1
|
Garfinkle EAR, Nallagatla P, Sahoo B, Dang J, Balood M, Cotton A, Franke C, Mitchell S, Wilson T, Gruber TA. CBFA2T3-GLIS2 mediates transcriptional regulation of developmental pathways through a gene regulatory network. Nat Commun 2024; 15:8747. [PMID: 39384814 PMCID: PMC11464917 DOI: 10.1038/s41467-024-53158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
CBFA2T3-GLIS2 is a fusion oncogene found in pediatric acute megakaryoblastic leukemia that is associated with a poor prognosis. We establish a model of CBFA2T3-GLIS2 driven acute megakaryoblastic leukemia that allows the distinction of fusion specific changes from those that reflect the megakaryoblast lineage of this leukemia. Using this model, we map fusion genome wide binding that in turn imparts the characteristic transcriptional signature. A network of transcription factor genes bound and upregulated by the fusion are found to have downstream effects that result in dysregulated signaling of developmental pathways including NOTCH, Hedgehog, TGFβ, and WNT. Transcriptional regulation is mediated by homo-dimerization and binding of the ETO transcription factor through the nervy homology region 2. Loss of nerve homology region 2 abrogated the development of leukemia, leading to downregulation of JAK/STAT, Hedgehog, and NOTCH transcriptional signatures. These data contribute to the understanding of CBFA2T3-GLIS2 mediated leukemogenesis and identify potential therapeutic vulnerabilities for future studies.
Collapse
Affiliation(s)
| | - Pratima Nallagatla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Binay Sahoo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinjun Dang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Balood
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anitria Cotton
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camryn Franke
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc Natl Acad Sci U S A 2022; 119:e2213718119. [PMID: 36215477 PMCID: PMC9586329 DOI: 10.1073/pnas.2213718119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factors (TFs) play critical roles in hematopoiesis, and their aberrant expression can lead to various types of leukemia. The t(8;21) leukemogenic fusion protein AML1-ETO (AE) is the most common fusion protein in acute myeloid leukemia and can enhance hematopoietic stem cell renewal while blocking differentiation. A key question in understanding AE-mediated leukemia is what determines the choice of AE to activate self-renewal genes or repress differentiation genes. Toward the resolution of this problem, we earlier showed that AE resides in the stable AETFC complex and that its components colocalize on up- or down-regulated target genes and are essential for leukemogenesis. In the current study, using biochemical and genomic approaches, we show that AE-containing complexes are heterogeneous, and that assembly of the larger AETFC (containing AE, CBFβ, HEB, E2A, LYL1, LMO2, and LDB1) requires LYL1. Furthermore, we provide strong evidence that the LYL1-containing AETFC preferentially binds to active enhancers and promotes AE-dependent gene activation. Moreover, we show that coactivator CARM1 interacts with AETFC and facilitates gene activation by AETFC. Collectively, this study describes a role of oncoprotein LYL1 in AETFC assembly and gene activation by recruiting CARM1 to chromatin for AML cell survival.
Collapse
|
5
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
IMAI K, TANIGUCHI H. Therapeutic siRNA targeting the cancer cell stemness regulator PRDI-BF1 and RIZ domain zinc finger protein 14. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:325-335. [PMID: 35908955 PMCID: PMC9363597 DOI: 10.2183/pjab.98.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
PRDI-BF1 and RIZ (PR) domain zinc finger protein 14 (PRDM14), first reported in 2007 to be overexpressed in breast cancer, plays an important role in breast cancer proliferation. Subsequent studies reported that PRDM14 is expressed in embryonic stem cells, primordial germ cells, and various cancers. PRDM14 was reported to confer stemness properties to cancer cells. These properties induce cancer initiation, cancer progression, therapeutic resistance, distant metastasis, and recurrence in refractory tumors. Therefore, PRDM14 may be an ideal therapeutic target for various types of tumors. Silencing PRDM14 expression using PRDM14-specific siRNA delivered through an innovative intravenous drug delivery system reduced the size of inoculated tumors, incidence of distant metastases, and increased overall survival in nude mice without causing adverse effects. Therapeutic siRNA targeting PRDM14 is now being evaluated in a human phase I clinical trial for patients with refractory breast cancer, including triple-negative breast cancer.
Collapse
Affiliation(s)
- Kohzoh IMAI
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki TANIGUCHI
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Steinauer N, Zhang K, Guo C, Zhang J. Computational Modeling of Gene-Specific Transcriptional Repression, Activation and Chromatin Interactions in Leukemogenesis by LASSO-Regularized Logistic Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2109-2122. [PMID: 33961561 PMCID: PMC8572318 DOI: 10.1109/tcbb.2021.3078128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many physiological and pathological pathways are dependent on gene-specific on/off regulation of transcription. Some genes are repressed, while others are activated. Although many previous studies have analyzed the mechanisms of gene-specific repression and activation, these studies are mainly based on the use of candidate genes, which are either repressed or activated, without simultaneously comparing and contrasting both groups of genes. There is also insufficient consideration of gene locations. Here we describe an integrated machine learning approach, using LASSO-regularized logistic regression, to model gene-specific repression and activation and the underlying contribution of chromatin interactions. LASSO-regularized logistic regression accurately predicted gene-specific transcriptional events and robustly detected the rate-limiting factors that underlie the differences of gene activation and repression. An example was provided by the leukemogenic transcription factor AML1-ETO, which is responsible for 10-15 percent of all acute myeloid leukemia cases. The analysis of AML1-ETO has also revealed novel networks of chromatin interactions and uncovered an unexpected role for E-proteins in AML1-ETO-p300 interactions and a role for the pre-existing gene state in governing the transcriptional response. Our results show that logistic regression-based probabilistic modeling is a promising tool to decipher mechanisms that integrate gene regulation and chromatin interactions in regulated transcription.
