1
|
Ly J, Blengini CS, Cady SL, Schindler K, Cheeseman IM. A conserved germline-specific Dsn1 alternative splice isoform supports oocyte and embryo development. Curr Biol 2024; 34:4307-4317.e6. [PMID: 39178843 PMCID: PMC11421959 DOI: 10.1016/j.cub.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
The chromosome segregation and cell division programs associated with somatic mitosis and germline meiosis display dramatic differences such as kinetochore orientation, cohesin removal, or the presence of a gap phase.1,2,3,4,5,6 These changes in chromosome segregation require alterations to the established cell division machinery.5,6 It remains unclear what aspects of kinetochore function and its regulatory control differ between the mitotic and meiotic cell divisions to rewire these core processes. Alternative RNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternative mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell-type-specific expression. Reciprocally, precisely eliminating expression of the germline-specific DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.
Collapse
Affiliation(s)
- Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Sarah L Cady
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Meyer-Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2024. [PMID: 38935637 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer-Gerards
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Graduate School for Biological Sciences, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| |
Collapse
|
3
|
Saykali B, Tran AD, Cornwell JA, Caldwell MA, Sangsari PR, Morgan NY, Kruhlak MJ, Cappell SD, Ruiz S. Lineage-specific CDK activity dynamics characterize early mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599098. [PMID: 39372752 PMCID: PMC11451597 DOI: 10.1101/2024.06.14.599098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cyclin-dependent kinases (CDK) are key regulatory enzymes that regulate proliferation dynamics and cell fate in response to extracellular inputs. It remains largely unknown how CDK activity fluctuates and influences cell commitment in vivo during early mammalian development. Here, we generated a transgenic mouse model expressing a CDK kinase translocation reporter (KTR) that enabled quantification of CDK activity in live single cells. By examining pre- and post-implantation mouse embryos at different stages, we observed a progressive decrease in CDK activity in cells from the trophectoderm (TE) prior to implantation. This drop correlated with the establishment of an FGF4-dependent signaling gradient through the embryonic-abembryonic axis. Furthermore, we showed that CDK activity levels do not determine cell fate decisions during pre-implantation development. Finally, we uncovered the existence of conserved regulatory mechanisms in mammals by revealing lineage-specific regulation of CDK activity in TE-like human cells.
Collapse
Affiliation(s)
- Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - James A. Cornwell
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | | | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y. Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
- Lead contact:
| |
Collapse
|
4
|
Gonzalez-Ferrer J, Lehrer J, O'Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. CELL GENOMICS 2024; 4:100581. [PMID: 38823397 PMCID: PMC11228957 DOI: 10.1016/j.xgen.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Ash O'Farrell
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
5
|
Ly J, Blengini CS, Cady SL, Schindler K, Cheeseman IM. A conserved germline-specific Dsn1 alternative splice isoform supports oocyte and embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589883. [PMID: 38659852 PMCID: PMC11042369 DOI: 10.1101/2024.04.17.589883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Alternative mRNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternate mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell type-specific expression. Reciprocally, precisely eliminating expression of the germline DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.
Collapse
Affiliation(s)
- Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Cecilia S. Blengini
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States
| | - Sarah L. Cady
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
6
|
Rüegg AB, van der Weijden VA, de Sousa JA, von Meyenn F, Pausch H, Ulbrich SE. Developmental progression continues during embryonic diapause in the roe deer. Commun Biol 2024; 7:270. [PMID: 38443549 PMCID: PMC10914810 DOI: 10.1038/s42003-024-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Embryonic diapause in mammals is a temporary developmental delay occurring at the blastocyst stage. In contrast to other diapausing species displaying a full arrest, the blastocyst of the European roe deer (Capreolus capreolus) proliferates continuously and displays considerable morphological changes in the inner cell mass. We hypothesised that developmental progression also continues during this period. Here we evaluate the mRNA abundance of developmental marker genes in embryos during diapause and elongation. Our results show that morphological rearrangements of the epiblast during diapause correlate with gene expression patterns and changes in cell polarity. Immunohistochemical staining further supports these findings. Primitive endoderm formation occurs during diapause in embryos composed of around 3,000 cells. Gastrulation coincides with elongation and thus takes place after embryo reactivation. The slow developmental progression makes the roe deer an interesting model for unravelling the link between proliferation and differentiation and requirements for embryo survival.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - João Agostinho de Sousa
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ferdinand von Meyenn
- ETH Zurich, Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Hubert Pausch
- ETH Zurich, Animal Genomics, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| |
Collapse
|
7
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
8
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024:10.1038/s41587-023-02106-x. [PMID: 38321114 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Gonzalez-Ferrer J, Lehrer J, O’Farrell A, Paten B, Teodorescu M, Haussler D, Jonsson VD, Mostajo-Radji MA. Unraveling Neuronal Identities Using SIMS: A Deep Learning Label Transfer Tool for Single-Cell RNA Sequencing Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529615. [PMID: 36909548 PMCID: PMC10002667 DOI: 10.1101/2023.02.28.529615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Large single-cell RNA datasets have contributed to unprecedented biological insight. Often, these take the form of cell atlases and serve as a reference for automating cell labeling of newly sequenced samples. Yet, classification algorithms have lacked the capacity to accurately annotate cells, particularly in complex datasets. Here we present SIMS (Scalable, Interpretable Machine Learning for Single-Cell), an end-to-end data-efficient machine learning pipeline for discrete classification of single-cell data that can be applied to new datasets with minimal coding. We benchmarked SIMS against common single-cell label transfer tools and demonstrated that it performs as well or better than state of the art algorithms. We then use SIMS to classify cells in one of the most complex tissues: the brain. We show that SIMS classifies cells of the adult cerebral cortex and hippocampus at a remarkably high accuracy. This accuracy is maintained in trans-sample label transfers of the adult human cerebral cortex. We then apply SIMS to classify cells in the developing brain and demonstrate a high level of accuracy at predicting neuronal subtypes, even in periods of fate refinement, shedding light on genetic changes affecting specific cell types across development. Finally, we apply SIMS to single cell datasets of cortical organoids to predict cell identities and unveil genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. When cell types are obscured by stress signals, label transfer from primary tissue improves the accuracy of cortical organoid annotations, serving as a reliable ground truth. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.
