1
|
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y, Endo Y. Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. Cell Mol Immunol 2024; 21:1266-1281. [PMID: 39187636 PMCID: PMC11528006 DOI: 10.1038/s41423-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yuki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Takeru Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souta Yoshida
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuko Yamada
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan.
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
2
|
Yoon JH, Bae E, Nagafuchi Y, Sudo K, Han JS, Park SH, Nakae S, Yamashita T, Ju JH, Matsumoto I, Sumida T, Miyazawa K, Kato M, Kuroda M, Lee IK, Fujio K, Mamura M. Repression of SMAD3 by STAT3 and c-Ski induces conventional dendritic cell differentiation. Life Sci Alliance 2024; 7:e201900581. [PMID: 38960622 PMCID: PMC11222659 DOI: 10.26508/lsa.201900581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
A pleiotropic immunoregulatory cytokine, TGF-β, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.
Collapse
Affiliation(s)
- Jeong-Hwan Yoon
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eunjin Bae
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- https://ror.org/03mc8zn46 Department of Companion Health, Yeonsung University, Anyang, Republic of Korea
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Nagafuchi
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- https://ror.org/00k5j5c86 Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Jin Soo Han
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susumu Nakae
- https://ror.org/03t78wx29 Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamashita
- Laboratory of Veterinary Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Ji Hyeon Ju
- Department of Rheumatology, Catholic University of Korea, Seoul St. Mary Hospital, Seoul, Republic of Korea
| | - Isao Matsumoto
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiji Miyazawa
- https://ror.org/059x21724 Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiko Kuroda
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - In-Kyu Lee
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Keishi Fujio
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuko Mamura
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/00k5j5c86 Department of Advanced Nucleic Acid Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Lin XY, Chu Y, Zhang GS, Zhang HL, Kang K, Wu MX, Zhu J, Xu CS, Lin JX, Huang CK, Chai DJ. Retinoid X receptor agonists alleviate fibroblast activation and post-infarction cardiac remodeling via inhibition of TGF-β1/Smad pathway. Life Sci 2023; 329:121936. [PMID: 37453576 DOI: 10.1016/j.lfs.2023.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Retinoid X receptor (RXR), particularly RXRα, has been implicated in cardiovascular diseases. However, the functional role of RXR activation in myocardial infarction (MI) remains unclear. This study aimed to determine the effects of RXR agonists on MI and to dissect the underlying mechanisms. Sprague-Dawley (SD) rats were subjected to MI and then treated (once daily for 4 weeks) with either RXR agonist bexarotene (10 or 30 mg/kg body weight) or vehicle. Heart function was determined using echocardiography and cardiac hemodynamic measurements. Four weeks post MI, myocardial tissues were collected to evaluate cardiac remodeling. Primary cardiac fibroblasts (CFs) were treated with or without RXR ligand 9-cis-RA followed by stimulation with TGF-β1. Immunoblot, immunofluorescence, and co-immunoprecipitation were performed to elucidate the regulatory role of RXR agonists in TGF-β1/Smad signaling. In vivo treatment with Bexarotene moderately affects systemic inflammation and apoptosis and ameliorated left ventricular dysfunction after MI in rat model. In contrast, bexarotene significantly inhibited post-MI myocardial fibrosis. Immunoblot analysis of heart tissue homogenates from MI rats revealed that bexarotene regulated the activation of the TGF-β1/Smad signaling pathway. In vitro, 9-cis-RA inhibited the TGF-β1-induced proliferation and collagen production of CFs. Importantly, upon activation by 9-cis-RA, RXRα interacted with p-Smad2 in cytoplasm, inhibiting the TGF-β1-induced nuclear translocation of p-Smad2, thereby negatively regulating TGF-β1/Smad signaling and attenuating the fibrotic response of CFs. These findings suggest that RXR agonists ameliorate post-infarction myocardial fibrosis, maladaptive remodeling, and heart dysfunction via attenuation of fibrotic response in CFs through inhibition of the TGF-β1/Smad pathway activation.
Collapse
Affiliation(s)
- Xiao-Yan Lin
- Ultrasonography Department, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yong Chu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Guo-Shan Zhang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Hai-Lin Zhang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Kai Kang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Min-Xia Wu
- Electron Microscopy Laboratory of Public Technology Service Center, Fujian Medical University, Fuzhou 350004, China
| | - Jiang Zhu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Chang-Sheng Xu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Jin-Xiu Lin
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Chun-Kai Huang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Da-Jun Chai
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
4
|
Higashijima F, Hasegawa M, Yoshimoto T, Kobayashi Y, Wakuta M, Kimura K. Molecular mechanisms of TGFβ-mediated EMT of retinal pigment epithelium in subretinal fibrosis of age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1060087. [PMID: 38983569 PMCID: PMC11182173 DOI: 10.3389/fopht.2022.1060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly, affecting the macula of the retina and resulting in vision loss. There are two types of AMD, wet and dry, both of which cause visual impairment. Wet AMD is called neovascular AMD (nAMD) and is characterized by the formation of choroidal neovascular vessels (CNVs) in the macula. nAMD can be treated with intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors, which help improve vision. However, approximately half the patients do not achieve satisfactory results. Subretinal fibrosis often develops late in nAMD, leading to irreversible photoreceptor degeneration and contributing to visual loss. Currently, no treatment exists for subretinal fibrosis, and the molecular mechanisms of fibrous tissue formation following neovascular lesions remain unclear. In this review, we describe the clinical features and molecular mechanisms of macular fibrosis secondary to nAMD. Myofibroblasts play an essential role in the development of fibrosis. This review summarizes the latest findings on the clinical features and cellular and molecular mechanisms of the pathogenesis of subretinal fibrosis in nAMD and discusses the potential therapeutic strategies to control subretinal fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
5
|
Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, Kruse FE, Pasutto F, Schlötzer-Schrehardt U. Dysregulated Retinoic Acid Signaling in the Pathogenesis of Pseudoexfoliation Syndrome. Int J Mol Sci 2022; 23:ijms23115977. [PMID: 35682657 PMCID: PMC9180992 DOI: 10.3390/ijms23115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Pseudoexfoliation (PEX) syndrome, a stress-induced fibrotic matrix process, is the most common recognizable cause of open-angle glaucoma worldwide. The recent identification of PEX-associated gene variants uncovered the vitamin A metabolic pathway as a factor influencing the risk of disease. In this study, we analyzed the role of the retinoic acid (RA) signaling pathway in the PEX-associated matrix metabolism and evaluated its targeting as a potential candidate for an anti-fibrotic intervention. We provided evidence that decreased expression levels of RA pathway components and diminished RA signaling activity occur in an antagonistic crosstalk with TGF-β1/Smad signaling in ocular tissues and cells from PEX patients when compared with age-matched controls. Genetic and pharmacologic modes of RA pathway inhibition induced the expression and production of PEX-associated matrix components by disease-relevant cell culture models in vitro. Conversely, RA signaling pathway activation by natural and synthetic retinoids was able to suppress PEX-associated matrix production and formation of microfibrillar networks via antagonization of Smad-dependent TGF-β1 signaling. The findings indicate that deficient RA signaling in conjunction with hyperactivated TGF-β1/Smad signaling is a driver of PEX-associated fibrosis, and that restoration of RA signaling may be a promising strategy for anti-fibrotic intervention in patients with PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Ursula Hoja
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Daniel Berner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Genetikum, 89231 Neu-Ulm, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Julia M. Weller
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Loretta König
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Lisa Hübner
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Thomas A. Ostermann
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Gabriele C. Gusek-Schneider
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Friedrich E. Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.Z.); (U.H.); (A.G.); (D.B.); (B.H.); (J.M.W.); (L.K.); (L.H.); (T.A.O.); (G.C.G.-S.); (F.E.K.)