Collapse
|
8
|
Zhang J, Gao X, Yu L. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Front Oncol 2021; 11:741746. [PMID: 34540702 PMCID: PMC8440836 DOI: 10.3389/fonc.2021.741746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate orchestration of gene expression is critical for the process of normal hematopoiesis, and dysregulation is closely associated with leukemogenesis. Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia (AML), where chromosomal rearrangements are frequently found. Increasing evidences have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling, which are involved in stemness maintenance, cell fate determination, proliferation and differentiation, via mastering the transcriptional switch of key genes. In abnormal, these functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are appealing targets for drug exploration, many of which have been deployed to the AML treatment. As the majority of AML events are associated with chromosomal translocation resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the process of leukemogenesis and roles of HDAC members acting in this progress, providing an insight for the target anchoring, investigation of hyperacetylated-agents, and how the current knowledge could be applied in AML treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
9
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Saikia S, Pal U, Kalita DJ, Rai AK, Sarma A, Kataki AC, Limaye AM. RUNX1T1, a potential prognostic marker in breast cancer, is co-ordinately expressed with ERα, and regulated by estrogen receptor signalling in breast cancer cells. Mol Biol Rep 2021; 48:5399-5409. [PMID: 34264479 DOI: 10.1007/s11033-021-06542-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND RUNX1T1 is extensively studied in the context of AML1-RUNX1T1 fusion protein in acute myeloid leukemia. Little is known about the function of RUNX1T1 itself, although data on its function and regulation have begun to emerge from clinical, and in vitro studies. It is a putative tumor suppressor, whose expression is altered in a variety of solid tumors. Recently, reduced expression of RUNX1T1 in triple-negative breast tumors, and its influence on prognosis was reported. METHODS AND RESULTS The Kaplan-Meier Plotter online tool was used to study the relationship between RUNX1T1 expression and survival of breast cancer patients. High RUNX1T1 expression was associated with longer overall survival (OS), relapse-free survival (RFS) and distant metastasis free survival (DMFS). RUNX1T1 expression positively and negatively influenced OS of patients with ERα-positive and ERα-negative breast tumors, respectively. It was also associated with prolonged RFS, and DMFS in tamoxifen-treated patients. Expression of RUNX1T1 and ERα mRNA was analyzed in 40 breast tumor samples, and breast cancer cell lines using RT-PCR. TCGA-BRCA data was mined to study the relationship between RUNX1T1 and ERα mRNA expression. ERα-positive breast tumors showed significantly higher RUNX1T1 mRNA expression compared to ERα-negative tumors. RUNX1T1 mRNA expression was analyzed by qRT-PCR in MCF-7 or T47D cells, which were treated with 17β-estradiol, or the ERα agonist PPT, alone or in combination with 4-hydroxytamoxifen. Effect of ERα knockdown was also investigated. Results indicate that estrogen downmodulated RUNX1T1 mRNA expression via ERα. CONCLUSION Higher expression of RUNX1T1 in breast tumors is associated with favourable prognosis. RUNX1T1 and ERα show co-ordinated expression in breast tumors, and breast cancer cell lines. Estrogen-ERα signalling downmodulates the expression of RUNX1T1 mRNA in ERα-positive breast cancer cells. In-depth investigations on the interaction between RUNX1T1 and ERα are warranted to unravel the role and relevance of RUNX1T1 in breast cancer.
Collapse
Affiliation(s)
- Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Uttariya Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Avdhesh Kumar Rai
- DBT Centre for Molecular Biology and Cancer Research, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Anupam Sarma
- Department of Oncopathology, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Amal Chandra Kataki
- Department of Gynecologic Oncology, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, 781016, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
12
|
He T, Wildey G, McColl K, Savadelis A, Spainhower K, McColl C, Kresak A, Tan AC, Yang M, Abbas A, Dowlati A. Identification of RUNX1T1 as a potential epigenetic modifier in small-cell lung cancer. Mol Oncol 2020; 15:195-209. [PMID: 33084222 PMCID: PMC7782087 DOI: 10.1002/1878-0261.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Small-cell lung cancer (SCLC) can be subgrouped into common 'pure' and rare 'combined' SCLC (c-SCLC). c-SCLC features a mixed tumor histology of both SCLC and non-small-cell lung cancer (NSCLC). We performed targeted exome sequencing on 90 patients with SCLC, including two with c-SCLC, and discovered RUNX1T1 amplification specific to small cell tumors of both patients with c-SCLC, but in only 2 of 88 'pure' SCLC patients. RUNX1T1 was first identified in the fusion transcript AML1/ETO, which occurs in 12%-15% of acute myelogenous leukemia (AML). We further show higher expression of RUNX1T1 in the SCLC component of another c-SCLC tumor by in situ hybridization. RUNX1T1 expression was enriched in SCLC compared with all other cancers, including NSCLC, in both cell lines and tumor specimens, as shown by mRNA level and western blotting. Transcriptomic analysis of hallmark genes decreased by stable RUNX1T1 overexpression revealed a significant change in E2F targets. Validation experiments in multiple lung cancer cell lines showed that RUNX1T1 overexpression consistently decreased CDKN1A (p21) expression and increased E2F transcriptional activity, which is commonly altered in SCLC. Chromatin immunoprecipitation (ChIP) in these overexpressing cells demonstrated that RUNX1T1 interacts with the CDKN1A (p21) promoter region, which displayed parallel reductions in histone 3 acetylation. Furthermore, reduced p21 expression could be dramatically restored by HDAC inhibition using Trichostatin A. Reanalysis of ChIP-seq data in Kasumi-1 AML cells showed that knockdown of the RUNX1T1 fusion protein was associated with increased global acetylation, including the CDKN1A (p21) promoter. Thus, our study identifies RUNX1T1 as a biomarker and potential epigenetic regulator of SCLC.