Collapse
Affiliation(s)
- Jesus Gonzalez-Ferrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Julian Lehrer
- These authors contributed equally to this work
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Ash O’Farrell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
| | - Vanessa D. Jonsson
- Department of Applied Mathematics, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, 95060, CA, USA
- Co-senior authors
| |
Collapse
|
10
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Varghese PC, Dutta D. Protocol for isolation of mouse pre-implantation embryos for gene expression analysis. STAR Protoc 2023; 4:102479. [PMID: 37494178 PMCID: PMC10394003 DOI: 10.1016/j.xpro.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Visualizing and quantifying the numerous factors that regulate murine pre-implantation embryonic development is technically challenging. Here, we present a protocol for the isolation of pre-implantation embryos at multiple stages of embryonic development to study gene expression. We describe steps for isolating RNA and cDNA synthesis from a small number of embryos. We then detail an immunofluorescence assay for the detection and localization of protein of interest by confocal microscopy in the pre-implantation embryos. For complete details on the use and execution of this protocol, please refer to Varghese et al.1.
Collapse
Affiliation(s)
- Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
12
|
Xie L, Liu H, You Z, Wang L, Li Y, Zhang X, Ji X, He H, Yuan T, Zheng W, Wu Z, Xiong M, Wei W, Chen Y. Comprehensive spatiotemporal mapping of single-cell lineages in developing mouse brain by CRISPR-based barcoding. Nat Methods 2023; 20:1244-1255. [PMID: 37460718 DOI: 10.1038/s41592-023-01947-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 08/09/2023]
Abstract
A fundamental interest in developmental neuroscience lies in the ability to map the complete single-cell lineages within the brain. To this end, we developed a CRISPR editing-based lineage-specific tracing (CREST) method for clonal tracing in Cre mice. We then used two complementary strategies based on CREST to map single-cell lineages in developing mouse ventral midbrain (vMB). By applying snapshotting CREST (snapCREST), we constructed a spatiotemporal lineage landscape of developing vMB and identified six progenitor archetypes that could represent the principal clonal fates of individual vMB progenitors and three distinct clonal lineages in the floor plate that specified glutamatergic, dopaminergic or both neurons. We further created pandaCREST (progenitor and derivative associating CREST) to associate the transcriptomes of progenitor cells in vivo with their differentiation potentials. We identified multiple origins of dopaminergic neurons and demonstrated that a transcriptome-defined progenitor type comprises heterogeneous progenitors, each with distinct clonal fates and molecular signatures. Therefore, the CREST method and strategies allow comprehensive single-cell lineage analysis that could offer new insights into the molecular programs underlying neural specification.
Collapse
Affiliation(s)
- Lianshun Xie
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hengxin Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen You
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyue Wang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yiwen Li
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tingli Yuan
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenping Zheng
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyan Wu
- UniXell Biotechnology, Shanghai, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology-Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
13
|
Stroo E, Janssen L, Sin O, Hogewerf W, Koster M, Harkema L, Youssef SA, Beschorner N, Wolters AH, Bakker B, Becker L, Garrett L, Marschall S, Hoelter SM, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Thathiah A, Foijer F, van de Sluis B, van Deursen J, Jucker M, de Bruin A, Nollen EA. Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Sci Alliance 2023; 6:e202201730. [PMID: 37130781 PMCID: PMC10155860 DOI: 10.26508/lsa.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Olga Sin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Natalie Beschorner
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anouk Hg Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lilian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sabine M Hoelter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Matthias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Liu Z, Chen Y, Xia Q, Liu M, Xu H, Chi Y, Deng Y, Xing D. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 2023; 380:1070-1076. [PMID: 37289875 DOI: 10.1126/science.adg3797] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Much progress has been made recently in single-cell chromosome conformation capture technologies. However, a method that allows simultaneous profiling of chromatin architecture and gene expression has not been reported. Here, we developed an assay named "Hi-C and RNA-seq employed simultaneously" (HiRES) and performed it on thousands of single cells from developing mouse embryos. Single-cell three-dimensional genome structures, despite being heavily determined by the cell cycle and developmental stages, gradually diverged in a cell type-specific manner as development progressed. By comparing the pseudotemporal dynamics of chromatin interactions with gene expression, we found a widespread chromatin rewiring that occurred before transcription activation. Our results demonstrate that the establishment of specific chromatin interactions is tightly related to transcriptional control and cell functions during lineage specification.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujie Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Menghan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujing Deng
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| |
Collapse
|
15
|
Cheek D, Johnston SGG. Ancestral reproductive bias in branching processes. J Math Biol 2023; 86:70. [PMID: 37027075 DOI: 10.1007/s00285-023-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Consider a branching process whose reproduction law is homogeneous. Sampling a single cell uniformly from the population at a time [Formula: see text] and looking along the sampled cell's ancestral lineage, we find that the reproduction law is heterogeneous-the expected reproductive output of ancestral cells on the lineage from time 0 to time T continuously increases with time. This 'inspection paradox' is due to sampling bias, that cells with a larger number of offspring are more likely to have one of their descendants sampled by virtue of their prolificity. The bias's strength changes with the random population size and/or the sampling time T. Our main result explicitly characterises the evolution of reproduction rates and sizes along the sampled ancestral lineage as a mixture of Poisson processes, which simplifies in special cases. The ancestral bias helps to explain recently observed variation in mutation rates along lineages of the developing human embryo.
