1
|
Rogeau A, Boer AJ, Guedj E, Sala A, Sommer IE, Veronese M, van der Weijden-Germann M, Fraioli F. EANM perspective on clinical PET and SPECT imaging in schizophrenia-spectrum disorders: a systematic review of longitudinal studies. Eur J Nucl Med Mol Imaging 2025; 52:876-899. [PMID: 39576337 PMCID: PMC11754335 DOI: 10.1007/s00259-024-06987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 01/03/2025]
Abstract
PURPOSE There is a need for biomarkers in psychiatry to improve diagnosis, prognosis and management, and with confirmed value in follow-up care. Radionuclide imaging, given its molecular imaging characteristics, is well-positioned for translation to the clinic. This systematic review lays the groundwork for integrating PET and SPECT imaging in the clinical management of schizophrenia-spectrum disorders. METHODS Systematic search of PubMed, Embase, Web of Science and Cochrane library databases was conducted from the earliest date available until February 2024. The focus was on longitudinal studies evaluating PET or SPECT imaging in individuals with a schizophrenia-spectrum or another psychotic disorders. Quality assessment was done using the Newcastle-Ottawa Scale (NOS), NIH scale for before-after studies and Cochrane Risk of Bias tool version 2 (Cochrane RoB2). Studies were further categorised into three groups: preclinical and diagnosis, predicting disease course or personalising treatment. RESULTS Fifty-six studies were included in the systematic review investigating in total 1329 patients over a median of 3 months. Over two-thirds used PET tracers, whereas the remaining studies employed SPECT tracers. The most frequently investigated system was dopaminergic transmission, followed by cerebral metabolism and blood flow. [18F]FDOPA demonstrated large effect size in predicting conversion of subjects at risk and treatment response. Additionally, treatment dosage could be optimised to reduce side effects using [123I]IBZM or [11C]raclopride. CONCLUSION Molecular imaging holds significant promise for real-life application in schizophrenia, with two particularly encouraging avenues being the prediction of conversion/response to antipsychotic medication and the improved management of antipsychotic dosage. Further longitudinal studies and clinical trials will be essential for validating both the clinical effectiveness and economic sustainability, as well as for exploring new applications.
Collapse
Affiliation(s)
- Antoine Rogeau
- Department of Nuclear Medicine, Lille University Hospital, Lille, France.
| | - Anne Jetske Boer
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eric Guedj
- Department of Nuclear Medicine, Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Hôpital de La Timone, CERIMED, Marseille, France
| | - Arianna Sala
- Coma Science Group, GIGA-Consciousness, University Hospital of Liège, Liège, Belgium
| | - Iris E Sommer
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Howes OD, Dawkins E, Lobo MC, Kaar SJ, Beck K. New Drug Treatments for Schizophrenia: A Review of Approaches to Target Circuit Dysfunction. Biol Psychiatry 2024; 96:638-650. [PMID: 38815885 DOI: 10.1016/j.biopsych.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Schizophrenia is a leading cause of global disease burden. Current drug treatments are associated with significant side effects and have limited efficacy for many patients, highlighting the need to develop new approaches that target other aspects of the neurobiology of schizophrenia. Preclinical, in vivo imaging, postmortem, genetic, and pharmacological studies have highlighted the key role of cortical GABAergic (gamma-aminobutyric acidergic)-glutamatergic microcircuits and their projections to subcortical dopaminergic circuits in the pathoetiology of negative, cognitive, and psychotic symptoms. Antipsychotics primarily act downstream of the dopaminergic component of this circuit. However, multiple drugs are currently in development that could target other elements of this circuit to treat schizophrenia. These include drugs for GABAergic or glutamatergic targets, including glycine transporters, D-amino acid oxidase, sodium channels, or potassium channels. Other drugs in development are likely to primarily act on pathways that regulate the dopaminergic system, such as muscarinic or trace amine receptors or 5-HT2A receptors, while PDE10A inhibitors are being developed to modulate the downstream consequences of dopaminergic dysfunction. Our review considers where new drugs may act on this circuit and their latest clinical trial evidence in terms of indication, efficacy, and side effects. Limitations of the circuit model, including whether there are neurobiologically distinct subgroups of patients, and future directions are also considered. Several drugs based on the mechanisms reviewed have promising clinical data, with the muscarinic agonist KarXT most advanced. If these drugs are approved for clinical use, they have the potential to revolutionize understanding of the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom.
| | - Eleanor Dawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Maria C Lobo
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| | - Stephen J Kaar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Greater Manchester Mental Health National Health Service Foundation Trust, Manchester, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, London, United Kingdom
| |
Collapse
|
3
|
Messer T, Bernardo M, Anta L, Martínez-González J. Risperidone ISM ®: review and update of its usefulness in all phases of schizophrenia. Ther Adv Psychopharmacol 2024; 14:20451253241280046. [PMID: 39421638 PMCID: PMC11483852 DOI: 10.1177/20451253241280046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
One of the most important challenges in the management of patients with schizophrenia is to ensure adherence to antipsychotic treatment. The contribution of long-acting injectables (LAI) is undeniable in this matter, but there are still some unmet medical needs not covered by these drugs (e.g. quick onset of action for patients with acute exacerbation of schizophrenia). This article summarises the pharmacokinetics, efficacy and safety of Risperidone ISM (in situ microparticles). The aim of this review is to provide information about the potential uses of this new LAI formulation of risperidone for the treatment of schizophrenia, contextualising and diving into the published evidence. Risperidone ISM shows a rapid release which allows achieving within 12 h risperidone active moiety levels similar to those observed in the steady-state for oral risperidone treatment, achieving a mean average concentration of 38.63 ng/mL. The plasma concentration of active moiety achieved by Risperidone ISM comes with a predictable dopamine D2 receptor occupancy above 65% throughout the 28-day dosing period, which is accepted as a threshold for the efficacy of the antipsychotic treatment. This can be associated with the positive efficacy findings throughout its clinical development. In the short term, it provides an early and progressive reduction of symptoms in adult patients with acute exacerbation of schizophrenia without the need for loading doses or oral risperidone supplementation, which could contribute to reinforcing the therapeutic alliance between the patient and the psychiatrist. In addition, long-term treatment was effective, safe and well tolerated regardless of the initial disease severity or whether patients were previously treated with Risperidone ISM during an acute exacerbation or switched from stable doses of oral risperidone. Improvement and maintenance of personal and social functioning and health-related quality of life were observed in each setting, respectively. All these findings endorse Risperidone ISM as a useful and valuable treatment for the acute and maintenance management of patients with schizophrenia.
Collapse
Affiliation(s)
- Thomas Messer
- Danuviusklinik GmbH, Pfaffenhofen an der Ilm, Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Akademisches Lehrkrankenhaus der Technischen Universität München, München, Germany
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERSAM, ISCIII, Barcelona, Spain
| | - Lourdes Anta
- Medical Department, Laboratorios Farmacéuticos ROVI, S.A., Calle Alfonso Gómez, 45, Madrid 28037, Spain
| | | |
Collapse
|
4
|
Wang L, Liu R, Liao J, Xiong X, Xia L, Wang W, Liu J, Zhao F, Zhuo L, Li H. Meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia. Front Psychiatry 2024; 15:1465758. [PMID: 39247615 PMCID: PMC11377232 DOI: 10.3389/fpsyt.2024.1465758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Previous studies based on resting-state functional magnetic resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have demonstrated significant abnormalities in brain structure and resting-state functional brain activity in patients with early-onset schizophrenia (EOS), compared with healthy controls (HCs), and these alterations were closely related to the pathogenesis of EOS. However, previous studies suffer from the limitations of small sample sizes and high heterogeneity of results. Therefore, the present study aimed to effectively integrate previous studies to identify common and specific brain functional and structural abnormalities in patients with EOS. Methods The PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), and WanFang databases were systematically searched to identify publications on abnormalities in resting-state regional functional brain activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies, respectively, and followed by multimodal overlapping on this basis to comprehensively identify brain structural and functional abnormalities in patients with EOS. Results A total of 27 original studies (28 datasets) were included in the present meta-analysis, including 12 studies (13 datasets) related to resting-state functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15 datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional meta-analysis, patients with EOS showed significantly increased resting-state functional brain activity in the left middle frontal gyrus (extending to the triangular part of the left inferior frontal gyrus) and the right caudate nucleus. On the other hand, in the structural meta-analysis, patients with EOS showed significantly decreased GMV in the right superior temporal gyrus (extending to the right rolandic operculum), the right middle temporal gyrus, and the temporal pole (superior temporal gyrus). Conclusion This meta-analysis revealed that some regions in the EOS exhibited significant structural or functional abnormalities, such as the temporal gyri, prefrontal cortex, and striatum. These findings may help deepen our understanding of the underlying pathophysiological mechanisms of EOS and provide potential biomarkers for the diagnosis or treatment of EOS.
