1
|
Lim SW, Chen WC, Ko HJ, Su YF, Wu CH, Huang FL, Li CF, Tsai CY. 6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation. Biomol Ther (Seoul) 2025; 33:129-142. [PMID: 39632791 PMCID: PMC11704400 DOI: 10.4062/biomolther.2024.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan 702, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Wei-Chung Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fu-Long Huang
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Cheng Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Tavleeva MM, Rasova EE, Rybak AV, Belykh ES, Fefilova EA, Pnachina EM, Velegzhaninov IO. Dose-Dependent Effect of Mitochondrial Superoxide Dismutase Gene Overexpression on Radioresistance of HEK293T Cells. Int J Mol Sci 2023; 24:17315. [PMID: 38139144 PMCID: PMC10744337 DOI: 10.3390/ijms242417315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Over the last two decades, a multitude of gain-of-function studies have been conducted on genes that encode antioxidative enzymes, including one of the key enzymes, manganese superoxide dismutase (SOD2). The results of such studies are often contradictory, as they strongly depend on many factors, such as the gene overexpression level. In this study, the effect of altering the ectopic expression level of major transcript variants of the SOD2 gene on the radioresistance of HEK293T cells was investigated using CRISPRa technology. A significant increase in cell viability in comparison with the transfection control was detected in cells with moderate SOD2 overexpression after irradiation at 2 Gy, but not at 3 or 5 Gy. A further increase in the level of SOD2 ectopic expression up to 22.5-fold resulted in increased cell viability detectable only after irradiation at 5 Gy. Furthermore, a 15-20-fold increase in SOD2 expression raised the clonogenic survival of cells after irradiation at 5 Gy. Simultaneous overexpression of genes encoding SOD2 and Catalase (CAT) enhanced clonogenic cell survival after irradiation more effectively than separate overexpression of both. In conjunction with the literature data on the suppression of the procarcinogenic effects of superoxide dismutase overexpression by ectopic expression of CAT, the data presented here suggest the potential efficacy of simultaneous overexpression of SOD2 and CAT to reduce oxidative stress occurring in various pathological processes. Moreover, these results illustrate the importance of selecting the degree of SOD2 overexpression to obtain a protective effect.
Collapse
Affiliation(s)
- Marina M. Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elena E. Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Anna V. Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elena S. Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elizaveta A. Fefilova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia;
| | - Elizaveta M. Pnachina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia;
| | - Ilya O. Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| |
Collapse
|
3
|
Gupta SV, Campos L, Schmidt KH. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress. Genetics 2023; 225:iyad147. [PMID: 37638880 PMCID: PMC10550321 DOI: 10.1093/genetics/iyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress can damage DNA and thereby contribute to genome instability. To avoid an imbalance or overaccumulation of reactive oxygen species (ROS), cells are equipped with antioxidant enzymes that scavenge excess ROS. Cells lacking the RecQ-family DNA helicase Sgs1, which contributes to homology-dependent DNA break repair and chromosome stability, are known to accumulate ROS, but the origin and consequences of this oxidative stress phenotype are not fully understood. Here, we show that the sgs1 mutant exhibits elevated mitochondrial superoxide, increased mitochondrial mass, and accumulation of recombinogenic DNA lesions that can be suppressed by antioxidants. Increased mitochondrial mass in the sgs1Δ mutant is accompanied by increased mitochondrial branching, which was also inducible in wildtype cells by replication stress. Superoxide dismutase Sod2 genetically interacts with Sgs1 in the suppression of nuclear chromosomal rearrangements under paraquat (PQ)-induced oxidative stress. PQ-induced chromosome rearrangements in the absence of Sod2 are promoted by Rad51 recombinase and the polymerase subunit Pol32. Finally, the dependence of chromosomal rearrangements on the Rev1/Pol ζ mutasome suggests that under oxidative stress successful DNA synthesis during DNA break repair depends on translesion DNA synthesis.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lillian Campos
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
5
|
Sumithaa C, Manjunathan T, Mazuryk O, Peters S, Pillai RS, Brindell M, Gopinath P, Ganeshpandian M. Nanoencapsulation of Ru( p-cymene) Complex Bearing Ginger-based Natural Product into Liposomal Nanoformulation to Improve Its Cellular Uptake and Antiproliferative Activity. ACS APPLIED BIO MATERIALS 2022; 5:3241-3256. [PMID: 35786838 DOI: 10.1021/acsabm.2c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The organometallic compounds are prospective candidates in the row of developing metallochemotherapeutics with the aim of overcoming the limitations of platinum drugs. In order to explore the anticancer properties of organometallic compounds with the natural medicines, two Ru(II)-p-cymene complexes containing the natural products, viz., 6-gingerol (6G) and benzylated-6-gingerdione (B-6GD) have been synthesized and characterized well. The phenolic group of the Ru(6G) complex facilitates its higher cell-free antioxidant activity than its analogue complex. Also, the same complex shows higher cytotoxicity toward A549 lung and HeLa-S3 cervical cancer cells than the Ru(B-6GD) complex but lower cytotoxicity toward A2058 metastatic melanoma cancer cells. Both complexes are shown to easily accumulate in melanoma cancer cells, and their degree of cytotoxicity in the same cells is found to be positively correlated with cell uptake. The cytotoxicity of complexes arises from their intracellular activity, mainly due to the induction of singlet oxygen production in cancer cells. The subcellular fractionation study shows that mitochondria and ER-Golgi membranes might be their predominant targets. Also, the mechanistic investigation revealed that Ru(B-6GD) induces caspase-dependent non-apoptotic cell death whereas Ru(6G) can induce caspase-independent non-apoptotic cell death. Furthermore, both complexes are found to moderately alter the adhesion properties of cancer cells, which is beneficial for antimetastatic treatment. Despite the potential pharmacological activity, Ru(6G) is encapsulated into polymer-supported liposomes to reduce its toxicity and further improve its anticancer potency. The π-conjugated yne-ene chain of polydiacetylene aids in the development of a stable nanoformulation, which achieved a slow release of the complex. Most importantly, the cancer cell uptake of the liposome-encapsulated Ru(6G) complex is 20 times enhanced and the total ROS formation in cancer cells is significantly increased compared to the non-encapsulated complex. However, the nanoformulation does not alter the antimetastatic potency of the encapsulated complex.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Tamilvelan Manjunathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Krakow 30-387, Poland
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka, India
| | - Malgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Krakow 30-387, Poland
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
6
|
SOD2, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030811. [PMID: 35164076 PMCID: PMC8839817 DOI: 10.3390/molecules27030811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
CD44, a cell-adhesion molecule has a dual role in tumor growth and progression; it acts as a tumor suppressor as well as a tumor promoter. In our previous work, we developed a tetracycline-off regulated expression of CD44's gene in the breast cancer (BC) cell line MCF-7 (B5 clone). Using cDNA oligo gene expression microarray, we identified SOD2 (superoxide dismutase 2) as a potential CD44-downstream transcriptional target involved in BC metastasis. SOD2 gene belongs to the family of iron/manganese superoxide dismutase family and encodes a mitochondrial protein. SOD2 plays a role in cell proliferation and cell invasion via activation of different signaling pathways regulating angiogenic abilities of breast tumor cells. This review will focus on the findings supporting the underlying mechanisms associated with the oncogenic potential of SOD2 in the onset and progression of cancer, especially in BC and the potential clinical relevance of its various inhibitors.