Collapse
Affiliation(s)
- David Cheek
- Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA, 02129, USA
| | - Samuel G G Johnston
- Department of Mathematics, King's College London, Strand Building, London, WC2R 2LS, UK.
| |
Collapse
|
16
|
Fang W, Bell CM, Sapirstein A, Asami S, Leeper K, Zack DJ, Ji H, Kalhor R. Quantitative fate mapping: A general framework for analyzing progenitor state dynamics via retrospective lineage barcoding. Cell 2022; 185:4604-4620.e32. [PMID: 36423582 PMCID: PMC9708097 DOI: 10.1016/j.cell.2022.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
Natural and induced somatic mutations that accumulate in the genome during development record the phylogenetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy, commitment times, population sizes, and commitment biases of intermediate progenitor states during development based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long after embryonic development in any organism.
Collapse
Affiliation(s)
- Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claire M Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abel Sapirstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Soichiro Asami
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathleen Leeper
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Nakanoh S, Kadiwala J, Pinte L, Morell CM, Lenaerts AS, Vallier L. Simultaneous depletion of RB, RBL1 and RBL2 affects endoderm differentiation of human embryonic stem cells. PLoS One 2022; 17:e0269122. [PMID: 36413521 PMCID: PMC9681086 DOI: 10.1371/journal.pone.0269122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
RB is a well-known cell cycle regulator controlling the G1 checkpoint. Previous reports have suggested that it can influence cell fate decisions not only by regulating cell proliferation and survival but also by interacting with transcription factors and epigenetic modifiers. However, the functional redundancy of RB family proteins (RB, RBL1 and RBL2) renders it difficult to investigate their roles during early development, especially in human. Here, we address this problem by generating human embryonic stem cells lacking RB family proteins. To achieve this goal, we first introduced frameshift mutations in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then integrated the shRNA-expression cassette to knockdown RB upon tetracycline treatment. The resulting RBL1/2_dKO+RB_iKD cells remain pluripotent and efficiently differentiate into the primary germ layers in vitro even in the absence of the RB family proteins. In contrast, we observed that subsequent differentiation into foregut endoderm was impaired without the expression of RB, RBL1 and RBL2. Thus, it is suggested that RB proteins are dispensable for the maintenance and acquisition of cell identities during early development, but they are essential to generate advanced derivatives after the formation of primary germ layers. These results also indicate that our RBL1/2_dKO+RB_iKD cell lines are useful to depict the detailed molecular roles of RB family proteins in the maintenance and generation of various cell types accessible from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Juned Kadiwala
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Laetitia Pinte
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Carola Maria Morell
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - An-Sofie Lenaerts
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
18
|
Newar K, Abdulla AZ, Salari H, Fanchon E, Jost D. Dynamical modeling of the H3K27 epigenetic landscape in mouse embryonic stem cells. PLoS Comput Biol 2022; 18:e1010450. [PMID: 36054209 PMCID: PMC9477427 DOI: 10.1371/journal.pcbi.1010450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/15/2022] [Accepted: 07/28/2022] [Indexed: 01/02/2023] Open
Abstract
The Polycomb system via the methylation of the lysine 27 of histone H3 (H3K27) plays central roles in the silencing of many lineage-specific genes during development. Recent experimental evidence suggested that the recruitment of histone modifying enzymes like the Polycomb repressive complex 2 (PRC2) at specific sites and their spreading capacities from these sites are key to the establishment and maintenance of a proper epigenomic landscape around Polycomb-target genes. Here, to test whether such mechanisms, as a minimal set of qualitative rules, are quantitatively compatible with data, we developed a mathematical model that can predict the locus-specific distributions of H3K27 modifications based on previous biochemical knowledge. Within the biological context of mouse embryonic stem cells, our model showed quantitative agreement with experimental profiles of H3K27 acetylation and methylation around Polycomb-target genes in wild-type and mutants. In particular, we demonstrated the key role of the reader-writer module of PRC2 and of the competition between the binding of activating and repressing enzymes in shaping the H3K27 landscape around transcriptional start sites. The predicted dynamics of establishment and maintenance of the repressive trimethylated H3K27 state suggest a slow accumulation, in perfect agreement with experiments. Our approach represents a first step towards a quantitative description of PcG regulation in various cellular contexts and provides a generic framework to better characterize epigenetic regulation in normal or disease situations.
Collapse
Affiliation(s)
- Kapil Newar
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
| | - Amith Zafal Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Eric Fanchon
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
Polikarpova A, Ellinghaus A, Schmidt-Bleek O, Grosser L, Bucher CH, Duda GN, Tanaka EM, Schmidt-Bleek K. The specialist in regeneration-the Axolotl-a suitable model to study bone healing? NPJ Regen Med 2022; 7:35. [PMID: 35773262 PMCID: PMC9246919 DOI: 10.1038/s41536-022-00229-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
While the axolotl's ability to completely regenerate amputated limbs is well known and studied, the mechanism of axolotl bone fracture healing remains poorly understood. One reason might be the lack of a standardized fracture fixation in axolotl. We present a surgical technique to stabilize the osteotomized axolotl femur with a fixator plate and compare it to a non-stabilized osteotomy and to limb amputation. The healing outcome was evaluated 3 weeks, 3, 6 and 9 months post-surgery by microcomputer tomography, histology and immunohistochemistry. Plate-fixated femurs regained bone integrity more efficiently in comparison to the non-fixated osteotomized bone, where larger callus formed, possibly to compensate for the bone fragment misalignment. The healing of a non-critical osteotomy in axolotl was incomplete after 9 months, while amputated limbs efficiently restored bone length and structure. In axolotl amputated limbs, plate-fixated and non-fixated fractures, we observed accumulation of PCNA+ proliferating cells at 3 weeks post-injury similar to mouse. Additionally, as in mouse, SOX9-expressing cells appeared in the early phase of fracture healing and amputated limb regeneration in axolotl, preceding cartilage formation. This implicates endochondral ossification to be the probable mechanism of bone healing in axolotls. Altogether, the surgery with a standardized fixation technique demonstrated here allows for controlled axolotl bone healing experiments, facilitating their comparison to mammals (mice).
