1
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Spiegelberg D, Hwang LA, Pua KH, Kumar SC, Koh XY, Koh XH, Selvaraju RK, Sabapathy K, Nestor M, Lane D. Targeting mutant p53: Evaluation of novel anti-p53 R175H monoclonal antibodies as diagnostic tools. Sci Rep 2025; 15:1000. [PMID: 39762369 PMCID: PMC11704002 DOI: 10.1038/s41598-024-83871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53R175H (p53R172H in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53R175H could prove immensely value. We aimed to evaluate the in vitro and in vivo binding properties of two novel anti-p53R175H monoclonal antibodies and to assess their performance as agents for molecular imaging. In vitro, 125I-4H5 and 125I-7B9 demonstrated long shelf life and antigen-specific binding. Our in vivo study design allowed head-to-head comparison of the antibodies in a double tumor model using repeated SPECT/CT imaging, followed by biodistribution and autoradiography. Both tracers performed similarly, with marginally faster blood clearance for 125I-7B9. Repeated molecular imaging demonstrated suitable imaging characteristics for both antibodies, with the best contrast images occurring at 48 h post-injection. Significantly higher uptake was detected in the mut-p53-expressing tumors, confirmed by ex vivo autoradiography. We conclude that molecular imaging with an anti-p53R175H tracer could be a promising approach for cancer diagnostics and could be further applied for patient stratification and treatment response monitoring of mutant p53-targeted therapeutics.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Le-Ann Hwang
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Khian Hong Pua
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Sashwini Chandra Kumar
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xin Yu Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Xiao Hui Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Ram Kumar Selvaraju
- Preclinical PET-MRI Platform, Part of Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kanaga Sabapathy
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Marika Nestor
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden
| | - David Lane
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Xiong B, Zhang X, Sangji D, Ni L, Fan M, Fan B. Mechanisms of breast cancer treatment using Gentiana robusta: evidence from comprehensive bioinformatics investigation. Sci Rep 2024; 14:31567. [PMID: 39738201 PMCID: PMC11686125 DOI: 10.1038/s41598-024-76063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025] Open
Abstract
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation. Building upon prior research on QJ's chemical constituents, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the DAVID database. Network interactions and core genes were identified using Cytoscape 3.9.1. Key target genes, including Interleukin-6 (IL-6), tumour suppressor gene P53 (TP53), and epidermal growth factor receptor (EGFR), were selected for molecular docking with QJ's active components, 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D, employing Schrodinger Maestro 13.5. Molecular dynamics (MD) simulations were performed using the Desmond program. A total of 270 intersection targets of active ingredients and diseases were identified, with three core targets determined through network topology screening. Enrichment analysis highlighted the involvement of QJ in breast cancer treatment, primarily through the hsa05200 cancer signaling pathway and the hsa04066 HIF-1 signaling pathway. Molecular docking and dynamics simulations demonstrated the close interaction of 2'-O-β-D-glucopyranosyl-gentiopicroside (QJ17) and macrophylloside D (QJ25) with IL6, TP53, and EGFR, and other target genes, showcasing a stabilizing effect. In conclusion, this study unveils the effective components and potential mechanisms of 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D in breast cancer prevention and treatment. The identified components act on target genes such as IL6, TP53, and EGFR, regulating crucial pathways including the cancer signaling and Hypoxia-inducible factor 1 (HIF-1) signaling pathways. These findings provide valuable insights into the therapeutic potential of QJ in breast cancer management. However, further experimental research are needed to validate the computational findings of QJ.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongzhi Sangji
- Tibetan Medical Hospital of Xizang Autonomous Region, Lhasa, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingjie Fan
- Department of Pharmacy, Shanghai Fourth Rehabilitation Hospital, Shanghai, China.
| | - Beibei Fan
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lü Y, Cho T, Mukherjee S, Suarez CF, Gonzalez-Foutel NS, Malik A, Martinez S, Dervovic D, Oh RH, Langille E, Al-Zahrani KN, Hoeg L, Lin ZY, Tsai R, Mbamalu G, Rotter V, Ashton-Prolla P, Moffat J, Chemes LB, Gingras AC, Oren M, Durocher D, Schramek D. Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability. Mol Syst Biol 2024; 20:719-740. [PMID: 38580884 PMCID: PMC11148184 DOI: 10.1038/s44320-024-00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.
Collapse
Affiliation(s)
- YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Department of Biology, Suffolk University, Boston, MA, 02108, USA
| | - Tiffany Cho
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Florencia Suarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicolas S Gonzalez-Foutel
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Robin Hyunseo Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Lisa Hoeg
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Zhen Yuan Lin
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Geraldine Mbamalu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Patricia Ashton-Prolla
- Departamento de Genética, Universidade Federal do Rio Grande do Sul and Serviço de Genetica Médica HCPA, Porto Alegre, Brasil
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S3G9, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Anne-Claude Gingras
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Durocher
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
de Oliveira Silva N, de Lima LVA, de Oliveira LM, da Silva MF, de Aguiar AP, Semprebon SC, Favaron PO, Lepri SR, Felicidade I, Mantovani MS. Cellular and molecular antiproliferative effects in 2D monolayer and 3D-cultivated HT-29 cells treated with zerumbone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1561-1573. [PMID: 37672080 DOI: 10.1007/s00210-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.