Collapse
|
7
|
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
8
|
Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma. Antioxidants (Basel) 2021; 10:antiox10121988. [PMID: 34943091 PMCID: PMC8750785 DOI: 10.3390/antiox10121988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
9
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
10
|
El-Mahdy MA, Alzarie YA, Hemann C, Badary OA, Nofal S, Zweier JL. The novel SOD mimetic GC4419 increases cancer cell killing with sensitization to ionizing radiation while protecting normal cells. Free Radic Biol Med 2020; 160:630-642. [PMID: 32739595 PMCID: PMC7704930 DOI: 10.1016/j.freeradbiomed.2020.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
While radiotherapy is a widely used treatment for many types of human cancer, problems of radio-resistance and side effects remain. Side effects induced by ionizing radiation (IR) arise primarily from its propensity to trigger inflammation and oxidative stress with damage of normal cells and tissues near the treatment area. The highly potent superoxide dismutase mimetic, GC4419 (Galera Therapeutics), rapidly enters cells and is highly effective in dismutating superoxide (O2•-). We performed studies to assess the potency of GC4419 in cancer killing and radio-sensitization in human lung cancer cells and normal immortalized lung cells. Treatment with GC4419 did not alter the radical generation during IR, primarily hydroxyl radical (.OH); however, it quenched the increased levels of O2•- detected in the cancer cells before and following IR. GC4419 triggered cancer cell death and inhibited cancer cell proliferation with no adverse effect on normal cells. Combination of GC4419 with IR augmented the cytotoxic effects of IR on cancer cells compared to monotherapy, while protecting normal cells from IR-induced cell death. DNA fragmentation and caspase-3 activity assays showed that combination of GC4419 with IR enhances cancer cell apoptosis. Moreover, GC4419 increased IR-induced Bax levels with decreased Bcl-2 and elevated Bax/Bcl-2 ratio following treatment. GC4419 increased TrxR activity in the normal cells but decreased activity in cancer cells, conferring increased cancer cell sensitivity to oxidative stress. In conclusion, GC4419 increases the cytotoxic and pro-apoptotic activity of IR in lung cancer cells while decreasing injury in normal cells.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yasmin A Alzarie
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; National Organization of Drug Control and Research, Cairo, Egypt
| | - Craig Hemann
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Osama A Badary
- Department of Clinical Pharmacy, College of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Shahira Nofal
- Department of Pharmacology and Toxicology, College of Pharmacy, Helwan University, Cairo, Egypt
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
12
|
Yang B, Liu Y, Li L, Deng H, Xian L. MicroRNA‑200a promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through extensive target genes. Mol Med Rep 2020; 21:2073-2084. [PMID: 32323771 PMCID: PMC7115244 DOI: 10.3892/mmr.2020.11002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite investigations into microRNA (miRNA) expression in esophageal cancer (EC) tissue, miRNAs that participate in EC pathogenesis and their subsequent mechanisms of action remain to be determined. The present study aimed to identify important miRNAs that contribute to EC development, and to assess miRNA biomarkers that could be used in EC diagnosis, prognosis and therapy. Bioinformatics analysis was performed to reanalyze EC tissue miRNA expression microarray dataset GSE113776, which was followed by in vitro verification of miRNA functions using reverse transcription‑quantitative PCR, western blot analysis and a dual‑luciferase reporter assay. Out of 93 miRNAs extracted, only miR‑200a was significantly increased in EC tissues. Transfection of KYSE150 esophageal squamous cell carcinoma (ESCC) cells with miR‑200a mimics significantly increased their proliferative, migratory and invasive ability, whereas the opposite cell behaviors were observed in ESCC cells transfected with a miR‑200a inhibitor. A total of six miR‑200a target genes [catenin β1 (CTNNB1), cadherin‑1 (CDH1), PTEN, adenomatous polyposis coli (APC), catenin α1 (CTNNA1) and superoxide dismutase 2 (SOD2)] were selected for further analysis based on Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein‑protein interaction network map data and protein expression in esophageal tissue. These target genes were downregulated under miR‑200a expression and upregulated in the presence of the miR‑200a inhibitor. The association between miR‑200a and the 3'‑untranslated region of target genes in ESCC cells was confirmed using a dual‑luciferase reporter assay. In conclusion, the present study demonstrated that miR‑200a may participate in the promotion of ESCC cell proliferation, migration and invasion, and provided novel evidence for the direct interaction between miR‑200a and CTNNB1, CDH1, PTEN, APC, CTNNA1 and SOD2, which may contribute to the observed altered cell behavior.
Collapse
Affiliation(s)
- Bian Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Yumeng Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lipeng Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Hailong Deng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lei Xian
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
13
|
Zhang LF, Xu K, Tang BW, Zhang W, Yuan W, Yue C, Shi L, Mi YY, Zuo L, Zhu LJ. Association between SOD2 V16A variant and urological cancer risk. Aging (Albany NY) 2020; 12:825-843. [PMID: 31929112 PMCID: PMC6977677 DOI: 10.18632/aging.102658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/24/2019] [Indexed: 01/16/2023]
Abstract
Background: The correlation between superoxide dismutase 2 (SOD2) V16A variant and urological cancer susceptibility has been widely studied, however, with divergent results. Results: Totally, 9,910 cancer patients and 11,239 control subjects were enrolled. V16A variant is associated with an increased susceptibility to urological cancer (A-allele vs. V-allele: OR = 1.06, 95% CI = 1.00 – 1.13, P = 0.047; AA+AV vs. VV: OR = 1.09, 95% CI = 1.02 – 1.16, P = 0.008), especially for prostate cancer (PCa). Serum SOD2 level of PCa patients with VV+VA genotypes was lower than in those with AA genotypes. SOD2 expression is downregulated in both prostate and bladder cancer, as compared to the control. Furthermore, SOD2 was found to be downregulated in more advanced PCa participants, as compared to the ones in early stages. PCa subjects with low SOD2 expression displayed a shorter disease-free survival (DFS) time compared to that of the high SOD2 expression counterparts. Conclusions: The SOD2 V16A variant may be associated with increased urological cancer susceptibility, especially for prostate cancer. Methods: A pooled analysis utilizing odds ratios (ORs), in silico tools and ELISA was adopted to demonstrate this association. We also used immunohistochemical staining (IHS) to assess SOD2 expression.
Collapse
Affiliation(s)
- Li-Feng Zhang
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Kai Xu
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bo-Wen Tang
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Wei Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou 225300, China
| | - Wei Yuan
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Chuang Yue
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Li Shi
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Li-Jie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
14
|
Son YO. Molecular Mechanisms of Nickel-Induced Carcinogenesis. Endocr Metab Immune Disord Drug Targets 2019; 20:1015-1023. [PMID: 31774048 DOI: 10.2174/1871530319666191125112728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The increased use of heavy metal nickel in modern industries results in increased environmental impact. Occupational and environmental exposure to nickel is closely linked to an increased risk of human lung cancer and nasal cancer. OBJECTIVE Unlike other heavy metal carcinogens, nickel has weak mutagenic activity. Carcinogenesis caused by nickel is intensively studied, but the precise mechanism of action is not yet known. RESULTS Epigenetic changes, activation of hypoxia signaling pathways, and generation of reactive oxygen species (ROS) are considered to be the major molecular mechanisms involved in nickelinduced carcinogenesis. CONCLUSION This review provides insights into current research on nickel-induced carcinogenesis and suggests possible effective therapeutic strategies for nickel-induced carcinogenesis.