Collapse
Affiliation(s)
- A Polikarpova
- Research Institute of Molecular Pathology, Vienna, A-1030, Austria
| | - A Ellinghaus
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, DE-13353, Germany
| | - O Schmidt-Bleek
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, DE-13353, Germany
| | - L Grosser
- Research Institute of Molecular Pathology, Vienna, A-1030, Austria
| | - C H Bucher
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, DE-13353, Germany
| | - G N Duda
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, DE-13353, Germany
| | - E M Tanaka
- Research Institute of Molecular Pathology, Vienna, A-1030, Austria
| | - K Schmidt-Bleek
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, DE-13353, Germany.
| |
Collapse
|
20
|
Ring NAR, Valdivieso K, Grillari J, Redl H, Ogrodnik M. The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Dev Cell 2022; 57:1083-1101. [PMID: 35472291 DOI: 10.1016/j.devcel.2022.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Senescence is a cellular state which involves cell cycle arrest and a proinflammatory phenotype, and it has traditionally been associated with cellular and organismal aging. However, increasing evidence suggests key roles in tissue growth and regrowth, especially during development and regeneration. Conversely, cellular plasticity-the capacity of cells to undergo identity change, including differentiation and dedifferentiation-is associated with development and regeneration but is now being investigated in the context of age-related diseases such as Alzheimer disease. Here, we discuss the paradox of the role for cellular senescence in cellular plasticity: senescence can act as a cell-autonomous barrier and a paracrine driver of plasticity. We provide a conceptual framework for integrating recent data and use the interplay between cellular senescence and plasticity to provide insight into age-related diseases. Finally, we argue that age-related diseases can be better deciphered when senescence is recognized as a core mechanism of regeneration and development.
Collapse
Affiliation(s)
- Nadja Anneliese Ruth Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
21
|
Anbara H, Shahrooz R, Razi M, Malekinejad H, Najafi G, Shalizar-Jalali A. Repro-protective role of royal jelly in phenylhydrazine-induced hemolytic anemia in male mice: Histopathological, embryological, and biochemical evidence. ENVIRONMENTAL TOXICOLOGY 2022; 37:1124-1135. [PMID: 35099105 DOI: 10.1002/tox.23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/12/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
To estimate the repro-protective effect of royal jelly (RJ) on phenylhydrazine (PHZ)-induced anemia's detrimental effects, 24 mature mice were divided into control group (0.10 mL normal saline; intra-peritoneally), RJ group (100 mg/kg/day; orally), experimental anemia (EA) group that received only PHZ (6 mg/100 g/48 h; intra-peritoneally), and RJ + EA (according to the previous prescription) group. After 35 days, testicular histoarchitecture, RNA damage in germinal cells, sperm characteristics, testicular total anti-oxidant capacity and malondialdehyde as well as serum testosterone levels, pre-implantation embryo development and cyclin D1 and c-myc mRNA levels at two-cell, morula and blastocyst stages were analyzed. Spermatogenesis indices were ameliorated following RJ co-administration. Moreover, RJ co-treatment reduced germinal cells RNA damage, improved sperm characteristics, boosted pre-implantation embryo development and restored androgenesis, and oxidant/anti-oxidant status. Co-administration of RJ also decreased mRNA levels of cyclin D1 and up-regulated those of c-myc in two-cell embryos, morulas and blastocysts. The findings suggest that RJ can play a repro-protective role in PHZ-induced anemia in mice through anti-oxidant defense system reinforcement and androgenesis restoration as well as cyclin D1 and c-myc expressions regulation.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod 2022; 28:6566308. [DOI: 10.1093/molehr/gaac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon which has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution, but also on whether it should be offered to patients at all.
We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known of the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?
Collapse
Affiliation(s)
- Marius Regin
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
23
|
Chen ACH, Peng Q, Fong SW, Lee KC, Yeung WSB, Lee YL. DNA Damage Response and Cell Cycle Regulation in Pluripotent Stem Cells. Genes (Basel) 2021; 12:genes12101548. [PMID: 34680943 PMCID: PMC8535646 DOI: 10.3390/genes12101548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/30/2023] Open
Abstract
Pluripotent stem cells (PSCs) hold great promise in cell-based therapy because of their pluripotent property and the ability to proliferate indefinitely. Embryonic stem cells (ESCs) derived from inner cell mass (ICM) possess unique cell cycle control with shortened G1 phase. In addition, ESCs have high expression of homologous recombination (HR)-related proteins, which repair double-strand breaks (DSBs) through HR or the non-homologous end joining (NHEJ) pathway. On the other hand, the generation of induced pluripotent stem cells (iPSCs) by forced expression of transcription factors (Oct4, Sox2, Klf4, c-Myc) is accompanied by oxidative stress and DNA damage. The DNA repair mechanism of DSBs is therefore critical in determining the genomic stability and efficiency of iPSCs generation. Maintaining genomic stability in PSCs plays a pivotal role in the proliferation and pluripotency of PSCs. In terms of therapeutic application, genomic stability is the key to reducing the risks of cancer development due to abnormal cell replication. Over the years, we and other groups have identified important regulators of DNA damage response in PSCs, including FOXM1, SIRT1 and PUMA. They function through transcription regulation of downstream targets (P53, CDK1) that are involved in cell cycle regulations. Here, we review the fundamental links between the PSC-specific HR process and DNA damage response, with a focus on the roles of FOXM1 and SIRT1 on maintaining genomic integrity.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| | - Qian Peng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
- Correspondence: (W.S.B.Y.); (Y.L.L.)