- Correspondence: ; Tel.: +49-9131-8534433; Fax: +49-9131-8534631
| |
Collapse
|
6
|
Loo SY, Toh LP, Xie WH, Pathak E, Tan W, Ma S, Lee MY, Shatishwaran S, Yeo JZZ, Yuan J, Ho YY, Peh EKL, Muniandy M, Torta F, Chan J, Tan TJ, Sim Y, Tan V, Tan B, Madhukumar P, Yong WS, Ong KW, Wong CY, Tan PH, Yap YS, Deng LW, Dent R, Foo R, Wenk MR, Lee SC, Ho YS, Lim EH, Tam WL. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. SCIENCE ADVANCES 2021; 7:eabh2443. [PMID: 34613780 PMCID: PMC8494440 DOI: 10.1126/sciadv.abh2443] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cell state transitions control the functional behavior of cancer cells. Epithelial-to-mesenchymal transition (EMT) confers cancer stem cell-like properties, enhanced tumorigenicity and drug resistance to tumor cells, while mesenchymal-epithelial transition (MET) reverses these phenotypes. Using high-throughput chemical library screens, retinoids are found to be potent promoters of MET that inhibit tumorigenicity in basal-like breast cancer. Cell state transitions are defined by reprogramming of lipid metabolism. Retinoids bind cognate nuclear receptors, which target lipid metabolism genes, thereby redirecting fatty acids for β-oxidation in the mesenchymal cell state towards lipid storage in the epithelial cell state. Disruptions of key metabolic enzymes mediating this flux inhibit MET. Conversely, perturbations to fatty acid oxidation (FAO) rechannel fatty acid flux and promote a more epithelial cell phenotype, blocking EMT-driven breast cancer metastasis in animal models. FAO impinges on the epigenetic control of EMT through acetyl-CoA-dependent regulation of histone acetylation on EMT genes, thus determining cell states.
Collapse
Affiliation(s)
- Ser Yue Loo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Li Ping Toh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - William Haowei Xie
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Wilson Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - May Yin Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - S. Shatishwaran
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Yin Ying Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore
| | - Esther Kai Lay Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore
| | - Magendran Muniandy
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Jack Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Tira J. Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Veronique Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Benita Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Preetha Madhukumar
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Wei Sean Yong
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Kong Wee Ong
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Chow Yin Wong
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Rd., Singapore 169856, Singapore
| | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Roger Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Corresponding author. (E.H.L.); (W.L.T.)
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Corresponding author. (E.H.L.); (W.L.T.)
| |
Collapse
|
7
|
Gorbacheva AM, Uvarova AN, Ustiugova AS, Bhattacharyya A, Korneev KV, Kuprash DV, Mitkin NA. EGR1 and RXRA transcription factors link TGF-β pathway and CCL2 expression in triple negative breast cancer cells. Sci Rep 2021; 11:14120. [PMID: 34239022 PMCID: PMC8266896 DOI: 10.1038/s41598-021-93561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/28/2021] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is the main cytokine responsible for the induction of the epithelial-mesenchymal transition of breast cancer cells, which is a hallmark of tumor transformation to the metastatic phenotype. Recently, research demonstrated that the chemokine CCL2 gene expression level directly correlates with the TGF-β activity in breast cancer patients. CCL2 attracts tumor-associated macrophages and is, therefore, considered as an important inductor of breast cancer progression; however, the precise mechanisms underlying its regulation by TGF-β are unknown. Here, we studied the behavior of the CCL2 gene in MDA-MB-231 and HCC1937 breast cancer cells representing mesenchymal-like phenotype activated by TGF-β. Using bioinformatics, deletion screening and point mutagenesis, we identified binding sites in the CCL2 promoter and candidate transcription factors responsible for its regulation by TGF-β. Among these factors, only the knock-down of EGR1 and RXRA made CCL2 promoter activity independent of TGF-β. These factors also demonstrated binding to the CCL2 promoter in a TGF-β-dependent manner in a chromatin immunoprecipitation assay, and point mutations in the EGR1 and RXRA binding sites totally abolished the effect of TGF-β. Our results highlight the key role of EGR1 and RXRA transcription factors in the regulation of CCL2 gene in response to TGF-β pathway.
Collapse
Affiliation(s)
- Alisa M Gorbacheva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Sadgrove NJ, Simmonds MSJ. Topical and nutricosmetic products for healthy hair and dermal antiaging using "dual-acting" (2 for 1) plant-based peptides, hormones, and cannabinoids. FASEB Bioadv 2021; 3:601-610. [PMID: 34377956 PMCID: PMC8332470 DOI: 10.1096/fba.2021-00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
One of the side effects of oral antiaging retinoids is increased hair shedding. Retinoids promote the expression of TGF-β2 from fibroblasts, which stimulate collagen expression but silences keratinocytes. Since keratinocytes normally influence differentiation of dermal papilla cells at the base of the hair follicle, retinoids feasibly inhibit hair growth via the increased expression of TGF-β2, which inhibits Wnt/β-catenin signaling. Fortunately, the plant kingdom provides an array of alternatives as dual-acting nutricosmetics and topicals that work independently of TGF-β2 to confer dermal antiaging and hair health effects. These alternatives include "plant hormones" such as cytokinins and phytoestrogens. Many cytokinins are agonists of the G-coupled adenosine receptors. Partial agonism of adenosine receptors promotes collagen synthesis independently of TGF-β2 signaling. Adenosine expression is potentially also the mechanism of minoxidil in promotion of scalp hair growth. Because of crosstalk between adenosine and cannabinoid receptors it makes sense to try combinations of specific CB2 agonists and cytokinins (or phytoestrogens). However, dual-acting cosmetics including peptides with high numbers of positively charged amino acids, such as lysine or arginine, offer real potential as they can be processed from multiple botanical candidates, including almond, fenugreek, pea sprouts, soy, and seaweeds. The current review summarizes much of what is known about retinoid alternatives in the plant kingdom and identifies potentially fruitful new areas of research.
Collapse
|
9
|
Inhibition of epithelial-mesenchymal transition in retinal pigment epithelial cells by a retinoic acid receptor-α agonist. Sci Rep 2021; 11:11842. [PMID: 34088917 PMCID: PMC8178299 DOI: 10.1038/s41598-021-90618-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells plays a key role in proliferative retinal diseases such as age-related macular degeneration by contributing to subretinal fibrosis. To investigate the potential role of retinoic acid receptor-α (RAR-α) signaling in this process, we have now examined the effects of the RAR-α agonist Am580 on EMT induced by transforming growth factor-β2 (TGF-β2) in primary mouse RPE cells cultured in a three-dimensional type I collagen gel as well as on subretinal fibrosis in a mouse model. We found that Am580 inhibited TGF-β2-induced collagen gel contraction mediated by RPE cells. It also attenuated the TGF-β2-induced expression of the mesenchymal markers α-smooth muscle actin, fibronectin, and collagen type I; production of pro-matrix metalloproteinase 2 and interleukin-6; expression of the focal adhesion protein paxillin; and phosphorylation of SMAD2 in the cultured RPE cells. Finally, immunofluorescence analysis showed that Am580 suppressed both the TGF-β2-induced translocation of myocardin-related transcription factor-A (MRTF-A) from the cytoplasm to the nucleus of cultured RPE cells as well as subretinal fibrosis triggered by laser-induced photocoagulation in a mouse model. Our observations thus suggest that RAR-α signaling inhibits EMT in RPE cells and might attenuate the development of fibrosis associated with proliferative retinal diseases.