Collapse
Affiliation(s)
- Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Korea
| |
Collapse
|
15
|
Fan JJ, Hsu WH, Hung HH, Zhang WJ, Lee YLA, Chen KC, Chu CY, Ko TP, Lee MT, Lin CW, Cheng CH. Reduction in MnSOD promotes the migration and invasion of squamous carcinoma cells. Int J Oncol 2019; 54:1639-1650. [PMID: 30896828 PMCID: PMC6438424 DOI: 10.3892/ijo.2019.4750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) homeostasis is maintained at a higher level in cancer cells, which promotes tumorigenesis. Oxidative stress induced by anticancer drugs may further increase ROS to promote apoptosis, but can also enhance the metastasis of cancer cells. The effects of ROS homeostasis on cancer cells remain to be fully elucidated. In the present study, the effect of a reduction in manganese superoxide dismutase (MnSOD) on the migration and invasion of A431 cells was investigated. Our previous micro‑assay data revealed that the mRNA expression of MnSOD was higher in the invasive A431‑III cell line compared with that in the parental A431 cell line (A431‑P). In the present study, high protein levels of MnSOD and H2O2 production were observed in A431‑III cells; however, catalase protein levels were significantly lower in A431‑III cells compared with those in the A431‑P cell line. The knockdown of MnSOD increased H2O2 levels, enzyme activity, the mRNA levels of matrix metalloproteinase‑1, ‑2 and ‑9, and the migratory and invasive abilities of the cells. Inducing a reduction in H2O2 using diphenyleneiodonium (DPI) and N‑acetyl‑l‑cysteine decreased the migratory abilities of the cell lines, and DPI attenuated the migratory ability that had been increased by MnSOD small interfering RNA knockdown. Luteolin (Lu) and quercetin (Qu) increased the expression of catalase and reduced H2O2 levels, but without an observed change in the protein levels of MnSOD. Taken together, these data suggest that reduced MnSOD may induce ROS imbalance in cells and promote the metastatic ability of cancer cells. Lu and Qu may attenuate these processes and may be promising potential anticancer agents.
Collapse
Affiliation(s)
- Jhen-Jia Fan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Wen-Hsien Hsu
- Department of Surgery, Wan‑Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Hao-Hsiang Hung
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Wei-Jun Zhang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Yu-Lin A Lee
- Departments of Medicine and Pediatrics, Hospice and Palliative Medicine, Duke University Hospital, Durham, NC 27710, USA
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Cheng-Ying Chu
- Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ming-Ting Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
16
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
17
|
Ashtekar A, Huk D, Magner A, La Perle KMD, Boucai L, Kirschner LS. Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 2018; 103:4135-4145. [PMID: 30165401 PMCID: PMC6194813 DOI: 10.1210/jc.2018-01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Although important advances have been made in understanding the genetics of endocrine tumors, cellular physiology is relatively understudied as a determinant of tumor behavior. Oxidative stress and reactive oxygen species are metabolic factors that may affect tumor behavior, and these are, in part, controlled by manganese-dependent superoxide dismutase (MnSod), the mitochondrial superoxide dismutase (encoded by SOD2). OBJECTIVE We sought to understand the role of MnSod in the prognosis of aggressive human endocrine cancers and directly assessed the effect of MnSod under- or overexpression on tumor behavior, using established mouse thyroid cancer models. METHODS We performed transcriptome analysis of human and mouse models of endocrine cancer. To address the role of Sod2 in endocrine tumors, we introduced a Sod2 null allele or a transgenic Sod2 overexpression allele into mouse models of benign thyroid follicular neoplasia or aggressive, metastatic follicular thyroid cancer (FTC) and monitored phenotypic changes in tumor initiation and progression. RESULTS In the thyroid, SOD2/Sod2 was downregulated in FTC but not papillary thyroid cancer. Reduced expression of SOD2 was correlated with poorer survival of patients with aggressive thyroid or adrenal cancers. In mice with benign thyroid tumors, Sod2 overexpression increased tumor burden. In contrast, in mice with aggressive FTC, overexpression of Sod2 reduced tumor proliferation and improved mortality rates, whereas its deficiency enhanced tumor growth. CONCLUSION Overall, our results indicate that SOD2 has dichotomous roles in cancer progression and acts in a context-specific manner.
Collapse
Affiliation(s)
- Amruta Ashtekar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Danielle Huk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Alexa Magner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Laura Boucai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Lawrence S. Kirschner, MD, PhD, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210. E-mail:
| |
Collapse
|
18
|
High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget 2018; 7:50239-50257. [PMID: 27384484 PMCID: PMC5226580 DOI: 10.18632/oncotarget.10360] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding the survival mechanism of metastatic cancer cells in circulation will provide new perspectives on metastasis prevention and also shed new light on metastasis-derived drug resistance. In this study, we made it feasible to detect apoptosis of circulating tumor cells (CTCs) in real-time by integrating a fluorescence resonance energy transfer (FRET)-based caspase sensor into one in vitro microfluidic circulatory system, and two in vivo models: zebrafish circulation and mouse lung metastatic model. Our study demonstrated that fluid shear stresses triggered apoptosis of breast cancer cells in circulation by elevating the mitochondrial production of the primary free radical, superoxide anion. Cancer cells with high levels of manganese superoxide dismutase (MnSOD) exhibited stronger resistance to shear force-induced apoptosis and formed more lung metastases in mice. These metastasized cells further displayed higher resistance to chemotherapeutic agent doxorubicin, which also generates superoxide in mitochondria. Specific siRNA-mediated MnSOD knockdown reversed all three phenotypes. Our findings therefore suggest that MnSOD plays an important integrative role in supporting cancer cell survival in circulation, metastasis, and doxorubicin resistance. MnSOD can serve as a new biomarker for identifying metastatic CTCs and a novel therapeutic target for inhibiting metastasis and destroying doxorubicin-resistant breast cancer cells.
Collapse
|
19
|
Sridharan P, Vinothkumar G, Pratheesh P, Babu KS. Modulation of biomimetic properties of cerium oxide nanoparticles by hypoxic tumor microenvironments: steering towards tumor specificity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00097b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerium oxide nanoparticles exhibit selective cytotoxic and biomimetic antioxidant activity due to the redox transformation between Ce3+ ↔ Ce4+ states under tumor-like conditions.
Collapse
Affiliation(s)
- Preethi Sridharan
- Central-Interdisciplinary Research Facility
- Mahatma Gandhi Medical College and Research Institute
- Pondicherry
- India
| | - G. Vinothkumar
- Centre for Nanoscience & Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Kalapet
- Pondicherry
| | - Pooja Pratheesh
- Central-Interdisciplinary Research Facility
- Mahatma Gandhi Medical College and Research Institute
- Pondicherry
- India
| | - K. Suresh Babu
- Centre for Nanoscience & Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Kalapet
- Pondicherry
| |
Collapse
|
20
|
Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel) 2017; 6:antiox6040086. [PMID: 29099803 PMCID: PMC5745496 DOI: 10.3390/antiox6040086] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
While loss of antioxidant expression and the resultant oxidant-dependent damage to cellular macromolecules is key to tumorigenesis, it has become evident that effective oxidant scavenging is conversely necessary for successful metastatic spread. This dichotomous role of antioxidant enzymes in cancer highlights their context-dependent regulation during different stages of tumor development. A prominent example of an antioxidant enzyme with such a dichotomous role and regulation is the mitochondria-localized manganese superoxide dismutase SOD2 (MnSOD). SOD2 has both tumor suppressive and promoting functions, which are primarily related to its role as a mitochondrial superoxide scavenger and H₂O₂ regulator. However, unlike true tumor suppressor- or onco-genes, the SOD2 gene is not frequently lost, or rarely mutated or amplified in cancer. This allows SOD2 to be either repressed or activated contingent on context-dependent stimuli, leading to its dichotomous function in cancer. Here, we describe some of the mechanisms that underlie SOD2 regulation in tumor cells. While much is known about the transcriptional regulation of the SOD2 gene, including downregulation by epigenetics and activation by stress response transcription factors, further research is required to understand the post-translational modifications that regulate SOD2 activity in cancer cells. Moreover, future work examining the spatio-temporal nature of SOD2 regulation in the context of changing tumor microenvironments is necessary to allows us to better design oxidant- or antioxidant-based therapeutic strategies that target the adaptable antioxidant repertoire of tumor cells.