Collapse
Affiliation(s)
- Nayane de Oliveira Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Liana Martins de Oliveira
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Amanda Passuello de Aguiar
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Phelipe Oliveira Favaron
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
7
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, Palmieri M, Hirokawa Y, Tai L, Simpson DS, Chang C, Huang AS, Lieschke E, Diepstraten ST, Kaloni D, Riffkin C, Huang DC, Li Wai Suen CS, Garnham AL, Gibbs P, Visvader JE, Sieber OM, Herold MJ, Fava LL, Kelly GL, Strasser A. Loss-of-Function but Not Gain-of-Function Properties of Mutant TP53 Are Critical for the Proliferation, Survival, and Metastasis of a Broad Range of Cancer Cells. Cancer Discov 2024; 14:362-379. [PMID: 37877779 PMCID: PMC10850947 DOI: 10.1158/2159-8290.cd-23-0402] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Matteo Burigotto
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Sabrina Ghetti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - François Vaillant
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Tao Tan
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Bianca D. Capaldo
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Michelle Palmieri
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Yumiko Hirokawa
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Daniel S. Simpson
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Catherine Chang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Sarah T. Diepstraten
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Chris Riffkin
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Connie S.N. Li Wai Suen
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jane E. Visvader
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Oliver M. Sieber
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Gemma L. Kelly
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Chachad D, Patel LR, Recio CV, Pourebrahim R, Whitley EM, Wang W, Su X, Xu A, Lee DF, Lozano G. Unique Transcriptional Profiles Underlie Osteosarcomagenesis Driven by Different p53 Mutants. Cancer Res 2023; 83:2297-2311. [PMID: 37205631 PMCID: PMC10524763 DOI: 10.1158/0008-5472.can-22-3464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Missense mutations in the DNA binding domain of p53 are characterized as structural or contact mutations based on their effect on the conformation of the protein. These mutations show gain-of-function (GOF) activities, such as promoting increased metastatic incidence compared with p53 loss, often mediated by the interaction of mutant p53 with a set of transcription factors. These interactions are largely context specific. To understand the mechanisms by which p53 DNA binding domain mutations drive osteosarcoma progression, we created mouse models, in which either the p53 structural mutant p53R172H or the contact mutant p53R245W are expressed specifically in osteoblasts, yielding osteosarcoma tumor development. Survival significantly decreased and metastatic incidence increased in mice expressing p53 mutants compared with p53-null mice, suggesting GOF. RNA sequencing of primary osteosarcomas revealed vastly different gene expression profiles between tumors expressing the missense mutants and p53-null tumors. Further, p53R172H and p53R245W each regulated unique transcriptomes and pathways through interactions with a distinct repertoire of transcription factors. Validation assays showed that p53R245W, but not p53R172H, interacts with KLF15 to drive migration and invasion in osteosarcoma cell lines and promotes metastasis in allogeneic transplantation models. In addition, analyses of p53R248W chromatin immunoprecipitation peaks showed enrichment of KLF15 motifs in human osteoblasts. Taken together, these data identify unique mechanisms of action of the structural and contact mutants of p53. SIGNIFICANCE The p53 DNA binding domain contact mutant p53R245W, but not the structural mutant p53R172H, interacts with KLF15 to drive metastasis in somatic osteosarcoma, providing a potential vulnerability in tumors expressing p53R245W mutation.
Collapse
Affiliation(s)
- Dhruv Chachad
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| | - Lalit R. Patel
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| | - Carlos Vera Recio
- Department of Internal Medicine, University District Hospital, San Juan, Puerto Rico (current)
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Rasoul Pourebrahim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center
- Pathogenesis L.L.C., Ocala, Florida (current)
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Dung-Fang Lee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Guillermina Lozano
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| |
Collapse
|
10
|
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A Brief Review on Chemoresistance; Targeting Cancer Stem Cells as an Alternative Approach. Int J Mol Sci 2023; 24:ijms24054487. [PMID: 36901917 PMCID: PMC10003376 DOI: 10.3390/ijms24054487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The acquisition of resistance to traditional chemotherapy and the chemoresistant metastatic relapse of minimal residual disease both play a key role in the treatment failure and poor prognosis of cancer. Understanding how cancer cells overcome chemotherapy-induced cell death is critical to improve patient survival rate. Here, we briefly describe the technical approach directed at obtaining chemoresistant cell lines and we will focus on the main defense mechanisms against common chemotherapy triggers by tumor cells. Such as, the alteration of drug influx/efflux, the enhancement of drug metabolic neutralization, the improvement of DNA-repair mechanisms, the inhibition of apoptosis-related cell death, and the role of p53 and reactive oxygen species (ROS) levels in chemoresistance. Furthermore, we will focus on cancer stem cells (CSCs), the cell population that subsists after chemotherapy, increasing drug resistance by different processes such as epithelial-mesenchymal transition (EMT), an enhanced DNA repair machinery, and the capacity to avoid apoptosis mediated by BCL2 family proteins, such as BCL-XL, and the flexibility of their metabolism. Finally, we will review the latest approaches aimed at decreasing CSCs. Nevertheless, the development of long-term therapies to manage and control CSCs populations within the tumors is still necessary.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Aitor González-Titos
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Correspondence: (P.H.-C.); (M.P.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine, Institute (IBIMER), University of Granada, Centre for Biomedical Research (CIBM), 18071 Granada, Spain
- Correspondence: (P.H.-C.); (M.P.)