Collapse
|
10
|
Mishra S, Taelman J, Popovic M, Tilleman L, Duthoo E, van der Jeught M, Deforce D, van Nieuwerburgh F, Menten B, de Sutter P, Boel A, Chuva De Sousa Lopes SM, Heindryckx B. Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells. Stem Cells 2021; 39:551-563. [PMID: 33470497 PMCID: PMC8248136 DOI: 10.1002/stem.3335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.
Collapse
Affiliation(s)
- Swati Mishra
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Jasin Taelman
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Mina Popovic
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Evi Duthoo
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Margot van der Jeught
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Filip van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Björn Menten
- Department of Pediatrics and Medical Genetics, Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Petra de Sutter
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Annekatrien Boel
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Susana M. Chuva De Sousa Lopes
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeidenThe Netherlands
| | - Björn Heindryckx
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|
11
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
12
|
Maiorino E, Baek SH, Guo F, Zhou X, Kothari PH, Silverman EK, Barabási AL, Weiss ST, Raby BA, Sharma A. Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Nat Commun 2020; 11:811. [PMID: 32041952 PMCID: PMC7010776 DOI: 10.1038/s41467-020-14600-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
The molecular and clinical features of a complex disease can be influenced by other diseases affecting the same individual. Understanding disease-disease interactions is therefore crucial for revealing shared molecular mechanisms among diseases and designing effective treatments. Here we introduce Flow Centrality (FC), a network-based approach to identify the genes mediating the interaction between two diseases in a protein-protein interaction network. We focus on asthma and COPD, two chronic respiratory diseases that have been long hypothesized to share common genetic determinants and mechanisms. We show that FC highlights potential mediator genes between the two diseases, and observe similar outcomes when applying FC to 66 additional pairs of related diseases. Further, we perform in vitro perturbation experiments on a widely replicated asthma gene, GSDMB, showing that FC identifies candidate mediators of the interactions between GSDMB and COPD-associated genes. Our results indicate that FC predicts promising gene candidates for further study of disease-disease interactions.
Collapse
Affiliation(s)
- Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Network Science Institute, Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, USA.
| | - Seung Han Baek
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Parul H Kothari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert-László Barabási
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Network Science Institute, Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Molecular characterization of a toxicological tipping point during human stem cell differentiation. Reprod Toxicol 2020; 91:1-13. [DOI: 10.1016/j.reprotox.2019.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
|
14
|
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol 2019; 343:103729. [DOI: https:/doi.org/10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Lee SH, Shin JH, Shin MH, Kim YS, Chung KS, Song JH, Kim SY, Kim EY, Jung JY, Kang YA, Chang J, Park MS. The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1. Tuberc Respir Dis (Seoul) 2018; 82:42-52. [PMID: 29926545 PMCID: PMC6304329 DOI: 10.4046/trd.2017.0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background Transforming growth factor β (TGF-β), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-β1. Methods A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-β1 and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-β1 and Smad3 were evaluated at 1 and 3 weeks. Results When A549 cells were pre-stimulated with TGF-β1 prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-β1 stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-β1 failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-β1-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-β1 and Smad3 at 1 and 3 weeks. Conclusion RA had inhibitory effects on the phosphorylation of Smad induced by TGF-β1 in vitro, and RA also decreased the expression of TGF-β1 at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-β1/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-β1-induced lung injury and fibrosis.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Han Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Younsei University Health System, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol 2018; 343:103729. [PMID: 29397066 DOI: 10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.
Collapse
|
17
|
Amarante MK, de Oliveira CEC, Ariza CB, Sakaguchi AY, Ishibashi CM, Watanabe MAE. The predictive value of transforming growth factor-β in Wilms tumor immunopathogenesis. Int Rev Immunol 2017; 36:233-239. [PMID: 28481647 DOI: 10.1080/08830185.2017.1291639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wilms tumor is the most common kidney malignancy in children, especially in children aged less than 6 years. Although therapeutic approach has reached successful rates, there is still room for improvement. Considering the tumor microenvironment, cytokines represent important elements of interaction and communication between tumor cells, stroma, and immune cells. In this regard, the transforming growth factor beta (TGF-β) family members play significant functions in physiological and pathological conditions, particularly in cancer. By regulating cell growth, death, and immortalization, TGF-β signaling pathways exert tumor suppressor effects in normal and early tumor cells. Thus, it is not surprising that a high number of human tumors arise due to alterations in genes coding for various TGF-β signaling components. Understanding the ambiguous role of TGF-β in human cancer is of paramount importance for the development of new therapeutic strategies to specifically block the metastatic signaling pathway of TGF-β without affecting its tumor suppressive effect. In this context, this review attempt to summarize the involvement of TGF-β in Wilms tumor.
Collapse
Affiliation(s)
- Marla Karine Amarante
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carlos Eduardo Coral de Oliveira
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carolina Batista Ariza
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Alberto Yoichi Sakaguchi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Cintya Mayumi Ishibashi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Maria Angelica Ehara Watanabe
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| |
Collapse
|
18
|
Uchibe K, Son J, Larmour C, Pacifici M, Enomoto-Iwamoto M, Iwamoto M. Genetic and pharmacological inhibition of retinoic acid receptor γ function promotes endochondral bone formation. J Orthop Res 2017; 35:1096-1105. [PMID: 27325507 PMCID: PMC6900928 DOI: 10.1002/jor.23347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ-null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ-null mice. The antagonist-induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle-treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ-null mice, and increases in pSmad1/5/8 levels and Id1-luc activity were observed in RARγ antagonist-treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096-1105, 2017.
Collapse
Affiliation(s)
- Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jiyeon Son
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
19
|
Auci DL, Egilmez NK. Synergy of Transforming Growth Factor Beta 1 and All Trans Retinoic Acid in the Treatment of Inflammatory Bowel Disease: Role of Regulatory T cells. ACTA ACUST UNITED AC 2016; 3. [PMID: 28603774 DOI: 10.15226/2374-815x/3/4/00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nejat K Egilmez
- University of Louisville, Department of Microbiology and Immunology, Louisville, KY
| |
Collapse
|
20
|
Zeng Q, Liu S, Yao J, Zhang Y, Yuan Z, Jiang C, Chen A, Fu Q, Su B, Dunham R, Liu Z. Transcriptome Display During Testicular Differentiation of Channel Catfish (Ictalurus punctatus) as Revealed by RNA-Seq Analysis. Biol Reprod 2016; 95:19. [PMID: 27307075 DOI: 10.1095/biolreprod.116.138818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) has been recognized as a dominant freshwater aquaculture species in the United States. It is also a suitable model for studying the mechanisms of sex determination and differentiation because of its sexual plasticity and exhibition of both genetic and environmental sex determination. The testicular differentiation in male channel catfish normally starts between 90 and 102 days postfertilization (dpf), while the ovarian differentiation starts early from 19 dpf. As such, efforts to better understand the postponed testicular development at the molecular level are needed. Toward that end, we conducted transcriptomic comparison of gene expression of male and female gonads at 90, 100, and 110 dpf using high-throughput RNA-Seq. Transcriptomic profiles of male gonads on 90 and 100 dpf exhibited high similarities except for a small number of significantly up-regulated genes that were involved in development of germ cell-supporting somatic cells, while drastic changes were observed during 100-110 dpf, with a group of highly up-regulated genes that were involved in germ cells development, including nanog and pou5f1 Transcriptomic comparison between testes and ovaries identified male-preferential genes, such as gsdf, cxcl12, as well as other cytokines mediated the development of the gonad into a testis. Co-expression analysis revealed highly correlated genes and potential pathways underlying germ cell differentiation and spermatogonia stem cell development. The candidate genes and pathways identified in this study set the foundation for further studies on sex determination and differentiation in catfish as well as other teleosts.