Collapse
Affiliation(s)
- Tian He
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Gary Wildey
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Karen McColl
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Alyssa Savadelis
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Kyle Spainhower
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Cassidy McColl
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Adam Kresak
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| |
Collapse
|
13
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Fukunaga J, Nomura Y, Tanaka Y, Torigoe H, Nakamura Y, Sakamoto T, Kozu T. A G-quadruplex-forming RNA aptamer binds to the MTG8 TAFH domain and dissociates the leukemic AML1-MTG8 fusion protein from DNA. FEBS Lett 2020; 594:3477-3489. [PMID: 32870501 DOI: 10.1002/1873-3468.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022]
Abstract
MTG8 (RUNX1T1) is a fusion partner of AML1 (RUNX1) in the leukemic chromosome translocation t(8;21). The AML1-MTG8 fusion gene encodes a chimeric transcription factor. One of the highly conserved domains of MTG8 is TAFH which possesses homology with human TAF4 [TATA-box binding protein-associated factor]. To obtain specific inhibitors of the AML1-MTG8 fusion protein, we isolated RNA aptamers against the MTG8 TAFH domain using systematic evolution of ligands by exponential enrichment. All TAF aptamers contained guanine-rich sequences. Analyses of a TAF aptamer by NMR, CD, and mutagenesis revealed that it forms a parallel G-quadruplex structure in the presence of K+ . Furthermore, the aptamer could bind to the AML1-MTG8 fusion protein and dissociate the AML1-MTG8/DNA complex, suggesting that it can inhibit the dominant negative effects of AML1-MTG8 against normal AML1 function and serve as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| | - Yusuke Nomura
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan.,Facility for RI Research and Education, Instrumental Analysis Center, Research Initiatives and Promotion Organization, Yokohama National University, Hodogaya-ku, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Japan.,Ribomic Inc., Minato-ku, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| |
Collapse
|
15
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Adv 2020; 3:1379-1393. [PMID: 31040112 DOI: 10.1182/bloodadvances.2018028514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
CBFA2T3 is a master transcriptional coregulator in hematopoiesis. In this study, we report novel functions of CBFA2T3 in acute myeloid leukemia (AML) relapse. CBFA2T3 regulates cell-fate genes to establish gene expression signatures associated with leukemia stem cell (LSC) transformation and relapse. Gene set enrichment analysis showed that CBFA2T3 expression marks LSC signatures in primary AML samples. Analysis of paired primary and relapsed samples showed that acquisition of LSC gene signatures involves cell type-specific activation of CBFA2T3 transcription via the NM_005187 promoter by GCN5. Short hairpin RNA-mediated downregulation of CBFA2T3 arrests G1/S cell cycle progression, diminishes LSC gene signatures, and attenuates in vitro and in vivo proliferation of AML cells. We also found that the RUNX1-RUNX1T1 fusion protein transcriptionally represses NM_005187 to confer t(8;21) AML patients a natural resistance to relapse, whereas lacking a similar repression mechanism renders non-core-binding factor AML patients highly susceptible to relapse. These studies show that 2 related primary AML-associated factors, the expression level of CBFA2T3 and the ability of leukemia cells to repress cell type-specific CBFA2T3 gene transcription, play important roles in patient prognosis, providing a paradigm that differential abilities to repress hematopoietic coregulator gene transcription are correlated with patient-specific outcomes in AML.
Collapse
|
18
|
Guo C, Li J, Steinauer N, Wong M, Wu B, Dickson A, Kalkum M, Zhang J. Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1-ETO-dependent transcription in t(8;21) AML. J Biol Chem 2020; 295:4212-4223. [PMID: 32071087 PMCID: PMC7105303 DOI: 10.1074/jbc.ra119.010707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1-eight-twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1-ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1-ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1-ETO and RUNX1 co-occupy the binding sites of AML1-ETO-activated genes. How this joined binding allows RUNX1 to antagonize AML1-ETO-mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1-ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1-ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1-ETO-activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1-ETO-dependent transcription, a finding further supported by results of genome-wide analyses of AML1-ETO-activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1-ETO/RUNX1 cistrome.
Collapse
MESH Headings
- Cell Line, Tumor
- Core Binding Factor Alpha 2 Subunit/genetics
- Gene Expression Regulation, Neoplastic
- Genome, Human/genetics
- Histone Deacetylases/genetics
- Humans
- Interleukin-8/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein/genetics
- Transcriptional Activation/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Jian Li
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Madeline Wong
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Brent Wu
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Alexandria Dickson
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
19
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
21
|
Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res 2019; 17:1468-1479. [PMID: 31015254 DOI: 10.1158/1541-7786.mcr-18-1327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
PR domain-containing 14 (Prdm14) is a pluripotency regulator central to embryonic stem cell identity and primordial germ cell specification. Genomic regions containing PRDM14 are often amplified leading to misexpression in human cancer. Prdm14 expression in mouse hematopoietic stem cells (HSC) leads to progenitor cell expansion prior to the development of T-cell acute lymphoblastic leukemia (T-ALL), consistent with PRDM14's role in cancer initiation. Here, we demonstrate mechanistic insight into PRDM14-driven leukemias in vivo. Mass spectrometry revealed novel PRDM14-protein interactions including histone H1, RNA-binding proteins, and the master hematopoietic regulator CBFA2T3. In mouse leukemic cells, CBFA2T3 and PRDM14 associate independently of the related ETO family member CBFA2T2, PRDM14's primary protein partner in pluripotent cells. CBFA2T3 plays crucial roles in HSC self-renewal and lineage commitment, and participates in oncogenic translocations in acute myeloid leukemia. These results suggest a model whereby PRDM14 recruits CBFA2T3 to DNA, leading to gene misregulation causing progenitor cell expansion and lineage perturbations preceding T-ALL development. Strikingly, Prdm14-induced T-ALL does not occur in mice deficient for Cbfa2t3, demonstrating that Cbfa2t3 is required for leukemogenesis. Moreover, T-ALL develops in Cbfa2t3 heterozygotes with a significantly longer latency, suggesting that PRDM14-associated T-ALL is sensitive to Cbfa2t3 levels. Our study highlights how an oncogenic protein uses a native protein in progenitor cells to initiate leukemia, providing insight into PRDM14-driven oncogenesis in other cell types. IMPLICATIONS: The pluripotency regulator PRDM14 requires the master hematopoietic regulator CBFA2T3 to initiate leukemia in progenitor cells, demonstrating an oncogenic role for CBFA2T3 and providing an avenue for targeting cancer-initiating cells.
