiety, a sustained response to an unpredictable threat. METHODS Thirty-four healthy volunteers (17 male, age M = 26.18, SD = 5.6) participated in sessions of exercise (biking at 60-70% of heart rate reserve) and control (biking at 10-20% of heart rate reserve) activity for 30 min, separated by 1 week. Threat responses were measured by eyeblink startle and assessed with the "Neutral-Predictable-Unpredictable threat test," which includes a neutral (N) and two threat conditions, one with predictable (P) and one with unpredictable (U) shock. RESULTS Results show that exercise versus control activity reduces startle potentiation during unpredictable threat (P = .031), but has no effect on startle potentiation during predictable threat (P = .609). CONCLUSIONS These results suggest that exercise reduces defensive response to unpredictable, but not predictable, threat, a dissociation that may help inform clinical indications for this behavioral intervention, as well as provide clues to its underlying neurobehavioral mechanisms.
Collapse
Affiliation(s)
- Tiffany R Lago
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Abigail Hsiung
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Brooks P Leitner
- Energy Metabolism Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Courtney J Duckworth
- Energy Metabolism Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Kong Y Chen
- Energy Metabolism Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Bennett KP, Dickmann JS, Larson CL. If or when? Uncertainty's role in anxious anticipation. Psychophysiology 2018; 55:e13066. [PMID: 29384197 PMCID: PMC6013348 DOI: 10.1111/psyp.13066] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Abstract
Uncertainty is often associated with subjective distress and a potentiated anxiety response. Occurrence uncertainty, or the inability to predict if a threat will occur, has rarely been compared experimentally with temporal uncertainty, or the inability to predict when a threat will occur. The current study aimed to (a) directly compare the anxiogenic effects of anticipating these two types of uncertain threat, as indexed by the eyeblink startle response, and (b) assess the relationship between startle response to occurrence and temporal uncertainty and individual differences in self-reported intolerance of uncertainty and anxiety. The findings indicated that anticipation during occurrence uncertainty elicited a larger startle response than anticipating a certain threat, but anticipation during temporal uncertainty was superior at potentiating startle blink overall. Additional analyses of the effects of order and habituation further highlighted temporal uncertainty's superiority in eliciting greater startle responding. This suggests that, while uncertainty is physiologically anxiety provoking, some level of certainty that the threat will occur enhances the robustness of the physiological anxiety response. However, self-reported anxiety was equivalent for temporal and occurrence uncertainty, suggesting that, while defensive responding may be more affected by temporal uncertainty, people perceive both types of uncertainty as anxiogenic. Individual differences in the intolerance of uncertainty and other anxiety measures were not related to anticipatory startle responsivity during any of the conditions.
Collapse
Affiliation(s)
- Ken P. Bennett
- Department of Psychology, University of Wisconsin – Milwaukee
| | | | | |
Collapse
|
36
|
Affective startle modulation in young people with first-presentation borderline personality disorder. Psychiatry Res 2018; 263:166-172. [PMID: 29571079 DOI: 10.1016/j.psychres.2018.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 12/13/2017] [Accepted: 02/24/2018] [Indexed: 11/21/2022]
Abstract
This study investigated psychophysiological and subjective emotional responses to an affective startle modulation paradigm in first-presentation borderline personality disorder (BPD). Twenty BPD and 20 healthy control participants, aged 15-24 years, viewed a set of standardized pictures with pleasant, neutral, or unpleasant valence, and were instructed to either "maintain" or "suppress" their emotional response to the stimuli. Despite showing markedly higher levels of baseline distress on self-report questionnaires, BPD participants had significantly lower skin conductance responses and showed an absence of the fear potentiated startle response during early picture processing. Both groups showed similar startle responses later in picture processing, and when instructed to "maintain" or "suppress" their emotions. BPD participants were hypo-responsive to aversive stimuli during early processing, and did not react with more intense emotional responses to affective stimuli or show a diminished ability to regulate their responses. These results might be consistent with the finding that hypersensitivity of emotional response in BPD is specific to stimuli with themes of particular relevance to this disorder, such as rejection and abandonment.