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
- Correspondence: (W.S.B.Y.); (Y.L.L.)
| |
Collapse
|
24
|
Anger M, Radonova L, Horakova A, Sekach D, Charousova M. Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos. Int J Mol Sci 2021; 22:9073. [PMID: 34445775 PMCID: PMC8396661 DOI: 10.3390/ijms22169073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
The onset of an early development is, in mammals, characterized by profound changes of multiple aspects of cellular morphology and behavior. These are including, but not limited to, fertilization and the merging of parental genomes with a subsequent transition from the meiotic into the mitotic cycle, followed by global changes of chromatin epigenetic modifications, a gradual decrease in cell size and the initiation of gene expression from the newly formed embryonic genome. Some of these important, and sometimes also dramatic, changes are executed within the period during which the gene transcription is globally silenced or not progressed, and the regulation of most cellular activities, including those mentioned above, relies on controlled translation. It is known that the blastomeres within an early embryo are prone to chromosome segregation errors, which might, when affecting a significant proportion of a cell within the embryo, compromise its further development. In this review, we discuss how the absence of transcription affects the transition from the oocyte to the embryo and what impact global transcriptional silencing might have on the basic cell cycle and chromosome segregation controlling mechanisms.
Collapse
Affiliation(s)
- Martin Anger
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic; (L.R.); (A.H.); (D.S.); (M.C.)
| | | | | | | | | |
Collapse
|
25
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
26
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
27
|
Lin JC, Van Eenennaam AL. Electroporation-Mediated Genome Editing of Livestock Zygotes. Front Genet 2021; 12:648482. [PMID: 33927751 PMCID: PMC8078910 DOI: 10.3389/fgene.2021.648482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The introduction of genome editing reagents into mammalian zygotes has traditionally been accomplished by cytoplasmic or pronuclear microinjection. This time-consuming procedure requires expensive equipment and a high level of skill. Electroporation of zygotes offers a simplified and more streamlined approach to transfect mammalian zygotes. There are a number of studies examining the parameters used in electroporation of mouse and rat zygotes. Here, we review the electroporation conditions, timing, and success rates that have been reported for mice and rats, in addition to the few reports about livestock zygotes, specifically pigs and cattle. The introduction of editing reagents at, or soon after, fertilization can help reduce the rate of mosaicism, the presence of two of more genotypes in the cells of an individual; as can the introduction of nuclease proteins rather than mRNA encoding nucleases. Mosaicism is particularly problematic in large livestock species with long generation intervals as it can take years to obtain non-mosaic, homozygous offspring through breeding. Gene knockouts accomplished via the non-homologous end joining pathway have been more widely reported and successfully accomplished using electroporation than have gene knock-ins. Delivering large DNA plasmids into the zygote is hindered by the zona pellucida (ZP), and the majority of gene knock-ins accomplished by electroporation have been using short single stranded DNA (ssDNA) repair templates, typically less than 1 kb. The most promising approach to deliver larger donor repair templates of up to 4.9 kb along with genome editing reagents into zygotes, without using cytoplasmic injection, is to use recombinant adeno-associated viruses (rAAVs) in combination with electroporation. However, similar to other methods used to deliver clustered regularly interspaced palindromic repeat (CRISPR) genome-editing reagents, this approach is also associated with high levels of mosaicism. Recent developments complementing germline ablated individuals with edited germline-competent cells offer an approach to avoid mosaicism in the germline of genome edited founder lines. Even with electroporation-mediated delivery of genome editing reagents to mammalian zygotes, there remain additional chokepoints in the genome editing pipeline that currently hinder the scalable production of non-mosaic genome edited livestock.
Collapse
Affiliation(s)
- Jason C Lin
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
28
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
29
|
Yu X, Li S, Pang M, Du Y, Xu T, Bai T, Yang K, Hu J, Zhu S, Wang L, Liu X. TSPAN7 Exerts Anti-Tumor Effects in Bladder Cancer Through the PTEN/PI3K/AKT Pathway. Front Oncol 2021; 10:613869. [PMID: 33489923 PMCID: PMC7821430 DOI: 10.3389/fonc.2020.613869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/27/2020] [Indexed: 01/21/2023] Open
Abstract
The tetraspanin protein superfamily participate in the dynamic regulation of cellular membrane compartments expressed in a variety of tumor types, which may alter the biological properties of cancer cells such as cell development, activation, growth and motility. The role of tetraspanin 7 (TSPAN7) has never been investigated in bladder cancer (BCa). In this study, we aimed to investigate the biological function of TSPAN7 and its therapeutic potential in human BCa. First, via reverse transcription and quantitative real-time PCR (qRT-PCR), we observed downregulation of TSPAN7 in BCa tissues samples and cell lines and found that this downregulation was associated with a relatively high tumor stage and tumor grade. Low expression of TSPAN7 was significantly correlated with a much poorer prognosis for BCa patients than was high expression. Immunohistochemistry (IHC) showed that low TSPAN7 expression was a high-risk predictor of BCa patient overall survival. Furthermore, the inhibitory effects of TSPAN7 on the proliferation and migration of BCa cell lines were detected by CCK-8, wound-healing, colony formation and transwell assays in vitro. Flow cytometry analysis revealed that TSPAN7 induced BCa cell lines apoptosis and cell cycle arrest. In vivo, tumor growth in nude mice bearing tumor xenografts could be obviously affected by overexpression of TSPAN7. Western blotting showed that overexpression of TSPAN7 activated Bax, cleaved caspase-3 and PTEN but inactivated Bcl-2, p-PI3K, and p-AKT to inhibit BCa cell growth via the PTEN/PI3K/AKT pathway. Taken together, our study will help identify a potential marker for BCa diagnosis and supply a target molecule for BCa treatment.
