1
|
Guagliardo E, Singh D, Thakkar J, Rodriguez W, Pastrana F, Qaqish H, Chand P. Reversible Bilateral Vision Loss: An Unusual Presentation of Wernicke-Korsakoff Syndrome. Cureus 2024; 16:e64613. [PMID: 39149664 PMCID: PMC11324805 DOI: 10.7759/cureus.64613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Neuro-ophthalmic manifestations of Wernicke encephalopathy (WE) are uncommon and vary from nystagmus, oculomotor palsies, anisocoria, and optic disc edema to vision loss. We describe a case of a 53-year-old woman presenting with subacute bilateral painless vision decline, lower-extremities weakness with impaired ambulation, headache, and abdominal pain. Neurological examination was pertinent for confabulation, bilateral decreased visual acuity with an absent blink to threat, absent afferent pupillary defect and fundus abnormalities, and significant allodynia in bilateral lower extremities. Besides elevated inflammatory marker with an erythrocyte sedimentation rate (ESR) of 130 mm/hr, her infectious, autoimmune, paraneoplastic, and neuromyelitis optica work-up was overall unremarkable. Brain MRI showed abnormal fluid-attenuated inversion recovery (FLAIR) signaling in bilateral mammillary bodies and around periaqueductal gray matter concerning WE. Due to concerns of Wernicke-Korsakoff syndrome (WKS), parenteral high-dose thiamine was initiated with significant clinical improvement. The patient was also later found to have a positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody, which was deemed false positive given the atypical phenotype and symptomatic improvement with thiamine supplementation. This case encourages the consideration of vision loss as a manifestation of WKS, especially in patients who have risk factors. Testing serum levels of thiamine is strongly encouraged; however, initiating empiric treatment is advocated for high clinical suspicion due to its reversible nature and minimal risk for side effects.
Collapse
Affiliation(s)
- Emily Guagliardo
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Divya Singh
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Jasmine Thakkar
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Wilson Rodriguez
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | | | - Hanan Qaqish
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Pratap Chand
- Neurology, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Qureshi ZA, Ponnachan D, Ghazanfar H, Acherjee T, Altaf F, Dhallu M. A Case Report of Wernicke’s Encephalopathy Disguised As Limbic Encephalitis: A Clinical Puzzle. Cureus 2022; 14:e28070. [PMID: 36127954 PMCID: PMC9477437 DOI: 10.7759/cureus.28070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
Wernicke's encephalopathy (WE) is the presence of neurological symptoms in the central nervous system caused by thiamine (Vitamin B1) deficiency. It is an acute clinical condition characterized by confusion, ataxia, and ophthalmoplegia triad. WE is most commonly observed in chronic alcohol users, while it can also present in non-alcoholics. We present a 33-year-old man with alcohol-induced WE who presented with altered mental status and fever. His initial diagnosis was skewed towards bacterial meningitis and limbic encephalitis, but MRI findings were consistent with WE. The patient responded promptly to intravenous (IV) thiamine infusion, and his mental status changed significantly. Repeat EEG in 15 days shows complete recovery with normal brain wave activity. Untreated WE is a significant cause of permanent neurological morbidity and mortality, easily preventable. High suspicion of WE should always be entertained, especially when patients have a known history of alcohol use. Early initiation of IV thiamine could prevent the consequences. Hence, it is essential to raise awareness of WE to take measures without delay and reduce mortality and morbidity with an improved prognosis.
Collapse
|
3
|
Smith CC, Sheedy DL, McEwen HP, Don AS, Kril JJ, Sutherland GT. Lipidome changes in alcohol-related brain damage. J Neurochem 2021; 160:271-282. [PMID: 34699608 DOI: 10.1111/jnc.15530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Alcohol-related brain injury is characterized by cognitive deficits and brain atrophy with the prefrontal cortex particularly susceptible. White matter in the human brain is lipid rich and a major target of damage from chronic alcohol abuse; yet, there is sparse information on how these lipids are affected. Here, we used untargeted lipidomics as a discovery tool to describe these changes in the prefrontal, middle temporal, and visual cortices of human subjects with alcohol use disorder and controls. Significant changes to the lipidome, predominantly in the prefrontal and visual cortices, and differences between the white and grey matter of each brain region were identified. These effects include broad decreases to phospholipids and ceramide, decreased polyunsaturated fatty acids, decreased sphingadiene backbones, and selective decreases in cholesteryl ester fatty acid chains. Our findings show that chronic alcohol abuse results in selective changes to the neurolipidome, which likely reflects both the directs effects on the brain and concurrent effects on the liver.
Collapse
Affiliation(s)
- Caine C Smith
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Donna L Sheedy
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Holly P McEwen
- Centenery Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S Don
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Centenery Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jillian J Kril
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Greg T Sutherland
- Faculty of Medicine and Health, School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Guo F, Zhang YF, Liu K, Huang X, Li RX, Wang SY, Wang F, Xiao L, Mei F, Li T. Chronic Exposure to Alcohol Inhibits New Myelin Generation in Adult Mouse Brain. Front Cell Neurosci 2021; 15:732602. [PMID: 34512271 PMCID: PMC8429601 DOI: 10.3389/fncel.2021.732602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022] Open
Abstract
Chronic alcohol consumption causes cognitive impairments accompanying with white matter atrophy. Recent evidence has shown that myelin dynamics remain active and are important for brain functions in adulthood. For example, new myelin generation is required for learning and memory functions. However, it remains undetermined whether alcohol exposure can alter myelin dynamics in adulthood. In this study, we examine the effect of chronic alcohol exposure on myelin dynamics by using genetic approaches to label newly generated myelin (NG2-CreERt; mT/mG). Our results indicated that alcohol exposure (either 5% or 10% in drinking water) for 3 weeks remarkably reduced mGFP + /NG2- new myelin and mGFP + /CC1 + new oligodendrocytes in the prefrontal cortex and corpus callosum of 6-month-old NG2-CreERt; mT/mG mice as compared to controls without changing the mGFP + /NG2 + oligodendrocyte precursor cells (OPCs) density, suggesting that alcohol exposure may inhibit oligodendrocyte differentiation. In support with these findings, the alcohol exposure did not significantly alter apoptotic cell number or overall MBP expression in the brains. Further, the alcohol exposure decreased the histone deacetylase1 (HDAC1) expression in mGFP + /NG2 + OPCs, implying epigenetic mechanisms were involved in the arrested OPC differentiation. Together, our results indicate that chronic exposure to alcohol can inhibit myelinogenesis in the adult mouse brain and that may contribute to alcohol-related cognitive impairments.