Collapse
Affiliation(s)
- Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn, Alabama
| |
Collapse
|
21
|
Wevers NR, de Vries HE. Morphogens and blood-brain barrier function in health and disease. Tissue Barriers 2015; 4:e1090524. [PMID: 27141417 DOI: 10.1080/21688370.2015.1090524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 12/22/2022] Open
Abstract
The microvasculature of the brain forms a protective blood-brain barrier (BBB) that ensures a homeostatic environment for the central nervous system (CNS), which is essential for optimal brain functioning. The barrier properties of the brain endothelial cells are maintained by cells surrounding the capillaries, such as astrocytes and pericytes. Together with the endothelium and a basement membrane, these supporting cells form the neurovascular unit (NVU). Accumulating evidence indicates that the supporting cells of the NVU release a wide variety of soluble factors that induce and control barrier properties in a concentration-dependent manner. The current review provides a comprehensive overview of how such factors, called morphogens, influence BBB integrity and functioning. Since impaired BBB function is apparent in numerous CNS disorders and is often associated with disease severity, we also discuss the potential therapeutic value of these morphogens, as they may represent promising therapies for a wide variety of CNS disorders.
Collapse
Affiliation(s)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology; Neuroscience Campus Amsterdam, VU University Medical Center ; Amsterdam, The Netherlands
| |
Collapse
|
22
|
Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, Tzanakakis ES, Buck MJ, Birkaya B, Stachowiak MK. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1). PLoS One 2015; 10:e0123380. [PMID: 25923916 PMCID: PMC4414453 DOI: 10.1371/journal.pone.0123380] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.
Collapse
Affiliation(s)
- Christopher Terranova
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sridhar T. Narla
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jonathan Bard
- Next-Generation Sequencing and Expression Analysis Core, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abhirath Parikh
- Department of Chemical and Biological Engineering, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Ewa K. Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michael J. Buck
- Department of Biochemistry, Genomics and Bioinformatics Core, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Barbara Birkaya
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Barber T, Esteban-Pretel G, Marín MP, Timoneda J. Vitamin a deficiency and alterations in the extracellular matrix. Nutrients 2014; 6:4984-5017. [PMID: 25389900 PMCID: PMC4245576 DOI: 10.3390/nu6114984] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.
Collapse
Affiliation(s)
- Teresa Barber
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - Guillermo Esteban-Pretel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - María Pilar Marín
- Unidad de Microscopía IIS La Fe Valencia, Avda Campanar, 21, 46009-Valencia, Spain.
| | - Joaquín Timoneda
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| |
Collapse
|
24
|
Rankin AC, Hendry BM, Corcoran JP, Xu Q. An in vitro model for the pro-fibrotic effects of retinoids: mechanisms of action. Br J Pharmacol 2014; 170:1177-89. [PMID: 23992207 DOI: 10.1111/bph.12348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/21/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinoids, including all-trans retinoic acid (tRA), have dose-dependent pro-fibrotic effects in experimental kidney diseases. To understand and eventually prevent such adverse effects, it is important to establish relevant in vitro models and unravel their mechanisms. EXPERIMENTAL APPROACH Fibrogenic effects of retinoids were assessed in NRK-49F renal fibroblasts using picro-Sirius red staining for collagens and quantified by spectrophotometric analysis of the eluted stain. Other methods included RT-qPCR, immunoassays and matrix metalloproteinase (MMP) activity assays. KEY RESULTS With or without TGF-β1, tRA was dose-dependently pro-fibrotic, notably increasing collagen accumulation. tRA and TGF-β1 additively suppressed expression of mRNA for MMP2, 3 and 13 and suppressed MMP activity. tRA, in the presence of TGF-β1, induced plasminogen activator inhibitor-1 (PAI-1) mRNA and they additively induced PAI-1 protein expression. A PAI-1 inhibitor, a pan-retinoic acid receptor (RAR) antagonist and a pan-retinoid X receptor (RXR) antagonist each partially prevented the pro-fibrotic effect of tRA. The dose-dependent pro-fibrotic effects of a pan-RXR agonist were similar to those of tRA. A pan-RAR agonist showed weaker, less dose-dependent pro-fibrotic effects and the pro-fibrotic effects of RARα and RARβ-selective agonists were even smaller. An RARγ-selective agonist did not affect fibrogenesis. CONCLUSIONS AND IMPLICATIONS An in vitro model for the pro-fibrotic effects of retinoids was established in NRK-49F cells. It was associated with reduced MMP activity and increased PAI-1 expression, and was probably mediated by RXR and RAR. To avoid or antagonize the pro-fibrotic activity of tRA, further studies on RAR isotype-selective agonists and PAI-1 inhibitors might be of value.
Collapse
Affiliation(s)
- A C Rankin
- Department of Renal Medicine, King's College London, London, UK
| | | | | | | |
Collapse
|
25
|
Cha JH, Wee HJ, Seo JH, Ahn BJ, Park JH, Yang JM, Lee SW, Lee OH, Lee HJ, Gelman IH, Arai K, Lo EH, Kim KW. Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury. Nat Commun 2014; 5:4952. [PMID: 25229625 DOI: 10.1038/ncomms5952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/11/2014] [Indexed: 11/09/2022] Open
Abstract
The meninges forms a critical epithelial barrier, which protects the central nervous system (CNS), and therefore its prompt reconstruction after CNS injury is essential for reducing neuronal damage. Meningeal cells migrate into the lesion site after undergoing an epithelial-mesenchymal transition (EMT) and repair the impaired meninges. However, the molecular mechanisms of meningeal EMT remain largely undefined. Here we show that TGF-β1 and retinoic acid (RA) released from the meninges, together with oxygen tension, could constitute the mechanism for rapid meningeal reconstruction. AKAP12 is an effector of this mechanism, and its expression in meningeal cells is regulated by integrated upstream signals composed of TGF-β1, RA and oxygen tension. Functionally, AKAP12 modulates meningeal EMT by regulating the TGF-β1-non-Smad-SNAI1 signalling pathway. Collectively, TGF-β1, RA and oxygen tension can modulate the dynamic change in AKAP12 expression, causing prompt meningeal reconstruction after CNS injury by regulating the transition between the epithelial and mesenchymal states of meningeal cells.