Collapse
|
21
|
Singh K, Krug L, Basu A, Meyer P, Treiber N, Vander Beken S, Wlaschek M, Kochanek S, Bloch W, Geiger H, Maity P, Scharffetter-Kochanek K. Alpha-Ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction. Stem Cells 2017; 35:1704-1718. [PMID: 28398002 DOI: 10.1002/stem.2629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. Here, we demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and l-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2-deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2-deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability, and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. Stem Cells 2017;35:1704-1718.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Patrick Meyer
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Nicolai Treiber
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | | | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany.,Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | |
Collapse
|
22
|
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 2017; 11:240-253. [PMID: 28012439 PMCID: PMC5198743 DOI: 10.1016/j.redox.2016.12.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, mainly contributed by reactive oxygen species (ROS), has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX) is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.
Collapse
Affiliation(s)
- Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Taghipour M, Omidvar A, Razmkhah M, Ghaderi A, Mojtahedi Z. Comparative Proteomic Analysis of Tumor Mesenchymal-Like Stem Cells Derived from High Grade versus Low Grade Gliomas. CELL JOURNAL 2017; 19:250-258. [PMID: 28670517 PMCID: PMC5412783 DOI: 10.22074/cellj.2016.4179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Objective Gliomas are the most common primary brain tumors, and have been ranked as
the fourth leading cause of cancer death. Tumor mesenchymal-like stem cells (tMSCs) contribute to the aggressive behavior of glial tumors by providing a favorable microenvironment
for the malignant cells. The aim of our study was to identify differential proteome of tMSCs
derived from low vs. high grade glioma tumors.
Materials and Methods Patients with newly diagnosed low and high grade gliomas were
included in this case control study. tMSCs were isolated from tumors using enzymatic digestion validated by flow cytometer analysis after sub-culturing. Differential proteomic analysis
of tMSCs derived from low and high grade tumors was performed by two-dimensional gel
electrophoresis and mass spectrometry. Protein spots with more than two fold differences and
P values below 0.05 were considered as differentially expressed ones.
Results In tMSCs isolated from low and high grade gliomas, different isoforms of mesenchymal-related proteins vimentin and transgelin were differentially expressed. Overexpressed
proteins in tMSCs isolated from low grade gliomas were mitochondrial manganese-containing
superoxide dismutase (Mn-SOD), 40S ribosomal protein SA, and GTP-binding nuclear protein,
while in tMSCs isolated from high grade gliomas, cathepsin B, endoplasmin, ezrin, peroxiredoxin1, and pyruvate kinase (PK) were found to be significantly overexpressed.
Conclusion For the first time, we analyzed the differential proteomic profiles of tMSCs
isolated from glioma tumors with different grades. It was found that molecules related to
mesenchymal cells (vimentin and transglin), in addition to those related to tumor aggressiveness with potential secretory behavior (e.g. cathepsin B) were among differentially
expressed proteins.
Collapse
Affiliation(s)
- Mousa Taghipour
- Department of Neurosurgery, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydine Omidvar
- Department of Neurosurgery, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Zbynovska K, Petruska P, Kalafova A, Ondruska L, Jurcik R, Chrastinova L, Tusimova E, Kovacik A, Capcarova M. Antioxidant status of rabbits after treatment with epicatechin and patulin. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zhao Y, Cheng N, Dai M, Pu H, Zheng T, Li H, He J, Bai Y. Dynamic variation of histone H3 trimethyl Lys4 (H3K4me3) and heterochromatin protein 1 (HP1) with employment length in nickel smelting workers. Biomarkers 2016; 22:420-428. [PMID: 27323841 DOI: 10.1080/1354750x.2016.1203996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yanhong Zhao
- Center for Cancer Prevent and Treatment, Institute of Epidemiology and Statistics, College of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Ning Cheng
- Center of Medical Laboratory, College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Min Dai
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongquan Pu
- Workers’ Hospital of Jinchuan Company, Jinchuan Group Co, Ltd, Jinchang, Gansu, China
| | | | - Haiyan Li
- Workers’ Hospital of Jinchuan Company, Jinchuan Group Co, Ltd, Jinchang, Gansu, China
| | - Jie He
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yana Bai
- Center for Cancer Prevent and Treatment, Institute of Epidemiology and Statistics, College of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Rybakova YS, Kalen AL, Eckers JC, Fedorova TN, Goswami PC, Sarsour EH. [Increased manganese superoxide dismutase and cyclin B1 expression in carnosine-induced inhibition of glioblastoma cell proliferation]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:510-8. [PMID: 26350743 DOI: 10.18097/pbmc20156104510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carnosine is an endogenous dipeptide with antiproliferative properties. Here we show that carnosine selectively inhibits proliferation of human glioblastoma cells (U-118-MG) compared to breast (MB231) and oral (Cal27 and FaDu) cancer cells. Carnosine-induced inhibition of U-118-MG proliferation is associated with a significant: decrease in cellular reactive oxygen species levels, increase in manganese superoxide dismutase (MnSOD) and increase in cyclin B1 expression resulting in G2-block. We conclude that the antiproliferative property of carnosine is due to its ability to enhance MnSOD and cyclin B1 expression. These results will be of significance to the potential application of carnosine in brain cancer therapy.
Collapse
Affiliation(s)
| | - A L Kalen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, USA
| | - J C Eckers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, USA
| | | | - P C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, USA
| | - E H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, USA
| |
Collapse
|
27
|
Konzack A, Jakupovic M, Kubaichuk K, Görlach A, Dombrowski F, Miinalainen I, Sormunen R, Kietzmann T. Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal 2015; 23:1059-75. [PMID: 26422659 PMCID: PMC4657515 DOI: 10.1089/ars.2015.6318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS One of the cancer hallmarks is mitochondrial dysfunction associated with oxidative stress. Among the first line of defense against oxidative stress is the dismutation of superoxide radicals, which in the mitochondria is carried out by manganese superoxide dismutase (MnSOD). Accordingly, carcinogenesis would be associated with a dysregulation in MnSOD expression. However, the association studies available so far are conflicting, and no direct proof concerning the role of MnSOD as a tumor promoter or suppressor has been provided. Therefore, we investigated the role of MnSOD in carcinogenesis by studying the effect of MnSOD deficiency in cells and in the livers of mice. RESULTS We found that loss of MnSOD in hepatoma cells contributed to their conversion toward a more malignant phenotype, affecting all cellular properties generally associated with metabolic transformation and tumorigenesis. In vivo, hepatocyte-specific MnSOD-deficient mice showed changed organ architecture, increased expression of tumor markers, and a faster response to carcinogenesis. Moreover, deficiency of MnSOD in both the in vitro and in vivo model reduced β-catenin and hypoxia-inducible factor-1α levels. INNOVATION The present study shows for the first time the important correlation between MnSOD presence and the regulation of two major pathways involved in carcinogenesis, the Wnt/β-catenin and hypoxia signaling pathway. CONCLUSION Our study points toward a tumor suppressive role of MnSOD in liver, where the Wnt/β-catenin and hypoxia pathway may be crucial elements.