Collapse
Affiliation(s)
- Feng Guo
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China.,The First Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi-Fan Zhang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China.,The First Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kun Liu
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui-Xue Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu-Yue Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Araujo I, Henriksen A, Gamsby J, Gulick D. Impact of Alcohol Abuse on Susceptibility to Rare Neurodegenerative Diseases. Front Mol Biosci 2021; 8:643273. [PMID: 34179073 PMCID: PMC8220155 DOI: 10.3389/fmolb.2021.643273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the prevalence and well-recognized adverse effects of prenatal alcohol exposure and alcohol use disorder in the causation of numerous diseases, their potential roles in the etiology of neurodegenerative diseases remain poorly characterized. This is especially true of the rare neurodegenerative diseases, for which small population sizes make it difficult to conduct broad studies of specific etiological factors. Nonetheless, alcohol has potent and long-lasting effects on neurodegenerative substrates, at both the cellular and systems levels. This review highlights the general effects of alcohol in the brain that contribute to neurodegeneration across diseases, and then focuses on specific diseases in which alcohol exposure is likely to play a major role. These specific diseases include dementias (alcohol-induced, frontotemporal, and Korsakoff syndrome), ataxias (cerebellar and frontal), and Niemann-Pick disease (primarily a Type B variant and Type C). We conclude that there is ample evidence to support a role of alcohol abuse in the etiology of these diseases, but more work is needed to identify the primary mechanisms of alcohol's effects.
Collapse
Affiliation(s)
- Iskra Araujo
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Amy Henriksen
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Joshua Gamsby
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| | - Danielle Gulick
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| |
Collapse
|
6
|
Chatterton BJ, Nunes PT, Savage LM. The Effect of Chronic Ethanol Exposure and Thiamine Deficiency on Myelin-related Genes in the Cortex and the Cerebellum. Alcohol Clin Exp Res 2020; 44:2481-2493. [PMID: 33067870 DOI: 10.1111/acer.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long-term alcohol consumption has been linked to structural and functional brain abnormalities. Furthermore, with persistent exposure to ethanol (EtOH), nutrient deficiencies often develop. Thiamine deficiency is a key contributor to alcohol-related brain damage and is suspected to contribute to white matter pathology. The expression of genes encoding myelin proteins in several cortical brain regions is altered with EtOH exposure. However, there is limited research regarding the impact of thiamine deficiency on myelin dysfunction. METHODS A rat model was used to assess the impact of moderate chronic EtOH exposure (CET; 20% EtOH in drinking water for 1 or 6 months), pyrithiamine-induced thiamine deficiency treatment (PTD), both conditions combined (CET-PTD), or CET with thiamine injections (CET + T) on myelin-related gene expression (Olig1, Olig2, MBP, MAG, and MOG) in the frontal and parietal cortices and the cerebellum. RESULTS The CET-PTD treatments caused the greatest suppression in myelin-related genes in the cortex. Specifically, the parietal cortex was the region that was most susceptible to PTD-CET-induced alterations in myelin-related genes. In addition, PTD treatment, with and without CET, caused minor fluctuations in the expression of several myelin-related genes in the frontal cortex. In contrast, CET alone and PTD alone suppressed several myelin-related genes in the cerebellum. Regardless of the region, there was significant recovery of myelin-related genes with extended abstinence and/or thiamine restoration. CONCLUSION Moderate chronic EtOH alone had a minor effect on the suppression of myelin-related genes in the cortex; however, when combined with thiamine deficiency, the reduction was amplified. There was a suppression of myelin-related genes following long-term EtOH and thiamine deficiency in the cerebellum. However, the suppression in the myelin-related genes mostly occurred 24 h after EtOH removal or following thiamine restoration; within 3 weeks of abstinence or thiamine recovery, gene expression rebounded.
Collapse
Affiliation(s)
- Bradley J Chatterton
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Polliana T Nunes
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| | - Lisa M Savage
- From the, Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
7
|
Wang L, Li M, Bu Q, Li H, Xu W, Liu C, Gu H, Zhang J, Wan X, Zhao Y, Cen X. Chronic alcohol causes alteration of lipidome profiling in brain. Toxicol Lett 2019; 313:19-29. [DOI: 10.1016/j.toxlet.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
|
8
|
Sex Differences in the Effect of Alcohol Drinking on Myelinated Axons in the Anterior Cingulate Cortex of Adolescent Rats. Brain Sci 2019; 9:brainsci9070167. [PMID: 31315270 PMCID: PMC6680938 DOI: 10.3390/brainsci9070167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cognitive deficits associated with teenage drinking may be due to disrupted myelination of prefrontal circuits. To better understand how alcohol affects myelination, male and female Wistar rats (n = 7-9/sex/treatment) underwent two weeks of intermittent operant self-administration of sweetened alcohol or sweetened water early in adolescence (postnatal days 28-42) and we tested for macro- and microstructural changes to myelin. We previously reported data from the males of this study showing that alcohol drinking reduced myelinated fiber density in layers II-V of the anterior cingulate division of the medial prefrontal cortex (Cg1); herein, we show that myelinated fiber density was not significantly altered by alcohol in females. Alcohol drinking patterns were similar in both sexes, but males were in a pre-pubertal state for a larger proportion of the alcohol exposure period, which may have contributed to the differential effects on myelinated fiber density. To gain more insight into how alcohol impacts myelinated axons, brain sections from a subset of these animals (n = 6/sex/treatment) were used for microstructural analyses of the nodes of Ranvier. Confocal analysis of nodal domains, flanked by immunofluorescent-labeled contactin-associated protein (Caspr) clusters, indicated that alcohol drinking reduced nodal length-to-width ratios in layers II/III of the Cg1 in both sexes. Despite sex differences in the underlying cause (larger diameter axons after alcohol in males vs. shorter nodal lengths after alcohol in females), reduced nodal ratios could have important implications for the speed and integrity of neural transmission along these axons in both males and females. Alcohol-induced changes to myelinated axonal populations in the Cg1 may contribute to long-lasting changes in prefrontal function associated with early onset drinking.