Collapse
Affiliation(s)
- Lu Wang
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Juan Liao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Linfeng Xia
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fulin Zhao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
| | - Lihua Zhuo
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
5
|
Reynolds GP. The trace amine-associated receptor 1 agonists - non-dopaminergic antipsychotics or covert modulators of D2 receptors? J Psychopharmacol 2024; 38:503-506. [PMID: 38654553 PMCID: PMC11179314 DOI: 10.1177/02698811241249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A major effort of the pharmaceutical industry has been to identify and market drug treatments that are effective in ameliorating the symptoms of psychotic illness but without the limitations of the current treatments acting at dopamine D2 receptors. These limitations include the induction of a range of adverse effects, the inadequate treatment response of a substantial proportion of people with schizophrenia, and the generally poor response to negative and cognitive features of the disease. Recently introduced drug treatments have gone some way to avoiding the first of these, with a reduced propensity for weight gain, cardiovascular risk and extrapyramidal motor effects. Despite claims of some small improvements in negative symptoms, these drugs have not demonstrated substantial increases in efficacy. Of the drugs currently in development as antipsychotic agents, several are misleadingly described as having novel 'non-dopaminergic' mechanisms that may offer improvements in addressing the limitations of adverse effects and efficacy. It will be argued, using the trace amine-associated receptor 1 agonist as an example, that several of these new drugs still act primarily through modulation of dopaminergic neurotransmission and, in not addressing the primary pathology of schizophrenia, are therefore unlikely to have the much-needed improvements in efficacy required to address the unmet need associated with resistance to current treatments.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
- Rotherham Doncaster and South Humber NHS Foundation Trust, Doncaster, UK
| |
Collapse
|
6
|
Nesbit MO, Ahn S, Zou H, Floresco SB, Phillips AG. Potentiation of prefrontal cortex dopamine function by the novel cognitive enhancer d-govadine. Neuropharmacology 2024; 246:109849. [PMID: 38244888 DOI: 10.1016/j.neuropharm.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Cognitive impairment is a debilitating feature of psychiatric disorders including schizophrenia, mood disorders and substance use disorders for which there is a substantial lack of effective therapies. d-Govadine (d-GOV) is a tetrahydroprotoberberine recently shown to significantly enhance working memory and behavioural flexibility in several prefrontal cortex (PFC)-dependent rodent tasks. d-GOV potentiates dopamine (DA) efflux in the mPFC and not the nucleus accumbens, a unique pharmacology that sets it apart from many dopaminergic drugs and likely contributes to its effects on cognitive function. However, specific mechanisms involved in the preferential effects of d-GOV on mPFC DA function remain to be determined. The present study employs brain dialysis in male rats to deliver d-GOV into the mPFC or ventral tegmental area (VTA), while simultaneously sampling DA and norepinephrine (NE) efflux in the mPFC. Intra-PFC delivery or systemic administration of d-GOV preferentially potentiated medial prefrontal DA vs NE efflux. This differential effect of d-GOV on the primary catecholamines known to affect mPFC function further underscores its specificity for the mPFC DA system. Importantly, the potentiating effect of d-GOV on mPFC DA was disrupted when glutamatergic transmission was blocked in either the mPFC or the VTA. We hypothesize that d-GOV acts in the mPFC to engage the mesocortical feedback loop through which prefrontal glutamatergic projections activate a population of VTA DA neurons that specifically project back to the PFC. The activation of a PFC-VTA feedback loop to elevate PFC DA efflux without affecting mesolimbic DA release represents a novel approach to developing pro-cognitive drugs.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Soyon Ahn
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Haiyan Zou
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Stan B Floresco
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Krejčí V, Murínová I, Slanař O, Šíma M. Evidence for Therapeutic Drug Monitoring of Atypical Antipsychotics. Prague Med Rep 2024; 125:101-129. [PMID: 38761044 DOI: 10.14712/23362936.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024] Open
Abstract
Second-generation antipsychotics (SGAs), also known as atypical antipsychotics, are a newer class of antipsychotic drugs used to treat schizophrenia, bipolar disorder, and related psychiatric conditions. The plasma concentration of antipsychotic drugs is a valid measure of the drug at its primary target structure in the brain, and therefore determines the efficacy and safety of these drugs. However, despite the well-known high variability in pharmacokinetics of these substances, psychiatric medication is usually administered in uniform dosage schedules. Therapeutic drug monitoring (TDM), as the specific method that can help personalised medicine in dose adjustment according to the characteristics of the individual patient, minimizing the risk of toxicity, monitoring adherence, and increasing cost-effectiveness in the treatment, thus seems to be an elegant tool to solve this problem. Non-response to therapeutic doses, uncertain adherence to medication, suboptimal tolerability, or pharmacokinetic drug-drug interactions are typical indications for TDM of SGAs. This review aims to summarize an overview of the current knowledge and evidence of the possibilities to tailor the dosage of selected SGAs using TDM, including the necessary pharmacokinetic parameters for personalised pharmacotherapy.
Collapse
Affiliation(s)
- Veronika Krejčí
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Irena Murínová
- Department of Applied Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Clinical Pharmacy, Military University Hospital Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Petrescu C, Petrescu DM, Marian G, Focseneanu BE, Iliuta FP, Ciobanu CA, Papacocea S, Ciobanu AM. Neurological Soft Signs in Schizophrenia, a Picture of the Knowledge in the Last Decade: A Scoping Review. Healthcare (Basel) 2023; 11:1471. [PMID: 37239757 PMCID: PMC10217815 DOI: 10.3390/healthcare11101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Neurological Soft Signs (NSS) are subtle neurological abnormalities that are more common in schizophrenia patients than in healthy individuals and have been regularly observed in neuroleptic-naive first-episode patients, supporting the hypothesis that they are an intrinsic component of schizophrenia. (2) Methods: a review of articles published in the last ten years (from January 2013 to January 2023) was carried out on articles published in ScienceDirect and PubMed, by following the PRISMA Statement extension for scoping reviews (PRISMA-ScR), which evaluated the impact of NSS in correlation with the symptomatology, neuroleptic treatment, and the cerebral structural changes of patients with schizophrenia. (3) Results: thirty articles were included, among them twelve included MRI structural evaluation and four studies with a longitudinal design. (4) Conclusions: interest in researching NSS has increased in recent years, but questions remain about their origin and relationship to schizophrenia symptoms, thus this study aims to fill in information gaps in the hope that future research will help provide individualized treatment. It is suggested that NSS in schizophrenia might have an inherited genetic relationship pattern, thus being in line with a trait viewpoint. Most of the research revealed that schizophrenia patients had higher NSS scores than healthy controls, however, they were rather similar to their first-degree relatives, thus, also arguing in favor of a trait perspective. The greatest improvement in scores is seen in those with a remitting course, as shown by declining NSS ratings concurrent with symptomatology.
Collapse
Affiliation(s)
- Cristian Petrescu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Diana M. Petrescu
- Neurology Clinic Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Gabriela Marian
- Academy of Romanian Scientists, 050045 Bucharest, Romania;
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Brindusa E. Focseneanu
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Floris Petru Iliuta
- Department of Psychiatry and Psychology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - Serban Papacocea
- Department of Neurosurgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adela M. Ciobanu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| |
Collapse
|
9
|
Ketchesin KD, Zong W, Hildebrand MA, Scott MR, Seney ML, Cahill KM, Shankar VG, Glausier JR, Lewis DA, Tseng GC, McClung CA. Diurnal Alterations in Gene Expression Across Striatal Subregions in Psychosis. Biol Psychiatry 2023; 93:137-148. [PMID: 36302706 PMCID: PMC10411997 DOI: 10.1016/j.biopsych.2022.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madeline R Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly M Cahill
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vaishnavi G Shankar
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Andrade-Oliva MDLA, Debray-García Y, Morales-Figueroa GE, Escamilla-Sánchez J, Amador-Muñoz O, Díaz-Godoy RV, Kleinman M, Florán B, Arias-Montaño JA, De Vizcaya-Ruiz A. Effect of subchronic exposure to ambient fine and ultrafine particles on rat motor activity and ex vivo striatal dopaminergic transmission. Inhal Toxicol 2023; 35:1-13. [PMID: 36325922 DOI: 10.1080/08958378.2022.2140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Michael Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
11
|
Gamma camera imaging in psychiatric disorders. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Inaba H, Namba H, Kida S, Nawa H. The dopamine D2 agonist quinpirole impairs frontal mismatch responses to sound frequency deviations in freely moving rats. Neuropsychopharmacol Rep 2021; 41:405-415. [PMID: 34296531 PMCID: PMC8411315 DOI: 10.1002/npr2.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aim A reduced mismatch negativity (MMN) response is a promising electrophysiological endophenotype of schizophrenia that reflects neurocognitive impairment. Dopamine dysfunction is associated with symptoms of schizophrenia. However, whether the dopamine system is involved in MMN impairment remains controversial. In this study, we investigated the effects of the dopamine D2‐like receptor agonist quinpirole on mismatch responses to sound frequency changes in an animal model. Methods Event‐related potentials were recorded from electrocorticogram electrodes placed on the auditory and frontal cortices of freely moving rats using a frequency oddball paradigm consisting of ascending and equiprobable (ie, many standards) control sequences before and after the subcutaneous administration of quinpirole. To detect mismatch responses, difference waveforms were obtained by subtracting nondeviant control waveforms from deviant waveforms. Results Here, we show the significant effects of quinpirole on frontal mismatch responses to sound frequency deviations in rats. Quinpirole delayed the frontal N18 and P30 mismatch responses and reduced the frontal N55 MMN‐like response, which resulted from the reduction in the N55 amplitude to deviant stimuli. Importantly, the magnitude of the N55 amplitude was negatively correlated with the time of the P30 latency in the difference waveforms. In contrast, quinpirole administration did not clearly affect the temporal mismatch responses recorded from the auditory cortex. Conclusion These results suggest that the disruption of dopamine D2‐like receptor signaling by quinpirole reduces frontal MMN to sound frequency deviations and that delays in early mismatch responses are involved in this MMN impairment. The subcutaneous administration of quinpirole delayed early mismatch response latencies and reduced a late MMN‐like response amplitude recorded from the frontal cortex but had no effect on those recorded from the auditory cortex. These observations suggest that increased dopamine D2‐like receptor signaling impairs MMN generation to sound frequency changes in the frontal cortex and that the neurochemical mechanisms of MMN vary according to the cortical area. As MMN is associated with cognitive function, these new findings may help develop treatment modalities for cognitive dysfunctions in schizophrenia.![]()
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Kida
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
13
|
Gomez DM, Everett TJ, Hamilton LR, Ranganath A, Cheer JF, Oleson EB. Chronic cannabinoid exposure produces tolerance to the dopamine releasing effects of WIN 55,212-2 and heroin in adult male rats. Neuropharmacology 2021; 182:108374. [PMID: 33115642 PMCID: PMC7836093 DOI: 10.1016/j.neuropharm.2020.108374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic cannabinoids were introduced into recreational drug culture in 2008 and quickly became one of the most commonly abused drugs in the United States. The neurobiological consequences resulting from synthetic cannabinoid repeated exposure remain poorly understood. It is possible that a blunted dopamine (DA) response may lead drug users to consume larger quantities to compensate for this form of neurochemical tolerance. Because the endogenous cannabinoid and opioid systems exhibit considerable cross-talk and cross-tolerance frequently develops following repeated exposure to either opioids or cannabinoids, there is interest in investigating whether a history of synthetic cannabinoid exposure influences the ability of heroin to increase DA release. To test the effects of chronic cannabinoid exposure on cannabinoid- and heroin-evoked DA release, male adult rats were treated with either vehicle or a synthetic cannabinoid (WIN55-212-2; WIN) using an intravenous (IV) dose escalation regimen (0.2-0.8 mg/kg IV over 9 treatments). As predicted, WIN-treated rats showed a rightward shift in the dose-response relationship across all behavioral/physiological measures when compared to vehicle-treated controls. Then, using fast-scan cyclic voltammetry to measure changes in the frequency of transient DA events in the nucleus accumbens shell of awake and freely-moving rats, it was observed that the DA releasing effects of both WIN and heroin were significantly reduced in male rats with a pharmacological history of cannabinoid exposure. These results demonstrate that repeated exposure to the synthetic cannabinoid WIN can produce tolerance to its DA releasing effects and cross-tolerance to the DA releasing effects of heroin.