Collapse
Affiliation(s)
- Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenglan Li
- Department of Radiography, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingrui Pang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Bai
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
31
|
Pfitzner C, White MA, Piltz SG, Scherer M, Adikusuma F, Hughes JN, Thomas PQ. Progress Toward Zygotic and Germline Gene Drives in Mice. CRISPR J 2020; 3:388-397. [PMID: 33095043 DOI: 10.1089/crispr.2020.0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CRISPR-based synthetic gene drives have the potential to deliver a more effective and humane method of invasive vertebrate pest control than current strategies. Relatively efficient CRISPR gene drive systems have been developed in insects and yeast but not in mammals. Here, we investigated the efficiency of CRISPR-Cas9-based gene drives in Mus musculus by constructing "split drive" systems where gRNA expression occurs on a separate chromosome to Cas9, which is under the control of either a zygotic (CAG) or germline (Vasa) promoter. While both systems generated double-strand breaks at their intended target site in vivo, no homology-directed repair between chromosomes ("homing") was detectable. Our data indicate that robust and specific Cas9 expression during meiosis is a critical requirement for the generation of efficient CRISPR-based synthetic gene drives in rodents.
Collapse
Affiliation(s)
- Chandran Pfitzner
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A White
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Sandra G Piltz
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Michaela Scherer
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Fatwa Adikusuma
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - James N Hughes
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Paul Q Thomas
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
32
|
Møller AF, Natarajan KN. Predicting gene regulatory networks from cell atlases. Life Sci Alliance 2020; 3:3/11/e202000658. [PMID: 32958603 PMCID: PMC7536823 DOI: 10.26508/lsa.202000658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Integrated single-cell gene regulatory network from three mouse cell atlases captures global and cell type–specific regulatory modules and crosstalk, important for cellular identity. Recent single-cell RNA-sequencing atlases have surveyed and identified major cell types across different mouse tissues. Here, we computationally reconstruct gene regulatory networks from three major mouse cell atlases to capture functional regulators critical for cell identity, while accounting for a variety of technical differences, including sampled tissues, sequencing depth, and author assigned cell type labels. Extracting the regulatory crosstalk from mouse atlases, we identify and distinguish global regulons active in multiple cell types from specialised cell type–specific regulons. We demonstrate that regulon activities accurately distinguish individual cell types, despite differences between individual atlases. We generate an integrated network that further uncovers regulon modules with coordinated activities critical for cell types, and validate modules using available experimental data. Inferring regulatory networks during myeloid differentiation from wild-type and Irf8 KO cells, we uncover functional contribution of Irf8 regulon activity and composition towards monocyte lineage. Our analysis provides an avenue to further extract and integrate the regulatory crosstalk from single-cell expression data.
Collapse
Affiliation(s)
- Andreas Fønss Møller
- Department of Biochemistry and Molecular Biology, Functional Genomics and Metabolism Unit, University of Southern Denmark, Odense, Denmark
| | - Kedar Nath Natarajan
- Department of Biochemistry and Molecular Biology, Functional Genomics and Metabolism Unit, University of Southern Denmark, Odense, Denmark .,Danish Institute of Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam NL, Wang Z, Yu J, Huang B, Zhuang H, Zhou Z, Ma Z, Sun Z, He X, Zhou Q, Hou B, Wu L. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:3025-3041. [PMID: 32045367 PMCID: PMC7041778 DOI: 10.18632/aging.102797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022]
Abstract
Background: Obg-like ATPase 1 (OLA1) has been found to have a dual role in cancers. However, the relationship between OLA1 and hepatocellular carcinoma (HCC) remains unclear. Results: High expression of OLA1 in HCC was detected in public datasets and clinical samples, and correlated with poor prognosis. Downregulation of OLA1 significantly inhibited the proliferation, migration, invasion and tumorigenicity of HCC cells. Mechanistically, GSEA showed that OLA1 might promote tumor progression by regulating the cell cycle and apoptosis. In addition, OLA1 knockdown resulted in G0/G1 phase arrest and high levels of apoptosis. OLA1 could bind with P21 and upregulate CDK2 expression to promote HCC progression. Conclusions: Overall, these findings uncover a role for OLA1 in regulating the proliferation and apoptosis of HCC cells. Materials and methods: The Cancer Genome Atlas and Gene Expression Omnibus datasets were analyzed to identify gene expression. Immunohistochemistry staining, western blot and real-time polymerase chain reaction were performed to evaluate OLA1 expression in samples. Cell count Kit-8, wound-healing, transwell and flow cytometry assays were used to analyze HCC cell progression. Subcutaneous xenotransplantation models were used to investigate the role of OLA1 in vivo. Coimmunoprecipitation was used to analyze protein interactions.
Collapse
Affiliation(s)
- Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Nga Lei Tam
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Division of Hepatobiliary Surgery, Zhuhai 519000, China
| | - Zekang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jia Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Zhonghai Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.,China Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
34
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Abstract
The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.