| |
Collapse
|
11
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
12
|
Brown DW, Beatty PH, Lewis JD. Molecular Targeting of the Most Functionally Complex Gene in Precision Oncology: p53. Cancers (Basel) 2022; 14:5176. [PMID: 36358595 PMCID: PMC9654076 DOI: 10.3390/cancers14215176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
While chemotherapy is a key treatment strategy for many solid tumors, it is rarely curative, and most tumor cells eventually become resistant. Because of this, there is an unmet need to develop systemic treatments that capitalize on the unique mutational landscape of each patient's tumor. The most frequently mutated protein in cancer, p53, has a role in nearly all cancer subtypes and tumorigenesis stages and therefore is one of the most promising molecular targets for cancer treatment. Unfortunately, drugs targeting p53 have seen little clinical success despite promising preclinical data. Most of these drug compounds target specific aspects of p53 inactivation, such as through inhibiting negative regulation by the mouse double minute (MDM) family of proteins. These treatment strategies fail to address cancer cells' adaptation mechanisms and ignore the impact that p53 loss has on the entire p53 network. However, recent gene therapy successes show that targeting the p53 network and cellular dysfunction caused by p53 inactivation is now possible and may soon translate into successful clinical responses. In this review, we discuss p53 signaling complexities in cancer that have hindered the development and use of p53-targeted drugs. We also describe several current therapeutics reporting promising preclinical and clinical results.
Collapse
Affiliation(s)
- Douglas W. Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| | - Perrin H. Beatty
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Entos Pharmaceuticals, Unit 4550, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
| |
Collapse
|
13
|
Jin Q, Zuo W, Lin Q, Wu T, Liu C, Liu N, Liu J, Zhu X. Zinc-doped Prussian blue nanoparticles for mutp53-carrying tumor ion interference and photothermal therapy. Asian J Pharm Sci 2022; 17:767-777. [PMID: 36382302 PMCID: PMC9640366 DOI: 10.1016/j.ajps.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/04/2022] Open
Abstract
Quite a great proportion of known tumor cells carry mutation in TP53 gene, expressing mutant p53 proteins (mutp53) missing not only original genome protective activities but also acquiring gain-of-functions that favor tumor progression and impede treatment of cancers. Zinc ions were reported as agents cytocidal to mutp53-carrying cells by recovering p53 normal functions and abrogating mutp53. Meanwhile in a hyperthermia scenario, the function of wild type p53 is required to ablate tumors upon heat treatment hence the effects might be hindered in a mutp53 background. We herein synthesized zinc-doped Prussian blue (ZP) nanoparticles (NPs) to combine Zn2+ based and photothermal therapeutic effects. An efficient release of Zn2+ in a glutathione-enriched tumor intracellular microenvironment and a prominent photothermal conversion manifested ZP NPs as zinc ion carriers and photothermal agents. Apoptotic death and autophagic mutp53 elimination were found to be induced by ZP NPs in R280K mutp53-containing MDA-MB-231 cells and hyperthermia was rendered to ameliorate the treatment in vitro through further mutp53 elimination and increased cell death. The combinatorial therapeutic effect was also confirmed in vivo in a mouse model. This study might expand zinc delivery carriers and shed a light on potential interplay of hyperthermia and mutp53 degradation in cancer treatment.
Collapse
|
14
|
Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ 2022; 29:911-920. [PMID: 35332311 PMCID: PMC9091235 DOI: 10.1038/s41418-022-00962-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 tumour suppressor gene are found in ~50% of human cancers [1-6]. TP53 functions as a transcription factor that directly regulates the expression of ~500 genes, some of them involved in cell cycle arrest/cell senescence, apoptotic cell death or DNA damage repair, i.e. the cellular responses that together prevent tumorigenesis [1-6]. Defects in TP53 function not only cause tumour development but also impair the response of malignant cells to anti-cancer drugs, particularly those that induce DNA damage [1-6]. Most mutations in TP53 in human cancers cause a single amino acid substitution, usually within the DNA binding domain of the TP53 protein. These mutant TP53 proteins are often expressed at high levels in the malignant cells. Three cancer causing attributes have been postulated for mutant TP53 proteins: the inability to activate target genes controlled by wt TP53 (loss-of-function, LOF) that are critical for tumour suppression, dominant negative effects (DNE), i.e. blocking the function of wt TP53 in cells during early stages of transformation when mutant and wt TP53 proteins are co-expressed, and gain-of-function (GOF) effects whereby mutant TP53 impacts diverse cellular pathways by interacting with proteins that are not normally engaged by wt TP53 [1-6]. The GOF effects of mutant TP53 were reported to be essential for the sustained proliferation and survival of malignant cells and it was therefore proposed that agents that can remove mutant TP53 protein would have substantial therapeutic impact [7-9]. In this review article we discuss evidence for and against the value of targeting mutant TP53 protein for cancer therapy.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