Collapse
|
9
|
Romero-Acevedo L, González-Reimers E, Martín-González MC, González-Díaz A, Quintero-Platt G, Reyes-Suárez P, Martínez-Martínez D, Santolaria-Fernández F. Handgrip strength and lean mass are independently related to brain atrophy among alcoholics. Clin Nutr 2019; 38:1439-1446. [DOI: 10.1016/j.clnu.2018.06.965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 02/03/2023]
|
10
|
Stoica SI, Tănase I, Ciobanu V, Onose G. Initial researches on neuro-functional status and evolution in chronic ethanol consumers with recent traumatic spinal cord injury. J Med Life 2019; 12:97-112. [PMID: 31406510 PMCID: PMC6685305 DOI: 10.25122/jml-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/01/2022] Open
Abstract
We found differences related to the neuro-functional deficiency and clinical progress, among non-consumers and chronic consumers of ethanol, with recent traumatic spinal cord injury (SCI). We present a synthesis of related data on lesion mechanisms in post-traumatic myelogenous disorders, namely some of the alcohols and their actions on the nervous system, with details on the influences exerted, in such afflictions, by the chronic consumption of ethanol. The subject is not frequently approached - according to a literature review with systematic elements, which we have done before - thus constituting a niche that deserves to be further explored. The applicative component of the article highlights statistical data resulted from a retrospective study regarding the specialized casuistry from the Neuromuscular Recovery Clinic of the "Bagdasar Arseni" Emergency Clinical Hospital, following the comparative analysis of two groups of patients with recent SCI: non-consumers - the control group (n=780) - and chronic ethanol consumers - the study group (n=225) - with the addition of a prospective pilot component. Data processing has been achieved with SPSS 24. The American Spinal Injury Association Impairment Scale (AIS) mean motor scores differ significantly (tests: Mann-Whitney and t) between the control and study group in favor of the second, both at admission (p<0.001) and at discharge (p<0.001). AIS mean sensitive scores differ between the two lots, and also in favor of the study, but statistically significant only at discharge (p=0.048); the difference at admission is not significant (p=0.51) - possibly because of alcoholic-nutritional polyneuropathy. These findings, with numerous related details, later presented in the text, are surprising, which requires further studies and attempts of understanding.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Ioana Tănase
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest (PUB), Bucharest, Romania
| | - Gelu Onose
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| |
Collapse
|
11
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
12
|
Heirene R, John B, Roderique-Davies G. Identification and Evaluation of Neuropsychological Tools Used in the Assessment of Alcohol-Related Cognitive Impairment: A Systematic Review. Front Psychol 2018; 9:2618. [PMID: 30619013 PMCID: PMC6305333 DOI: 10.3389/fpsyg.2018.02618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Neuropsychological assessment is central to identifying and determining the extent of Alcohol-Related Cognitive Impairment (ARCI). The present systematic review aimed to synthesize and discuss the evidence appraising the neuropsychological tests used to assess ARCI in order to support clinicians and researchers in selecting appropriate tests for use with this population. Methods: We searched for studies investigating the psychometric, diagnostic and practical values of tools used in the screening, diagnosis, and assessment of Korsakoff's Syndrome (KS), Alcohol-Related Dementia (ARD), and those with a specific diagnosis of Alcohol-Related Brain Damage (ARBD). The following databases were searched in March 2016 and again in August 2018: MEDLINE, EMBASE, Psych-INFO, ProQuest Psychology, and Science Direct. Study quality was assessed using a checklist designed by the authors to evaluate the specific factors contributing to robust and clearly reported studies in this area. A total of 43 studies were included following the screening of 3646 studies by title and abstract and 360 at full-text. Meta-analysis was not appropriate due to heterogeneity in the tests and ARCI samples investigated in the studies reviewed. Instead, review findings were narratively synthesized and divided according to five domains of assessment: cognitive screening, memory, executive function, intelligence and test batteries, and premorbid ability. Effect sizes (d) were calculated to supplement findings. Results: Overall, several measures demonstrated sensitivity to the cognitive deficits associated with chronic alcoholism and an ability to differentiate between gradations of impairment. However, findings relating to the other psychometric qualities of the tests, including those important for the accurate assessment and monitoring of ARCI (e.g., test-retest reliability), were entirely absent or limited. Additionally, the synthesis of neuropsychological outcomes presented here supports the recent impetus for a move away from discrete diagnoses (e.g., KS, ARD) and the distinctions between them toward more broad and inclusive diagnostic conceptualizations of ARCI, thereby recognizing the heterogeneity in presentation. Conclusions: Based on the evidence reviewed, provisional recommendations for appropriate tests in each domain of assessment are presented, though further validation of most tests is warranted. Review findings can support efficient and evidenced-based test-selection and guide future research in this area.
Collapse
Affiliation(s)
- Robert Heirene
- Addictions Research Group, University of South Wales, School of Psychology & Therapeutic Studies, Pontypridd, United Kingdom
| | | | | |
Collapse
|
13
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
14
|
Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans JC, Pike GB, Veijola J, Paus T. Structural properties of the human corpus callosum: Multimodal assessment and sex differences. Neuroimage 2017; 152:108-118. [DOI: 10.1016/j.neuroimage.2017.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022] Open
|
15
|
Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: how poor nutrition contributes to the alcoholic syndrome, as Marchiafava–Bignami disease. Eur J Clin Nutr 2017; 71:580-586. [DOI: 10.1038/ejcn.2016.267] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 12/03/2016] [Indexed: 11/09/2022]
|
16
|
Papp-Peka A, Tong M, Kril JJ, De La Monte SM, Sutherland GT. The Differential Effects of Alcohol and Nicotine-Specific Nitrosamine Ketone on White Matter Ultrastructure. Alcohol Alcohol 2017; 52:165-171. [PMID: 28182194 PMCID: PMC6075461 DOI: 10.1093/alcalc/agw067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/04/2023] Open
Abstract
Aims The chronic consumption of alcohol is known to result in neurodegeneration and impairment of cognitive function. Pathological and neuroimaging studies have confirmed that brain atrophy in alcoholics is mainly due to widespread white matter (WM) loss with neuronal loss restricted to specific regions, such as the prefrontal cortex. Neuroimaging studies of cigarette smokers also suggest that chronic inhalation of tobacco smoke leads to brain atrophy, although the neurotoxic component is unknown. As a high proportion of chronic alcoholics also smoke cigarettes it has been hypothesized that at least some alcohol-related brain damage is due to tobacco smoke exposure. Methods 39 Long Evans rats were subjected to 8 weeks exposure to alcohol and/or 5 weeks co-exposure to nicotine-specific nitrosamine ketone (NNK), a proxy for tobacco smoke. Their frontal WM was then assayed with transmission electron microscopy. Results NNK and ethanol co-exposure had a synergistic effect in decreasing myelinated fibre density. Furthermore, NNK treatment led to a greater reduction in myelin sheath thickness than ethanol whereas only the ethanol-treated animals showed a decrease in unmyelinated fibre density. Conclusion These data suggest that NNK causes WM degeneration, an effect that is exacerbated by alcohol, but unlike alcohol, it has little impact on the neuronal components of the brain.
Collapse
Affiliation(s)
- A Papp-Peka
- Charles Perkins Centre, Discipline of Pathology, School of Medical Sciences, The University of Sydney, Johns Hopkins Drive, Camperdown NSW 2050, Australia
| | | | - J J Kril
- Charles Perkins Centre, Discipline of Pathology, School of Medical Sciences, The University of Sydney, Johns Hopkins Drive, Camperdown NSW 2050, Australia
| | | | - G T Sutherland
- Charles Perkins Centre, Discipline of Pathology, School of Medical Sciences, The University of Sydney, Johns Hopkins Drive, Camperdown NSW 2050, Australia
| |
Collapse
|
17
|
Perry CJ. Cognitive Decline and Recovery in Alcohol Abuse. J Mol Neurosci 2016; 60:383-389. [DOI: 10.1007/s12031-016-0798-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023]
|
18
|
Zahr NM, Sullivan EV, Rohlfing T, Mayer D, Collins AM, Luong R, Pfefferbaum A. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo. Psychopharmacology (Berl) 2016; 233:2675-86. [PMID: 27129864 PMCID: PMC4919142 DOI: 10.1007/s00213-016-4313-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). OBJECTIVES This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. METHODS Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. RESULTS Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. CONCLUSIONS These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy M Collins
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| |
Collapse
|
19
|
Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1543809. [PMID: 26949445 PMCID: PMC4753689 DOI: 10.1155/2016/1543809] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.