Collapse
|
37
|
Selvaraj S, Walker C, Arnone D, Cao B, Faulkner P, Cowen PJ, Roiser JP, Howes O. Effect of Citalopram on Emotion Processing in Humans: A Combined 5-HT 1A [ 11C]CUMI-101 PET and Functional MRI Study. Neuropsychopharmacology 2018; 43:655-664. [PMID: 28776580 PMCID: PMC5693328 DOI: 10.1038/npp.2017.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to have a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, crossover design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [11C]CUMI-101. Citalopram infusion when compared with saline resulted in a significantly increased bilateral amygdala responses to fearful vs neutral faces (left p=0.025; right p=0.038 FWE-corrected). DRN [11C]CUMI-101 availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Biomedical and Behavioral Sciences Building (BBSB), 1941 East Road, Suite 3208 Houston, TX 77054, USA, Tel: +1 713 486 2500, Fax: +1 713 486 2553, E-mail:
| | - Chris Walker
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Danilo Arnone
- Institute of Psychiatry, King’s College London, Centre for Affective Disorders, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul Faulkner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver Howes
- Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK,Institute of Clinical Sciences, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
38
|
Walsh AEL, Huneke NTM, Brown R, Browning M, Cowen P, Harmer CJ. A Dissociation of the Acute Effects of Bupropion on Positive Emotional Processing and Reward Processing in Healthy Volunteers. Front Psychiatry 2018; 9:482. [PMID: 30386259 PMCID: PMC6198095 DOI: 10.3389/fpsyt.2018.00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Previous research indicates that antidepressants can restore the balance between negative and positive emotional processing early in treatment, indicating a role of this effect in later mood improvement. However, less is known about the effect of antidepressants on reward processing despite the potential relevance to the treatment of anhedonia. In this study, we investigated the effects of an acute dose of the atypical antidepressant (dual dopamine and noradrenaline reuptake inhibitor) bupropion on behavioral measures of emotional and reward processing in healthy volunteers. Methods: Forty healthy participants were randomly allocated to double-blind intervention with either an acute dose of bupropion or placebo prior to performing the Emotional Test Battery (ETB) and a probabilistic instrumental learning task. Results: Acute bupropion significantly increased the recognition of ambiguous faces as happy, decreased response bias toward sad faces and reduced attentional vigilance for fearful faces compared to placebo. Bupropion also reduced negative bias compared to placebo in the emotional recognition memory task (EMEM). There was no evidence that bupropion enhanced reward processing or learning. Instead, bupropion was associated with reduced likelihood to choose high-probability wins and increased score on a subjective measure of anhedonia. Conclusions: Whilst acute bupropion decreases negative and increases positive emotional processing, it has an adverse effect on reward processing. There seems to be a dissociation of the acute effects of bupropion on positive emotional processing and reward processing, which may have clinical implications for anhedonia early in treatment.
Collapse
Affiliation(s)
- Annabel E L Walsh
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, United Kingdom.,Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nathan T M Huneke
- Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,University Department of Psychiatry, University of Southampton, Southampton, United Kingdom
| | - Randi Brown
- Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Michael Browning
- Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Phil Cowen
- Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Catherine J Harmer
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, United Kingdom.,Psychopharmacology and Emotion Research Laboratory, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Kaye JT, Bradford DE, Magruder KP, Curtin JJ. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence. J Stud Alcohol Drugs 2017; 78:353-371. [PMID: 28499100 DOI: 10.15288/jsad.2017.78.353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction.