AlGabbani Q. Mutations in TP53 and PIK3CA genes in hepatocellular carcinoma patients are associated with chronic Schistosomiasis. Saudi J Biol Sci 2022; 29:848-853. [PMID: 35197752 PMCID: PMC8847977 DOI: 10.1016/j.sjbs.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the genetic variation of the PIK3CA gene and the histopathological changes in liver tissue of patients with chronic Schistosomiasis to predict hepatocellular carcinoma. In this retrospective, the study samples were taken from 20 patients, divided into chronic schistosomiasis infected group of people (S) and chronic schistosomiasis uninfected group of people (C). The liver tissue biopsy samples for histological examinations were obtained only from chronic Schistosomiasis patients (n = 9). The blood samples were obtained from groups S and C for the mutational analysis of the PIK3CA and TP53 genes. The results suggest that the patients diagnosed with chronic Schistosomiasis were 9 (55%), and healthy patients without Schistosomiasis were 11 (45%). Histological results found that proliferation of fibrosis was observed in the hepatocytes of schistosomiasis patients. A total of 8 mutations (5 male, 3 female) were detected in PIK3CA and TP53 genes. Including 1634 A > G substitution mutations in PIK3CA, which was the only mutation found in males and females among the 8 mutations, accounting 22.22%. PIK3CA gene mutations were found more predominant in male groups as compared to other TP53 gene mutations. In conclusion, this study found that patients with chronic Schistosomiasis are at risk of PIK3CA gene mutations, eventually leading to hepatocytes fibrosis and liver cancer.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
16
|
Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. BIOLOGY 2022; 11:biology11020218. [PMID: 35205085 PMCID: PMC8869245 DOI: 10.3390/biology11020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We use RNA-seq analysis to identify genes that may contribute to mutant p53-mediated prostate cancer initiation in a genetically engineered mouse model (B6.129S4-Trp53tm3.1Tyj/J). A total of 1378 differentially expressed genes, including wildtype p53 target genes (e.g. Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function-related genes (Mgmt, Id4), and prostate cancer-related genes (Cav-1, Raf1, Kras), were identified. Mice that were homozygous or heterozygous for the Trp53 R270H mutation developed grade one PIN lesions at 3 months and 5 months, respectively, whereas wildtype mice did not develop PIN. Immunohistochemical analysis revealed decreased levels of irradiation-mediated apoptosis in homozygous and heterozygous mice when compared to wildtype counterparts, and this aligned with observed differences in apoptosis-related gene expression. Abstract We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.
Collapse
|
17
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(115)||chr(108)||chr(113)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
18
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(80)||chr(106)||chr(79)||chr(120),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
19
|
Arzumanian VA, Kiseleva OI, Poverennaya EV. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
20
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
21
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
22
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
24
|
Tang Q, Efe G, Chiarella AM, Leung J, Chen M, Yamazoe T, Su Z, Pitarresi JR, Li J, Islam M, Karakasheva T, Klein-Szanto AJ, Pan S, Hu J, Natsugoe S, Gu W, Stanger BZ, Wong KK, Diehl JA, Bass AJ, Nakagawa H, Murphy ME, Rustgi AK. Mutant p53 regulates Survivin to foster lung metastasis. Genes Dev 2021; 35:528-541. [PMID: 33737385 PMCID: PMC8015716 DOI: 10.1101/gad.340505.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Anna M Chiarella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jessica Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Maoting Chen
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Taiji Yamazoe
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jason R Pitarresi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jinyang Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mirazul Islam
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Tatiana Karakasheva
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Shoji Natsugoe
- Department of Digestive Surgery, Kagoshima University, Sakuragaoka, Kagoshima 890-0065, Japan
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ben Z Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kwok-K Wong
- New York University Langone Center, New York, New York 10016, USA
| | - J Alan Diehl
- Case Western University, Cleveland, Ohio 44106, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| |
Collapse
|
25
|
Rajedadram A, Pin KY, Ling SK, Yan SW, Looi ML. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. J Zhejiang Univ Sci B 2021; 22:112-122. [PMID: 33615752 DOI: 10.1631/jzus.b2000446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 μg/mL) and PBL water extract (380 μg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 μmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.
Collapse
Affiliation(s)
- Aiysvariyah Rajedadram
- School of Biosciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Malaysia
| | - Kar Yong Pin
- Forest Research Institute Malaysia, 52109 Kepong, Malaysia
| | - Sui Kiong Ling
- Forest Research Institute Malaysia, 52109 Kepong, Malaysia
| | - See Wan Yan
- School of Biosciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2021; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
27
|
The oncogenicity of tumor-derived mutant p53 is enhanced by the recruitment of PLK3. Nat Commun 2021; 12:704. [PMID: 33514736 PMCID: PMC7846773 DOI: 10.1038/s41467-021-20928-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
p53 mutations with single amino acid changes in cancer often lead to dominant oncogenic changes. Here, we have developed a mouse model of gain-of-function (GOF) p53-driven lung cancer utilizing conditionally active LSL p53-R172H and LSL K-Ras-G12D knock-in alleles that can be activated by Cre in lung club cells. Mutation of the p53 transactivation domain (TAD) (p53-L25Q/W26S/R172H) eliminating significant transactivation activity resulted in loss of tumorigenicity, demonstrating that transactivation mediated by or dependent on TAD is required for oncogenicity by GOF p53. GOF p53 TAD mutations significantly reduce phosphorylation of nearby p53 serine 20 (S20), which is a target for PLK3 phosphorylation. Knocking out PLK3 attenuated S20 phosphorylation along with transactivation and oncogenicity by GOF p53, indicating that GOF p53 exploits PLK3 to trigger its transactivation capability and exert oncogenic functions. Our data show a mechanistic involvement of PLK3 in mutant p53 pathway of oncogenesis. The mechanisms of how gain-of-function (GOF) mutant p53 drives carcinogenesis are unclear. Here, the authors show that a GOF mutant p53 requires its transactivation capability to induce mouse lung tumors and this is dependent on PLK3 phosphorylation of GOF mutant p53.