Collapse
|
20
|
Vedder LC, Hall JM, Jabrouin KR, Savage LM. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcohol Clin Exp Res 2015; 39:2143-53. [PMID: 26419807 PMCID: PMC4624484 DOI: 10.1111/acer.12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition, and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol-related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke-Korsakoff syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol (EtOH)- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. METHODS Adult rats were randomly assigned to 1 of 6 treatment conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH over 6 months; severe pyrithiamine-induced TD (PTD-moderate acute stage); moderate PTD (PTD-early acute stage); moderate PTD followed by CET (PTD-CET); moderate PTD during CET (CET-PTD); and pair-fed (PF) control. After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. RESULTS Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility, and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone, and the synergistic effects of moderate TD with CET lead to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. CONCLUSIONS These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD.
Collapse
Affiliation(s)
- Lindsey C Vedder
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Joseph M Hall
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Kimberly R Jabrouin
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
21
|
Manzardo AM, Pendleton T, Poje A, Penick EC, Butler MG. Change in psychiatric symptomatology after benfotiamine treatment in males is related to lifetime alcoholism severity. Drug Alcohol Depend 2015; 152:257-63. [PMID: 25908323 PMCID: PMC4550087 DOI: 10.1016/j.drugalcdep.2015.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/19/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe alcoholism can be associated with significant nutritional and vitamin deficiency, especially vitamin B1 (thiamine) which is associated with neurological deficits impacting mood and cognition. Alcohol consumption was reduced among female but not male alcoholics after supplementation with the high potency thiamine analog benfotiamine (BF). We examined the relationship between lifetime alcoholism severity, psychiatric symptoms and response to BF among the alcohol dependent men from this cohort. METHODS Eighty-five adult men (mean age=48±8 years) meeting DSM-IV-TR criteria for a current alcohol use disorder who were abstinent <30days participated in a randomized, double-blind, placebo-controlled trial of 600mg BF vs placebo (PL) for 6 months. Psychometric testing included a derived Lifetime Alcoholism Severity Score (AS), Symptom Checklist 90R (SCL-90R), and the Barratt Impulsivity Scale (BIS) at baseline and at 6 months. RESULTS Baseline SCL-90-R scale scores for men with high alcoholism severity (AS≥24; N=46 HAS) were significantly greater than for men with low alcoholism severity (AS<24; N=39 LAS), but BIS scores did not differ. MANOVA modeling at follow-up (N=50 completed subjects) identified a significant treatment effect (F=2.5, df=10, p<0.03) and treatment×alcoholism severity level interaction (F=2.5, dfnum=10, dfden=30, p<0.03) indicating reduced SCL-90-R scores among BF treated, HAS males. Above normal plasma thiamine levels at follow-up predicted reduced depression scores in a BF-treated subset (F=3.2, p<0.09, N=26). CONCLUSION BF appears to reduce psychiatric distress and may facilitate recovery in severely affected males with a lifetime alcohol use disorder and should be considered for adjuvant therapy in alcohol rehabilitation. TRIAL REGISTRATION #NCT00680121 High Dose Vitamin B1 to Reduce Abusive Alcohol Use.
Collapse
|
22
|
Segobin S, Ritz L, Lannuzel C, Boudehent C, Vabret F, Eustache F, Beaunieux H, Pitel A. Integrity of white matter microstructure in alcoholics with and without Korsakoff's syndrome. Hum Brain Mapp 2015; 36:2795-808. [PMID: 25873017 PMCID: PMC6869167 DOI: 10.1002/hbm.22808] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/11/2022] Open
Abstract
Alcohol dependence results in two different clinical forms: "uncomplicated" alcoholism (UA) and Korsakoff's syndrome (KS). Certain brain networks are especially affected in UA and KS: the frontocerebellar circuit (FCC) and the Papez circuit (PC). Our aims were (1) to describe the profile of white matter (WM) microstructure in FCC and PC in the two clinical forms, (2) to identify those UA patients at risk of developing KS using their WM microstructural integrity as a biomarker. Tract-based spatial statistics and nonparametric voxel-based permutation tests were used to compare diffusion tensor imaging (DTI) data in 7 KS, 20 UA, and 14 healthy controls. The two patient groups were also pooled together and compared to controls. k-means classifications were then performed on mean fractional anisotropy values of significant clusters across all subjects for two fiber tracts from the FCC (the middle cerebellar peduncle and superior cerebellar peduncle) and two tracts from the PC (fornix and cingulum). We found graded effects of WM microstructural abnormalities in the PC of UA and KS. UA patients classified at risk of developing KS using fiber tracts of the PC from DTI data also had the lowest scores of episodic memory. That finding suggests that WM microstructure could be used as a biomarker for early detection of UA patients at risk of developing KS.
Collapse
Affiliation(s)
- Shailendra Segobin
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Ludivine Ritz
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Coralie Lannuzel
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Céline Boudehent
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
- Centre Hospitalier Universitaire, Service D'addictologieCaenFrance
| | - François Vabret
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
- Centre Hospitalier Universitaire, Service D'addictologieCaenFrance
| | - Francis Eustache
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Hélène Beaunieux
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| | - Anne‐Lise Pitel
- INSERMCaenFrance
- Université De Caen Basse‐NormandieCaenFrance
- Ecole Pratique Des Hautes EtudesCaenFrance
- Centre Hospitalier UniversitaireCaenFrance
| |
Collapse
|
23
|
Straube A, Klein M, Erbguth F, Maschke M, Klawe C, Sander D, Hilz MJ, Ziemssen T, Klucken J, Kohl Z, Winkler J, Bettendorf M, Staykov D, Berrouschot J, Dörfler A. Metabolische Störungen. NEUROINTENSIV 2015. [PMCID: PMC7175475 DOI: 10.1007/978-3-662-46500-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Im folgenden Kapitel werden die verschiedenen metabolischen Störungen betrachtet. Zunächst wird auf die allgemeinen und spezifischen neurologischen Komplikationen bei Organtransplantation eingegangen. Dann geht es um die metabolischen Enzephalopathien: Störungen der Gehirntätigkeit bei angeborenen und erworbenen Stoffwechselerkrankungen im engeren Sinn, Elektrolytstörungen, Hypovitaminosen, zerebrale Folgen einzelner Organdysfunktionen, zerebrale Hypoxien, Endotheliopathien und Mitochondropathien. Anschließend werden das Alkoholdelir und die Wernicke-Enzephalopathie erörtert. Bei zahlreichen akuten Erkrankungen von Gehirn, Rückenmark und peripherem Nervensystem treten typische Störungen vegetativer Systeme auf, deren Erkennung und Therapie insbesondere bei Intensivpatienten eine vitale Bedeutung haben kann: die autonomen Störungen. Bei der zentralen pontinen Myelinolyse kommt es zu einer akuten, vorwiegend fokal-symmetrischen Demyelinisierung im Hirnparenchym. Auch Basalganglienerkrankungen können intensivmedizinisch relevant werden. Und schließlich wird die akute Stressreaktion betrachtet, die aufgrund der vielfältigen metabolischen und endokrinen Veränderungen bei kritischen Erkrankungen entsteht. Gerade das RCVS als neuere Krankheitsentität und wichtige Differenzialdiagnose zur Vaskulitis des ZNS verdient einen eigenen Platz, in diesem Unterkapitel werden ebenfalls verwandte Syndrome wie die hypertensive Enzephalopathie und das PRES abgehandelt.