Collapse
Affiliation(s)
- Anja Konzack
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mirza Jakupovic
- Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Ilkka Miinalainen
- Biocenter Oulu Electron Microscopy Core Facility, University of Oulu, Oulu, Finland
| | - Raija Sormunen
- Biocenter Oulu Electron Microscopy Core Facility, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|
29
|
Rybakova YS, Kalen AL, Eckers JC, Fedorova TN, Goswami PC, Sarsour EH. Increased manganese superoxide dismutase and cyclin B1 expression in carnosine-induced inhibition of glioblastoma cell proliferation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
31
|
Chokas AL, Bickford JS, Barilovits SJ, Rogers RJ, Qiu X, Newsom KJ, Beachy DE, Nick HS. A TEAD1/p65 complex regulates the eutherian-conserved MnSOD intronic enhancer, eRNA transcription and the innate immune response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1205-16. [PMID: 24953189 DOI: 10.1016/j.bbagrm.2014.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
Abstract
Manganese superoxide dismutase (MnSOD), a critical anti-oxidant enzyme, detoxifies the mitochondrial-derived reactive oxygen species, superoxide, elicited through normal respiration or the inflammatory response. Proinflammatory stimuli induce MnSOD gene expression through a eutherian-conserved, intronic enhancer element. We identified two prototypic enhancer binding proteins, TEAD1 and p65, that when co-expressed induce MnSOD expression comparable to pro-inflammatory stimuli. TEAD1 causes the nuclear sequestration of p65 leading to a novel TEAD1/p65 complex that associates with the intronic enhancer and is necessary for cytokine induction of MnSOD. Unlike typical NF-κB-responsive genes, the induction of MnSOD does not involve p50. Beyond MnSOD, the TEAD1/p65 complex regulates a subset of genes controlling the innate immune response that were previously viewed as solely NF-κB-dependent. We also identified an enhancer-derived RNA (eRNA) that is induced by either proinflammatory stimuli or the TEAD1/p65 complex, potentially linking the intronic enhancer to intra- and interchromosomal gene regulation through the inducible eRNA.
Collapse
Affiliation(s)
- Ann L Chokas
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Justin S Bickford
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sarah J Barilovits
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard J Rogers
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaolei Qiu
- Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly J Newsom
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dawn E Beachy
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Harry S Nick
- Departments of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Crawford S. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic approach to disease progression and recurrence. Ther Adv Med Oncol 2014; 6:52-68. [PMID: 24587831 PMCID: PMC3932057 DOI: 10.1177/1758834014521111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The chronic, progressive clinical characteristics of many adult solid tumor malignancies suggest that a more effective therapeutic approach to cancer management may require long-term intervention using nontoxic systemic agents that block critical components of abnormal tumor physiology. Two highly promising systemic targets common to the development, progression and recurrence of many common cancers are dysregulated inflammatory and oxidation/reduction (redox) pathways. Compelling clinical data support the use of anti-inflammatory and antioxidant agents as a therapeutic modality for long-term use in patients diagnosed with several common cancers, including colon cancer and breast cancer. The therapeutic paradigm presented in this paper is the product of a synthesis of what is currently understood about the biological effects of inflammation and oxidative stress that contribute to tumorigenesis, disease progression and recurrence as well as results obtained from research on the use of prophylactics with anti-inflammatory or antioxidant properties in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sarah Crawford
- Cancer Biology Research Laboratory, Southern Connecticut State University, New Haven, CT 06515, USA
| |
Collapse
|
33
|
Sun GG, Wang YD, Lu YF, Hu WN. Different association of manganese superoxide dismutase gene polymorphisms with risk of prostate, esophageal, and lung cancers: evidence from a meta-analysis of 20,025 subjects. Asian Pac J Cancer Prev 2014; 14:1937-43. [PMID: 23679296 DOI: 10.7314/apjcp.2013.14.3.1937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta- analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Guo-Gui Sun
- Department of Chemoradiation Therapy, Tangshan People's Hospital, 3Department of Endocrinology, Tangshan Workers Hospital, Tangshan, China
| | | | | | | |
Collapse
|
34
|
Combination of telmisartan with cisplatin controls oral cancer cachexia in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:642848. [PMID: 24381940 PMCID: PMC3870111 DOI: 10.1155/2013/642848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/09/2013] [Accepted: 09/01/2013] [Indexed: 12/28/2022]
Abstract
The objective of the present investigation was to study the effect of combination of telmisartan with cisplatin in oral cancer cachexia induced by applying 0.5% 4-nitroquinoline-1-oxide (4-NQO) in propylene glycol to tongue, thrice a week for 8 weeks. From 8th to 22nd week, cisplatin (0.23 mg/kg, i.v.) was administered once in three weeks and telmisartan (5 mg/kg/day, p.o.) was administered daily. 4-NQO produced significant decrease in food intake, body weight, hyperglycemia, dyslipidemia, hypertension, and bradycardia, worsened hemodyanamics, increased cachexia markers like insulin, C-reactive protein, and interleukin-6, and increased tumor markers like lactate dehydrogenase and γ-glutamyl transferase.Treatment with combination of telmisartan with cisplatin produced significant increase in food intake and body weight and controlled hyperglycaemia and dyslipidemia, preserved hemodynamic function, and decreased the cachexia markers while cisplatin alone did not produce any increase in food intake and body weight. Further, the combination of telmisartan with cisplatin significantly reduced tumor marker levels. Combination of telmisartan with cisplatin prevented 4-NQO induced oxidative stress, hyperplasia and hyperkeratosis, premalignant dysplasia, and invasive squamous cell carcinoma in the tongue. Our data suggests that combination of telmisartan with cisplatin treatment is beneficial in controlling cancer cachexia. Telmisartan can be used as an add-on therapy with cisplatin or other traditional chemotherapeutic agents.
Collapse
|
35
|
Sun WG, Weydert CJ, Zhang Y, Yu L, Liu J, Spitz DR, Cullen JJ, Oberley LW. Superoxide Enhances the Antitumor Combination of AdMnSOD Plus BCNU in Breast Cancer. Cancers (Basel) 2013; 2:68-87. [PMID: 20532186 PMCID: PMC2880814 DOI: 10.3390/cancers2010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Overexpression of manganese superoxide dismutase (MnSOD) can sensitize a variety of cancer cell lines to many anticancer drugs. Recent work has shown that cancer cells can be sensitized to cell killing by raising peroxide levels through increased manganese superoxide dismutase (MnSOD) when combined with inhibition of peroxide removal. Here we utilize the mechanistic property of one such anticancer drug, BCNU, which inhibits glutathione reductase (GR), compromising the glutathione peroxidase system thereby inhibiting peroxide removal. The purpose of this study was to determine if anticancer modalities known to produce superoxide radicals can increase the antitumor effect of MnSOD overexpression when combined with BCNU. To enhance MnSOD, an adenoviral construct containing the cDNA for MnSOD (AdMnSOD) was introduced into human breast cancer cell line, ZR-75-1. AdMnSOD infection alone did not alter cell killing, however when GR was inhibited with either BCNU or siRNA, cytotoxicity increased. Futhermore, when the AdMnSOD + BCNU treatment was combined with agents that enhance steady-state levels of superoxide (TNF-α, antimycin, adriamycin, photosensitizers, and ionizing radiation), both cell cytotoxicity and intracellular peroxide levels increased. These results suggest that the anticancer effect of AdMnSOD combined with BCNU can be enhanced by agents that increase generation of superoxide.