Collapse
|
28
|
Lozano G. Restoring p53 in cancer: the promises and the challenges. J Mol Cell Biol 2020; 11:615-619. [PMID: 31283825 PMCID: PMC6736346 DOI: 10.1093/jmcb/mjz063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Guillermina Lozano
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence to: Guillermina Lozano, E-mail:
| |
Collapse
|
29
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
30
|
Dai CY, Liu HH, Liu HH. The role of time delays in P53 gene regulatory network stimulated by growth factor. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3794-3835. [PMID: 32987556 DOI: 10.3934/mbe.2020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a delayed mathematical model for the P53-Mdm2 network is developed. The P53-Mdm2 network we study is triggered by growth factor instead of DNA damage and the amount of DNA damage is regarded as zero. We study the influences of time delays, growth factor and other important chemical reaction rates on the dynamic behaviors in the system. It is shown that the time delay is a critical factor and its length determines the period, amplitude and stability of the P53 oscillation. Furthermore, as for some important chemical reaction rates, we also obtain some interesting results through numerical simulation. Especially, S (growth factor), k3 (rate constant for Mdm2p dephosphorylation), k10 (basal expression of PTEN) and k14 (Rate constant for PTEN-induced Akt dephosphorylation) could undermine the dynamic behavior of the system in different degree. These findings are expected to understand the mechanisms of action of several carcinogenic and tumor suppressor factors in humans under normal conditions.
Collapse
Affiliation(s)
- Chang Yong Dai
- Department of Mathematics, Yunnan Normal University, Kunming, 650500, China
| | - Hai Hong Liu
- Department of Mathematics, Yunnan Normal University, Kunming, 650500, China
| | - Hai Hong Liu
- Department of Mathematics, Yunnan Normal University, Kunming, 650500, China
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
31
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
32
|
Borgna V, Lobos-González L, Guevara F, Landerer E, Bendek M, Ávila R, Silva V, Villota C, Araya M, Rivas A, López C, Socias T, Castillo J, Alarcón L, Burzio LO, Burzio VA, Villegas J. Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors. J Cancer 2020; 11:1780-1791. [PMID: 32194789 PMCID: PMC7052861 DOI: 10.7150/jca.38880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/23/2019] [Indexed: 01/06/2023] Open
Abstract
Knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, supporting a selective therapy against different types of cancer. In this work, we evaluated the effects of knockdown of ASncmtRNAs on bladder cancer (BCa). We transfected the BCa cell lines UMUC-3, RT4 and T24 with the specific antisense oligonucleotide Andes-1537S, targeted to the human ASncmtRNAs. Knockdown induced a strong inhibition of cell proliferation and increase in cell death in all three cell lines. As observed in UMUC-3 cells, the treatment triggered apoptosis, evidenced by loss of mitochondrial membrane potential and Annexin V staining, along with activation of procaspase-3 and downregulation of the anti-apoptotic factors survivin and Bcl-xL. Treatment also inhibited cell invasion and spheroid formation together with inhibition of N-cadherin and MMP 11. In vivo treatment of subcutaneous xenograft UMUC-3 tumors in NOD/SCID mice with Andes-1537S induced inhibition of tumor growth as compared to saline control. Similarly, treatment of a high-grade bladder cancer PDX with Andes-1537S resulted in a strong inhibition of tumor growth. Our results suggest that ASncmtRNAs could be potent targets for bladder cancer as adjuvant therapy.
Collapse
Affiliation(s)
- Vincenzo Borgna
- Fundación Ciencia & Vida.,Facultad de Medicina, Universidad De Santiago.,Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo
| | | | | | | | | | | | - Claudio Villota
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Bernardo O'Higgins
| | - Mariela Araya
- Fundación Ciencia & Vida.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | | | | | | | - Jorge Castillo
- Servicio de Anatomía Patológica, Hospital Barros Luco-Trudeau. Santiago, Chile
| | - Luis Alarcón
- Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Luis O Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Verónica A Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Jaime Villegas
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| |
Collapse
|
33
|
Singh S, Kumar M, Kumar S, Sen S, Upadhyay P, Bhattacharjee S, M N, Tomar VS, Roy S, Dutt A, Kundu TK. The cancer-associated, gain-of-function TP53 variant P152Lp53 activates multiple signaling pathways implicated in tumorigenesis. J Biol Chem 2019; 294:14081-14095. [PMID: 31366730 PMCID: PMC6755804 DOI: 10.1074/jbc.ra118.007265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/21/2019] [Indexed: 02/05/2023] Open
Abstract
TP53 is the most frequently mutated tumor suppressor gene in many cancers, yet biochemical characterization of several of its reported mutations with probable biological significance have not been accomplished enough. Specifically, missense mutations in TP53 can contribute to tumorigenesis through gain-of-function of biochemical and biological properties that stimulate tumor growth. Here, we identified a relatively rare mutation leading to a proline to leucine substitution (P152L) in TP53 at the very end of its DNA-binding domain (DBD) in a sample from an Indian oral cancer patient. Although the P152Lp53 DBD alone bound to DNA, the full-length protein completely lacked binding ability at its cognate DNA motifs. Interestingly, P152Lp53 could efficiently tetramerize, and the mutation had only a limited impact on the structure and stability of full-length p53. Significantly, when we expressed this variant in a TP53-null cell line, it induced cell motility, proliferation, and invasion compared with a vector-only control. Also, enhanced tumorigenic potential was observed when P152Lp53-expressing cells were xenografted into nude mice. Investigating the effects of P152Lp53 expression on cellular pathways, we found that it is associated with up-regulation of several pathways, including cell-cell and cell-extracellular matrix signaling, epidermal growth factor receptor signaling, and Rho-GTPase signaling, commonly active in tumorigenesis and metastasis. Taken together, our findings provide a detailed account of the biochemical and cellular alterations associated with the cancer-associated P152Lp53 variant and establish it as a gain-of-function TP53 variant.