Collapse
Affiliation(s)
- Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal W T C Jansen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Eric I Campos
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michiel Vermeulen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Guerra S, Cichowski K. Targeting Cancer at the Intersection of Signaling and Epigenetics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030617-050400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While mutations resulting in the chronic activation of signaling pathways drive human cancer, the epigenetic state of a cell ultimately dictates the biological response to any given oncogenic signal. Moreover, large-scale genomic sequencing efforts have now identified a plethora of mutations in chromatin regulatory genes in human tumors, which can amplify, modify, or complement traditional oncogenic events. Nevertheless, the co-occurrence of oncogenic and epigenetic defects appears to create novel therapeutic vulnerabilities, which can be targeted by specific drug combinations. Here we discuss general mechanisms by which oncogenic and epigenetic alterations cooperate in human cancer and synthesize the field's early efforts in developing promising therapeutic combinations. Collectively, these studies reveal common themes underlying potential chemical synthetic lethal interactions and support both the expansion and refinement of this type of therapeutic approach.
Collapse
Affiliation(s)
- Stephanie Guerra
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
van der Kouwe E, Staber PB. RUNX1-ETO: Attacking the Epigenome for Genomic Instable Leukemia. Int J Mol Sci 2019; 20:E350. [PMID: 30654457 PMCID: PMC6358732 DOI: 10.3390/ijms20020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Oncogenic fusion protein RUNX1-ETO is the product of the t(8;21) translocation, responsible for the most common cytogenetic subtype of acute myeloid leukemia. RUNX1, a critical transcription factor in hematopoietic development, is fused with almost the entire ETO sequence with the ability to recruit a wide range of repressors. Past efforts in providing a comprehensive picture of the genome-wide localization and the target genes of RUNX1-ETO have been inconclusive in understanding the underlying mechanism by which it deregulates native RUNX1. In this review; we dissect the current data on the epigenetic impact of RUNX1 and RUNX1-ETO. Both share similarities however, in recent years, research focused on epigenetic factors to explain their differences. RUNX1-ETO impairs DNA repair mechanisms which compromises genomic stability and favors a mutator phenotype. Among an increasing pool of mutated factors, regulators of DNA methylation are frequently found in t(8;21) AML. Together with the alteration of both, histone markers and distal enhancer regulation, RUNX1-ETO might specifically disrupt normal chromatin structure. Epigenetic studies on the fusion protein uncovered new mechanisms contributing to leukemogenesis and hopefully will translate into clinical applications.
Collapse
Affiliation(s)
- Emiel van der Kouwe
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Bernhard Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Thirant C, Lopez C, Malinge S, Mercher T. Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia. Mol Cell Oncol 2017; 4:e1345351. [PMID: 29209645 DOI: 10.1080/23723556.2017.1345351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 10/18/2022]
Abstract
The ETO2-GLIS2 fusion oncoprotein is associated with poor prognosis pediatric acute megakaryoblastic leukemia. Recently, we observed that ETO2-GLIS2 controls enhancers activity at genes regulating haematopoietic progenitor self-renewal and differentiation toward the megakaryocytic lineage. We also showed that targeting ETO2-GLIS2 complex stability inhibits these properties and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Cécile Lopez
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Sud, Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris Diderot, Paris, France
| | - Thomas Mercher
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université Paris Diderot, Paris, France.,Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
25
|
Spirin P, Lebedev T, Orlova N, Morozov A, Poymenova N, Dmitriev SE, Buzdin A, Stocking C, Kovalchuk O, Prassolov V. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors. Oncotarget 2017; 8:56991-57002. [PMID: 28915648 PMCID: PMC5593619 DOI: 10.18632/oncotarget.18503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
One of the most common chromosomal translocations in acute myeloid leukemia is t(8;21)(q22;q22), which results in the appearance of abnormal transcripts encoding for the fusion protein RUNX1-ETO. Therefore, this oncoprotein is considered to be a pertinent and promising target for treating t(8;21) leukemia. Previously, we have shown that downregulation of RUNX1-ETO leads to activation of intracellular signaling pathways enhancing cell survival and determined that the protein ERK2 can mediate activation of most of these pathways. Here we used a combination of oridonin (natural tetracycline diterpenoid), which has been shown to exhibit anti-RUNX1-ETO activity, and ERK2 kinase inhibitors. We found that treatment of leukemic t(8;21)-positive Kasumi-1 cells with oridonin cause decrease of phosphorylated ERK1/2. Treatment of these cells with ERK2 inhibitors makes them more sensitive to RUNX1-ETO inhibition with oridonin. Therefore we postulate that simultaneous inhibition of RUNX1-ETO and ERK2 cause synergistic effect on survival of leukemic cells.