Collapse
Affiliation(s)
- Wenqing G. Sun
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Christine J. Weydert
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Yuping Zhang
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Lei Yu
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Jingru Liu
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| | - Joseph J. Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, Iowa and the VA Medical Center, Iowa City, IA, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-319-353-8297; Fax: +1-319-335-8039
| | - Larry W. Oberley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA, USA; E-Mails: (W.S.); (C.W.); (Y.Z.); (L.Y.); (J.L.); (D.S.)
| |
Collapse
|
36
|
Tamura M, Matsui H, Tomita T, Sadakata H, Indo HP, Majima HJ, Kaneko T, Hyodo I. Mitochondrial reactive oxygen species accelerate gastric cancer cell invasion. J Clin Biochem Nutr 2013; 54:12-7. [PMID: 24426185 PMCID: PMC3882482 DOI: 10.3164/jcbn.13-36] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Tumor invasion is the most important factor to decide patient's prognosis. The relation between reactive oxygen species and tumor invasion is mainly reported that nicotinamide adenine dinucleotide phosphate oxidase in the cell membrane is a reactive oxygen species producer for formulating an invadopodia. On the other hand, mitochondrion was known as one of the most important reactive oxygen species-producer in the cell via an energy transfer system. However, the relation between mitochondrial reactive oxygen species and the tumor invasion was not well clarified. In this study, we evaluated the relation between mitochondrial reactive oxygen species and tumor invasion using a normal gastric mucosal cell-line (RGM-1) and a cancerous mutant RGM-1 cell-line (RGK-1). Manganese superoxide dismutase-expressing RGK-1 cell-lines were used for a scavenging mitochondrial reactive oxygen species. The cells have been evaluated their movement ability as follows; cellular ruffling frequencies, wound healing assay to evaluate horizontal cellular migration, and invasion assay using matrigel to analyze vertical cellular migration. All cellular movement abilities were inhibited by scavenging mitochondrial reactive oxygen species with manganese superoxide dismutase. Therefore mitochondrial reactive oxygen species was one of factors enhancing the tumor invasion in gastric cancer.
Collapse
Affiliation(s)
- Masato Tamura
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tsutomu Tomita
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hisato Sadakata
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroko P Indo
- Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragawa, Kagoshima, Japan
| | - Hideyuki J Majima
- Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragawa, Kagoshima, Japan
| | - Tsuyoshi Kaneko
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ichinosuke Hyodo
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
37
|
A recombinant trans-membrane protein hMnSOD–R9 inhibits the proliferation of cervical cancer cells in vitro. Mol Cell Biochem 2013; 385:79-86. [DOI: 10.1007/s11010-013-1816-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/13/2013] [Indexed: 12/30/2022]
|
38
|
Crawford S. Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy. Front Pharmacol 2013; 4:68. [PMID: 23805101 PMCID: PMC3691519 DOI: 10.3389/fphar.2013.00068] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022] Open
Abstract
U.S. SEER (Surveillance Epidemiology and End Results) data for age-adjusted mortality rates for all cancers combined for all races show only a modest overall 13% decline over the past 35 years. Moreover, the greatest contributor to cancer mortality is treatment-resistant metastatic disease. The accepted therapeutic paradigm for the past half-century for the treatment of advanced cancers has involved the use of systemic chemotherapy drugs cytotoxic for cycling cells (both normal and malignant) during DNA synthesis and/or mitosis. The failure of this therapeutic modality to achieve high-level, consistent rates of disease-free survival for some of the most common cancers, including tumors of the lung, colon breast, brain, melanoma, and others is the focus of this paper. A retrospective assessment of critical milestones in cancer chemotherapy indicates that most successful therapeutic regimens use cytotoxic cell cycle inhibitors in combined, maximum tolerated, dose-dense acute treatment regimens originally developed to treat acute lymphoblastic leukemia and some lymphomas. Early clinical successes in this area led to their wholesale application to the treatment of solid tumor malignancies that, unfortunately, has not produced consistent, long-term high cure rates for many common cancers. Important differences in therapeutic sensitivity of leukemias/lymphomas versus solid tumors can be explained by key biological differences that define the treatment-resistant solid tumor phenotype. A review of these clinical outcome data in the context of recent developments in our understanding of drug resistance mechanisms characteristic of solid tumors suggests the need for a new paradigm for the treatment of chemotherapy-resistant cancers. In contrast to reductionist approaches, the systemic approach targets both microenvironmental and systemic factors that drive and sustain tumor progression. These systemic factors include dysregulated inflammatory and oxidation pathways shown to be directly implicated in the development and maintenance of the cancer phenotype. The paradigm stresses the importance of a combined preventive/therapeutic approach involving adjuvant chemotherapies that incorporate anti-inflammatory and anti-oxidant therapeutics.
Collapse
Affiliation(s)
- Sarah Crawford
- Cancer Biology Research Laboratory, Southern Connecticut State UniversityNew Haven, CT, USA
| |
Collapse
|
39
|
Tefik T, Kucukgergin C, Sanli O, Oktar T, Seckin S, Ozsoy C. Manganese superoxide dismutase Ile58Thr, catalase C-262T and myeloperoxidase G-463A gene polymorphisms in patients with prostate cancer: relation to advanced and metastatic disease. BJU Int 2013; 112:E406-14. [PMID: 23773345 DOI: 10.1111/bju.12176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the relationship between manganese superoxide dismutase (MnSOD) Ile58Thr, catalase (CAT) C-262T and myeloperoxidase (MPO) G-463A gene polymorphisms and the susceptibility and clinicopathological characteristics of prostate cancer. PATIENTS AND METHODS In all, 155 patients diagnosed with prostate cancer and 195 controls with negative digital rectal examinations and PSA levels of <4 ng/dL were enrolled in this study. MnSOD, CAT and MPO gene polymorphisms were identified by polymerase chain reaction restriction-fragment length polymorphism methods. RESULTS The TT genotype in MnSOD Ile58Thr polymorphism, CC genotype in the CAT C-262T polymorphism and the GG genotype in the MPO G-463A polymorphism were the predominant genotypes amongst this Turkish male population. There was no association between MnSOD Ile58Thr polymorphism and prostate cancer. For the CAT C-262T polymorphism, the TT genotype had significantly increased prostate cancer risk compared with the CC genotype. Similarly, the TT genotype had a 1.94- and 3.83-fold increased risk for high-stage disease and metastasis, respectively, when compared with the CC genotype. For the MPO G-463A polymorphism, the GG genotype had 1.78-fold increased risk of prostate cancer compared with the AA genotype. However, no association was found regarding Gleason score, advanced and metastatic prostate cancer risk. CONCLUSIONS It seems that there is no association of prostate cancer with MnSOD Ile58Thr polymorphism, whereas the TT genotype in the CAT C-262T polymorphism and the GG genotype in the MPO G-463A polymorphism may be associated with increased prostate cancer risk. The TT genotype in the CAT C-262T gene polymorphism may also be a risk factor in tumour progression and metastasis among Turkish men.
Collapse
Affiliation(s)
- Tzevat Tefik
- Department of Urology, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
40
|
Sun GG, Hu WN, Wang YD, Yang CR, Lu YF. Bidirectional regulation of manganese superoxide dismutase (MnSOD) on the radiosensitivity of esophageal cancer cells. Asian Pac J Cancer Prev 2013; 13:3015-23. [PMID: 22994704 DOI: 10.7314/apjcp.2012.13.7.3015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) may represent a new type of tumor suppressor protein. Overexpression of the cDNA of this gene by plasmid or recombinant lentiviral transfection in various types of cancer leads to growth suppression both in vitro and in vivo. We previously determined that changes in MnSOD expression had bidirectional effects on adriamycin (ADR) when combined with nitric oxide (NO). Radiation induces free radicals in a manner similar to ADR, so we speculated that MnSOD combined with NO would also have a bidirectional effect on cellular radiosensitivity. To examine this hypothesis, TE-1 human esophageal squamous carcinoma cells were stably transfected using lipofectamine with a pLenti6-DEST plasmid containing human MnSOD cDNA at moderate to high overexpression levels or with no MnSOD insert. Blastidicin-resistant colonies were isolated, grown, and maintained in culture. We found that moderate overexpression of MnSOD decreased growth rates, plating efficiency, and increased apoptosis. However, high overexpression increased growth rates, plating efficiency, and decreased apoptosis. When combined with NO, moderate overexpression of MnSOD increased the radiosensitivity of esophageal cancer cells, whereas high MnSOD overexpression had the opposite effect. This finding suggests a potential new method to kill certain radioresistant tumors and to provide radioresistance to normal cells.