Collapse
Affiliation(s)
- Jesse T Kaye
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | |
Collapse
|
40
|
Kroes MCW, Dunsmoor JE, Mackey WE, McClay M, Phelps EA. Context conditioning in humans using commercially available immersive Virtual Reality. Sci Rep 2017; 7:8640. [PMID: 28819155 PMCID: PMC5561126 DOI: 10.1038/s41598-017-08184-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Despite a wealth of knowledge on how humans and nonhuman animals learn to associate meaningful events with cues in the environment, far less is known about how humans learn to associate these events with the environment itself. Progress on understanding spatiotemporal contextual processes in humans has been slow in large measure by the methodological constraint of generating and manipulating immersive spatial environments in well-controlled laboratory settings. Fortunately, immersive Virtual Reality (iVR) technology has improved appreciably and affords a relatively straightforward methodology to investigate the role of context on learning, memory, and emotion while maintaining experimental control. Here, we review context conditioning literature in humans and describe challenges to study contextual learning in humans. We then provide details for a novel context threat (fear) conditioning paradigm in humans using a commercially available VR headset and a cross-platform game engine. This paradigm resulted in the acquisition of subjective threat, threat-conditioned defensive responses, and explicit threat memory. We make the paradigm publicly available and describe obstacles and solutions to optimize future studies of context conditioning using iVR. As computer technology advances to replicate the sensation of realistic environments, there are increasing opportunities to bridge the translational gap between rodent and human research on how context modulates cognition, which may ultimately lead to more optimal treatment strategies for anxiety- and stress-related disorders.
Collapse
Affiliation(s)
- Marijn C W Kroes
- New York University, Department of Psychology, New York, NY, 10003, USA.
- New York University, Center for Neural Science, New York, NY, 10003, USA.
| | - Joseph E Dunsmoor
- University of Texas at Austin, Department of Psychiatry, Austin, TX, 78712, USA
| | - Wayne E Mackey
- New York University, Department of Psychology, New York, NY, 10003, USA
| | - Mason McClay
- Centre College, Department of Psychology, Danville, KY, 40422, USA
| | - Elizabeth A Phelps
- New York University, Department of Psychology, New York, NY, 10003, USA.
- New York University, Center for Neural Science, New York, NY, 10003, USA.
- Nathan Kline Institute, Orangeburg, NY, 10962, USA.
| |
Collapse
|
41
|
Meulders A, Meulders M, Stouten I, De Bie J, Vlaeyen JW. Extinction of Fear Generalization: A Comparison Between Fibromyalgia Patients and Healthy Control Participants. THE JOURNAL OF PAIN 2017; 18:79-95. [DOI: 10.1016/j.jpain.2016.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
|
42
|
Pringle A, Harmer CJ. The effects of drugs on human models of emotional processing: an account of antidepressant drug treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26869848 PMCID: PMC4734885 DOI: 10.31887/dcns.2015.17.4/apringle] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human models of emotional processing suggest that the direct effect of successful antidepressant drug treatment may be to modify biases in the processing of emotional information. Negative biases in emotional processing are documented in depression, and single or short-term dosing with conventional antidepressant drugs reverses these biases in depressed patients prior to any subjective change in mood. Antidepressant drug treatments also modulate emotional processing in healthy volunteers, which allows the consideration of the psychological effects of these drugs without the confound of changes in mood. As such, human models of emotional processing may prove to be useful for testing the efficacy of novel treatments and for matching treatments to individual patients or subgroups of patients.