Collapse
Affiliation(s)
- Devan M Gomez
- Psychology Department, University of Colorado Denver, USA; Current: Department of Biomedical Sciences, Marquette University, USA
| | | | | | - Ajit Ranganath
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Joseph F Cheer
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Erik B Oleson
- Psychology Department, University of Colorado Denver, USA; Biology Department, University of Colorado Denver, USA.
| |
Collapse
|
14
|
Andrade-Oliva MDLA, Escamilla-Sánchez J, Debray-García Y, Morales-Rubio RA, González-Pantoja R, Uribe-Ramírez M, Amador-Muñoz O, Díaz-Godoy RV, De Vizcaya-Ruiz A, Arias-Montaño JA. In vitro exposure to ambient fine and ultrafine particles alters dopamine uptake and release, and D 2 receptor affinity and signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103484. [PMID: 32942001 DOI: 10.1016/j.etap.2020.103484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The exposure to environmental pollutants, such as fine and ultrafine particles (FP and UFP), has been associated with increased risk for Parkinson's disease, depression and schizophrenia, disorders related to altered dopaminergic transmission. The striatum, a neuronal nucleus with extensive dopaminergic afferents, is a target site for particle toxicity, which results in oxidative stress, inflammation, astrocyte activation and modifications in dopamine content and D2 receptor (D2R) density. In this study we assessed the in vitro effect of the exposure to FP and UFP on dopaminergic transmission, by evaluating [3H]-dopamine uptake and release by rat striatal isolated nerve terminals (synaptosomes), as well as modifications in the affinity and signaling of native and cloned D2Rs. FP and UFP collected from the air of Mexico City inhibited [3H]-dopamine uptake and increased depolarization-evoked [3H]-dopamine release in striatal synaptosomes. FP and UFP also enhanced D2R affinity for dopamine in membranes from either rat striatum or CHO-K1 cells transfected with the long isoform of the human D2R (hD2LR)2LR). In CHO-K1-hD2L In CHO-K1-hD2LR cells or striatal slices, FP and UFP increased the potency of dopamine or the D2R agonist quinpirole, respectively, to inhibit forskolin-induced cAMP formation. The effects were concentration-dependent, with UFP being more potent than FP. These results indicate that FP and UFP directly affect dopaminergic transmission.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Yazmín Debray-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico; Departamento de Investigación en Inmunología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Ciudad de México, Mexico
| | - Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Raúl González-Pantoja
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Omar Amador-Muñoz
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Investigación Científica s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Carretera México Toluca s/n, La Marquesa, 52750, Ocoyoacac, Estado de México, Mexico
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Marchese G, Pittau B, Casu G, Peddio G, Spada G, Pira M, Deriu A, Portesani F, Pisu C, Lazzari P, Pani L. A comparison of continuous subcutaneous paliperidone infusion and repeated subcutaneous injection of risperidone free-base in rats. Eur Psychiatry 2020; 25:92-100. [DOI: 10.1016/j.eurpsy.2009.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/28/2009] [Accepted: 05/28/2009] [Indexed: 11/24/2022] Open
Abstract
AbstractIt is proposed that to achieve a therapeutic effect in schizophrenia patients, dopamine D2-receptor occupancy by antipsychotics within the striatum must exceed 60−65%. However, at high levels of D2-receptor occupancy, the risk of extrapyramidal symptoms (EPS) is increased. Following oral dosing of antipsychotics, peaks and troughs in plasma drug concentrations may be mirrored by fluctuations in D2-receptor occupancy. Paliperidone, a novel antipsychotic available as extended-release tablets (paliperidone ER), is the major active metabolite of risperidone and exhibits a plasma pharmacokinetic profile with reduced peak−trough fluctuations and consistent D2-receptor occupancy compared with conventional oral antipsychotic formulations. Using formulations that resemble those in clinical practice, this study provides a preclinical evaluation of the pharmacological properties of paliperidone ER and risperidone immediate-release formulation in terms of consistent antipsychotic efficacy over time and extrapyramidal symptom liability. Significant fluctuations in inhibition of d-amphetamine-induced hyperlocomotion were observed for repeated subcutaneous (SC) risperidone injections, whereas stable inhibitory efficacy was demonstrated during continuous SC paliperidone infusion. Similarly, significant fluctuations in latency on-bar were observed with repeated SC risperidone injections, whereas significantly lower latency on-bar was demonstrated following continuous SC paliperidone infusion. These results in an animal model suggest that although risperidone and paliperidone demonstrate similar pharmacologic effects, continuous administration of paliperidone achieves more stable antipsychotic efficacy with reduced motor impairment, akin to the effects observed with paliperidone ER in clinical studies.
Collapse
|
16
|
Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology 2020; 162:107844. [DOI: 10.1016/j.neuropharm.2019.107844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
|
17
|
Toste CC, Duarte RR, Jeffries AR, Selvackadunco S, Troakes C, O'Donovan MC, Hill MJ, Bray NJ. No Effect of Genome-Wide Significant Schizophrenia Risk Variation at the DRD2 Locus on the Allelic Expression of DRD2 in Postmortem Striatum. MOLECULAR NEUROPSYCHIATRY 2019; 5:212-217. [PMID: 31768374 PMCID: PMC6873021 DOI: 10.1159/000501022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
A genome-wide significant association has been reported between non-coding variants at the dopamine D2 receptor (DRD2) gene locus and schizophrenia. However, effects of identified schizophrenia risk alleles on DRD2 function are yet to be demonstrated. Using highly sensitive measures of allele-specific expression, we have assessed cis-regulatory effects associated with genotype at lead SNP rs2514218 on DRD2expression in the adult human striatum. No significant differences were observed in the extent of allelic expression imbalance between samples that were genomic heterozygotes for rs2514218 (where cis-regulatory effects of the risk allele are compared with those of the non-risk allele within individual subjects) and samples that were homozygous for rs2514218 (where cis-regulatory effects of this SNP on each expressed DRD2 allele will be equal). We therefore conclude that rs2514218 genotype is not associated with large effects on overall DRD2 RNA expression, at least in postmortem adult striatum. Alternative explanations for the genetic association between this variant and schizophrenia include effects on DRD2 that are transcript specific, restricted to minor DRD2-expressing cell populations or elicited only under certain physiological circumstances, or mediation through effects on another gene (or genes) at the locus.