Collapse
Affiliation(s)
- Siddharth Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | | | - Shrinka Sen
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sayan Bhattacharjee
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Naveen M
- BioCOS Life Sciences Pvt. Ltd., Bengaluru, India
| | - Vivek Singh Tomar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Amit Dutt
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
34
|
Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 2019; 400:111-122. [PMID: 29908123 DOI: 10.1515/hsz-2018-0193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Yangfang Li
- Terraplasma GmbH, Lichtenbergstrasse 8, D-85748 Garching, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
35
|
Hwang LA, Phang BH, Liew OW, Iqbal J, Koh XH, Koh XY, Othman R, Xue Y, Richards AM, Lane DP, Sabapathy K. Monoclonal Antibodies against Specific p53 Hotspot Mutants as Potential Tools for Precision Medicine. Cell Rep 2019; 22:299-312. [PMID: 29298430 DOI: 10.1016/j.celrep.2017.11.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The large number of mutations identified across all cancers represents an untapped reservoir of targets that can be useful for therapeutic targeting if highly selective, mutation-specific reagents are available. We report here our attempt to generate such reagents: monoclonal antibodies against the most common R175H, R248Q, and R273H hotspot mutants of the tumor suppressor p53. These antibodies recognize their intended specific alterations without any cross-reactivity against wild-type (WT) p53 or other p53 mutants, including at the same position (as exemplified by anti-R248Q antibody, which does not recognize the R248W mutation), evaluated by direct immunoblotting, immunoprecipitation, and immunofluorescence methods on transfected and endogenous proteins. Moreover, their clinical utility to diagnose the presence of specific p53 mutants in human tumor microarrays by immunohistochemistry is also shown. Together, the data demonstrate that antibodies against specific single-amino-acid alterations can be generated reproducibly and highlight their utility, which could potentially be extended to therapeutic settings.
Collapse
Affiliation(s)
- Le-Ann Hwang
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Beng Hooi Phang
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Xiao Hui Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Xin Yu Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Rashidah Othman
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Yuezhen Xue
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Institute of Molecular & Cellular Biology, Singapore 138673, Singapore.
| |
Collapse
|
36
|
Levine AJ. Targeting Therapies for the p53 Protein in Cancer Treatments. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Half of all human cancers contain TP53 mutations, and in many other cancers, the function of the p53 protein is compromised. The diversity of these mutations and phenotypes presents a challenge to the development of drugs that target p53 mutant cancer cells. This review describes the rationale for many different approaches in the development of p53 targeted therapies: ( a) viruses and gene therapies, ( b) increased levels and activity of wild-type p53 proteins in cancer cells, ( c) p53 protein gain-of-function inhibitors, ( d) p53 protein loss-of-function structural correctors, ( e) mutant p53 protein synthetic lethal drugs interfering with the p53 pathway, and ( f) cellular immune responses to mutant p53 protein antigens. As these types of therapies are developed, tested, and evaluated, the best of them will have a significant impact upon cancer treatments and possibly prevention.
Collapse
|
37
|
Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene 2019; 38:3415-3427. [PMID: 30643191 PMCID: PMC6756012 DOI: 10.1038/s41388-018-0652-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/28/2022]
Abstract
Mutations in Tp53 compromise therapeutic response, due either to the dominant-negative effect over the functional wild-type allele; or as a result of the survival advantage conferred by mutant p53 to which cancer cells become addicted. Thus, targeting mutant p53 represents an effective therapeutic strategy to treat over half of all cancers. We have therefore generated a series of small-interfering-RNAs, capable of targeting four p53 hot-spot mutants which represent ~20% of all p53 mutations. These mutant–p53-specific siRNAs (MupSi) are highly specific in silencing the expression of the intended mutants without affecting wild-type p53. Functionally, these MupSis induce cell death by abrogating both the addiction to mutant p53 and the dominant-negative effect; and retard tumor growth in xenografts when administered in a therapeutic setting. These data together demonstrate the possibility of targeting mutant p53 specifically to improve clinical outcome.