Collapse
Affiliation(s)
- Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia Orlova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nadezhda Poymenova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Anton Buzdin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | - Carol Stocking
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Olga Kovalchuk
- OncoFinder Ltd, Lethbridge, AB T1K7×8, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
26
|
Kotian S, Zhang L, Boufraqech M, Gaskins K, Gara SK, Quezado M, Nilubol N, Kebebew E. Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with CUDC-907 Inhibits Thyroid Cancer Growth and Metastases. Clin Cancer Res 2017; 23:5044-5054. [PMID: 28600475 DOI: 10.1158/1078-0432.ccr-17-1043] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/18/2022]
Abstract
Purpose: There is currently no standard therapy for anaplastic thyroid cancer (ATC) and poorly differentiated thyroid cancer (PDTC), which account for two-thirds of thyroid cancer-related deaths. Driver mutations in the PI3K/AKT and RAF/RAS/MEK/ERK pathways are common in ATC and PDTC. Histone deacetylases (HDAC) regulate cancer initiation and progression. Our aim was to determine the therapeutic efficacy of simultaneously targeting these pathways in thyroid cancer with a single agent and to evaluate biomarkers of treatment response.Experimental Design: CUDC-907 is a first-in-class compound, functioning as a dual inhibitor of HDACs and the PI3K/AKT pathway. We investigated its antiproliferative effect in vitro and in vivoResults: CUDC-907 significantly inhibited cellular proliferation in thyroid cancer cell lines, induced G2-M arrest with decreased levels of the checkpoint regulators cyclin B1, AURKA, AURKB, PLK1, and increased p21 and p27. Treatment induced apoptosis with increased caspase-3/7 activity and decreased survivin levels and decreased cellular migration and invasion. CUDC-907 treatment caused H3 hyperacetylation and decreased HDAC2 expression. HDAC2 was upregulated in ATC and other thyroid cancer histologic subtypes. CUDC-907 treatment reduced both p-AKT and p-ERK1/2 levels. Finally, CUDC-907 treatment, in a metastatic mouse model of thyroid cancer, showed significant inhibition of growth and metastases, and tumors from treated mice had decreased HDAC2 expression, suggesting that this may be a useful biomarker of response.Conclusions: Dual inhibition of HDAC and the tyrosine kinase signaling pathways with CUDC-907 is a promising treatment strategy for advanced, metastatic thyroid cancer. Clin Cancer Res; 23(17); 5044-54. ©2017 AACR.
Collapse
Affiliation(s)
- Shweta Kotian
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lisa Zhang
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Myriem Boufraqech
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kelli Gaskins
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sudheer Kumar Gara
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naris Nilubol
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. .,Department of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
27
|
Tahirov TH, Bushweller J. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:21-31. [PMID: 28299648 DOI: 10.1007/978-981-10-3233-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
28
|
Zhang Q, Wang P, Hou H, Zhang H, Tan J, Huang Y, Li Y, Wu J, Qiu Z, Li L. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots. PROTOPLASMA 2017; 254:167-179. [PMID: 26781092 DOI: 10.1007/s00709-015-0928-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junjun Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, Engineering Technology Research Center of Biological Peptide Antidiabetics of Hubei Province, Department of Pharmaceutical Engineering, School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingnan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinping Wu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan City, Hubei Province, China
| | - Zhengming Qiu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, No. 43, Nanhu Road, Hongshan District, Wuhan City, Hubei Province, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Abstract
For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.
Collapse
Affiliation(s)
- Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan Kohrman
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Steven D. Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Tae Kon Kim
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center at Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
30
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 836] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
31
|
Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature 2016; 534:387-90. [PMID: 27281218 PMCID: PMC4911307 DOI: 10.1038/nature18004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
Abstract
Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2(-/-) mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency.
Collapse
|
32
|
Tedjaseputra A, Galli S, Ibrahim M, Harrison CN, McLornan DP. Histone deacetylase inhibitors in myeloproliferative neoplasms: current roles and future prospects. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1149467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Grinev VV, Migas AA, Kirsanava AD, Mishkova OA, Siomava N, Ramanouskaya TV, Vaitsiankova AV, Ilyushonak IM, Nazarov PV, Vallar L, Aleinikova OV. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene. Int J Biochem Cell Biol 2015; 68:48-58. [PMID: 26320575 DOI: 10.1016/j.biocel.2015.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 11/25/2022]
Abstract
The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process.
Collapse
Affiliation(s)
- Vasily V Grinev
- Department of Genetics, Faculty of Biology, Belarusian State University, Minsk, Belarus.
| | - Alexandr A Migas
- Laboratory of the Genetic Biotechnology, Department of Research, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Aksana D Kirsanava
- Department of Genetics, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Olga A Mishkova
- Laboratory of the Genetic Biotechnology, Department of Research, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Natalia Siomava
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | | | - Alina V Vaitsiankova
- Department of Genetics, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Ilia M Ilyushonak
- Department of Genetics, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Petr V Nazarov
- Genomics Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Laurent Vallar
- Genomics Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Olga V Aleinikova
- Laboratory of the Genetic Biotechnology, Department of Research, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
34
|
Ponnusamy K, Kohrs N, Ptasinska A, Assi SA, Herold T, Hiddemann W, Lausen J, Bonifer C, Henschler R, Wichmann C. RUNX1/ETO blocks selectin-mediated adhesion via epigenetic silencing of PSGL-1. Oncogenesis 2015; 4:e146. [PMID: 25867177 PMCID: PMC5399174 DOI: 10.1038/oncsis.2015.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
RUNX1/ETO (RE), the t(8;21)-derived leukemic transcription factor associated with acute myeloid leukemia (AML) development, deregulates genes involved in differentiation, self-renewal and proliferation. In addition, these cells show differences in cellular adhesion behavior whose molecular basis is not well understood. Here, we demonstrate that RE epigenetically silences the gene encoding P-Selectin Glycoprotein Ligand-1 (PSGL-1) and downregulates PSGL-1 expression in human CD34+ and murine lin− hematopoietic progenitor cells. Levels of PSGL-1 inversely and dose-dependently correlate with RE oncogene levels. However, a DNA-binding defective mutant fails to downregulate PSGL-1. We show by ChIP experiments that the PSGL-1 promoter is a direct target of RE and binding is accompanied by high levels of the repressive chromatin mark histone H3K27me3. In t(8;21)+ Kasumi-1 cells, PSGL-1 expression is completely restored at both the mRNA and cell surface protein levels following RE downregulation with short hairpin RNA (shRNA) or RE inhibition with tetramerization-blocking peptides, and at the promoter H3K27me3 is replaced by the activating chromatin mark H3K9ac as well as by RNA polymerase II. Upregulation of PSGL-1 restores the binding of cells to P- and E-selectin and re-establishes myeloid-specific cellular adhesion while it fails to bind to lymphocyte-specific L-selectin. Overall, our data suggest that the RE oncoprotein epigenetically represses PSGL-1 via binding to its promoter region and thus affects the adhesive behavior of t(8;21)+ AML cells.