Collapse
Affiliation(s)
- Carolina C. Toste
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Rodrigo R.R. Duarte
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Sashika Selvackadunco
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Michael C. O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Matthew J. Hill
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nicholas J. Bray
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
18
|
Zong X, Hu M, Pantazatos SP, Mann JJ, Wang G, Liao Y, Liu ZC, Liao W, Yao T, Li Z, He Y, Lv L, Sang D, Tang J, Chen H, Zheng J, Chen X. A Dissociation in Effects of Risperidone Monotherapy on Functional and Anatomical Connectivity Within the Default Mode Network. Schizophr Bull 2019; 45:1309-1318. [PMID: 30508134 PMCID: PMC6811838 DOI: 10.1093/schbul/sby175] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Respective changes in functional and anatomical connectivities of default mode network (DMN) after antipsychotic treatment have been reported. However, alterations in structure-function coupling after treatment remain unknown. We performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging in 42 drug-naive first-episode schizophrenia patients (FESP) both at baseline and after 8-weeks risperidone monotherapy, and in 38 healthy volunteers. Independent component analysis was used to assess voxel-wise DMN synchrony. A 3-step procedure was used to trace fiber paths between DMN components. Structure-function couplings were assessed by Pearson's correlations between mean fractional anisotropy and temporal correlation coefficients in major tracts of DMN. Pretreatment, FESP showed impaired functional connectivity in posterior cingulate cortex/precuneus (PCC/PCUN) and medial prefrontal cortex (mPFC), but no abnormalities in fibers connecting DMN components. After treatment, there were significant increases in functional connectivities of PCC/PCUN. Increases in functional connectivity between PCC/PCUN and mPFC correlated with improvement in positive symptoms. The structure-function coupling in tracts connecting PCC/PCUN and bilateral medial temporal lobes decreased after treatment. No alterations in DMN fiber integrity were detected. This combination of functional and anatomical findings in FESP contributes novel evidence related to neurobehavioral treatment effects. Increased functional connectivities between PCC/PCUN and mPFC may be treatment response biomarkers for positive symptoms. Increases in functional connectivities, no alterations in fiber integrity, combined with decreases in structural-functional coupling, suggest that DMN connectivities may be dissociated by modality after 8-week treatment. Major limitations of this study, however, include lack of repeat scans in healthy volunteers and control group of patients taking placebo or comparator antipsychotics.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Maolin Hu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Spiro P Pantazatos
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanhui Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Chun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liao
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tao Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Huafu Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjie Zheng
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,To whom correspondence should be addressed; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; tel: +86-731-85531571, fax: +86-731-85531571, e-mail:
| |
Collapse
|
19
|
Nikolaus S, Mamlins E, Hautzel H, Müller HW. Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction. Rev Neurosci 2019; 30:381-426. [PMID: 30269107 DOI: 10.1515/revneuro-2018-0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/30/2018] [Indexed: 11/15/2022]
Abstract
Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Abstract
Background:
Qualitative and quantitative analysis of atypical antipsychotic drugs used for
the treatment of schizophrenia, depression, anxiety, and bipolar disorder obtaining satisfactory results
can be ensured by voltammetric techniques. The aim of this review is to present the application of voltammetric
techniques developed for the determination of the atypical antipsychotic drugs, which are
amisulpride, aripiprazole, clozapine, olanzapine, quetiapine fumarate, risperidone, sertindole, and ziprasidone,
in pharmaceutical dosage forms and biological samples.
Methods:
Studies in the literature published between 2004 and 2017 based on the voltammetric determination
of atypical antipsychotic drugs were gathered using scientific databases. The results obtained
from these studies were combined and interpreted.
Results:
oltammetric techniques applied for the sensitive determination of trace amounts of the selected
atypical antipsychotic drugs in their pharmaceutical dosage forms and biological fluids were
compared. The best analysis conditions were obtained after the optimization of some parameters such as
buffer type, pH, and scan rate. For diffusion controlled electrode processes, it was observed that differential
pulse and square wave voltammetry methods were generally used for the sensitive quantitative
determination of the drugs, whereas stripping methods were used for the adsorption controlled electrode
processes. Detection limits were between 1.53×10-3 µM for clozapine and 0.97 µM for risperidone.
Conclusion:
The electrodes used in the studies showed high selectivity, sensitivity, and good accuracy
with precision. The developed methods were also applied to pharmaceutical preparations of the drugs
and biological fluids with satisfactory results, without any interference from inactive excipients.
Collapse
Affiliation(s)
- Dilek Kul
- Faculty of Pharmacy, Department of Analytical Chemistry, Karadeniz Technical University, 61080, Ortahisar, Trabzon, Turkey
| |
Collapse
|
21
|
Selvaggi P, Hawkins PC, Dipasquale O, Rizzo G, Bertolino A, Dukart J, Sambataro F, Pergola G, Williams SC, Turkheimer F, Zelaya F, Veronese M, Mehta MA. Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles. Neuroimage 2019; 188:774-784. [DOI: 10.1016/j.neuroimage.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
|
22
|
Raij TT, Riekki TJJ, Rikandi E, Mäntylä T, Kieseppä T, Suvisaari J. Activation of the motivation-related ventral striatum during delusional experience. Transl Psychiatry 2018; 8:283. [PMID: 30563960 PMCID: PMC6298954 DOI: 10.1038/s41398-018-0347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022] Open
Abstract
Delusion is the most characteristic symptom of psychosis, occurring in almost all first-episode psychosis patients. The motivational salience hypothesis suggests delusion to originate from the experience of abnormal motivational salience. Whether the motivation-related brain circuitries are activated during the actual delusional experience remains, however, unknown. We used a forced-choice answering tree at random intervals during functional magnetic resonance imaging to capture delusional and non-delusional spontaneous experiences in patients with first-episode psychosis (n = 31) or clinical high-risk state (n = 7). The motivation-related brain regions were identified by an automated meta-analysis of 149 studies. Thirteen first-episode patients reported both delusional and non-delusional spontaneous experiences. In these patients, delusional experiences were related to stronger activation of the ventral striatum in both hemispheres. This activation overlapped with the most strongly motivation-related brain regions. These findings provide an empirical link between the actual delusional experience and the motivational salience hypothesis. Further use and development of the present methods in localizing the neurobiological basis of the most characteristic symptoms may be useful in the search for etiopathogenic pathways that result in psychotic disorders.
Collapse
Affiliation(s)
- Tuukka T. Raij
- 0000 0000 9950 5666grid.15485.3dDepartment of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland ,0000000108389418grid.5373.2Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland
| | - Tapani J. J. Riekki
- 0000 0004 0410 2071grid.7737.4Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eva Rikandi
- 0000000108389418grid.5373.2Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland ,0000 0004 0410 2071grid.7737.4Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fMental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Mäntylä
- 0000000108389418grid.5373.2Department of Neuroscience and Biomedical Engineering and Advanced Magnetic Imaging Center, Aalto University School of Science, Espoo, Finland ,0000 0004 0410 2071grid.7737.4Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fMental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Tuula Kieseppä
- 0000 0000 9950 5666grid.15485.3dDepartment of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fMental Health Unit, National Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0410 2071grid.7737.4Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaana Suvisaari
- 0000 0001 1013 0499grid.14758.3fMental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
23
|
Joo YH, Kim JH, Son YD, Kim HK, Shin YJ, Lee SY, Kim JH. The relationship between excitement symptom severity and extrastriatal dopamine D 2/3 receptor availability in patients with schizophrenia: a high-resolution PET study with [ 18F]fallypride. Eur Arch Psychiatry Clin Neurosci 2018. [PMID: 28623450 DOI: 10.1007/s00406-017-0821-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to investigate the relationship between specific symptom severity and D2/3 receptor availability in extrastriatal regions in outpatients with schizophrenia to shed light on the role of extrastriatal dopaminergic neurotransmission in the pathophysiology of symptoms of schizophrenia. Sixteen schizophrenia patients receiving relatively low-dose maintenance atypical antipsychotics and seventeen healthy controls underwent 3-Tesla magnetic resonance imaging and high-resolution positron emission tomography with [18F]fallypride. For D2/3 receptor availability, the binding potential with respect to non-displaceable compartment (BPND) was derived using the simplified reference tissue model. The BPND values were lower in patients on antipsychotic treatment than in controls across all regions with large effect sizes (1.03-1.42). The regions with the largest effect size were the substantia nigra, amygdala, and insula. Symptoms of schizophrenia were assessed using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). The region of interest-based analysis showed that PANSS excitement factor score had a significant positive correlation with the [18F]fallypride BPND in the insula. The equivalent dose of antipsychotics was not significantly correlated with PANSS factor scores or regional BPND values. The voxel-based analysis also revealed a significant positive association between the PANSS excitement factor and the [18F]fallypride BPND in the insula. The present study revealed a significant association between excitement symptom severity and D2/3 receptor availability in the insula in schizophrenia, suggesting a possible important role of D2/3 receptor-mediated neurotransmission in the insula and related limbic system in the pathophysiology of this specific symptom cluster.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Research Institute for Advanced Industrial Technology, Korea University, Sejong, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yeon-Jeong Shin
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Department of Psychiatry, Neuroscience Research Institute, Gil Medical Center, Gachon University School of Medicine, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, Republic of Korea.
| |
Collapse
|
24
|
Tavares M, Reimão S, Chendo I, Carvalho M, Levy P, Nunes RG. Neuromelanin magnetic resonance imaging of the substantia nigra in first episode psychosis patients consumers of illicit substances. Schizophr Res 2018; 197:620-621. [PMID: 29477246 DOI: 10.1016/j.schres.2018.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/18/2018] [Accepted: 02/18/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Marta Tavares
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Sofia Reimão
- Neurological Imaging Department, Hospital de Santa Maria, Lisbon, Portugal; Clinical Pharmachology Unit, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Inês Chendo
- Psychiatry Department, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal; Clínica Universitária de Psiquiatria, Faculty of Medicine, University of Lisbon, Portugal; CNS, Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Miguel Carvalho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Pedro Levy
- Psychiatry Department, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal
| | - Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Institute for Systems and Robotics (LARSyS) and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal.
| |
Collapse
|
25
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
26
|
Abstract
Antipsychotics acting as antagonists at dopamine D2 receptors concentrated in the striatum are the cornerstone of effective treatment of psychosis. Substantial progress in treating persons with schizophrenia could be achieved by the identification of biomarkers which reliably determine the lowest efficacious dose of antipsychotics. Prolactin levels have been considered a promising treatment-response biomarker due to dopamine’s regulation of serum prolactin levels through D2 receptors in the hypothalamic-pituitary pathway. Prolactin secretion in response antipsychotic administration is associated with the antipsychotics affinity for D2 receptors. This review assesses the available literature on the use of serum prolactin levels as an antipsychotic-response biomarker. Articles were identified through PubMed as well as the reference lists of full text articles available online. Relevant publications were summarized briefly to define the limitations and utility of serum prolactin levels as a tool for improving antipsychotic dosing. Serum prolactin levels in combination with prolactin-inducing potencies for each antipsychotic may help identify the lowest effective dose of antipsychotic medications. , In addition to the fact that prolactin secretion is dependent on serum antipsychotic levels and not brain levels, recent findings show that prolactin release is independent of the β-arrestin-2 pathway and GSK3β regulation, one branch of the pathway that has been implicated in antipsychotic efficacy. Therefore, serum prolactin is an indirect biomarker for treatment response. Further investigations are warranted to characterize prolactin-antipsychotic dose-response curves and systematically test the utility of measuring prolactin levels in patients to identify a person’s lowest efficacious dose.