Collapse
|
43
|
A meta-analysis of the efficacy of vortioxetine in patients with major depressive disorder (MDD) and high levels of anxiety symptoms. J Affect Disord 2016; 206:140-150. [PMID: 27474960 DOI: 10.1016/j.jad.2016.07.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Coexisting anxiety is common in major depressive disorder (MDD) and more difficult to treat than depression without anxiety. This analysis assessed the efficacy, safety, and tolerability of vortioxetine in MDD patients with high levels of anxiety (baseline Hamilton Anxiety Rating Scale [HAM-A] total score ≥20). METHODS Efficacy was assessed using an aggregated, study-level meta-analysis of 10 randomized, placebo-controlled, 6/8-week trials of vortioxetine 5-20mg/day in adults (18-75 years), with a study in elderly patients (≥65 years) analyzed separately. Outcome measures included mean differences from placebo in change from baseline to endpoint (Δ) in the Montgomery-Åsberg Depression Rating Scale (MADRS), HAM-A total, and HAM-A subscales. Safety and tolerability were assessed by treatment-emergent adverse events (TEAEs). RESULTS A total of 1497 (48.6%) vortioxetine-treated and 860 (49.1%) placebo-treated patients had baseline HAM-A≥20. There were significant differences from placebo in MADRS (vortioxetine 5mg/day, n=415, Δ-2.68, P=0.005; 10mg/day, n=373, Δ-3.59, P<0.001; 20mg/day, n=207, Δ-4.30, P=0.005) and HAM-A total (5mg/day, n=419, Δ-1.64, P=0.022; 10mg/day, n=373, Δ-2.04, P=0.003; 20mg/day, n=207, Δ-2.19, P=0.027). There were significantly greater improvements versus placebo on the HAM-A psychic subscale for all doses. The most common TEAEs (≥5.0%) were nausea, headache, dizziness, dry mouth, diarrhea, nasopharyngitis, constipation, and vomiting. Incidence of serious TEAEs was 1.3% (placebo) and ≤1.3% (vortioxetine, across doses). LIMITATIONS Study heterogeneity limits this analysis. Patients with baseline HAM-A≥20 were not directly compared to baseline HAM-A<20 or total MDD population. CONCLUSIONS Vortioxetine was efficacious in reducing depressive and anxiety symptoms in patients with MDD and high levels of anxiety.
Collapse
|
44
|
Santangelo AM, Ito M, Shiba Y, Clarke HF, Schut EHS, Cockcroft G, Ferguson-Smith AC, Roberts AC. Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants. Neuropsychopharmacology 2016; 41:2366-76. [PMID: 26997299 PMCID: PMC4946067 DOI: 10.1038/npp.2016.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/17/2023]
Abstract
Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders, and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (-2053AC/CT) and two single-nucleotide polymorphisms (-2022C/T and -1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety while the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor, citalopram, revealed a genotype-dependent behavioral response. While individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental, and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK, Tel: +44 1223 339 012, Fax: +44 1223 339 014, E-mail:
| | - Mitsuteru Ito
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Evelien HS Schut
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gemma Cockcroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Johnson PL, Molosh A, Fitz SD, Arendt D, Deehan GA, Federici LM, Bernabe C, Engleman EA, Rodd ZA, Lowry CA, Shekhar A. Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning. Pharmacol Biochem Behav 2016; 138:174-9. [PMID: 26476009 DOI: 10.1016/j.pbb.2015.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/12/2023]
Abstract
The basolateral and lateral amygdala nuclei complex (BLC) is implicated in a number of emotional responses including conditioned fear and social anxiety. Based on previous studies demonstrating that enhanced serotonin release in the BLC leads to increased anxiety and fear responses, we hypothesized that pharmacologically depleting serotonin in the BLC using 5,7-dihydroxytryptamine (5,7-DHT) injections would lead to diminished anxiety and disrupted fear conditioning. To test this hypothesis, 5,7-DHT(a serotonin-depleting agent) was bilaterally injected into the BLC. Desipramine (a norepinephrine reuptake inhibitor) was systemically administered to prevent non-selective effects on norepinephrine. After 5days, 5-7-DHT-treated rats showed increases in the duration of social interaction (SI) time, suggestive of reduced anxiety-like behavior. We then used a cue-induced fear conditioning protocol with shock as the unconditioned stimulus and tone as the conditioned stimulus for rats pretreated with bilateral 5,7-DHT, or vehicle, injections into the BLC. Compared to vehicle-treated rats, 5,7-DHT rats had reduced acquisition of fear during conditioning (measured by freezing time during tone), also had reduced fear retrieval/recall on subsequent testing days. Ex vivo analyses revealed that 5,7-DHT reduced local 5-HT concentrations in the BLC by ~40% without altering local norepinephrine or dopamine concentrations. These data provide additional support for 5-HT playing a critical role in modulating anxiety-like behavior and fear-associated memories through its actions within the BLC.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA,.