Collapse
Affiliation(s)
- K Ponnusamy
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute of Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - N Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - A Ptasinska
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - S A Assi
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - T Herold
- Department of Internal Medicine 3, Ludwig-Maximilian University Hospital, Munich, Germany
| | - W Hiddemann
- Department of Internal Medicine 3, Ludwig-Maximilian University Hospital, Munich, Germany
| | - J Lausen
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - C Bonifer
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - R Henschler
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute of Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - C Wichmann
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
35
|
Esculetin Downregulates the Expression of AML1-ETO and C-Kit in Kasumi-1 Cell Line by Decreasing Half-Life of mRNA. JOURNAL OF ONCOLOGY 2015; 2015:781473. [PMID: 25861270 PMCID: PMC4377501 DOI: 10.1155/2015/781473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
One of the most frequent genetic aberrations in acute myeloid leukemia (AML) is chromosomal translocation between AML1/RUNX1 on chromosome 21 and ETO gene on chromosome 8 resulting in the expression of chimeric oncogene AML1-ETO. Although patients with t(8;21) translocation have good prognosis, 5-year survival is observed only in 50% of the cases. AML1-ETO translocation is usually accompanied by overexpression of mutant C-Kit, a tyrosine kinase, which contributes to uncontrolled proliferation of premature blood cells leading to relapse and poor prognosis. We illustrate the potential use of esculetin on leukemic cell line, Kasumi-1, bearing t(8;21) translocation and mutated C-Kit gene. Esculetin decreases the expression of AML1-ETO at both protein and transcript level within 24 hours of treatment. Half-life of AML1-ETO mRNA was reduced from 7 hours to 1.5 hours. Similarly half-life of C-Kit mRNA was reduced to 2 hours from 5 hours in esculetin treated cells. Esculetin also perturbed the expression of ectopically expressed AML1-ETO in U937 cells. The decreased expression of AML1-ETO chimeric gene was associated with increased expression of LAT1 and RUNX3 genes, targets of AML1. We envisage that discovery of a drug candidate which could target both these mutated genes would be a considerable breakthrough for future application.
Collapse
|
36
|
Zhou J, Xie H, Liu Z, Luo HB, Wu R. Structure–Function Analysis of the Conserved Tyrosine and Diverse π-Stacking among Class I Histone Deacetylases: A QM (DFT)/MM MD Study. J Chem Inf Model 2014; 54:3162-71. [DOI: 10.1021/ci500513n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hujun Xie
- School
of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035 Zhejiang, P.R. China
| | - Zhihong Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| |
Collapse
|
37
|
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res 2014; 24:1945-62. [PMID: 25319994 PMCID: PMC4248312 DOI: 10.1101/gr.164830.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
38
|
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13:673-91. [PMID: 25131830 DOI: 10.1038/nrd4360] [Citation(s) in RCA: 1194] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators--histone deacetylases (HDACs)--and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.
Collapse
|
39
|
Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS, Prokofjeva MM, Nikitenko NA, Dmitriev SE, Buzdin AA, Borisov NM, Aliper AM, Garazha AV, Rubtsov PM, Stocking C, Prassolov VS. Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia 2014; 28:2222-8. [PMID: 24727677 DOI: 10.1038/leu.2014.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
Abstract
The t(8;21)(q22;q22) rearrangement represents the most common chromosomal translocation in acute myeloid leukemia (AML). It results in a transcript encoding for the fusion protein AML1-ETO (AE) with transcription factor activity. AE is considered to be an attractive target for treating t(8;21) leukemia. However, AE expression alone is insufficient to cause transformation, and thus the potential of such therapy remains unclear. Several genes are deregulated in AML cells, including KIT that encodes a tyrosine kinase receptor. Here, we show that AML cells transduced with short hairpin RNA vector targeting AE mRNAs have a dramatic decrease in growth rate that is caused by induction of apoptosis and deregulation of the cell cycle. A reduction in KIT mRNA levels was also observed in AE-silenced cells, but silencing KIT expression reduced cell growth but did not induce apoptosis. Transcription profiling of cells that escape cell death revealed activation of a number of signaling pathways involved in cell survival and proliferation. In particular, we find that the extracellular signal-regulated kinase 2 (ERK2; also known as mitogen-activated protein kinase 1 (MAPK1)) protein could mediate activation of 23 out of 29 (79%) of these upregulated pathways and thus may be regarded as the key player in establishing the t(8;21)-positive leukemic cells resistant to AE suppression.
Collapse
Affiliation(s)
- P V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - T D Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N N Orlova
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A S Gornostaeva
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N A Nikitenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S E Dmitriev
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A A Buzdin
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia [2] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [3] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - N M Borisov
- 1] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [2] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - A M Aliper
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia [2] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A V Garazha
- 1] D Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia [2] Pathway Pharmaceuticals Limited, Wan Chai, Hong Kong Special Administrative Region
| | - P M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - C Stocking
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - V S Prassolov
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia [2] Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
40
|
Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 2014; 123:1341-52. [PMID: 24415537 DOI: 10.1182/blood-2013-03-488114] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.