Collapse
Affiliation(s)
- Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
36
|
Mutalip SSM, Rajikin MH, Rahim SA, Khan NMN. Annatto ( Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/ Akt-Cyclin D1 pathway. INT J VITAM NUTR RES 2019; 88:16-26. [PMID: 30907699 DOI: 10.1024/0300-9831/a000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of PI3K/Akt-Cyclin D1 pathway against the nicotine-induced DNA damages is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as reproductive toxicant. 48 female balb/c mice (6-8 weeks) (23-25 g) were randomly divided into 8 groups (G1-G8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for 7 consecutive days. On Day 8, the females were superovulated and mated before euthanized for embryo collection (46 hours post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (G2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to control (G1). Intervention with mixed annatto δ-TCT (G3) and pure annatto δ-TCT (G4) significantly increased the number of produced 2-cell embryos by 127 % and 79 % respectively compared to G2, but these were lower than G1. Concurrent treatment with soy α-TOC (G5) decreased embryo production by 7 %. Supplementations with δ-TCT and α-TOC alone (G6-G8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50 %, 36 % and 41 % respectively, compared to control (G1). These results were found to be associated with the alterations in the PI3K/Akt-Cyclin D1 gene expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against the nicotinic embryonic damages. To our knowledge, this is the first attempt on studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- 1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor, Malaysia.,2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia
| | - Mohd Hamim Rajikin
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- 3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohamed Noor Khan
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| |
Collapse
|
37
|
Mohd Mutalip SS, Rajikin MH, Ab Rahim S, Mohamed Noor Khan N. Annatto ( Bixa orellana) δ-TCT Supplementation Protection against Embryonic Malformations through Alterations in PI3K/Akt-Cyclin D1 Pathway. Biomolecules 2019; 9:E19. [PMID: 30634632 PMCID: PMC6358786 DOI: 10.3390/biom9010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of the PI3K/Akt-cyclin D1 pathway against nicotine-induced DNA damage is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as a reproductive toxicant. 48 female balb/c mice (6⁻8 weeks) (23⁻25 g) were randomly divided into eight groups (Grp.1⁻Grp.8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for seven consecutive days. On Day 8, the females were superovulated and mated before euthanization for embryo collection (46 h post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (Grp.2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to the control (Grp.1). Intervention with mixed annatto δ-TCT (Grp.3) and pure annatto δ-TCT (Grp.4) significantly increased the number of produced 2-cell embryos by 127% and 79%, respectively compared to Grp.2, but these were lower than Grp.1. Concurrent treatment with soy α-TOC (Grp.5) decreased embryo production by 7%. Supplementations with δ-TCT and α-TOC alone (Grp.6-Grp.8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50%, 36%, and 41%, respectively, compared to control (Grp.1). These results were found to be associated with alterations in the PI3K/Akt-Cyclin D1 genes expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against nicotinic embryonic damage. To our knowledge, this is the first attempt in studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor 42300, Malaysia.
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
| | - Mohd Hamim Rajikin
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Norashikin Mohamed Noor Khan
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| |
Collapse
|
38
|
Jin M, An Q, Wang L. Importance of tuberin in carcinogenesis. Oncol Lett 2017; 14:2598-2602. [PMID: 28928805 PMCID: PMC5588451 DOI: 10.3892/ol.2017.6490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
The cell cycle is a dynamic process with multiple phases regulating cell growth. The proper regulation is essential for avoiding errors and activation of cell death. Tumour suppressor proteins, including tuberin, are crucial in coordinating adequate cell growth and properly timed cell division. So, the present review article is focused on the latest aspects of the tuberin in the process of carcinogenesis. The PubMed was the main database used for the collection of latest data relating to multiple aspects of tuberin especially in context of cancer. Most of the recent studies revealed that mutation, truncation, and deregulation of the tuberin protein could definitely lead to cancer. Recent studies are also devoted to explore implications towards better understanding the progression of disease involving mis-regulated tuberin.
Collapse
Affiliation(s)
- Mingwei Jin
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Qi An
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Lei Wang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
39
|
Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017. [PMID: 28630025 DOI: 10.1016/j.semcdb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.
Collapse
Affiliation(s)
| | - Antonio Martinez-Nicolas
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
40
|
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, Plevris E, Hadjiyannis Y, Perez M, Nolan E, Kladney R, Westendorp B, de Bruin A, Fernandez S, Rosol TJ, Pohar KS, Pipas JM, Leone G. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 2017; 127:830-842. [PMID: 28134624 DOI: 10.1172/jci87583] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.