Collapse
Affiliation(s)
- Jong-Ho Cha
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Bum Ju Ahn
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jun-Mo Yang
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sae-Won Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-799, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seoul 135-081, Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Kyu-Won Kim
- 1] SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea [2] Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
26
|
Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR, Lee JM, Choe J, Kim PH. Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol 2013; 94:325-35. [PMID: 23744644 DOI: 10.1189/jlb.0313128] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrates that RA has activity of an IgA switch factor and is more specific than TGF-β1. RA independently caused only IgA switching, whereas TGF-β1 caused IgA and IgG2b switching. We found that RA increased IgA production and that this was a result of its ability to increase the frequency of IgA-secreting B cell clones. Increased IgA production was accompanied by an increase of GLTα. RA activity was abrogated by an antagonist of the RAR. Additionally, RA affected intestinal IgA production in mice. Surprisingly, RA, in combination with TGF-β1, notably enhanced not only IgA production and GLTα expression but also CCR9 and α4β7 expression on B cells. These results suggest that RA selectively induces IgA isotype switching through RAR and that RA and TGF-β have important effects on the overall gut IgA antibody response.
Collapse
Affiliation(s)
- Goo-Young Seo
- School of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perrot CY, Javelaud D, Mauviel A. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther 2012; 137:183-99. [PMID: 23063491 DOI: 10.1016/j.pharmthera.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Carole Y Perrot
- Institut Curie, Team TGF-β and Oncogenesis, 91400, Orsay, France; INSERM U1021, 91400, Orsay, France
| | | | | |
Collapse
|
28
|
Sitnik KM, Kotarsky K, White AJ, Jenkinson WE, Anderson G, Agace WW. Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4801-9. [PMID: 22504647 DOI: 10.4049/jimmunol.1200358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin A metabolite and transcriptional modulator retinoic acid (RA) is recognized as an important regulator of epithelial cell homeostasis in several tissues. Despite the known importance of the epithelial compartment of the thymus in T cell development and selection, the potential role of RA in the regulation of thymic cortical and medullary epithelial cell homeostasis has yet to be addressed. In this study, using fetal thymus organ cultures, we demonstrate that endogenous RA signaling promotes thymic epithelial cell (TEC) cell-cycle exit and restricts TEC cellularity preferentially in the cortical TEC compartment. Combined gene expression, biochemical, and functional analyses identified mesenchymal cells as the major source of RA in the embryonic thymus. In reaggregate culture experiments, thymic mesenchyme was required for RA-dependent regulation of TEC expansion, highlighting the importance of mesenchyme-derived RA in modulating TEC turnover. The RA-generating potential of mesenchymal cells was selectively maintained within a discrete Ly51(int)gp38(+) subset of Ly51(+) mesenchyme in the adult thymus, suggesting a continual role for mesenchymal cell-derived RA in postnatal TEC homeostasis. These findings identify RA signaling as a novel mechanism by which thymic mesenchyme influences TEC development.
Collapse
|
29
|
Karakida T, Yui R, Suzuki T, Fukae M, Oida S. Retinoic acid receptor γ-dependent signaling cooperates with BMP2 to induce osteoblastic differentiation of C2C12 cells. Connect Tissue Res 2011; 52:365-72. [PMID: 21401418 DOI: 10.3109/03008207.2010.541309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All-trans retinoic acid and bone morphogenetic protein 2 (BMP2) synergistically induced an alkaline phosphatase (ALP) activity, one of the osteoblastic differentiation markers, and promoted the extracellular matrix calcification in a myoblastic C2C12 cell culture system. The induced ALP mRNA was not suppressed in the presence of a protein synthesis inhibitor, suggesting that the de novo protein synthesis does not influence this induction. There are three isotypes for the retinoic acid receptor (RARα, RARβ, RARγ). Both the ALP activity and the extracellular matrix calcification were inhibited by the addition of the specific siRNA for RARγ, but not by that for RARα or RARβ. When the effects of the RAR subtype-specific agonists on the ALP activity in the presence of BMP2 were examined, the RARγ-specific agonist was the most effective. The ALP activity induced by any RAR subtype-specific agonist was inhibited by the addition of the specific siRNA for RARγ, but not by that for RARα or RARβ. These results suggest that a RARγ-dependent functional crosstalk is present between the retinoic acid and BMP2 signaling to induce osteogenic transdifferentiation in myoblastic C2C12 cells.
Collapse
Affiliation(s)
- Takeo Karakida
- Department of Biochemistry, School of Dental Medicine, Tsurumi University , Yokohama , Japan
| | | | | | | | | |
Collapse
|
30
|
Wang RL, Bencic D, Lazorchak J, Villeneuve D, Ankley GT. Transcriptional regulatory dynamics of the hypothalamic-pituitary-gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1461-1470. [PMID: 21570121 DOI: 10.1016/j.ecoenv.2011.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/28/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
To study mechanisms underlying generalized effects of 3β hydroxysteroid dehydrogenase (HSD3B) inhibition, reproductively mature zebrafish (Danio rerio) were exposed to trilostane at two dosages for 24, 48, or 96 h and their gonadal RNA samples profiled with Agilent zebrafish microarrays. Trilostane had substantial impact on the transcriptional dynamics of zebrafish, as reflected by a number of differentially expressed genes (DEGs) including transcription factors (TFs), altered TF networks, signaling pathways, and Gene Ontology (GO) biological processes. Changes in gene expression between a treatment and its control were mostly moderate, ranging from 1.3 to 2.0 fold. Expression of genes coding for HSD3B and many of its transcriptional regulators remained unchanged, suggesting transcriptional up-regulation is not a primary compensatory mechanism for HSD3B enzyme inhibition. While some trilostane-responsive TFs appear to share cellular functions linked to endocrine disruption, there are also many other DEGs not directly linked to steroidogenesis. Of the 65 significant TF networks, little similarity, and therefore little cross-talk, existed between them and the hypothalamic-pituitary-gonadal (HPG) axis. The most enriched GO biological processes are regulations of transcription, phosphorylation, and protein kinase activity. Most of the impacted TFs and TF networks are involved in cellular proliferation, differentiation, migration, and apoptosis. While these functions are fairly broad, their underlying TF networks may be useful to development of generalized toxicological screening methods. These findings suggest that trilostane-induced effects on fish endocrine functions are not confined to the HPG-axis alone. Its impact on corticosteroid synthesis could also have contributed to some system wide transcriptional changes in zebrafish observed in this study.