Collapse
|
24
|
Vargas WM, Bengston L, Gilpin NW, Whitcomb BW, Richardson HN. Alcohol binge drinking during adolescence or dependence during adulthood reduces prefrontal myelin in male rats. J Neurosci 2014; 34:14777-82. [PMID: 25355229 PMCID: PMC4212071 DOI: 10.1523/jneurosci.3189-13.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism.
Collapse
Affiliation(s)
- Wanette M Vargas
- Neuroscience and Behavior Program and Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynn Bengston
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, and
| | - Brian W Whitcomb
- Department of Public Health, University of Massachusetts, Amherst, Massachusetts 01003
| | - Heather N Richardson
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003,
| |
Collapse
|
25
|
de la Monte SM, Kril JJ. Human alcohol-related neuropathology. Acta Neuropathol 2014; 127:71-90. [PMID: 24370929 DOI: 10.1007/s00401-013-1233-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 02/08/2023]
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
26
|
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
27
|
Double-blind, randomized placebo-controlled clinical trial of benfotiamine for severe alcohol dependence. Drug Alcohol Depend 2013; 133:562-70. [PMID: 23992649 PMCID: PMC3818307 DOI: 10.1016/j.drugalcdep.2013.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/16/2022]
Abstract
Alcohol dependence is associated with severe nutritional and vitamin deficiency. Vitamin B1 (thiamine) deficiency erodes neurological pathways that may influence the ability to drink in moderation. The present study examines tolerability of supplementation using the high-potency thiamine analog, benfotiamine (BF), and BF's effects on alcohol consumption in severely affected, self-identified, alcohol dependent subjects. A randomized, double-blind, placebo-controlled trial was conducted on 120 non-treatment seeking, actively drinking, alcohol dependent men and women volunteers (mean age=47 years) from the Kansas City area who met DSM-IV-TR criteria for current alcohol dependence. Subjects were randomized to receive 600 mg benfotiamine or placebo (PL) once daily by mouth for 24 weeks with 6 follow-up assessments scheduled at 4 week intervals. Side effects and daily alcohol consumption were recorded. Seventy (58%) subjects completed 24 weeks of study (N=21 women; N=49 men) with overall completion rates of 55% (N=33) for PL and 63% (N=37) for BF groups. No significant adverse events were noted and alcohol consumption decreased significantly for both treatment groups. Alcohol consumption decreased from baseline levels for 9 of 10 BF treated women after 1 month of treatment compared with 2 of 11 on PL. Reductions in total alcohol consumption over 6 months were significantly greater for BF treated women (BF: N=10, -611 ± 380 standard drinks; PL: N=11, -159 ± 562 standard drinks, p-value=0.02). BF supplementation of actively drinking alcohol dependent men and women was well-tolerated and may discourage alcohol consumption among women. The results do support expanded studies of BF treatment in alcoholism.
Collapse
|
28
|
Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2013; 38:657-71. [PMID: 24117525 PMCID: PMC3959259 DOI: 10.1111/acer.12272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
29
|
Manzardo AM, Gunewardena S, Butler MG. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation. Gene 2013; 526:356-63. [PMID: 23747354 PMCID: PMC3816396 DOI: 10.1016/j.gene.2013.05.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
30
|
Sullivan EV, Pfefferbaum A. Neuropsychology and neuroimaging studies in alcohol-dependence. ACTA ACUST UNITED AC 2013. [DOI: 10.3917/rne.053.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Kapogiannis D, Kisser J, Davatzikos C, Ferrucci L, Metter J, Resnick S. Alcohol consumption and premotor corpus callosum in older adults. Eur Neuropsychopharmacol 2012; 22:704-10. [PMID: 22401959 PMCID: PMC3378772 DOI: 10.1016/j.euroneuro.2012.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/27/2011] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
Abstract
Heavy alcohol consumption is toxic to the brain, especially to the frontal white matter (WM), but whether lesser amounts of alcohol negatively impact the brain WM is unclear. In this study, we examined the relationship between self-reported alcohol consumption and regional WM and grey matter (GM) volume in fifty-six men and thirty-seven women (70+- 7years) cognitively intact participants of the Baltimore Longitudinal Study of Aging (BLSA) with no history of alcohol abuse. We used regional analysis of volumes examined in normalized space (RAVENS) maps methodology for WM and GM segmentation and normalization followed by voxel based morphometry (VBM) implemented in SPM8 to examine the cross-sectional association between alcohol consumption and regional WM (and, separately, GM) volume controlling for age, sex, smoking, blood pressure and dietary thiamine intake. WM VBM revealed that in men, but not in women, higher alcohol consumption was associated with lower volume in premotor frontal corpus callosum. This finding suggests that even moderate amounts of alcohol may be detrimental to corpus callosum and white matter integrity.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- National Institute on Aging/National Institutes of Health (NIA/NIH), Clinical Research Branch, 3001 South Hanover St., Baltimore, MD, 21225, U.S.A., , Telephone: 410-350-3953, Fax: 410-350-7308
| | - Jason Kisser
- National Institute on Aging/National Institutes of Health (NIA/NIH), Clinical Research Branch, 3001 South Hanover St., Baltimore, MD, 21225, U.S.A., , Telephone: 410-350-3953, Fax: 410-350-7308
| | | | - Luigi Ferrucci
- National Institute on Aging/National Institutes of Health (NIA/NIH), Clinical Research Branch, 3001 South Hanover St., Baltimore, MD, 21225, U.S.A., , Telephone: 410-350-3953, Fax: 410-350-7308
| | - Jeffrey Metter
- National Institute on Aging/National Institutes of Health (NIA/NIH), Clinical Research Branch, 3001 South Hanover St., Baltimore, MD, 21225, U.S.A., , Telephone: 410-350-3953, Fax: 410-350-7308
| | - Susan Resnick
- NIA/NIH, Laboratory of personality and cognition (U.S.A.)
| |
Collapse
|
32
|
Fama R, Pitel AL, Sullivan EV. Anterograde episodic memory in Korsakoff syndrome. Neuropsychol Rev 2012; 22:93-104. [PMID: 22644546 PMCID: PMC4724416 DOI: 10.1007/s11065-012-9207-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with "polyneuropathy," the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia.
Collapse
Affiliation(s)
- Rosemary Fama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, USA.
| | | | | |
Collapse
|
33
|
Jung YC, Chanraud S, Sullivan EV. Neuroimaging of Wernicke's encephalopathy and Korsakoff's syndrome. Neuropsychol Rev 2012; 22:170-80. [PMID: 22577003 PMCID: PMC4728174 DOI: 10.1007/s11065-012-9203-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
There is considerable evidence that neuroimaging findings can improve the early diagnosis of Wernicke's encephalopathy (WE) in clinical settings. The most distinctive neuroimaging finding of acute WE are cytotoxic edema and vasogenic edema, which are represented by bilateral symmetric hyperintensity alterations on T2-weighted MR images in the periphery of the third ventricle, periaqueductal area, mammillary bodies and midbrain tectal plate. An initial bout of WE can result in Korsakoff's syndrome (KS), but repeated bouts in conjunction with its typical comorbidity, chronic alcoholism, can result in signs of tissue degeneration in vulnerable brain regions. Chronic abnormalities identified with neuroimaging enable examination of brain damage in living patients with KS and have expanded the understanding of the neuropsychological deficits resulting from thiamine deficiency, alcohol neurotoxicity, and their comorbidity. Brain structure and functional studies indicate that the interactions involving the thalamus, mammillary bodies, hippocampus, frontal lobes, and cerebellum are crucial for memory formation and executive functions, and the interruption of these circuits by WE and chronic alcoholism can contribute substantially to the neuropsychological deficits in KS.