Collapse
Affiliation(s)
- Judith M Gault
- Departments of Psychiatry, University of Colorado Denver, Anschutz Medical Campus, USA.,Departments of Neurosurgery, University of Colorado Denver, USA
| | | |
Collapse
|
27
|
Plitman E, Chavez S, Nakajima S, Iwata Y, Chung JK, Caravaggio F, Kim J, Alshehri Y, Chakravarty MM, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Striatal neurometabolite levels in patients with schizophrenia undergoing long-term antipsychotic treatment: A proton magnetic resonance spectroscopy and reliability study. Psychiatry Res Neuroimaging 2018; 273:16-24. [PMID: 29414127 DOI: 10.1016/j.pscychresns.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Previous proton magnetic resonance spectroscopy (1H-MRS) studies have reported disrupted levels of various neurometabolites in patients with schizophrenia. An area of particular interest within this patient population is the striatum, which is highly implicated in the pathophysiology of schizophrenia. The present study examined neurometabolite levels in the striatum of 12 patients with schizophrenia receiving antipsychotic treatment for at least 1 year and 11 healthy controls using 3-Tesla 1H-MRS (PRESS, TE = 35 ms). Glutamate, glutamate+glutamine (Glx), myo-inositol, choline, N-acetylaspartate, and creatine levels were estimated using LCModel, and corrected for fraction of cerebrospinal fluid in the 1H-MRS voxel. Striatal neurometabolite levels were compared between groups. Multiple study visits permitted a reliability assessment for neurometabolite levels (days between paired 1H-MRS acquisitions: average = 90.33; range = 7-306). Striatal neurometabolite levels did not differ between groups. Within the whole sample, intraclass correlation coefficients for glutamate, Glx, myo-inositol, choline, and N-acetylaspartate were fair to excellent (0.576-0.847). The similarity in striatal neurometabolite levels between groups implies a marked difference from the antipsychotic-naïve first-episode state, especially in terms of glutamatergic neurometabolites, and might provide insight regarding illness progression and the influence of antipsychotic medication.
Collapse
Affiliation(s)
- Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Youssef Alshehri
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Caravaggio F, Fervaha G, Iwata Y, Plitman E, Chung JK, Nakajima S, Mar W, Gerretsen P, Kim J, Chakravarty MM, Mulsant B, Pollock B, Mamo D, Remington G, Graff-Guerrero A. Amotivation is associated with smaller ventral striatum volumes in older patients with schizophrenia. Int J Geriatr Psychiatry 2018; 33:523-530. [PMID: 29110353 PMCID: PMC5807115 DOI: 10.1002/gps.4818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long-term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D2/3 receptor (D2/3 R) blockade by antipsychotics. METHODS Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D2/3 R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. RESULTS Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). CONCLUSION We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D2/3 R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Gagan Fervaha
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - M. Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H4H 1R3
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada. H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada. H4H 1R3
| | - Benoit Mulsant
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Bruce Pollock
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - David Mamo
- Department of Psychiatry, University of Malta, Malta
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| |
Collapse
|
29
|
Presynaptic Dopamine Synthesis Capacity in Schizophrenia and Striatal Blood Flow Change During Antipsychotic Treatment and Medication-Free Conditions. Neuropsychopharmacology 2017; 42:2232-2241. [PMID: 28387222 PMCID: PMC5603816 DOI: 10.1038/npp.2017.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/03/2023]
Abstract
Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D2 receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where D2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity; however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [15O]-water and [18F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity). Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic responses.
Collapse
|
30
|
Eisenstein SA, Bogdan R, Chen L, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Barch DM. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res 2017; 86:9-17. [PMID: 27886638 PMCID: PMC5272837 DOI: 10.1016/j.jpsychires.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author, Sarah A. Eisenstein, Psychiatry Department, Campus Box 8225, Washington University School of Medicine, St. Louis, MO 63110, Phone: (314) 362-7107, Fax: (314) 362-0168,
| | - Ryan Bogdan
- Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stephen M. Moerlein
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J. Black
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Neurology Department, Washington University School of Medicine, St. Louis, MO, USA,Neuroscience Department, Washington University School of Medicine, MO, USA
| | - Joel S. Perlmutter
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA,Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA; Radiology Department, Washington University School of Medicine, St. Louis, MO, USA; Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA; Neurology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Deanna M. Barch
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
31
|
Peters H, Riedl V, Manoliu A, Scherr M, Schwerthöffer D, Zimmer C, Förstl H, Bäuml J, Sorg C, Koch K. Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode. Br J Psychiatry 2017; 210:75-82. [PMID: 26892851 DOI: 10.1192/bjp.bp.114.151928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 12/15/2014] [Accepted: 05/27/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND In patients with schizophrenia in a psychotic episode, intra-striatal intrinsic connectivity is increased in the putamen but not ventral striatum. Furthermore, multimodal changes have been observed in the anterior insula that interact extensively with the putamen. AIMS We hypothesised that during psychosis, putamen extra-striatal functional connectivity is altered with both the anterior insula and areas normally connected with the ventral striatum (i.e. altered functional connectivity distinctiveness of putamen and ventral striatum). METHOD We acquired resting-state functional magnetic resonance images from 21 patients with schizophrenia in a psychotic episode and 42 controls. RESULTS Patients had decreased functional connectivity: the putamen with right anterior insula and dorsal prefrontal cortex, the ventral striatum with left anterior insula. Decreased functional connectivity between putamen and right anterior insula was specifically associated with patients' hallucinations. Functional connectivity distinctiveness was impaired only for the putamen. CONCLUSIONS Results indicate aberrant extra-striatal connectivity during psychosis and a relationship between reduced putamen-right anterior insula connectivity and hallucinations. Data suggest that altered intrinsic connectivity links striatal and insular pathophysiology in psychosis.
Collapse
Affiliation(s)
- Henning Peters
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Valentin Riedl
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrei Manoliu
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dirk Schwerthöffer
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Förstl
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef Bäuml
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Kathrin Koch
- Henning Peters, MD, PhD, Department of Psychiatry and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Valentin Riedl, MD, PhD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Andrei Manoliu, MD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Department of Radiology, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland; Martin Scherr, MD, Dirk Schwerthöffer, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Claus Zimmer, MD, Department of Neuroradiology, Technische Universität München, Munich, Germany; Hans Förstl, MD, Josef Baüml, MD, Department of Psychiatry, Technische Universität München, Munich, Germany; Christian Sorg, MD, Department of Psychiatry, Department of Neuroradiology, Department of Nuclear Medicine and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Kathrin Koch, PhD, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
32
|
Holmes SE, Hinz R, Drake RJ, Gregory CJ, Conen S, Matthews JC, Anton-Rodriguez JM, Gerhard A, Talbot PS. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [ 11C](R)-PK11195 positron emission tomography study. Mol Psychiatry 2016; 21:1672-1679. [PMID: 27698434 DOI: 10.1038/mp.2016.180] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging of the 18 kDa translocator protein (TSPO) has been used to investigate whether microglial activation, an indication of neuroinflammation, is evident in the brain of adults with schizophrenia. Interpretation of these studies is confounded by potential modulatory effects of antipsychotic medication on microglial activity. In the first such study in antipsychotic-free schizophrenia, we have used [11C](R)-PK11195 PET to compare TSPO availability in a predominantly antipsychotic-naive group of moderate-to-severely symptomatic unmedicated patients (n=8), similarly symptomatic medicated patients with schizophrenia taking risperidone or paliperidone by regular intramuscular injection (n=8), and healthy comparison subjects (n=16). We found no evidence for increased TSPO availability in antipsychotic-free patients compared with healthy controls (mean difference 4%, P=0.981). However, TSPO availability was significantly elevated in medicated patients (mean increase 88%, P=0.032) across prefrontal (dorsolateral, ventrolateral, orbital), anterior cingulate and parietal cortical regions. In the patients, TSPO availability was also strongly correlated with negative symptoms measured using the Positive and Negative Syndrome Scale across all the brain regions investigated (r=0.651-0.741). We conclude that the pathophysiology of schizophrenia is not associated with microglial activation in the 2-6 year period following diagnosis. The elevation in the medicated patients may be a direct effect of the antipsychotic, although this study cannot exclude treatment resistance and/or longer illness duration as potential explanations. It also remains to be determined whether it is present only in a subset of patients, represents a pro- or anti-inflammatory state, its association with primary negative symptoms, and whether there are significant differences between antipsychotics.