Collapse
|
41
|
Zhang ZH, Hao CL, Liu P, Tian X, Wang LH, Zhao L, Zhu CM. Valproic acid inhibits tumor angiogenesis in mice transplanted with Kasumi‑1 leukemia cells. Mol Med Rep 2013; 9:443-9. [PMID: 24297248 PMCID: PMC3896514 DOI: 10.3892/mmr.2013.1834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 10/15/2013] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have been reported to inhibit tumor angiogenesis via the downregulation of angiogenic factors. Our previous in vitro studies demonstrated that valproic acid (VPA) exerted antitumor effects on Kasumi-1 cells, which are human acute myeloid leukemia cells with an 8;21 chromosome translocation. In the present study, the effects of VPA on tumor angiogenesis were investigated in mice transplanted with Kasumi-1 cells. Semi-quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemistry were used to detect the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR2) and basic fibroblast growth factor (bFGF). The tumor microvessel density was measured following staining with an anti-CD34 antibody. Chromatin immunoprecipitation was used to study the effect of VPA-induced histone hyperacetylation on VEGF transcription. An intraperitoneal injection of VPA inhibited tumor growth and angiogenesis in mice transplanted with Kasumi-1 cells. The mRNA and protein expression of VEGF, VEGFR2 and bFGF were inhibited by VPA treatment. In addition, VPA downregulated HDAC, increased histone H3 acetylation and enhanced the accumulation of hyperacetylated histone H3 on the VEGF promoters. The findings of the present study indicate that VPA, an HDAC inhibitor, exerts an antileukemic effect through an anti-angiogenesis mechanism. In conclusion, the mechanism underlying VPA-induced anti-angiogenesis is associated with the suppression of angiogenic factors and their receptors. VPA may increase the accumulation of acetylated histones on the VEGF promoters, which possibly contributes to the regulation of angiogenic factors.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Chang-Lai Hao
- Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Peng Liu
- The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050000, P.R. China
| | - Xia Tian
- Chinese PLA 89 Hospital, Weifang, Shandong 261000, P.R. China
| | - Li-Hong Wang
- Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Lei Zhao
- Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Cui-Min Zhu
- Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
42
|
Gow CH, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res 2013; 42:137-52. [PMID: 24064250 PMCID: PMC3874172 DOI: 10.1093/nar/gkt855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E2A is a member of the E-protein family of transcription factors. Previous studies have reported context-dependent regulation of E2A-dependent transcription. For example, whereas the E2A portion of the E2A-Pbx1 leukemia fusion protein mediates robust transcriptional activation in t(1;19) acute lymphoblastic leukemia, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) acute myeloid leukemia and ETO-2 in hematopoietic cells. Here, we show that, unlike the HEB E-protein, the activation domain 1 (AD1) of E2A has specifically reduced corepressor interaction due to E2A-specific amino acid changes in the p300/CBP and ETO target motif. Replacing E2A-AD1 with HEB-AD1 abolished the ability of E2A-Pbx1 to activate target genes and to induce cell transformation. On the other hand, the weak E2A-AD1-corepressor interaction imposes a critical importance on another ETO-interacting domain, downstream ETO-interacting sequence (DES), for corepressor-mediated repression. Deletion of DES abrogates silencing of E2A activity by AML1-ETO in t(8;21) leukemia cells or by ETO-2 in normal hematopoietic cells. Our results reveal an E2A-specific mechanism important for its context-dependent activation and repression function, and provide the first evidence for the differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
Collapse
Affiliation(s)
- Chien-Hung Gow
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
43
|
Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N, Lotem J, Tanay A, Groner Y. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep 2013; 4:1131-43. [PMID: 24055056 DOI: 10.1016/j.celrep.2013.08.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 07/03/2013] [Accepted: 08/08/2013] [Indexed: 12/11/2022] Open
Abstract
The t(8;21) and inv(16) chromosomal aberrations generate the oncoproteins AML1-ETO (A-E) and CBFβ-SMMHC (C-S). The role of these oncoproteins in acute myeloid leukemia (AML) etiology has been well studied. Conversely, the function of native RUNX1 in promoting A-E- and C-S-mediated leukemias has remained elusive. We show that wild-type RUNX1 is required for the survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 leukemic cells. RUNX1 knockdown in Kasumi-1 cells (Kasumi-1(RX1-KD)) attenuates the cell-cycle mitotic checkpoint, leading to apoptosis, whereas knockdown of A-E in Kasumi-1(RX1-KD) rescues these cells. Mechanistically, a delicate RUNX1/A-E balance involving competition for common genomic sites that regulate RUNX1/A-E targets sustains the malignant cell phenotype. The broad medical significance of this leukemic cell addiction to native RUNX1 is underscored by clinical data showing that an active RUNX1 allele is usually preserved in both t(8;21) or inv(16) AML patients, whereas RUNX1 is frequently inactivated in other forms of leukemia. Thus, RUNX1 and its mitotic control targets are potential candidates for new therapeutic approaches.
Collapse
Affiliation(s)
- Oren Ben-Ami
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lauffer BEL, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, Flicke B, Ritscher A, Fedorowicz G, Vallero R, Ortwine DF, Gunzner J, Modrusan Z, Neumann L, Koth CM, Lupardus PJ, Kaminker JS, Heise CE, Steiner P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem 2013; 288:26926-43. [PMID: 23897821 DOI: 10.1074/jbc.m113.490706] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.
Collapse
|
45
|
Zhang Z, Hao C, Wang L, Liu P, Zhao L, Zhu C, Tian X. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors. Onco Targets Ther 2013; 6:733-40. [PMID: 23836985 PMCID: PMC3699303 DOI: 10.2147/ott.s46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.