Collapse
Affiliation(s)
- Rong-Lin Wang
- USEPA, Ecological Exposure Research Division, National Exposure Research Laboratory, 26 W Martin Luther King Dr. Cincinnati, OH 45268, USA.
| | | | | | | | | |
Collapse
|
31
|
Förster S, Günthel D, Kiss F, Brehm K. Molecular characterisation of a serum-responsive, DAF-12-like nuclear hormone receptor of the fox-tapeworm Echinococcus multilocularis. J Cell Biochem 2011; 112:1630-42. [DOI: 10.1002/jcb.23073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Shimono K, Tung WE, Macolino C, Chi AHT, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M, Iwamoto M. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med 2011; 17:454-60. [PMID: 21460849 PMCID: PMC3073031 DOI: 10.1038/nm.2334] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/18/2011] [Indexed: 12/14/2022]
Abstract
Heterotopic ossification consists of ectopic bone formation within soft tissues after surgery or trauma. It can have debilitating consequences, but there is no definitive cure. Here we show that heterotopic ossification was essentially prevented in mice receiving a nuclear retinoic acid receptor-γ (RAR-γ) agonist. Side effects were minimal, and there was no significant rebound effect. To uncover the mechanisms of these responses, we treated mouse mesenchymal stem cells with an RAR-γ agonist and transplanted them into nude mice. Whereas control cells formed ectopic bone masses, cells that had been pretreated with the RAR-γ agonist did not, suggesting that they had lost their skeletogenic potential. The cells became unresponsive to rBMP-2 treatment in vitro and showed decreases in phosphorylation of Smad1, Smad5 and Smad8 and in overall levels of Smad proteins. In addition, an RAR-γ agonist blocked heterotopic ossification in transgenic mice expressing activin receptor-like kinase-2 (ALK2) Q207D, a constitutively active form of the receptor that is related to ALK2 R206H found in individuals with fibrodysplasia ossificans progressiva. The data indicate that RAR-γ agonists are potent inhibitors of heterotopic ossification in mouse models and, thus, may also be effective against injury-induced and congenital heterotopic ossification in humans.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Bone Morphogenetic Proteins/metabolism
- Cell Differentiation/drug effects
- Chondrogenesis/drug effects
- Humans
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Nude
- Mice, Transgenic
- Ossification, Heterotopic/drug therapy
- Ossification, Heterotopic/metabolism
- Ossification, Heterotopic/pathology
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/deficiency
- Receptors, Retinoic Acid/genetics
- Signal Transduction/drug effects
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Kengo Shimono
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tee MK, Huang N, Damm I, Miller WL. Transcriptional regulation of the human P450 oxidoreductase gene: hormonal regulation and influence of promoter polymorphisms. Mol Endocrinol 2011; 25:715-31. [PMID: 21393444 DOI: 10.1210/me.2010-0236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at -325/-1 bp from the untranslated exon. Common human POR polymorphisms at -208 and -173 had little influence on transcription, but the polymorphism at -152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between -249 and -261 and binding of thyroid hormone receptor-β (TRβ) at -240/-245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between -374 and -149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T(3) exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T(3) also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at -152 may play a role in genetic variation in steroid biosynthesis and drug metabolism.
Collapse
Affiliation(s)
- Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143-0978, USA
| | | | | | | |
Collapse
|
34
|
Abstract
CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset.
Collapse
|
35
|
Krueger C, Hoffmann FM. Identification of retinoic acid in a high content screen for agents that overcome the anti-myogenic effect of TGF-beta-1. PLoS One 2010; 5:e15511. [PMID: 21152098 PMCID: PMC2994897 DOI: 10.1371/journal.pone.0015511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1. METHODOLOGY/PRINCIPAL FINDINGS A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells. CONCLUSIONS/SIGNIFICANCE Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1.
Collapse
Affiliation(s)
- Chateen Krueger
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - F. Michael Hoffmann
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bonamassa B, Liu D. Nonviral gene transfer as a tool for studying transcription regulation of xenobiotic metabolizing enzymes. Adv Drug Deliv Rev 2010; 62:1250-6. [PMID: 20713102 PMCID: PMC2991602 DOI: 10.1016/j.addr.2010.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 12/19/2022]
Abstract
Numerous xenobiotic metabolizing enzymes are regulated by nuclear receptors at transcriptional level. The challenge we currently face is to understand how a given nuclear receptor interacts with its xenobiotics, migrates into nucleus, binds to the xenobiotic response element of a target gene, and regulates transcription. Toward this end, new methods have been developed to introduce the nuclear receptor gene into appropriate cells and study its activity in activating reporter gene expression under the control of a promoter containing xenobiotic response elements. The goal of this review is to critically examine the gene transfer methods currently available. We concentrate on the gene transfer mechanism, advantages and limitations of each method when employed for nuclear receptor-mediated gene regulation studies. It is our hope that the information provided highlights the importance of gene transfer in studying the mechanisms by which our body eliminates the potentially harmful substances and maintains the homeostasis.
Collapse
Affiliation(s)
- Barbara Bonamassa
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 527 Salk Hall, 3501 Terrace Street, Pittsburgh, PA15261, United States
| | | |
Collapse
|
37
|
Titeux M, Pendaries V, Zanta-Boussif MA, Décha A, Pironon N, Tonasso L, Mejia JE, Brice A, Danos O, Hovnanian A. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther 2010; 18:1509-18. [PMID: 20485266 DOI: 10.1038/mt.2010.91] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by loss-of-function mutations in COL7A1 encoding type VII collagen which forms key structures (anchoring fibrils) for dermal-epidermal adherence. Patients suffer since birth from skin blistering, and develop severe local and systemic complications resulting in poor prognosis. We lack a specific treatment for RDEB, but ex vivo gene transfer to epidermal stem cells shows a therapeutic potential. To minimize the risk of oncogenic events, we have developed new minimal self-inactivating (SIN) retroviral vectors in which the COL7A1 complementary DNA (cDNA) is under the control of the human elongation factor 1alpha (EF1alpha) or COL7A1 promoters. We show efficient ex vivo genetic correction of primary RDEB keratinocytes and fibroblasts without antibiotic selection, and use either of these genetically corrected cells to generate human skin equivalents (SEs) which were grafted onto immunodeficient mice. We achieved long-term expression of recombinant type VII collagen with restored dermal-epidermal adherence and anchoring fibril formation, demonstrating in vivo functional correction. In few cases, rearranged proviruses were detected, which were probably generated during the retrotranscription process. Despite this observation which should be taken under consideration for clinical application, this preclinical study paves the way for a therapy based on grafting the most severely affected skin areas of patients with fully autologous SEs genetically corrected using a SIN COL7A1 retroviral vector.
Collapse
|
38
|
Xu Q, Hendry BM, Maden M, Lu H, Wong YF, Rankin AC, Noor M, Kopp JB. Kidneys of Alb/TGF-beta1 transgenic mice are deficient in retinoic acid and exogenous retinoic acid shows dose-dependent toxicity. Nephron Clin Pract 2010; 114:e127-32. [PMID: 20110732 DOI: 10.1159/000276587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/06/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Alb/TGF-beta(1) transgenic mice overexpress active transforming growth factor-beta(1) (TGF-beta(1)) in the liver, leading to increased circulating levels of the cytokine and progressive renal fibrosis. This study was designed to explore if exogenous all-trans retinoic acid (tRA) prevents renal fibrosis in this animal model. METHODS The retinoid profile in kidney and liver of wild-type and Alb/TGF-beta(1) transgenic mice was examined by high-performance liquid chromatography and slow-release pellets containing different amounts of tRA were implanted subcutaneously to treat the Alb/TGF-beta(1) transgenic mice, starting at 1 week of age; mice were sacrificed 2 weeks later. RESULTS Kidneys of 3-week-old wild-type mice had abundant tRA, which was completely absent in kidneys of the transgenic mice. Low doses of tRA (6-10.7 mg/kg/day) failed to affect renal fibrosis although it tended to suppress the mRNA expression of some molecular markers of fibrosis and retinal dehydrogenase 2 (RALDH2), a gene encoding a key tRA-synthesising enzyme. These tendencies disappeared, mortality tended to increase and RALDH2 and connective tissue growth factor (CTGF) mRNAs significantly increased in the medium-dose group (12.7-18.8 mg/kg/day). High doses (20.1-27.4 mg/kg/day) showed even higher toxicity with increased renal fibrosis and significant mortality. CONCLUSIONS Alb/TGF-beta(1) transgenic mice are characterised by depletion of endogenous renal tRA. Exogenous tRA dose-dependently increases mortality and kidney fibrosis, which is associated with dose-dependent regulation of renal RALDH2 and CTGF mRNA expression.