Collapse
|
38
|
Babikir HA, Afjei R, Paulmurugan R, Massoud TF. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev 2018; 71:19-31. [DOI: 10.1016/j.ctrv.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
39
|
Hernández‐Reséndiz I, Gallardo‐Pérez JC, López‐Macay A, Robledo‐Cadena DX, García‐Villa E, Gariglio P, Saavedra E, Moreno‐Sánchez R, Rodríguez‐Enríquez S. Mutant p53
R248Q
downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells. J Cell Physiol 2018; 234:5524-5536. [DOI: 10.1002/jcp.27354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/17/2018] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Ambar López‐Macay
- Laboratorio de Enfermedades Neuromusculares Instituto Nacional de Rehabilitación Ciudad de México México
| | | | - Enrique García‐Villa
- Laboratorio de Biología y Genética Molecular Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional‐Zacatenco Ciudad de México México
| | - Patricio Gariglio
- Laboratorio de Biología y Genética Molecular Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional‐Zacatenco Ciudad de México México
| | - Emma Saavedra
- Departamento de Bioquímica Instituto Nacional de Cardiología Ciudad de México México
| | - Rafael Moreno‐Sánchez
- Departamento de Bioquímica Instituto Nacional de Cardiología Ciudad de México México
| | - Sara Rodríguez‐Enríquez
- Departamento de Bioquímica Instituto Nacional de Cardiología Ciudad de México México
- Laboratorio de Medicina Translacional Instituto Nacional de Cancerología Ciudad de México México
| |
Collapse
|
40
|
M JR, S V. BMI1 and PTEN are key determinants of breast cancer therapy: A plausible therapeutic target in breast cancer. Gene 2018; 678:302-311. [PMID: 30096458 DOI: 10.1016/j.gene.2018.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/11/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
BMI-1 (B-lymphoma Mo-MLV insertion region 1) is a key protein partner in polycomb repressive complex 1 (PRC1) that helps in maintaining the integrity of the complex. It is also a key player in ubiquitination of histone H2A which affects gene expression pattern involved in various cellular processes such as cell proliferation, growth, DNA repair, apoptosis and senescence. In many cancers, Overexpression of BMI1correlates with advanced stages of disease, aggressive clinicopathological behavior, poor prognosis resistance to radiation and chemotherapy. BMI1 is emerging as a key player in EMT, chemo-resistance and cancer stemness. Overexpression is observed in various cancer types such as breast, primary hepatocellular carcinoma (HCC), gastric, ovarian, head and neck, pancreatic and lung cancer. Studies have shown that experimental reduction of BMI protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increases susceptibility to cytotoxic agents and radiation therapy. Thus, inhibition of BMI1 expression particularly in breast cancer stem cells can be used as a potential strategy for the complete elimination of tumor and to prevent disease relapse. On other hand PTEN is known to be an important tumor suppressor next to p53. In many cancers particularly in breast cancer, p53 and PTEN undergo mutations. Studies have indicated the functional and mechanistic link between the BMI-1oncoprotein and tumor suppressor PTEN in the development and progression of cancer. The current review focuses on recent findings of how oncogenicity and chemo-resistance are caused by BMI1. It also highlights the transcriptional regulation between BMI1 and PTEN that dictates the therapeutic outcome in cancers where the functional p53 is absent. Herein, we have clearly demonstrated the regulation of transcription at genomic loci of BMI1 and PTEN in cancerous tissue or cells and the possible epigenetic regulation by histone deacetylase inhibitors (HDACi) at BMI1 and PTEN loci that may provide some clue for the possible therapy against TNBC in near future.
Collapse
Affiliation(s)
- Janaki Ramaiah M
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India.
| | - Vaishnave S
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India
| |
Collapse
|
41
|
The Role of JMY in p53 Regulation. Cancers (Basel) 2018; 10:cancers10060173. [PMID: 29857553 PMCID: PMC6025294 DOI: 10.3390/cancers10060173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022] Open
Abstract
Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.
Collapse
|
42
|
Sato H, Hiraki M, Namba T, Egawa N, Baba K, Tanaka T, Noshiro H. Andrographolide induces degradation of mutant p53 via activation of Hsp70. Int J Oncol 2018; 53:761-770. [PMID: 29845212 DOI: 10.3892/ijo.2018.4416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.
Collapse
Affiliation(s)
- Hirofumi Sato
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| | - Masatsugu Hiraki
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| | - Takushi Namba
- Science Research Center, Kochi University, Nankoku-shi, Kochi 783-8505, Japan
| | - Noriyuki Egawa
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| | - Koichi Baba
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Faculty of Medicine, Saga University, Saga, Saga 849-8501, Japan
| |
Collapse
|
43
|
Stramucci L, Pranteda A, Bossi G. Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers (Basel) 2018; 10:cancers10050131. [PMID: 29751559 PMCID: PMC5977104 DOI: 10.3390/cancers10050131] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
TP53 is universally recognized as a pivotal protein in cell-cycle fate and apoptotic induction and, unsurprisingly, it is one of the most commonly hijacked control mechanisms in cancer. Recently, the kinase MKK3 emerged as a potential therapeutic target in different types of solid tumor being linked to mutant p53 gain-of-function. In this review, we summarize the delicate relationship among p53 mutational status, MKK3/MKK6 and the downstream activated master kinase p38MAPK, dissecting a finely-tuned crosstalk, in a potentially cell-context dependent scenario that urges towards a deeper characterization of the different molecular players involved in this signaling cascade and their interactions.
Collapse
Affiliation(s)
- Lorenzo Stramucci
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Angelina Pranteda
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Gianluca Bossi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
44
|
Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 2018; 9:771. [PMID: 29472616 PMCID: PMC5823939 DOI: 10.1038/s41467-018-03224-w] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancer-promoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis. p53 gain of function mutants (mutp53) are involved in the pathogenesis of most human cancers. Here, the authors show that mutp53 regulates the tumor microenvironment by inducing the release of specific exosomes containing miR-1246 that once received by macrophages turns them into tumor supportive macrophages.