Collapse
Affiliation(s)
- Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.
| | | | | |
Collapse
|
34
|
Kril JJ, Harper CG. Neuroanatomy and neuropathology associated with Korsakoff's syndrome. Neuropsychol Rev 2012; 22:72-80. [PMID: 22528862 PMCID: PMC3371089 DOI: 10.1007/s11065-012-9195-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Although the neuropathology of Korsakoff's syndrome (KS) was first described well over a century ago and the characteristic brain pathology does not pose a diagnostic challenge to pathologists, there is still controversy over the neuroanatomical substrate of the distinctive memory impairment in these patients. Cohort studies of KS suggest a central role for the mammillary bodies and mediodorsal thalamus, and quantitative studies suggest additional damage to the anterior thalamus is required. Rare cases of KS caused by pathologies other than those of nutritional origin provide support for the role of the anterior thalamus and mammillary bodies. Taken together the evidence to date shows that damage to the thalamus and hypothalamus is required, in particular the anterior thalamic nucleus and the medial mammillary nucleus of the hypothalamus. As these nuclei form part of wider memory circuits, damage to the inter-connecting white matter tracts can also result in a similar deficit as direct damage to the nuclei. Although these nuclei and their connections appear to be the primary site of damage, input from other brain regions within the circuits, such as the frontal cortex and hippocampus, or more distant regions, including the cerebellum and amygdala, may have a modulatory role on memory function. Further studies to confirm the precise site(s) and extend of brain damage necessary for the memory impairment of KS are required.
Collapse
Affiliation(s)
- Jillian J Kril
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|
35
|
Savage LM, Hall JM, Resende LS. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol Rev 2012; 22:195-209. [PMID: 22528861 PMCID: PMC5113815 DOI: 10.1007/s11065-012-9194-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
36
|
Vetreno RP, Ramos RL, Anzalone S, Savage LM. Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke-Korsakoff Syndrome. Brain Res 2012; 1436:178-92. [PMID: 22192411 PMCID: PMC3266665 DOI: 10.1016/j.brainres.2011.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 01/24/2023]
Abstract
Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Raddy L. Ramos
- Department of Neuroscience & Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury NY 11568
| | - Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| |
Collapse
|
37
|
Vetreno RP, Hall JM, Savage LM. Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 2011; 96:596-608. [PMID: 21256970 PMCID: PMC3086968 DOI: 10.1016/j.nlm.2011.01.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/09/2010] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
Chronic alcoholism is associated with impaired cognitive functioning. Over 75% of autopsied chronic alcoholics have significant brain damage and over 50% of detoxified alcoholics display some degree of learning and memory impairment. However, the relative contributions of different etiological factors to the development of alcohol-related neuropathology and cognitive impairment are questioned. One reason for this quandary is that both alcohol toxicity and thiamine deficiency result in brain damage and cognitive problems. Two alcohol-related neurological disorders, alcohol-associated dementia and Wernicke-Korsakoff syndrome have been modeled in rodents. These pre-clinical models have elucidated the relative contributions of ethanol toxicity and thiamine deficiency to the development of dementia and amnesia. What is observed in these models--from repeated and chronic ethanol exposure to thiamine deficiency--is a progression of both neural and cognitive dysregulation. Repeated binge exposure to ethanol leads to changes in neural plasticity by reducing GABAergic inhibition and facilitating glutamatergic excitation, long-term chronic ethanol exposure results in hippocampal and cortical cell loss as well as reduced hippocampal neurotrophin protein content critical for neural survival, and thiamine deficiency results in gross pathological lesions in the diencephalon, reduced neurotrophic protein levels, and neurotransmitters levels in the hippocampus and cortex. Behaviorally, after recovery from repeated or chronic ethanol exposure there is impairment in working or episodic memory that can recover with prolonged abstinence. In contrast, after thiamine deficiency there is severe and persistent spatial memory impairments and increased perseverative behavior. The interaction between ethanol and thiamine deficiency does not produce more behavioral or neural pathology, with the exception of reduction of white matter, than long-term thiamine deficiency alone.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Joseph M. Hall
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| |
Collapse
|
38
|
Ethanol-induced changes in the expression of proteins related to neurotransmission and metabolism in different regions of the rat brain. Pharmacol Biochem Behav 2011; 99:428-36. [PMID: 21397625 DOI: 10.1016/j.pbb.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/06/2023]
Abstract
Despite extensive description of the damaging effects of chronic alcohol exposure on brain structure, mechanistic explanations for the observed changes are just emerging. To investigate regional brain changes in protein expression levels following chronic ethanol treatment, one rat per sibling pair of male Wistar rats was exposed to intermittent (14 h/day) vaporized ethanol, the other to air for 26 weeks. At the end of 24 weeks of vapor exposure, the ethanol group had blood ethanol levels averaging 450 mg%, had not experienced a protracted (> 16 h) withdrawal from ethanol, and revealed only mild evidence of hepatic steatosis. Extracted brains were micro-dissected to isolate the prefrontal cortex (PFC), dorsal striatum (STR), corpus callosum genu (CCg), CC body (CCb), anterior vermis (AV), and anterior dorsal lateral cerebellum (ADLC) for protein analysis with two-dimensional gel electrophoresis. Expression levels for 54 protein spots were significantly different between the ethanol- and air-treated groups. Of these 54 proteins, tandem mass spectroscopy successfully identified 39 unique proteins, the levels of which were modified by ethanol treatment: 13 in the PFC, 7 in the STR, 2 in the CCg, 7 in the CCb, 7 in the AV, and 5 in the ADLC. The functions of the proteins altered by chronic ethanol exposure were predominantly associated with neurotransmitter systems in the PFC and cell metabolism in the STR. Stress response proteins were elevated only in the PFC, AV, and ADLC perhaps supporting a role for frontocerebellar circuitry disruption in alcoholism. Of the remaining proteins, some had functions associated with cytoskeletal physiology (e.g., in the CCb) and others with transcription/translation (e.g., in the ADLC). Considered collectively, all but 4 of the 39 proteins identified in the present study have been previously identified in ethanol gene- and/or protein-expression studies lending support for their role in ethanol-related brain alterations.