| | - Andrei Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dave Arendt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristian Bernabe
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
46
|
Linley SB, Olucha-Bordonau F, Vertes RP. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J Comp Neurol 2016; 525:116-139. [PMID: 27213991 DOI: 10.1002/cne.24044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/01/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT+ fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, 33431.,Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Francisco Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, 12071, Castellón, Spain
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| |
Collapse
|
47
|
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front Neural Circuits 2016; 10:24. [PMID: 27092057 PMCID: PMC4820447 DOI: 10.3389/fncir.2016.00024] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
48
|
Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016; 65:54-66. [PMID: 26724568 DOI: 10.1016/j.psyneuen.2015.11.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/31/2015] [Accepted: 11/20/2015] [Indexed: 01/04/2023]
Abstract
Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Caroline Hansson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
49
|
Yang A, Daya T, Carlton K, Yan JH, Schmid S. Differential effect of clomipramine on habituation and prepulse inhibition in dominant versus subordinate rats. Eur Neuropsychopharmacol 2016; 26:591-601. [PMID: 26754403 DOI: 10.1016/j.euroneuro.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/24/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
Many patients with depression have comorbidities associated with an impairment of sensorimotor gating, such as e.g. schizophrenia, Parkinson Disease, or Alzheimer disease. Anti-depressants like clomipramine that modulate serotonergic or norepinephrinergic neurotransmission have been shown to impact sensorimotor gating, it is therefore important to study potential effects of clomipramine in order to rule out an exacerbation of sensorimotor gating impairment. Prior studies in animals and humans have been inconclusive. Since serotonin and norepinephrine levels are closely related to anxiety and stress levels and therefore to the social status of an animal, we tested the hypothesis that acute and chronic effects of clomipramine on sensorimotor gating are different in dominant versus subordinate rats, which might be responsible for conflicting results in past animal studies. We used habituation and prepulse inhibition (PPI) of the acoustic startle response as operational measures of sensorimotor gating. After establishing the dominant animal in pair-housed male rats, we injected clomipramine for two weeks and measured acute effects on baseline startle, habituation and PPI after the first injection and chronic effects at the end of the two weeks. Chronic treatment with clomipramine significantly increased habituation in subordinate rats, but had no effect on habituation in dominant animals. Furthermore, PPI was slightly enhanced in subordinate rats upon chronic treatment while no changes occurred in dominant animals. We conclude that the social status of an animal, and therefore the basic anxiety/stress level determines whether or not clomipramine has a beneficial effect on sensorimotor gating and discuss possible underlying mechanisms.
Collapse
Affiliation(s)
- Alvin Yang
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Tahira Daya
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Karen Carlton
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jin Hui Yan
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
50
|
Daniel SE, Rainnie DG. Stress Modulation of Opposing Circuits in the Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2016; 41:103-25. [PMID: 26096838 PMCID: PMC4677121 DOI: 10.1038/npp.2015.178] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
The anterior bed nucleus of the stria terminalis (BNST) has been recognized as a critical structure in regulating trait anxiety, contextual fear memory, and appetitive behavior, and is known to be sensitive to stress manipulations. As one of the most complex structures in the central nervous system, the intrinsic circuitry of the BNST is largely unknown; however, recent technological developments have allowed researchers to begin to untangle the internal connections of the nucleus. This research has revealed the possibility of two opposing circuits, one anxiolytic and one anxiogenic, within the BNST, the relative strength of which determines the behavioral outcome. The balance of these pathways is critical in maintaining a normal physiological and behavioral state; however, stress and drugs of abuse can differentially affect the opposing circuitry within the nucleus to shift the balance to a pathological state. In this review, we will examine how stress interacts with the neuromodulators, corticotropin-releasing factor, norepinephrine, dopamine, and serotonin to affect the circuitry of the BNST as well as how synaptic plasticity in the BNST is modulated by stress, resulting in long-lasting changes in the circuit and behavioral state.
Collapse
Affiliation(s)
- Sarah E Daniel
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Rainnie
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|