Collapse
Affiliation(s)
- Zhihua Zhang
- Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Histone deacetylase inhibitors (HDACIs) are epigenetically acting agents that modify chromatin structure and by extension, gene expression. However, they may influence the behavior and survival of transformed cells by diverse mechanisms, including promoting expression of death- or differentiation-inducing genes while downregulating the expression of prosurvival genes; acting directly to increase oxidative injury and DNA damage; acetylating and disrupting the function of multiple proteins, including DNA repair and chaperone proteins; and interfering with the function of corepressor complexes. Notably, HDACIs have been shown in preclinical studies to target transformed cells selectively, and these agents have been approved in the treatment of certain hematologic malignancies, for example, cutaneous T-cell lymphoma and peripheral T-cell lymphoma. However, attempts to extend the spectrum of HDACI activity to other malignancies, for example, solid tumors, have been challenging. This has led to the perception that HDACIs may have limited activity as single agents. Because of the pleiotropic actions of HDACIs, combinations with other antineoplastic drugs, particularly other targeted agents, represent a particularly promising avenue of investigation. It is likely that emerging insights into mechanism(s) of HDACI activity will allow optimization of this approach, and hopefully, will expand HDACI approvals to additional malignancies in the future.
Collapse
Affiliation(s)
- Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University Health Sciences Center, Richmond, Virginia, USA.
| | | |
Collapse
|
47
|
Gianfelici V, Lahortiga I, Cools J. Chromosomal aberrations and fusion genes in myeloid malignancies. Expert Rev Hematol 2013; 5:381-93. [PMID: 22992233 DOI: 10.1586/ehm.12.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of the BCR-ABL1 fusion gene in chronic myeloid leukemia, many more fusion genes resulting from chromosomal rearrangements have been identified and characterized. The study of these fusion genes has been extremely important for our understanding of the role of chromosomal rearrangements in leukemogenesis and in oncology in general. In chronic myeloid leukemia, or related myeloproliferative malignancies caused by the expression of oncogenic fusion kinases, tyrosine kinase inhibitors are now successfully used to treat these diseases. In acute myeloid leukemias, the presence of chromosomal rearrangements, oncogenic fusion genes and point mutations in key oncogenic drivers has important prognostic value and determines the choice of therapy. In this review, the authors provide an overview of the important fusion genes present in various myeloid malignancies and their importance for clinical practice.
Collapse
|
48
|
Zaidi SK, Trombly DJ, Dowdy CR, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Epigenetic mechanisms in leukemia. Adv Biol Regul 2012; 52:369-376. [PMID: 22884030 DOI: 10.1016/j.jbior.2012.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Focal organization of regulatory machinery within the interphase nucleus is linked to biological responsiveness and perturbed in cancer. Lineage determinant Runx proteins organize and assemble multi-protein complexes at sites of transcription within the nucleus and regulate both RNA polymerase II- and I-mediated gene expression. In addition, Runx proteins epigenetically control lineage determining transcriptional programs including: 1) architectural organization of macromolecular complexes in interphase, 2) regulation of gene expression through bookmarking during mitosis, and 3) microRNA-mediated translational control in the interphase nucleus. These mechanisms are compromised with the onset and progression of cancer. For example, the oncogenic AML1-ETO protein, which results from a chromosomal translocation between chromosomes 8 and 21, is expressed in nearly 25% of all acute myelogenous leukemias, disrupts Runx1 subnuclear localization during interphase and compromises transcriptional regulation. Epigenetically, the leukemic protein redirects the Runx1 DNA binding domain to leukemia-specific nuclear microenvironments, modifies regulatory protein accessibility to Runx1 target genes by imprinting repressive chromatin marks, and deregulates the microRNA (miR) profile of diseased myeloid cells. Consequently, the entire Runx1-dependent transcriptional program of myeloid cells is deregulated leading to onset and progression of acute myeloid leukemia and maintenance of leukemic phenotype. We discuss the potential of modified epigenetic landscape of leukemic cells as a viable therapeutic target.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. N., Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood 2012; 120:3019-29. [PMID: 22932803 DOI: 10.1182/blood-2012-04-426643] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating α-galactosylceramide (α-GalCer) that targets the immune adjuvant properties of NKT cells. In the Eμ-myc transgenic mouse model, single therapeutic vaccination of irradiated, α-GalCer-loaded autologous tumor cells was sufficient to significantly inhibit growth of established tumors and prolong survival. Vaccine-induced antilymphoma immunity required NKT cells, NK cells, and CD8 T cells, and early IL-12-dependent production of IFN-γ. CD4 T cells, gamma/delta T cells, and IL-18 were not critical. Vaccine treatment induced a large systemic spike of IFN-γ and transient peripheral expansion of both NKT cells and NK cells, the major sources of IFN-γ. Furthermore, this vaccine approach was assessed in several other hematopoietic tumor models and was also therapeutically effective against AML-ETO9a acute myeloid leukemia. Replacing α-GalCer with β-mannosylceramide resulted in prolonged protection against Eμ-myc lymphoma. Overall, our results demonstrate a potent immune adjuvant effect of NKT cell ligands in therapeutic anticancer vaccination against oncogene-driven lymphomas, and this work supports clinical investigation of NKT cell-based immunotherapy in patients with hematologic malignancies.
Collapse
|
50
|
In vivo chemical screening for modulators of hematopoiesis and hematological diseases. Adv Hematol 2012; 2012:851674. [PMID: 22778745 PMCID: PMC3385708 DOI: 10.1155/2012/851674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022] Open
Abstract
In vivo chemical screening is a broadly applicable approach not only for dissecting genetic pathways governing hematopoiesis and hematological diseases, but also for finding critical components in those pathways that may be pharmacologically modulated. Both high-throughput chemical screening and facile detection of blood-cell-related phenotypes are feasible in embryonic/larval zebrafish. Two recent studies utilizing phenotypic chemical screens in zebrafish have identified several compounds that promote hematopoietic stem cell formation and reverse the hematopoietic phenotypes of a leukemia oncogene, respectively. These studies illustrate efficient drug discovery processes in zebrafish and reveal novel biological roles of prostaglandin E2 in hematopoietic and leukemia stem cells. Furthermore, the compounds discovered in zebrafish screens have become promising therapeutic candidates against leukemia and included in a clinical trial for enhancing hematopoietic stem cells during hematopoietic cell transplantation.
Collapse
|