Collapse
|
39
|
Moustafa AMY, Ahmed SH, Nabil ZI, Hussein AA, Omran MA. Extraction and phytochemical investigation of Calotropis procera: effect of plant extracts on the activity of diverse muscles. PHARMACEUTICAL BIOLOGY 2010; 48:1080-190. [PMID: 20690894 DOI: 10.3109/13880200903490513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Calotropis procera (Ait.) R.Br. (Asclepiadaceae) is a shrub or small tree that grows wild in Egypt. Calotropis acts as a purgative, anthelmintic, anticoagulant, palliative (in problems with respiration, blood pressure), antipyretic, and analgesic, and induces neuromuscular blocking activity. Little research has been done to study the electrophysiological effects of this plant's extracts on cardiac, smooth, and skeletal muscle activities. OBJECTIVE The present study was conducted to determine the phytochemical composition and the effect of the total alcohol extract of the shoot of the plant, which contains almost all of C. procera's cardiac glycosides, flavonoids, and saponins. Also, this study attempted to throw more light on the electrophysiological effects of the plant extracts on cardiac, smooth, and skeletal muscle activities and to clarify the mechanism(s) of their observed action(s). MATERIALS AND METHODS The aerial parts of the plant were air dried and their ethanol extracts partitioned with successive solvents. Cardiac, smooth, and skeletal muscles were used in this study to investigate the physiological and pharmacological effects of the plant extracts from different solvents. The data were analyzed by paired t-test. RESULTS The phytochemical investigation of Calotropis procera revealed the presence of cardenolides, flavonoids, and saponins. The effects of ethanol, n-butanol, and ethyl acetate (EtOAc) extracts were each evaluated on isolated toad heart and their mechanisms of action determined. Perfusion with 2 μg/mL ethanol, 0.2 μg/mL butanol, and 0.2 μg/mL EtOAc extracts caused a significant decrease in heart rate (bradycardia), significant increase in the force of ventricular contraction, and increase in T-wave amplitude. In addition, the effects of different extracts of the studied plant on smooth muscle and skeletal muscle were investigated in this study. The different extracts and latex of C. procera induced a negative chronotropic effect and decreased the heart rate (HR) of isolated toad heart. The different extracts increased the power of contraction of the duodenum (trace a). Pretreatment with atropine sulfate as a muscarinic receptor blocker abolished the stimulatory effect of the different plant extracts and latex of C. procera (trace b). DISCUSSION The present data suggest that ethanol, butanol, and EtOAc extracts of Calotropis procera have negative chronotropism and positive inotropism. Verapamil could abolish the inotropic effect of ethanol as well as that of butanol and EtOAc extracts. Meanwhile, atropine did not abolish the observed negative chronotropic effect. The ethanol extract increased the power of contraction of rabbit duodenum, but atropine abolished this effect. It also decreased the skeletal muscle contraction; this effect could be through blocking of the nicotinic receptors. Butanol and EtOAc extract data for smooth and skeletal muscles are very close to those for the corresponding ethanol extract of the studied plant. The present data for C. procera indicate its direct action on the myocardium, its increase of smooth muscle motility, and its relaxation of skeletal muscle contraction. The chemical constituents could directly affect the cell membrane probably through receptors coupling to G proteins. They regulate the ion channel physiology as in the myocardium. CONCLUSION The present data on the extracts of C. procera indicate a direct action on the myocardium, stimulatory effect on smooth muscle motility, and relaxant action on skeletal muscle contraction. Chemical constituents could directly affect the cell membrane probably through receptors coupling to G proteins. They regulate the ion channel physiology as in the myocardium.
Collapse
Affiliation(s)
- A M Y Moustafa
- Chemistry Department, Faculty of Science, Suez Canal University, Port Said, Egypt.
| | | | | | | | | |
Collapse
|
40
|
Kelly JF, Stout RL, Magill M, Tonigan JS, Pagano ME. Mechanisms of behavior change in alcoholics anonymous: does Alcoholics Anonymous lead to better alcohol use outcomes by reducing depression symptoms? Addiction 2010; 105:626-36. [PMID: 20102345 PMCID: PMC2857524 DOI: 10.1111/j.1360-0443.2009.02820.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE Indices of negative affect, such as depression, have been implicated in stress-induced pathways to alcohol relapse. Empirically supported continuing care resources, such as Alcoholics Anonymous (AA), emphasize reducing negative affect to reduce relapse risk, but little research has been conducted to examine putative affective mechanisms of AA's effects. METHODS Using lagged, controlled, hierarchical linear modeling and mediational analyses this study investigated whether AA participation mobilized changes in depression symptoms and whether such changes explained subsequent reductions in alcohol use. Alcohol-dependent adults (n = 1706), receiving treatment as part of a clinical trial, were assessed at intake, 3, 6, 9, 12 and 15 months. RESULTS Findings revealed elevated levels of depression compared to the general population, which decreased during treatment and then remained stable over follow-up. Greater AA attendance was associated with better subsequent alcohol use outcomes and decreased depression. Greater depression was associated with heavier and more frequent drinking. Lagged mediation analyses revealed that the effects of AA on alcohol use was mediated partially by reductions in depression symptoms. However, this salutary effect on depression itself appeared to be explained by AA's proximal effect on reducing concurrent drinking. CONCLUSIONS AA attendance was associated both concurrently and predictively with improved alcohol outcomes. Although AA attendance was associated additionally with subsequent improvements in depression, it did not predict such improvements over and above concurrent alcohol use. AA appears to lead both to improvements in alcohol use and psychological and emotional wellbeing which, in turn, may reinforce further abstinence and recovery-related change.
Collapse
Affiliation(s)
- John F. Kelly
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, 60 Staniford St., Suite 120, Boston, MA 02114
| | - Robert L. Stout
- Decision Sciences Institute/PIRE, 1005 Main St., Pawtucket, RI 02860-7802
| | - Molly Magill
- Brown University, Center for Alcohol and Addiction Studies, Providence RI 02912
| | - J. Scott Tonigan
- Center on Alcoholism, Substance Abuse and Addiction (CASAA), 2650 Yale SE., Suite 243, Albuquerque, NM 87106
| | - Maria E. Pagano
- Case Western Reserve University School of Medicine, Department of Psychiatry, Division of Child Psychiatry, W.O. Walker Center, 10524 Euclid Avenue
| |
Collapse
|
41
|
Ke ZJ, Wang X, Fan Z, Luo J. Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. Alcohol Clin Exp Res 2009; 33:1097-103. [PMID: 19382901 DOI: 10.1111/j.1530-0277.2009.00931.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption causes cerebellar degeneration, and the underlying mechanism is unclear. Chronic alcoholism is usually associated with thiamine deficiency (TD) which is known to induce selective neurodegeneration in the brain. However, the role of TD in alcohol-induced cerebellar degeneration remains to be elucidated. The double-stranded RNA-activated protein kinase (PKR) is a potent antiviral protein. Viral infection or binding to dsRNA causes PKR autophosphorylation and subsequent phosphorylation of the alpha-subunit of eukaryotic translation factor-2alpha, leading to inhibition of translation or apoptosis. PKR can also be activated by cellular stresses. METHODS In this study, we used an in vitro model, cultured cerebellar granule neurons (CGNs), to investigate the interaction between TD and ethanol and evaluate the contribution of their interaction to neuronal loss. TD was induced by treatment with amprolium in association with ethanol. Cell viability was determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide assay. PKR expression/phosphorylation and subcellular distribution was analyzed with immunoblotting and immunocytochemistry. RESULTS Thiamine deficiency caused death of CGNs but ethanol did not. However, TD plus ethanol induced a much greater cell loss than TD alone. TD-induced PKR phosphorylation and ethanol exposure significantly promoted TD-induced PKR phosphorylation as well as its nuclear translocation. A selective PKR inhibitor not only protected CGNs against TD toxicity, but also abolished ethanol potentiation of TD-induced loss of CGNs. CONCLUSIONS Ethanol promoted TD-induced PKR activation and neuronal death. PKR may be a convergent protein that mediates the interaction between TD and ethanol.