Collapse
Affiliation(s)
- Guo-Gui Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | | | | | | | | |
Collapse
|
41
|
Sun G, Wang Y, Hu W, Li C. Effects of manganese superoxide dismutase (MnSOD) expression on regulation of esophageal cancer cell growth and apoptosis in vitro and in nude mice. Tumour Biol 2013; 34:1409-19. [PMID: 23649652 DOI: 10.1007/s13277-012-0622-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/09/2012] [Indexed: 02/06/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD) catalyzes superoxide radical (O2 (-)) into hydrogen peroxide (H2O2), which is further catalyzed by the combined action of glutathione peroxidase (GPx) and catalase (CAT) into water and oxygen. MnSOD plays a role in cell protection from superoxide damage. This study aimed to investigate the effects of MnSOD on regulation of esophageal squamous cell carcinoma cell growth, apoptosis, and cell cycle distribution in vitro and tumor formation and growth in nude mouse xenografts. The data showed that differential levels of MnSOD expression had different effects on tumor cell proliferation, apoptosis, plating efficiency (PE), and cell cycle distribution in vitro and tumor formation and growth in nude mice. In particular, high levels of MnSOD expression promoted TE-1 cell growth and PE rate in vitro and in nude mice, whereas moderate MnSOD expression suppressed tumor cell growth and PE rate but induced more cell apoptosis. Thus, these data demonstrated the dual effects of MnSOD protein in esophageal squamous cell carcinoma and further study will confirm these current data.
Collapse
Affiliation(s)
- Guogui Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, 06300, China
| | | | | | | |
Collapse
|
42
|
Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice. Mol Ther 2013; 21:423-32. [PMID: 23295952 DOI: 10.1038/mt.2012.232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo.
Collapse
|
43
|
Candas D, Fan M, Nantajit D, Vaughan AT, Murley JS, Woloschak GE, Grdina DJ, Li JJ. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol 2012; 5:166-75. [PMID: 23243068 DOI: 10.1093/jmcb/mjs062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a major antioxidant enzyme within the mitochondria, is responsible for the detoxification of free radicals generated by cellular metabolism and environmental/therapeutic irradiation. Cell cycle-dependent kinase Cdk1, along with its regulatory partner CyclinB1, plays important roles in the regulation of cell cycle progression as well as in genotoxic stress response. Herein, we identified the presence of the minimal Cdk1 phosphorylation consensus sequence ([S/T]-P; Ser106) in human MnSOD, suggesting Cdk1 as a potential upstream kinase of MnSOD. A substantial amount of CyclinB1/Cdk1 was found to localize in the mitochondrion upon irradiation. The enhanced Cdk1/MnSOD interaction and MnSOD phosphorylation were detected in both the irradiated human cells and mouse tissues. We report that CyclinB1/Cdk1 can regulate MnSOD through reversible Ser106 phosphorylation, both in vivo and in vitro. The CyclinB1/Cdk1-mediated MnSOD Ser106 resulted in increased MnSOD activity and stability, along with improved mitochondrial function and cellular resistance to radiation-induced apoptosis. These results demonstrate a unique pro-survival mechanism by which cells enhance the survival via CyclinB1/Cdk1-mediated MnSOD activation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Demet Candas
- Department of Radiation Oncology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Superior therapeutic index of calmangafodipir in comparison to mangafodipir as a chemotherapy adjunct. Transl Oncol 2012; 5:492-502. [PMID: 23323161 DOI: 10.1593/tlo.12238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/15/2023] Open
Abstract
Mangafodipir is a magnetic resonance imaging contrast agent with manganese superoxide dismutase (MnSOD) mimetic activity. The MnSOD mimetic activity protects healthy cells against oxidative stress-induced detrimental effects, e.g., myelosuppressive effects of chemotherapy drugs. The contrast property depends on in vivo dissociation of Mn(2+) from mangafodipir-about 80% dissociates after injection. The SOD mimetic activity, however, depends on the intact Mn complex. Complexed Mn(2+) is readily excreted in the urine, whereas dissociated Mn(2+) is excreted slowly via the biliary route. Mn is an essential but also a potentially neurotoxic metal. For more frequent therapeutic use, neurotoxicity due to Mn accumulation in the brain may represent a serious problem. Replacement of 4/5 of Mn(2+) in mangafodipir with Ca(2+) (resulting in calmangafodipir) stabilizes it from releasing Mn(2+) after administration, which roughly doubles renal excretion of Mn. A considerable part of Mn(2+) release from mangafodipir is governed by the presence of a limited amount of plasma zinc (Zn(2+)). Zn(2+) has roughly 10(3) and 10(9) times higher affinity than Mn(2+) and Ca(2+), respectively, for fodipir. Replacement of 80% of Mn(2+) with Ca(2+) is enough for binding a considerable amount of the readily available plasma Zn(2+), resulting in considerably less Mn(2+) release and retention in the brain and other organs. At equivalent Mn(2+) doses, calmangafodipir was significantly more efficacious than mangafodipir to protect BALB/c mice against myelosuppressive effects of the chemotherapy drug oxaliplatin. Calmangafodipir did not interfere negatively with the antitumor activity of oxaliplatin in CT26 tumor-bearing syngenic BALB/c mice, contrary calmangafodipir increased the antitumor activity.
Collapse
|
45
|
Liu G, Sun G, Wang Y, Wang D, Hu W, Zhang J. Association between manganese superoxide dismutase gene polymorphism and breast cancer risk: a meta-analysis of 17,842 subjects. Mol Med Rep 2012; 6:797-804. [PMID: 22825700 DOI: 10.3892/mmr.2012.998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/11/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this meta-analysis was to explore the association between the manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk, and to investigate the interaction of this gene polymorphism with known risk factors for breast cancer. Crude odds ratios (ORs) with 95% confidence intervals (CIs) for breast cancer risk associated with co-dominant models [valine/alanine (Val/Ala) vs. Val/Val, Ala/Ala vs. Val/Val], a dominant model (Val/Ala + Ala/Ala vs. Val/Val) and a recessive model (Ala/Ala vs. Val/Ala + Val/Val) were statistically estimated. This meta‑analysis included 8,102 breast cancer cases and 9,740 controls from 14 published case-control studies. The data revealed no significant association between the MnSOD polymorphism and the risk of developing breast cancer. However, upon subgroup analyses, the risk was significantly increased in premenopausal women with the dominant model of the MnSOD gene polymorphism (OR, 1.15; 95% CI, 1.01-1.31). Statistically significant increased risks were also identified in women with the MnSOD genotypes containing the Ala allele who had a tobacco smoking history (OR, 1.17; 95% CI, 1.02-1.34), a higher body mass index (OR, 1.26; 95% CI, 1.02-1.56) or who used oral contraceptives (OR, 1.98; 95% CI, 1.34-2.93). By contrast, there was no significant association between breast cancer risk and alcohol consumption and ethnicity. This meta‑analysis demonstrated no statistically significant association between the MnSOD gene polymorphism and breast cancer susceptibility, except in premenopausal women with certain unhealthy lifestyle habbits.