Collapse
Affiliation(s)
- Qihe Xu
- Department of Renal Medicine, King's College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gage PJ, Zacharias AL. Signaling "cross-talk" is integrated by transcription factors in the development of the anterior segment in the eye. Dev Dyn 2009; 238:2149-62. [PMID: 19623614 DOI: 10.1002/dvdy.22033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Extracellular signaling "cross-talk" between tissues is an important requirement for development of many organs yet the underlying mechanisms generally remain poorly understood. The anterior segment of the eye, which is constructed from four embryonic lineages, provides a unique opportunity to genetically dissect developmental processes such as signaling "cross-talk" without fear of inducing lethality. In the current review, we summarize recent data showing that PITX2, a homeodomain transcription factor, integrates retinoic acid and canonical Wnt/beta-catenin signaling during anterior segment development. Because the requirements for retinoic acid signaling, canonical Wnt/beta-catenin signaling, and PITX2 are not unique to the eye, this newly identified pathway may have relevance elsewhere during development and in tissue homeostasis.
Collapse
Affiliation(s)
- Philip J Gage
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
40
|
Qin H, Chan MWY, Liyanarachchi S, Balch C, Potter D, Souriraj IJ, Cheng ASL, Agosto-Perez FJ, Nikonova EV, Yan PS, Lin HJ, Nephew KP, Saltz JH, Showe LC, Huang THM, Davuluri RV. An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules. BMC SYSTEMS BIOLOGY 2009; 3:73. [PMID: 19615063 PMCID: PMC2724489 DOI: 10.1186/1752-0509-3-73] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 07/17/2009] [Indexed: 12/24/2022]
Abstract
Background The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context. Results To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-β activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1). Conclusion Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules.
Collapse
Affiliation(s)
- Huaxia Qin
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhong H, Chen FY, Wang HR, Lin JY, Xu R, Zhong JH, Huang HH. Modification of TGF-beta1 signaling pathway during NB4 cells differentiation by all-trans retinoid acid induction. Int J Hematol 2009; 89:438-444. [PMID: 19363708 DOI: 10.1007/s12185-009-0293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 01/14/2009] [Accepted: 03/03/2009] [Indexed: 11/26/2022]
Abstract
The aim of the study was to present the possible mechanisms of transforming growth factor beta 1(TGF-beta1) signal pathway during cell differentiation by studying the expression levels of six components of TGF-beta1 pathway (TGF-beta1, two TGF-beta1 receptors and three Smad proteins). The morphology change, the CD11 expression levels, and the mRNA and protein expression levels of TGF-beta1, TGF-beta ReceptorI (TbetaRI), TGF-beta ReceptorII (TbetaRII), Smad2, Smad4 and Smad7 were assessed by exposing NB4 cells to all-trans retinoid acid (ATRA) using Wright's stain, flow cytometry, real-time PCR assay and Western blot analysis. The mRNA and protein expression levels of all six components increased during NB4 cells differentiation induced by ATRA. They were most significantly increased after 24-72 h individually when cells were induced by ATRA (the mRNA and protein expression levels of TGF-beta1, TbetaRI, TbetaRII and Smad2 reached their peaks at 48 and 48 h individually after the treatment, Smad4 at 48 and 72 h, and Smad7 at 72 and 72 h). The change in mRNA expression levels was earlier than the change in the same gene controlling protein. These results indicate that the upregulation of TGF-beta1 pathway plays an important role in NB4 cells differentiation induced by ATRA.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Fang-Yuan Chen
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China.
| | - Hai-Rong Wang
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Jia-Yao Lin
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Rong Xu
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Ji-Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| | - Hong-Hui Huang
- Department of Hematology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai Dong Fang Road 1630, Shanghai, 200127, China
| |
Collapse
|
42
|
Carpenedo RL, Bratt-Leal AM, Marklein RA, Seaman SA, Bowen NJ, McDonald JF, McDevitt TC. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 2009; 30:2507-15. [PMID: 19162317 DOI: 10.1016/j.biomaterials.2009.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Cell specification and tissue formation during embryonic development are precisely controlled by the local concentration and temporal presentation of morphogenic factors. Similarly, pluripotent embryonic stem cells can be induced to differentiate in vitro into specific phenotypes in response to morphogen treatment. Embryonic stem cells (ESCs) are commonly differentiated as 3D spheroids referred to as embryoid bodies (EBs); however, differentiation of cells within EBs is typically heterogeneous and disordered. In this study, we demonstrate that in contrast to soluble morphogen treatment, delivery of morphogenic factors directly within EB microenvironments in a spatiotemporally controlled manner using polymer microspheres yields homogeneous, synchronous and organized ESC differentiation. Degradable PLGA microspheres releasing retinoic acid were incorporated directly within EBs and induced the formation of cystic spheroids uniquely resembling the phenotype and structure of early streak mouse embryos (E6.75), with an exterior of FOXA2+ visceral endoderm enveloping an epiblast-like layer of OCT4+ cells. These results demonstrate that controlled morphogen presentation to stem cells using degradable microspheres more efficiently directs cell differentiation and tissue formation than simple soluble delivery methods and presents a unique route to study the spatiotemporal effects of morphogenic factors on embryonic developmental processes in vitro.
Collapse
Affiliation(s)
- Richard L Carpenedo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332-0535, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Gonin-Giraud S, Bresson-Mazet C, Gandrillon O. Involvement of the TGF-β and mTOR/p70S6Kinase pathways in the transformation process induced by v-ErbA. Leuk Res 2008; 32:1878-88. [DOI: 10.1016/j.leukres.2008.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/11/2008] [Accepted: 05/12/2008] [Indexed: 10/21/2022]
|
44
|
Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:2277-84. [PMID: 18684916 DOI: 10.4049/jimmunol.181.4.2277] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhibits the differentiation of Th17 cells. Herein we show that RA enhances TGF-beta signaling by increasing the expression and phosphorylation of Smad3, and this results in increased Foxp3 expression even in the presence of IL-6 or IL-21. RA also inhibits the expression of IL-6Ralpha, IRF-4, and IL-23R and thus inhibits Th17 development. In vitro, RA significantly promotes Treg cell conversion, but in vivo during the development of experimental autoimmune encephalomyelitis it does not increase the frequency of Treg cells in the face of an ongoing inflammation. However, RA suppresses the disease very efficiently by inhibiting proinflammatory T cell responses, especially pathogenic Th17 responses. These data not only identify the signaling mechanisms by which RA can affect both Treg cell and Th17 differentiation, but they also highlight that in vivo during an autoimmune reaction, RA suppresses autoimmunity mainly by inhibiting the generation of effector Th17 cells.