Collapse
Affiliation(s)
- S E Holmes
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Hinz
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Drake
- Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - C J Gregory
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - S Conen
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J C Matthews
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J M Anton-Rodriguez
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Gerhard
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P S Talbot
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Orendain-Jaime EN, Ortega-Ibarra JM, López-Pérez SJ. Evidence of sexual dimorphism in D1 and D2 dopaminergic receptors expression in frontal cortex and striatum of young rats. Neurochem Int 2016; 100:62-66. [DOI: 10.1016/j.neuint.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
|
34
|
Short-term Effects of Risperidone Monotherapy on Spontaneous Brain Activity in First-episode Treatment-naïve Schizophrenia Patients: A Longitudinal fMRI Study. Sci Rep 2016; 6:34287. [PMID: 27698361 PMCID: PMC5048418 DOI: 10.1038/srep34287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/09/2016] [Indexed: 01/25/2023] Open
Abstract
It is unclear whether abnormal spontaneous neural activation patterns found in chronic schizophrenia patients (CSP) are part of the pathogenesis of disease, consequences of chronic illness, or effects of antipsychotic treatment. We performed a longitudinal resting-state functional magnetic resonance imaging (fMRI) study in 42 treatment-naïve first-episode schizophrenia patients (FESP) at baseline and then after 8-weeks of risperidone monotherapy, and compared the findings to 38 healthy volunteers. Spontaneous brain activity was quantified using the fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) and compared between patients and controls. Pretreatment, patients exhibited higher fALFF in left caudate compared with controls. After treatment, patients had elevated fALFF in bilateral putamen and right caudate, and increased ReHo in right caudate and left putamen. Greater increase of fALFF in the left putamen correlated with less improvement in positive symptoms. Thus, abnormalities of spontaneous neural activity in chronic schizophrenia is at least partly due to a medication effect. The observed post-treatment increase in striatal intrinsic activity may reflect counter-therapeutic functional adaptation to dopamine D2 receptor occupancy required for medication effects on psychosis.
Collapse
|
35
|
Schuepbach D, Egger ST, Boeker H, Duschek S, Vetter S, Seifritz E, Herpertz SC. Determinants of cerebral hemodynamics during the Trail Making Test in schizophrenia. Brain Cogn 2016; 109:96-104. [PMID: 27648976 DOI: 10.1016/j.bandc.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Patients with schizophrenia show deficits in cognitive functioning, and studies on cerebral hemodynamics have revealed aberrant patterns of mean cerebral blood flow velocity (MFV), an equivalent of cerebral blood flow (CBF). Therefore, we carried out a controlled study that assessed MFV in schizophrenia during a well-known neuropsychological task, the Trail Making Test (TMT). We measured MFV in the middle cerebral arteries using functional transcranial Doppler sonography in 15 schizophrenia patients and 15 healthy subjects. In comparison to healthy subjects, patients performed poorer on the TMT-A and the TMT-B, and there was increased cerebral blood flow velocity during the TMT-B. A comparison of subgroups of patients and controls matched in performance on the TMT-B revealed that these patients still showed significantly increased cerebral blood flow velocity. Increased MFV in schizophrenia suggests specific alterations of cerebral hemodynamics during the Trail Making Test, Part B, which are not detectable during visuomotor activity, and which are independent of performance. These findings emphasize the pathophysiological importance of cognitive functioning in schizophrenia, but cast doubts whether performance in this particular test plays a relevant role for CBF abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Daniel Schuepbach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland; Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany; Klinikum am Weissenhof, Weinsberg, Germany.
| | - Stephan T Egger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Heinz Boeker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Stefan Duschek
- Institute of Psychology, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Sabine C Herpertz
- Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
An investigation into aripiprazole's partial D₂ agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers. Psychopharmacology (Berl) 2016; 233:1415-26. [PMID: 26900078 PMCID: PMC4819596 DOI: 10.1007/s00213-016-4234-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
RATIONALE Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory. OBJECTIVES We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole's prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole's unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone. METHOD A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning. RESULTS Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d') and speeded reaction times. In contrast to aripiprazole's neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d' and additionally had reduced errors of commission compared with placebo. CONCLUSION Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone's serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade.
Collapse
|
37
|
Hong SB, Lee TY, Kwak YB, Kim SN, Kwon JS. Baseline putamen volume as a predictor of positive symptom reduction in patients at clinical high risk for psychosis: A preliminary study. Schizophr Res 2015; 169:178-185. [PMID: 26527246 DOI: 10.1016/j.schres.2015.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Illness course in individuals at clinical high risk (CHR) status for psychosis is heterogeneous, which limits effective treatment for all CHR subgroups. Baseline predictors of positive symptom trajectory in the CHR group will reduce such limitations. We singled out the putamen, thought to be involved in the generation of the key schizophrenia symptoms early in the course of disease, as a potential predictor of positive symptom trajectory in CHR patients. METHOD We recruited 45 CHR patients and 29 age- and gender-matched healthy controls (HC). The CHR group was divided into patients with positive symptom reduction (CHR-R) and patients without positive symptom reduction (CHR-NR) at 6 months. Comparisons were made between the baseline putamen volumes of CHR-R, CHR-NR and HC groups. The relationship between baseline putamen volumes and clinical measures was investigated. RESULTS Left putamen volumes of CHR-R patients were significantly smaller than those of HCs (p=0.002) and of CHR-NR patients (p=0.024). CHR-R patients had significantly reduced leftward laterality compared to HCs (p=0.007). In the CHR-R group, bilateral putamen volumes were correlated with positive symptom severity at baseline (r=-0.552, p=0.001) and at 6 months (r=-0.360, p=0.043), and predicted positive symptom score change in 6 months at a trend level (p=0.092). CONCLUSION Smaller left putamen volumes in CHR-R patients, and the correlation between positive symptom severity and putamen volumes suggest that putamen volume is a possible risk-stratifier and predictor of clinical course in the CHR population.
Collapse
Affiliation(s)
- Sang Bin Hong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yoo Bin Kwak
- Department of Brain & Cognitive Sciences, Seoul National University College of National Sciences, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain & Cognitive Sciences, Seoul National University College of National Sciences, Seoul, Republic of Korea
| |
Collapse
|
38
|
Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: A dimensional step towards an underappreciated domain. Schizophr Res 2015; 169:217-233. [PMID: 26547881 DOI: 10.1016/j.schres.2015.10.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
At the beginning of the 20th century, genuine motor abnormalities (GMA) were considered to be intricately linked to schizophrenia. Subsequently, however, GMA have been increasingly regarded as unspecific transdiagnostic phenomena or related to side effects of antipsychotic treatment. Despite possible medication confounds, within the schizophrenia spectrum GMA have been categorized into three broad categories, i.e. neurological soft signs, abnormal involuntary movements and catatonia. Schizophrenia patients show a substantial overlap across a broad range of distinct motor signs and symptoms suggesting a prominent involvement of the motor system in disease pathophysiology. There have been several attempts to increase reliability and validity in diagnosing schizophrenia based on behavior and neurobiology, yet relatively little attention has been paid to the motor domain in the past. Nevertheless, accumulating neuroscientific evidence suggests the possibility of a motor endophenotype in schizophrenia, and that GMA could represent a specific dimension within the schizophrenia-spectrum. Here, we review current neuroimaging research on GMA in schizophrenia with an emphasis on distinct and common mechanisms of brain dysfunction. Based on a dimensional approach we show that multimodal neuroimaging combined with fine-grained clinical examination can result in a comprehensive characterization of structural and functional brain changes that are presumed to underlie core GMA in schizophrenia. We discuss the possibility of a distinct motor domain, together with its implications for future research. Investigating GMA by means of multimodal neuroimaging can essentially contribute at identifying novel and biologically reliable phenotypes in psychiatry.
Collapse
Affiliation(s)
- Dusan Hirjak
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany.
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Nadine D Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Robert C Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| |
Collapse
|
39
|
Wulff S, Pinborg LH, Svarer C, Jensen LT, Nielsen MØ, Allerup P, Bak N, Rasmussen H, Frandsen E, Rostrup E, Glenthøj BY. Striatal D(2/3) Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome. Schizophr Bull 2015; 41:1143-52. [PMID: 25698711 PMCID: PMC4535636 DOI: 10.1093/schbul/sbu220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D(2/3) receptor binding potential (BP(p)) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D(2/3) receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [(123)I]iodobenzamide ([(123)I]-IBZM) was used to examine striatal D(2/3) receptor BP(p). Patients were examined before and after 6 weeks of treatment with the D(2/3) receptor antagonist amisulpride. There was a significant negative correlation between striatal D(2/3) receptor BP(p) at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BP(p) in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BP(p) of dopamine D(2/3) receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BP(p) have a better treatment response than patients with a high BP(p). The results further suggest that functioning may decline at high levels of dopamine receptor blockade.
Collapse
Affiliation(s)
- Sanne Wulff
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Denmark;
| | - Lars Hageman Pinborg
- Neurobiology Research Unit (NRU), Rigshospitalet, University of Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit (NRU), Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Peter Allerup
- Department of Education, Centre for Research in Compulsory Schooling, Aarhus University, Denmark
| | - Nikolaj Bak
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Hans Rasmussen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- Department of Diagnostics, Functional Imaging Unit and Section of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Denmark
| | - Egill Rostrup
- Department of Diagnostics, Functional Imaging Unit and Section of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark;,Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Denmark
| |
Collapse
|
40
|
Raij TT, Mäntylä T, Kieseppä T, Suvisaari J. Aberrant functioning of the putamen links delusions, antipsychotic drug dose, and compromised connectivity in first episode psychosis--Preliminary fMRI findings. Psychiatry Res 2015; 233:201-11. [PMID: 26184459 DOI: 10.1016/j.pscychresns.2015.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 01/26/2023]
Abstract
The dopamine theory proposes the relationship of delusions to aberrant signaling in striatal circuitries that can be normalized with dopamine D2 receptor-blocking drugs. Localization of such circuitries, as well as their upstream and downstream signaling, remains poorly known. We collected functional magnetic resonance images from first-episode psychosis patients and controls during an audiovisual movie. Final analyses included 20 patients and 20 controls; another sample of 10 patients and 10 controls was used to calculate a comparison signal-time course. We identified putamen circuitry in which the signal aberrance (poor correlation with the comparison signal time course) was predicted by the dopamine theory, being greater in patients than controls; correlating positively with delusion scores; and correlating negatively with antipsychotic-equivalent dosage. In Granger causality analysis, patients showed a compromised contribution of the cortical salience network to the putamen and compromised contribution of the putamen to the default mode network. Results were corrected for multiple comparisons at the cluster level with primary voxel-wise threshold p < 0.005 for the salience network contribution, but liberal primary threshold p < 0.05 was used in other group comparisons. If replicated in larger studies, these findings may help unify and extend current hypotheses on dopaminergic dysfunction, salience processing and pathogenesis of delusions.