Collapse
Affiliation(s)
- Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
42
|
Abstract
AIM Presented is the neuroradiological signature of acute Wernicke's encephalopathy (WE), derived from different types of magnetic resonance imaging (MRI) sequences. WE results from thiamine depletion, and its most typical antecedent is chronic alcohol dependence. Brain regions observed with in vivo MRI affected in acute WE include the mammillary bodies, periaqueductal and periventricular gray matter, collicular bodies and thalamus. These affected areas are usually edematous and are best visualized and quantified with MRI sequences that highlight such tissue. Following the acute WE phase and resolution of edema and inflammation of affected brain tissue, WE, if not adequately treated with thiamine repletion, can herald Korsakoff's syndrome (KS), with its symptomatic hallmark of global amnesia, that is, the inability to commit newly encountered (episodic) information to memory for later recall or recognition. METHODS Neuropathology of KS detectable with MRI has a different neuroradiological signature from the acute stage and can be observed as tissue shrinkage or atrophy of selective brain structures, including the mammillary bodies and thalamus and ventricular expansion, probably indicative of atrophy of surrounding gray matter nuclei. Quantification of these and additional gray matter structures known to underlie global amnesia reveal substantial bilateral volume deficits in the hippocampus, in addition to the mammillary bodies and thalamus, and modest deficits in the medial septum/diagonal band of Broca. The infratentorium is also affected, exhibiting volume deficits in cerebellar hemispheres, anterior superior vermis and pons, contributing to ataxia of gait and stance. RESULTS Consideration of WKS structural brain changes in the context of the neuropathology of non-WKS alcoholism revealed a graded pattern of volume deficits, from mild in non-WKS alcoholics to moderate or severe in WKS, in the mammillary bodies, hippocampus, thalamus, cerebellum and pons. The development and resolution of brain structures affected in acute, chronic and treated WE was verified in longitudinal MRI study of rats that modeled of the interaction of extensive alcohol consumption and thiamine depletion and repletion. CONCLUSIONS Thus, neuroradiological examination with MRI is valuable in the diagnosis of acute WE and enables in vivo tracking of the progression of the brain pathology of WE from the acute pathological phase to resolution with thiamine treatment or to progression to KS without treatment. Further, in vivo MRI facilitates translational studies to model antecedent conditions contributing to the development, sequelae and treatment of WE.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
43
|
Mancinelli R, Ceccanti M. Biomarkers in Alcohol Misuse: Their Role in the Prevention and Detection of Thiamine Deficiency. Alcohol Alcohol 2009; 44:177-82. [DOI: 10.1093/alcalc/agn117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
44
|
Abstract
Excessive alcohol use can cause structural and functional abnormalities of the brain and this has significant health, social and economic implications for most countries in the world. Even heavy social drinkers who have no specific neurological or hepatic problems show signs of regional brain damage and cognitive dysfunction. Changes are more severe and other brain regions are damaged in patients who have additional vitamin B1 (thiamine) deficiency (Wernicke-Korsakoff syndrome). Quantitative studies and improvements in neuroimaging have contributed significantly to the documentation of these changes but mechanisms underlying the damage are not understood. A human brain bank targeting alcohol cases has been established in Sydney, Australia, and tissues can be used for structural and molecular studies and to test hypotheses developed from animal models and in vivo studies. The recognition of potentially reversible changes and preventative medical approaches are important public health issues.
Collapse
Affiliation(s)
- Clive Harper
- Department of Pathology, University of Sydney and Sydney South West Area Health Service, Sydney, Australia.
| |
Collapse
|
45
|
Nixon PF, Jordan L, Zimitat C, Rose SE, Zelaya F. Choroid Plexus Dysfunction: The Initial Event in the Pathogenesis of Wernicke’s Encephalopathy and Ethanol Intoxication. Alcohol Clin Exp Res 2008; 32:1513-23. [DOI: 10.1111/j.1530-0277.2008.00723.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Sullivan EV, Zahr NM. Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on "Increased MCP-1 and microglia in various regions of human alcoholic brain". Exp Neurol 2008; 213:10-7. [PMID: 18625499 PMCID: PMC2591065 DOI: 10.1016/j.expneurol.2008.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/19/2022]
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA.
| | | |
Collapse
|
47
|
Brambrink AM, Kirsch JR. Perioperative care of patients with neuromuscular disease and dysfunction. Anesthesiol Clin 2007; 25:483-509, viii-ix. [PMID: 17884705 DOI: 10.1016/j.anclin.2007.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A variety of different pathologies result in disease phenotypes that are summarized as neuromuscular diseases because they share commonalty in their clinical consequences for the patient: a progressive weakening of the skeletal muscles. Distinct caution and appropriate changes to the anesthetic plan are advised when care is provided during the perioperative period. The choice of anesthetic technique, anesthetic drugs, and neuromuscular blockade always depends on the type of neuromuscular disease and the surgical procedure planned. A clear diagnosis of the underlying disease and sufficient knowledge and understanding of the pathophysiology are of paramount importance to the practitioner and guide optimal perioperative management of affected patients.
Collapse
Affiliation(s)
- Ansgar M Brambrink
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
48
|
Mayer D, Zahr NM, Adalsteinsson E, Rutt B, Sullivan EV, Pfefferbaum A. In vivo fiber tracking in the rat brain on a clinical 3T MRI system using a high strength insert gradient coil. Neuroimage 2007; 35:1077-85. [PMID: 17331742 PMCID: PMC1868575 DOI: 10.1016/j.neuroimage.2007.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/16/2006] [Accepted: 01/12/2007] [Indexed: 11/24/2022] Open
Abstract
In vivo neuroimaging methods permit longitudinal quantitative examination of the dynamic course of neurodegenerative conditions in humans and animal models and enable assessment of therapeutic efforts in mitigating disease effects on brain systems. The study of conditions affecting white matter, such as multiple sclerosis, demyelinating conditions, and drug and alcohol dependence, can be accomplished with diffusion tensor imaging (DTI), a technique uniquely capable of probing the microstructural integrity of white matter fibers in the living brain. We used a 3T clinical MR scanner equipped with an insert gradient coil that yields an order of magnitude increase in performance over the whole-body hardware to acquire in vivo DTI images of rat brain. The resolution allowed for fiber tracking evaluation of fractional anisotropy (FA) and apparent diffusion coefficients in the genu and splenium of the corpus callosum. A comparison of short (46 min) and long (92 min) acquisition time DTI protocols indicated low but adequate signal-to-noise ratio (SNR=6.2) of the shorter protocol to conduct quantitative fiber tracking enhanced by multiple acquisitions. As observed in human studies, FA in the rat splenium was higher than in the genu. Advantages of this technology include the use of similar user interface, pulse sequences, and field strength for preclinical animal and clinical human research, enhancing translational capabilities. An additional benefit of scanning at lower field strength, such as 3 T, is the reduction of artifacts due to main field inhomogeneity relative to higher field animal systems.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|