Collapse
Affiliation(s)
- Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Retinoids regulate TGFbeta signaling at the level of Smad2 phosphorylation and nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2279-86. [PMID: 18773928 DOI: 10.1016/j.bbamcr.2008.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/17/2008] [Accepted: 07/31/2008] [Indexed: 01/17/2023]
Abstract
Indirect regulation of transforming growth factor (TGF)-beta signaling by retinoids occurs on a long-term timescale, secondary to transcriptional events. Studies by our group show loss of retinoid X receptor (RXR) alpha results in increased TGFbeta2 in the midgestational heart, which may play a role in the cardiac defects seen in this model [S.W. Kubalak, D.R. Hutson, K.K. Scott and R.A. Shannon, Elevated transforming growth factor beta2 enhances apoptosis and contributes to abnormal outflow tract and aortic sac development in retinoic X receptor alpha knockout embryos, Development 129 (2002) 733-746.]. Acute and direct interactions between retinoid and TGFbeta signaling, however, are not clearly understood. Treatment of dispersed hearts and NIH3T3 cells for 1 h with TGFbeta and retinoids (dual treatment) resulted in increased phosphorylated Smad2 and Smad3 when compared to treatment with TGFbeta alone. Of all dual treatments, those with the RXR agonist Bexarotene, resulted in the highest level of phosphorylated Smad2, a 7-fold increase over TGFbeta2 alone. Additionally, during dual treatment phosphorylation of Smad2 occurs via the TGFbeta type I receptor but not by increased activation of the receptor. As loss of RXRalpha results in increased levels of Smad2 phosphorylation in response to TGFbeta treatment and since nuclear accumulation of phosphorylated Smad2 is decreased during dual treatment, we propose that RXRalpha directly regulates the activities of Smad2. These data show retinoid signaling influences the TGFbeta pathway in an acute and direct manner that has been unappreciated until now.
Collapse
|
46
|
Yang KL, Chang WT, Hung KC, Li EIC, Chuang CC. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity. Biochem Biophys Res Commun 2008; 373:219-23. [PMID: 18558083 DOI: 10.1016/j.bbrc.2008.05.192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.
Collapse
Affiliation(s)
- Kun-Lin Yang
- Institute of Basic Medical Sciences, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Abstract
A breakdown in intestinal homeostasis can result in chronic inflammatory diseases of the gut including inflammatory bowel disease, coeliac disease and allergy. Dendritic cells, through their ability to orchestrate protective immunity and immune tolerance in the host, have a key role in shaping the intestinal immune response. The mechanisms through which dendritic cells can respond to environmental cues in the intestine and select appropriate immune responses have until recently been poorly understood. Here, we review recent work that is beginning to identify factors responsible for intestinal conditioning of dendritic-cell function and the subsequent decision between tolerance and immunity in the intestine.
Collapse
Affiliation(s)
- Janine L Coombes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
48
|
Nakanishi M, Tomaru Y, Miura H, Hayashizaki Y, Suzuki M. Identification of transcriptional regulatory cascades in retinoic acid-induced growth arrest of HepG2 cells. Nucleic Acids Res 2008; 36:3443-54. [PMID: 18445634 PMCID: PMC2425469 DOI: 10.1093/nar/gkn066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a potent inducer of cell differentiation and growth arrest. Here, we investigated ATRA-induced regulatory cascades associated with growth arrest of the human hepatoma cell line HepG2. ATRA induced >2-fold changes in the expression of 402 genes including 55 linked to cell-cycle regulation, cell growth or apoptosis during 48 h treatment. Computational search predicted that 250 transcriptional regulatory factors (TRFs) could recognize the proximal upstream regions of any of the 55 genes. Expression of 61 TRF genes was significantly changed during ATRA incubation, providing many potential regulatory edges. We focused on six TRFs that could regulate many of the 55 genes and found a total of 160 potential edges in which the expression of each of the genes was changed later than the expression change of the corresponding regulator. RNAi knockdown of the selected TRFs caused perturbation of the respective potential targets. The genes showed an opposite regulation pattern by ATRA and specific siRNA treatments were selected as strong candidates for direct TRF targets. Finally, 36 transcriptional regulatory edges were validated by chromatin immunoprecipitation. These analyses enabled us to depict a part of the transcriptional regulatory cascades closely linked to ATRA-induced cell growth arrest.
Collapse
Affiliation(s)
- Misato Nakanishi
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Yasuhiro Tomaru
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Hisashi Miura
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Yoshihide Hayashizaki
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Masanori Suzuki
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
- *To whom correspondence should be addressed. +81 045 508 7241+81 045 508 7370,
| |
Collapse
|
49
|
Hoover LL, Burton EG, Brooks BA, Kubalak SW. The expanding role for retinoid signaling in heart development. ScientificWorldJournal 2008; 8:194-211. [PMID: 18661045 PMCID: PMC2559957 DOI: 10.1100/tsw.2008.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The importance of retinoid signaling during cardiac development has long been appreciated, but recently has become a rapidly expanding field of research. Experiments performed over 50 years ago showed that too much or too little maternal intake of vitamin A proved detrimental for embryos, resulting in a cadre of predictable cardiac developmental defects. Germline and conditional knockout mice have revealed which molecular players in the vitamin A signaling cascade are potentially responsible for regulating specific developmental events, and many of these molecules have been temporally and spatially characterized. It is evident that intact and controlled retinoid signaling is necessary for each stage of cardiac development to proceed normally, including cardiac lineage determination, heart tube formation, looping, epicardium formation, ventricular maturation, chamber and outflow tract septation, and coronary arteriogenesis. This review summarizes many of the significant milestones in this field and particular attention is given to recently uncovered cross-talk between retinoid signaling and other developmentally significant pathways. It is our hope that this review of the role of retinoid signaling during formation, remodeling, and maturation of the developing heart will serve as a tool for future discoveries.
Collapse
Affiliation(s)
- Loretta L Hoover
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | |
Collapse
|
50
|
Titeux M, Pendaries V, Tonasso L, Décha A, Bodemer C, Hovnanian A. A frequent functional SNP in the MMP1 promoter is associated with higher disease severity in recessive dystrophic epidermolysis bullosa. Hum Mutat 2008; 29:267-76. [PMID: 18030675 DOI: 10.1002/humu.20647] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in the COL7A1 gene encoding type VII collagen. Variations in severity between the different clinical forms of RDEB likely depend on the nature and location of COL7A1 mutations, but observed intrafamilial phenotypic variations suggest additional genetic and/or environmental factors. Candidate modifier genes include MMP1, encoding matrix metalloproteinase 1, the first gene implicated in RDEB before its primary role in the disease was excluded. Type VII collagen is a substrate of MMP1 and an imbalance between its synthesis and degradation could conceivably worsen the RDEB phenotype. Here, we studied a previously described family with three affected siblings of identical COL7A1 genotype but displaying great sibling-to-sibling variations in disease severity. RDEB severity did not correlate with type VII collagen synthesis levels, but with protein levels at the dermal-epidermal junction, suggesting increased degradation by metalloproteinases. This was supported by the presence of increased transcript and active MMP1 levels in the most severely affected children, who carried a known SNP (1G/2G) in the MMP1 promoter. This SNP creates a functional Ets binding site resulting in transcriptional upregulation. We next studied a French cohort of 31 unrelated RDEB patients harboring at least one in-frame COL7A1 mutation, ranging from mild localized RDEB to the severe Hallopeau-Siemens form. We found a strong genetic association between the 2G variant and the Hallopeau-Siemens disease type (odds ratio: 73.6). This is the first example of a modifier gene in RDEB and has implications for its prognosis and possible new treatments.
Collapse
|