Collapse
Affiliation(s)
- Tuukka T Raij
- Department of Psychiatry, Helsinki University and Helsinki University Central Hospital, Välskärinkatu 12, P.O Box 590, 00029 HUS, Finland; Department of Neuroscience and Biomedical engineering and Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, P.O Box 13000, 00076 AALTO, Finland.
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical engineering and Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, P.O Box 13000, 00076 AALTO, Finland; Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland; Institute of Behavioural Sciences, Siltavuorenpenger 1-5, P.O. Box 9, 00014 University of Helsinki, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Central Hospital, Välskärinkatu 12, P.O Box 590, 00029 HUS, Finland; Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland
| | - Jaana Suvisaari
- Department of Health, Mental Health Unit, National Institute for Health and Welfare, Helsinki, P.O. Box 30, 00271 Helsinki, Finland
| |
Collapse
|
41
|
Reed P, Randell J. Altered time-perception performance in individuals with high schizotypy levels. Psychiatry Res 2014; 220:211-6. [PMID: 25169891 DOI: 10.1016/j.psychres.2014.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022]
Abstract
The possibility of altered time-perception in high schizotypy scorers, as postulated through previous differences shown in performance between high and low scorers in schizotypy on schedules of reinforcement with temporal elements, was examined using a series of retrospective timing tasks. Three stimuli ratio manipulations were made across two experiments, and, using an adjusted version of the bisection-point method for data analysis, results showed that high scorers on the Unusual Experiences subscale of the O-LIFE(B) estimated the mid point of the stimulus range to be at a significantly longer interval than low scorers. This was true when the ratios between "short" and "long" standard stimuli were 4:1 (Experiment 1), 3:1 and 2:1 (Experiment 2). These findings are consistent with the notion of altered time-perception for high schizotypals.
Collapse
Affiliation(s)
- Phil Reed
- Psychology Department, Swansea University, Swansea, U.K.
| | - Jordan Randell
- Psychology Department, University of Winchester, Winchester, U.K
| |
Collapse
|
42
|
Gopal S, Xu H, Bossie C, Burón JA, Fu DJ, Savitz A, Nuamah I, Hough D. Incidence of tardive dyskinesia: a comparison of long-acting injectable and oral paliperidone clinical trial databases. Int J Clin Pract 2014; 68:1514-22. [PMID: 25358867 PMCID: PMC4265240 DOI: 10.1111/ijcp.12493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/09/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To assess the tardive dyskinesia (TD) rate in studies of once-monthly long-acting injectable (LAI) paliperidone palmitate (PP) and once-daily oral paliperidone extended release (Pali ER). METHODS Completed schizophrenia and bipolar studies for PP and Pali ER (≥ 6 month duration with retrievable patient-level data) were included in this post hoc analysis. Schooler-Kane research criteria were applied using Abnormal Involuntary Movement Scale (AIMS) scores to categorise probable (qualifying AIMS scores persisting for ≥ 3 months) and persistent TD (score persisting ≥ 6 months). Spontaneously reported TD adverse events (AEs) were also summarised. Impact of exposure duration on dyskinesia (defined as AIMS total score ≥ 3) was assessed by summarising the monthly dyskinesia rate. RESULTS In the schizophrenia studies, TD rates for PP (four studies, N = 1689) vs. Pali ER (five studies, N = 2054), were: spontaneously reported AE, 0.18% (PP) vs. 0.10% (Pali ER); probable TD, 0.12% (PP) vs. 0.19% (Pali ER) and persistent TD, 0.12% (PP) vs. 0.05% (Pali ER). In the only bipolar study identified [Pali ER (N = 614)], TD rate was zero (spontaneously reported AE reporting, probable and persistent TD assessments). Dyskinesia rate was higher within the first month of treatment with both PP (13.1%) and Pali ER (11.7%) and steadily decreased over time (months 6-7: PP: 5.4%; Pali ER: 6.4%). Mean exposure: PP, 279.6 days; Pali ER, 187.2 days. CONCLUSIONS Risk of TD with paliperidone was low (< 0.2%), regardless of the formulation (oral or LAI), in this clinical trial dataset. Longer cumulative exposure does not appear to increase the risk of dyskinesias.
Collapse
Affiliation(s)
- S Gopal
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Su P, Li S, Chen S, Lipina TV, Wang M, Lai TKY, Lee FHF, Zhang H, Zhai D, Ferguson SSG, Nobrega JN, Wong AHC, Roder JC, Fletcher PJ, Liu F. A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron 2014; 84:1302-16. [PMID: 25433637 DOI: 10.1016/j.neuron.2014.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 12/17/2022]
Abstract
Current antipsychotic drugs primarily target dopamine D2 receptors (D2Rs), in conjunction with other receptors such as those for serotonin. However, these drugs have serious side effects such as extrapyramidal symptoms (EPS) and diabetes. Identifying a specific D2R signaling pathway that could be targeted for antipsychotic effects, without inducing EPS, would be a significant improvement in the treatment of schizophrenia. We report here that the D2R forms a protein complex with Disrupted in Schizophrenia 1 (DISC1) that facilitates D2R-mediated glycogen synthase kinase (GSK)-3 signaling and inhibits agonist-induced D2R internalization. D2R-DISC1 complex levels are increased in conjunction with decreased GSK-3α/β (Ser21/9) phosphorylation in both postmortem brain tissue from schizophrenia patients and in Disc1-L100P mutant mice, an animal model with behavioral abnormalities related to schizophrenia. Administration of an interfering peptide that disrupts the D2R-DISC1 complex successfully reverses behaviors relevant to schizophrenia but does not induce catalepsy, a strong predictor of EPS in humans.
Collapse
Affiliation(s)
- Ping Su
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Shupeng Li
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sheng Chen
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Terence K Y Lai
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Frankie H F Lee
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Hailong Zhang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Dongxu Zhai
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Stephen S G Ferguson
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 5 K8, Canada
| | - José N Nobrega
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Departments of Psychology, Toronto, ON M5S 2J7, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Albert H C Wong
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Paul J Fletcher
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Departments of Psychology, Toronto, ON M5S 2J7, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; Psychiatry, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
44
|
Yoon JH, Westphal AJ, Minzenberg MJ, Niendam T, Ragland JD, Lesh T, Solomon M, Carter CS. Task-evoked substantia nigra hyperactivity associated with prefrontal hypofunction, prefrontonigral disconnectivity and nigrostriatal connectivity predicting psychosis severity in medication naïve first episode schizophrenia. Schizophr Res 2014; 159:521-6. [PMID: 25266549 PMCID: PMC6921934 DOI: 10.1016/j.schres.2014.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023]
Abstract
The widely cited prefrontal dysfunction - excess subcortical dopamine model of schizophrenia posits that prefrontal deficits give rise to cognitive impairments and the disinhibition of subcortical dopamine release underlying psychosis. While this has been one of the most influential schizophrenia models, only a handful of studies have provided evidence supporting it directly in patients with schizophrenia. We previously demonstrated task-evoked substantia nigra hyperactivity in the context of prefrontal hypofunction and prefrontonigral functional disconnectivity. In addition, nigrostriatal functional connectivity was identified as a potential marker of psychosis. Because patients in this prior study had chronic schizophrenia and were treated with antipsychotics, in the present study we tested whether these findings were confounded by illness chronicity and medication effects by seeking to reproduce these findings in an independent sample of antipsychotic naïve, first episode (FE) patients. We compared event-related fMRI activations from 12 FE patients with 15 demographically matched healthy control subjects during cognitive testing. We found substantia nigra hyperactivity associated with prefrontal hypofunction and prefrontonigral functional disconnectivity, as well as the magnitude of nigrostriatal functional connectivity positively correlating with severity of psychosis. This study adds to the body of evidence supporting the prefrontal-dopamine model of schizophrenia and further validates nigrostriatal functional connectivity as a marker of psychosis.
Collapse
Affiliation(s)
- Jong H. Yoon
- Stanford University, Department of Psychiatry and the Behavioral Sciences,Veterans Affairs Palo Alto Health Care System
| | | | - Michael J. Minzenberg
- University of California San Francisco, Department of Psychiatry,San Francisco Veterans Affairs Medical Center
| | - Tara Niendam
- University of California Davis, Department of Psychiatry
| | | | - Tyler Lesh
- University of California Davis, Department of Psychiatry
| | - Marjorie Solomon
- University of California Davis, Department of Psychiatry,University of California Davis, MIND Institute
| | - Cameron S. Carter
- University of California Davis, Department of Psychiatry,University of California Davis, Center for Neuroscience
| |
Collapse
|
45
|
Piel M, Vernaleken I, Rösch F. Positron Emission Tomography in CNS Drug Discovery and Drug Monitoring. J Med Chem 2014; 57:9232-58. [DOI: 10.1021/jm5001858] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Markus Piel
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Ingo Vernaleken
- Department
of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Frank Rösch
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| |
Collapse
|
46
|
Nikolaus S, Hautzel H, Müller HW. Neurochemical dysfunction in treated and nontreated schizophrenia - a retrospective analysis of in vivo imaging studies. Rev Neurosci 2014; 25:25-96. [PMID: 24486731 DOI: 10.1515/revneuro-2013-0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
Abstract
To evaluate the contribution of individual synaptic constituents, all available in vivo imaging studies on schizophrenic patients were subjected to a retrospective analysis. For the pool of drug-naïve, drug-free, and acutely medicated patients, major findings were increases in neostriatal dopamine (DA) synthesis and release and decreases in neostriatal DA transporters and D1 receptors, neostriatal, thalamic, frontal, and parietal D2 receptors, mesencephalic/pontine and temporal 5-HT1A receptors, frontal and temporal HT2A and μ-amino butyric acid (GABA)A receptors. Based on the findings on drug-naïve and drug-free patients, it may be hypothesized that schizophrenia initially is characterized by an impaired mechanism of D2 autoreceptor and heteroreceptor sensitization leading to sensitization instead of desensitization in response to increased levels of neostriatal DA. Neuroleptic medication blocks neostriatal D2 autoreceptor and heteroreceptors, reducing neostriatal DA and disinhibiting DA action mediated by D2 heteroreceptor binding sites. Ultimately, this may result in a restitution of GABA function, leading to a recovery of inhibitory input to the target regions of the descending corticothalamostriatal efferents. Furthermore, a blockade of inhibitory and excitatory neocortical 5-HT function may be inferred, which is likely to reduce (excitatory) DAergic input to the mesolimbic target regions of corticothalamostriatal projections.