Collapse
|
41
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
42
|
Yuan X, Wang Y, Li L, Zhou W, Tian D, Lu C, Yu S, Zhao J, Peng S. PM 2.5 induces embryonic growth retardation: Potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest pathways. ENVIRONMENTAL TOXICOLOGY 2016; 31:2028-2044. [PMID: 26472167 DOI: 10.1002/tox.22203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Airborne fine particulate matter (PM2.5 ) is an "invisible killer" to human health. There is increasing evidence revealing the adverse effects of PM2.5 on the early embryonic development and pregnancy outcome, but the molecular mechanism underlying PM2.5 -induced embryotoxicity is largely unknown. Previous studies have documented that exposure to PM triggers ROS generation, leads to subsequent activation of MAPKs signaling, and results in corresponding cell biological changes including enhanced apoptosis and altered cell cycle in the cardiopulmonary system. Here, we investigated whether ROS-MAPKs-apoptosis/cell cycle arrest pathways play an important role in PM2.5 -induced embryotoxicity using the rat whole embryo culture system. The results showed that PM2.5 treatment led to embryonic growth retardation at concentrations of 50 μg/ml and above, as evidenced by the reduced yolk sac diameter, crown-rump length, head length and somite number. PM2.5 -induced embryonic growth retardation was accompanied by cell apoptosis and G0/G1 phase arrest. Furthermore, ROS generation and subsequent activation of JNK and ERK might be involved in PM2.5 -induced apoptosis and G0/G1 phase arrest by downregulating Bcl-2/Bax protein ratio and upregulating p15INK4B , p16INK4A , and p21WAF1/CIP1 transcription level. In conclusion, our results indicate that ROS-JNK/ERK-apoptosis and G0/G1 arrest pathways are involved in PM2.5 -induced embryotoxicity, which not only provides insights into the molecular mechanism of PM2.5 -induced embryotoxicity, but also may help to identify specific interventions to improve adverse pregnancy outcomes of PM2.5 . © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2028-2044, 2016.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Lizhong Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Dongdong Tian
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Chunfeng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Shouzhong Yu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| |
Collapse
|
43
|
OLA1, a Translational Regulator of p21, Maintains Optimal Cell Proliferation Necessary for Developmental Progression. Mol Cell Biol 2016; 36:2568-82. [PMID: 27481995 DOI: 10.1128/mcb.00137-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
OLA1, an Obg-family GTPase, has been implicated in eukaryotic initiation factor 2 (eIF2)-mediated translational control, but its physiological functions remain obscure. Here we report that mouse embryos lacking OLA1 have stunted growth, delayed development leading to immature organs-especially lungs-at birth, and frequent perinatal lethality. Proliferation of primary Ola1(-/-) mouse embryonic fibroblasts (MEFs) is impaired due to defective cell cycle progression, associated with reduced cyclins D1 and E1, attenuated Rb phosphorylation, and increased p21(Cip1/Waf1) Accumulation of p21 in Ola1(-/-) MEFs is due to enhanced mRNA translation and can be prevented by either reconstitution of OLA1 expression or treatment with an eIF2α dephosphorylation inhibitor, suggesting that OLA1 regulates p21 through a translational mechanism involving eIF2. With immunohistochemistry, overexpression of p21 protein was detected in Ola1-null embryos with reduced cell proliferation. Moreover, we have generated p21(-/-) Ola1(-/-) mice and found that knockout of p21 can partially rescue the growth retardation defect of Ola1(-/-) embryos but fails to rescue them from developmental delay and the lethality. These data demonstrate, for the first time, that OLA1 is required for normal progression of mammalian development. OLA1 plays an important role in promoting cell proliferation at least in part through suppression of p21 and organogenesis via factors yet to be discovered.
Collapse
|
44
|
Czerwinska AM, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, Iwanicka-Nowicka R, Jańczyk-Ilach K, Koblowska M, Ciemerych MA, Grabowska I. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle 2016; 15:2931-2942. [PMID: 27610933 PMCID: PMC5105925 DOI: 10.1080/15384101.2016.1231260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.
Collapse
Affiliation(s)
- Areta M Czerwinska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Joanna Nowacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Aszer
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Sylwia Gawrzak
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Karolina Archacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Anna Fogtman
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Katarzyna Jańczyk-Ilach
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Marta Koblowska
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Iwona Grabowska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
45
|
Epiblast-specific loss of HCF-1 leads to failure in anterior-posterior axis specification. Dev Biol 2016; 418:75-88. [PMID: 27521049 DOI: 10.1016/j.ydbio.2016.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Mammalian Host-Cell Factor 1 (HCF-1), a transcriptional co-regulator, plays important roles during the cell-division cycle in cell culture, embryogenesis as well as adult tissue. In mice, HCF-1 is encoded by the X-chromosome-linked Hcfc1 gene. Induced Hcfc1(cKO/+) heterozygosity with a conditional knockout (cKO) allele in the epiblast of female embryos leads to a mixture of HCF-1-positive and -deficient cells owing to random X-chromosome inactivation. These embryos survive owing to the replacement of all HCF-1-deficient cells by HCF-1-positive cells during E5.5 to E8.5 of development. In contrast, complete epiblast-specific loss of HCF-1 in male embryos, Hcfc1(epiKO/Y), leads to embryonic lethality. Here, we characterize this lethality. We show that male epiblast-specific loss of Hcfc1 leads to a developmental arrest at E6.5 with a rapid progressive cell-cycle exit and an associated failure of anterior visceral endoderm migration and primitive streak formation. Subsequently, gastrulation does not take place. We note that the pattern of Hcfc1(epiKO/Y) lethality displays many similarities to loss of β-catenin function. These results reveal essential new roles for HCF-1 in early embryonic cell proliferation and development.
Collapse
|
46
|
Teixeira LK, Carrossini N, Sécca C, Kroll JE, DaCunha DC, Faget DV, Carvalho LDS, de Souza SJ, Viola JPB. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes. Cell Cycle 2016; 15:2346-59. [PMID: 27399331 DOI: 10.1080/15384101.2016.1203485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Nina Carrossini
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Cristiane Sécca
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - José E Kroll
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - Déborah C DaCunha
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Douglas V Faget
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Lilian D S Carvalho
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Sandro J de Souza
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - João P B Viola
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
47
|
Torgasheva NA, Menzorova NI, Sibirtsev YT, Rasskazov VA, Zharkov DO, Nevinsky GA. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius. MOLECULAR BIOSYSTEMS 2016; 12:2247-56. [PMID: 27158700 DOI: 10.1039/c5mb00906e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.
Collapse
Affiliation(s)
- Natalya A Torgasheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Natalya I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Yurii T Sibirtsev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Valery A Rasskazov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
48
|
Pauklin S, Madrigal P, Bertero A, Vallier L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev 2016; 30:421-33. [PMID: 26883361 PMCID: PMC4762427 DOI: 10.1101/gad.271452.115] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions.
Collapse
Affiliation(s)
- Siim Pauklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alessandro Bertero
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
49
|
Minocha S, Sung TL, Villeneuve D, Lammers F, Herr W. Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1. Dev Biol 2016; 412:1-17. [DOI: 10.1016/j.ydbio.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 01/29/2023]
|
50
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|