Collapse
Affiliation(s)
- Geling Liu
- Department of Endocrinology (Section I), Tangshan Workers Hospital, Tangshan, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J, Wang X, Liu Q. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 2012; 52:1508-18. [PMID: 22387281 DOI: 10.1016/j.freeradbiomed.2012.02.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
After acute exposure of cells to arsenic, reactive oxygen species mediate changes in cell behavior, including activation of proliferative signaling. For chronic exposure to arsenic, however, the function of reactive oxygen species in cell transformation remains poorly understood. Although microRNA-21 (miR-21) has been implicated in various aspects of carcinogenesis, its functions and molecular mechanisms in carcinogen-induced tumorigenesis are unclear. The purpose of this study was to determine if miR-21 is involved in arsenite-induced malignant transformation and to characterize the associated signaling pathways. During arsenite-induced transformation of human embryo lung fibroblast (HELF) cells, miR-21 was upregulated, and the extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) signal pathway was activated. Moreover, superoxide radical dismutase (a scavenger of superoxide) and catalase (a scavenger of hydroperoxides) blocked the arsenite-induced effects in HELF cells and mouse embryonic fibroblasts. Blockage of ERK by the inhibitor U0126 or inhibition of NF-κB p65 by siRNA or Bay 11-7082 prevented the increases in miR-21 and the decreases in Spry1, Pten, and Pdcd4, the target proteins of miR-21, induced by arsenite. As determined by a ChIP-qPCR assay, NF-κB p65 regulated miR-21 expression by binding directly to the promoter of miR-21. Further, anti-miR-21 downregulated miR-21 expression and prevented the arsenite-induced activation of ERK via the increase in Spry1, indicating that miR-21 has a feedback effect in regulating ERK activation. Overexpression of miR-21 with an miR-21 mimic and feedback activation of ERK and NF-κB via the decrease in Spry1 promoted the malignancy of HELF cells exposed to arsenite, but knockdown of miR-21 with anti-miR-21 and feedback blockage of ERK and NF-κB activation through an increase in Spry1 decreased anchorage-independent growth of arsenite-transformed cells. Thus, the transformation of HELF cells induced by chronic exposure to arsenite is mediated by increased miR-21 expression, which, in turn, is mediated by reactive oxygen species activation of the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Min Ling
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St. Clair D, Batinic-Haberle I. Manganese superoxide dismutase, MnSOD and its mimics. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:794-814. [PMID: 22198225 PMCID: PMC3304004 DOI: 10.1016/j.bbadis.2011.12.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Daret St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
48
|
Mehrotra S, Pecaut MJ, Freeman TL, Crapo JD, Rizvi A, Luo-Owen X, Slater JM, Gridley DS. Analysis of a metalloporphyrin antioxidant mimetic (MnTE-2-PyP) as a radiomitigator: prostate tumor and immune status. Technol Cancer Res Treat 2012; 11:447-57. [PMID: 22475066 DOI: 10.7785/tcrt.2012.500260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Due to radiation-induced immune depression and development of pathologies such as cancer, there is increasing urgency to identify radiomitigators that are effective when administered after radiation exposure. The main goal of this study was to determine the radiomitigation capacity of MnTE-2-PyP[Mn(III) tetrakis (N-ethylpyridinium-2-yl) porphyrin], a superoxide dismutase (SOD) mimetic, and evaluate leukocyte parameters in spleen and blood. C57BL/6 mice were total-body exposed to 2 Gy γ-rays (Co-60), i.e., well below a lethal dose, followed by subcutaneous implantation of 5 × 10(5) RM-9 prostate tumor cells and initiation of MnTE-2-PyP treatment (day 0); interval between each procedure was 1-2 h. The drug was administered daily (12 times). Tumor progression was monitored and immunological analyses were performed on a subset per group on day 12. Animals treated with MnTE-2-PyP alone had significantly slower tumor growth compared to mice that did not receive the drug (P < 0.05), while radiation alone had no effect. Treatment of tumor-bearing mice with MnTE-2-PyP alone significantly increased spleen mass relative to body mass; the numbers of splenic white blood cells (WBC) and lymphocytes (B and T), as well as circulating WBC, granulocytes, and platelets, were high compared to one of more of the other groups (P < 0.05). The results show that MnTE-2-PyP slowed RM-9 tumor progression and up-regulated immune parameters, but mitigation of the effects of 2 Gy total-body irradiation were minimal.
Collapse
Affiliation(s)
- S Mehrotra
- Department of Basic Sciences, Divisions of Biochemistry and Microbiology, Loma Linda University and Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:101465. [PMID: 22007296 PMCID: PMC3189584 DOI: 10.1155/2012/101465] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 02/07/2023]
Abstract
The formation of reactive oxygen species (ROS) is a result of incomplete reduction of molecular oxygen during cellular metabolism. Although ROS has been shown to act as signaling molecules, it is known that these reactive molecules can act as prooxidants causing damage to DNA, proteins, and lipids, which over time can lead to disease propagation and ultimately cell death. Thus, restoring the protective antioxidant capacity of the cell has become an important target in therapeutic intervention. In addition, a clearer understanding of the disease stage and molecular events that contribute to ROS generation during tumor promotion can lead to novel approaches to enhance target specificity in cancer progression. This paper will focus on not only the traditional routes of ROS generation, but also on new mechanisms via the tumor suppressor p53 and the interaction between p53 and MnSOD, the primary antioxidant enzyme in mitochondria. In addition, the potential consequences of the p53-MnSOD interaction have also been discussed. Lastly, we have highlighted clinical implications of targeting the p53-MnSOD interaction and discussed recent therapeutic mechanisms utilized to modulate both p53 and MnSOD as a method of tumor suppression.
Collapse
|
50
|
Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 2011; 286:37813-29. [PMID: 21878644 PMCID: PMC3199523 DOI: 10.1074/jbc.m110.200675] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor recurrence after chemotherapy or radiation remains a major obstacle to successful cancer treatment. A subset of cancer cells, termed cancer stem cells, can elude conventional treatments and eventually regenerate a tumor that is more aggressive. Despite the large number of studies, molecular events that govern the emergence of aggressive therapy-resistant cells with stem cell properties after chemotherapy are poorly defined. The present study provides evidence for the rare escape of tumor cells from drug-induced cell death, after an intermediate stay in a non-cycling senescent stage followed by unstable multiplication characterized by spontaneous cell death. However, some cells appear to escape and generate stable colonies with an aggressive tumor stem cell-like phenotype. These cells displayed higher CD133 and Oct-4 expression. Notably, the drug-selected cells that contained low levels of reactive oxygen species (ROS) also showed an increase in antioxidant enzymes. Consistent with this in vitro experimental data, we observed lower levels of ROS in breast tumors obtained after neoadjuvant chemotherapy compared with samples that did not receive preoperative chemotherapy. These latter tissues also expressed enhanced levels of ROS defenses with enhanced expression of superoxide dismutase. Higher levels of Oct-4 and CD133 were also observed in tumors obtained after neoadjuvant chemotherapy. Further studies provided evidence for the stabilization of Nrf2 due to reduced 26 S proteasome activity and increased p21 association as the driving signaling event that contributes to the transition from a high ROS quiescent state to a low ROS proliferating stage in drug-induced tumor stem cell enrichment.
Collapse
Affiliation(s)
- Santhi Achuthan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | | | | | | | | |
Collapse
|