Collapse
|
47
|
Williams MR, Galvin K, O'Sullivan B, MacDonald CD, Ching EWK, Turkheimer F, Howes OD, Pearce RKB, Hirsch SR, Maier M. Neuropathological changes in the substantia nigra in schizophrenia but not depression. Eur Arch Psychiatry Clin Neurosci 2014; 264:285-96. [PMID: 24374935 DOI: 10.1007/s00406-013-0479-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/18/2013] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a chronic, disabling neuropsychiatric disorder characterised by positive, negative and cognitive symptoms. The aetiology is not known, although genetic, imaging and pathological studies have implicated both neurodevelopmental and neurodegenerative processes. The substantia nigra is a basal ganglia nucleus responsible for the production of dopamine and projection of dopaminergic neurons to the striatum. The substantia nigra is implicated in schizophrenia as dopamine has been heavily implicated in the dopamine hypothesis of schizophrenia and the prevalent psychotic symptoms and the monoamine theory of depression, and is a target for the development of new therapies. Studies into the major dopamine delivery pathways in the brain will therefore provide a strong base in improving knowledge of these psychiatric disorders. This post-mortem study examines the cytoarchitecture of dopaminergic neurons of the substantia nigra in schizophrenia (n = 12) and depression (n = 13) compared to matched controls (n = 13). Measures of nucleolar volume, nuclear length and nuclear area were taken in patients with chronic schizophrenia and major depressive disorder against matched controls. Astrocyte density was decreased in schizophrenia compared to controls (p = 0.030), with no change in oligodendrocyte density observed. Significantly increased nuclear cross-sectional area (p = 0.017) and length (p = 0.021), and increased nucleolar volume (p = 0.037) in dopaminergic neurons were observed in schizophrenia patients compared with controls, suggesting nuclear pleomorphic changes. No changes were observed in depression cases compared to control group. These changes may reflect pathological alterations in gene expression, neuronal structure and function in schizophrenia.
Collapse
Affiliation(s)
- M R Williams
- Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakurai H, Bies RR, Stroup ST, Keefe RSE, Rajji TK, Suzuki T, Mamo DC, Pollock BG, Watanabe K, Mimura M, Uchida H. Dopamine D2 receptor occupancy and cognition in schizophrenia: analysis of the CATIE data. Schizophr Bull 2013; 39:564-74. [PMID: 22290266 PMCID: PMC3627781 DOI: 10.1093/schbul/sbr189] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Antipsychotic drugs exert antipsychotic effects by blocking dopamine D2 receptors in the treatment of schizophrenia. However, effects of D2 receptor blockade on neurocognitive function still remain to be elucidated. The objective of this analysis was to evaluate impacts of estimated dopamine D2 receptor occupancy with antipsychotic drugs on several domains of neurocognitive function in patients with schizophrenia in the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) trial. METHODS The dataset from the CATIE trial was used in the present analysis. Data were extracted from 410 subjects who were treated with risperidone, olanzapine, or ziprasidone, received assessments for neurocognitive functions (verbal memory, vigilance, processing speed, reasoning, and working memory) and psychopathology, and provided plasma samples for the measurement of plasma antipsychotic concentrations. D2 receptor occupancy levels on the day of neurocognitive assessment were estimated from plasma antipsychotic concentrations, using population pharmacokinetic analysis and our recently developed model. A multivariate general linear model was used to examine effects of clinical and demographic characteristics, including estimated D2 occupancy levels, on neurocognitive functions. RESULTS D2 occupancy levels showed significant associations with the vigilance and the summary scores. Neurocognitive functions, including vigilance, were especially impaired in subjects who showed D2 receptor occupancy level of >77%. DISCUSSION These findings suggest a nonlinear relationship between prescribed antipsychotic doses and overall neurocognitive function and vigilance. This study shows that D2 occupancy above approximately 80% not only increases the risk for extrapyramidal side effects as consistently reported in the literature but also increases the risk for cognitive impairment.
Collapse
Affiliation(s)
- Hitoshi Sakurai
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Robert R. Bies
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, IN,Indiana Clinical and Translational Sciences Institute, Indianapolis, IN
| | - Scott T. Stroup
- College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard S. E. Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Tarek K. Rajji
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - David C. Mamo
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Multimodal Imaging Group, PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bruce G. Pollock
- Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Koichiro Watanabe
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan,Geriatric Mental Health Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,To whom correspondence should be addressed; tel: 81-3-5363-3829, fax: 81-3-5379-0187, e-mail:
| |
Collapse
|
49
|
Striatal and extrastriatal dopamine D2 receptor occupancy by a novel antipsychotic, blonanserin: a PET study with [11C]raclopride and [11C]FLB 457 in schizophrenia. J Clin Psychopharmacol 2013; 33:162-9. [PMID: 23422369 DOI: 10.1097/jcp.0b013e3182825bce] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blonanserin is a novel antipsychotic with high affinities for dopamine D(2) and 5-HT(2A) receptors, and it was recently approved for the treatment of schizophrenia in Japan and Korea. Although double-blind clinical trials have demonstrated that blonanserin has equal efficacy to risperidone, and with a better profile especially with respect to prolactin elevation, its profile of in vivo receptor binding has not been investigated in patients with schizophrenia. Using positron emission tomography (PET), we measured striatal and extrastriatal dopamine D(2) receptor occupancy by blonanserin in 15 patients with schizophrenia treated with fixed doses of blonanserin (ie, 8, 16, and 24 mg/d) for at least 4 weeks before PET scans, and in 15 healthy volunteers. Two PET scans, 1 with [(11)C]raclopride for the striatum and 1 with [(11)C]FLB 457 for the temporal cortex and pituitary, were performed on the same day. Striatal dopamine D(2) receptor occupancy by blonanserin was 60.8% (3.0%) [mean (SD)] at 8 mg, 73.4% (4.9%) at 16 mg, and 79.7% (2.3%) at 24 mg. The brain/plasma concentration ratio calculated from D(2) receptor occupancy in the temporal cortex and pituitary was 3.38, indicating good blood-brain barrier permeability. This was the first study to show clinical daily dose amounts of blonanserin occupying dopamine D(2) receptors in patients with schizophrenia. The clinical implications obtained in this study were the optimal therapeutic dose range of 12.9 to 22.1 mg/d of blonanserin required for 70% to 80% dopamine D(2) receptor occupancy in the striatum, and the good blood-brain barrier permeability that suggested a relatively lower risk of hyperprolactinemia.
Collapse
|
50
|
Sorg C, Manoliu A, Neufang S, Myers N, Peters H, Schwerthöffer D, Scherr M, Mühlau M, Zimmer C, Drzezga A, Förstl H, Bäuml J, Eichele T, Wohlschläger AM, Riedl V. Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 2013; 39:387-95. [PMID: 22241165 PMCID: PMC3576165 DOI: 10.1093/schbul/sbr184] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Striatal dysfunction is thought to be a fundamental element in schizophrenia. Striatal dopamine dysfunction impacts on reward processing and learning and is present even at rest. Here, we addressed the question whether and how spontaneous neuronal activity in the striatum is altered in schizophrenia. We therefore assessed intrinsic striatal activity and its relation with disorder states and symptom dimensions in patients with schizophrenia. We performed resting-state functional (rs-fMRI) and structural magnetic resonance imaging as well as psychometric assessment in 21 schizophrenic patients during psychosis. On average 9 months later, we acquired follow-up data during psychotic remission and with comparable levels of antipsychotic medication. Twenty-one age- and sex-matched healthy controls were included in the study. Independent component analysis of fMRI data yielded spatial maps and time-courses of coherent ongoing blood-oxygen-level-dependent signal fluctuations, which were used for group comparisons and correlation analyses with scores of the positive and negative syndrome scale. During psychosis, coherent intrinsic activity of the striatum was increased in the dorsal part and correlated with positive symptoms such as delusion and hallucination. In psychotic remission of the same patients, activity of the ventral striatum was increased and correlated with negative symptoms such as emotional withdrawal and blunted affect. Results were controlled for volumetric and medication effects. These data provide first evidence that in schizophrenia intrinsic activity is changed in the striatum and corresponds to disorder states and symptom dimensions.
Collapse
Affiliation(s)
| | - Andrei Manoliu
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany
| | - Susanne Neufang
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany
| | - Nicholas Myers
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany,Munich Center for Neurosciences Brain and Mind, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Henning Peters
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany
| | - Dirk Schwerthöffer
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Förstl
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef Bäuml
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Tom Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway,The Mind Research Network, Albuquerque, NM
| | - Afra M. Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany,Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Valentin Riedl
- To whom correspondence should be addressed; tel: 49-89-4140-7631, fax: 49-89-4140-7665, e-mail:
| |
Collapse
|