Collapse
Affiliation(s)
- Tomer Cooks
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Keval M Patel
- Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - James Morris
- Cancer Research UK, Cambridge Research Institute, Robinsons Way, Cambridge, CB2 0RE, UK
| | - Tim Forshew
- UCL Cancer Institute, Huntley St, Camden Town, London, WC1E 6DD, UK
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, 20892-4258, MD, USA
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias St, Athens, GR-11527, Greece.,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., GR-11527, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health, Science Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, 20892-4258, MD, USA.
| |
Collapse
|
45
|
Lobos-González L, Silva V, Araya M, Restovic F, Echenique J, Oliveira-Cruz L, Fitzpatrick C, Briones M, Villegas J, Villota C, Vidaurre S, Borgna V, Socias M, Valenzuela S, Lopez C, Socias T, Varas M, Díaz J, Burzio LO, Burzio VA. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 2018; 7:58331-58350. [PMID: 27507060 PMCID: PMC5295434 DOI: 10.18632/oncotarget.11110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.
Collapse
Affiliation(s)
- Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Franko Restovic
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Present address: Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Echenique
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Macarena Briones
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Soledad Vidaurre
- Andes Biotechnologies SpA, Santiago, Chile.,Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Servicio de Urología, Hospital Barros-Lucco-Trudeau, Santiago, Chile
| | | | | | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | | | - Jorge Díaz
- Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| |
Collapse
|
46
|
Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B, Sabri S. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget 2018; 7:60245-60269. [PMID: 27533246 PMCID: PMC5312382 DOI: 10.18632/oncotarget.11197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations of the TP53 tumor suppressor gene occur in ~30% of primary glioblastoma (GBM) with a high frequency of missense mutations associated with the acquisition of oncogenic “gain-of-function” (GOF) mutant (mut)p53 activities. PRIMA-1MET/APR-246, emerged as a promising compound to rescue wild-type (wt)p53 function in different cancer types. Previous studies suggested the role of wtp53 in the negative regulation of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), a major determinant in resistance to therapy in GBM treatment. The potential role of MGMT in expression of p53 and the efficacy of PRIMA-1MET with respect to TP53 status and expression of MGMT in GBM remain unknown. We investigated response to PRIMA-1MET of wtp53/MGMT-negative (U87MG, A172), mutp53/MGMT-positive U138, LN-18, T98/Empty vector (T98/EV) and its isogenic MGMT/shRNA gene knockdown counterpart (T98/shRNA). We show that MGMT silencing decreased expression of mutp53/GOF in T98/shRNA. PRIMA-1MET further cleared T98/shRNA cells of mutp53, decreased proliferation and clonogenic potential, abrogated the G2 checkpoint control, increased susceptibility to apoptotic cell death, expression of GADD45A and sustained expression of phosphorylated Erk1/2. PRIMA-1MET increased expression of p21 protein in U87MG and A172 and promoted senescence in U87MG cell line. Importantly, PRIMA-1MET decreased relative cell numbers, disrupted the structure of neurospheres of patient-derived GBM stem cells (GSCs) and enabled activation of wtp53 with decreased expression of MGMT in MGMT-positive GSCs or decreased expression of mutp53. Our findings highlight the cell-context dependent effects of PRIMA-1MET irrespective of p53 status and suggest the role of MGMT as a potential molecular target of PRIMA-1MET in MGMT-positive GSCs.
Collapse
Affiliation(s)
- Mariia Patyka
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zeinab Sharifi
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, The Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Jose Mansure
- Department of Urologic Oncology Research, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Jean-Claude
- Department of Medicine, Division of Experimental Medicine, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Siham Sabri
- Department of Oncology, Division of Radiation Oncology, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Hosain SB, Khiste SK, Uddin MB, Vorubindi V, Ingram C, Zhang S, Hill RA, Gu X, Liu YY. Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells. Oncotarget 2018; 7:60575-60592. [PMID: 27517620 PMCID: PMC5312403 DOI: 10.18632/oncotarget.11169] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Missense mutation of tumor suppressor p53, which exhibits oncogenic gain-of-function (GOF), not only promotes tumor progression, but also diminishes therapeutic efficacies of cancer treatments. However, it remains unclear how a p53 missense mutant contributes to induced pluripotency of cancer stem cells (CSCs) in tumors exposed to chemotherapeutic agents. More importantly, it may be possible to abrogate the GOF by restoring wild-type p53 activity, thereby overcoming the deleterious effects resulting from heterotetramer formation, which often compromises the efficacies of current approaches being used to reactivate p53 function. Herewith, we report that p53 R273H missense mutant urges cancer cells to spawn CSCs. SW48/TP53 cells, which heterozygously carry the p53 R273H hot-spot mutant (R273H/+, introduced by a CRISPR/Casp9 system), were subchronically exposed to doxorubicin in cell culture and in tumor-bearing mice. We found that p53-R273H (TP53-Dox) cells were drug-resistant and exhibited epithelial-mesenchymal transition (EMT) and increased numbers of CSCs (CD44v6+/CD133+), which resulted in enhanced wound healing and tumor formation. Inhibition of glucosylceramide synthase with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) sensitized p53-R273H cancer cells and tumor xenografts to doxorubicin treatments. Intriguingly, PDMP treatments restored wild-type p53 expression in heterozygous R273H mutant cells and in tumors, decreasing CSCs and sensitizing cells and tumors to treatments. This study demonstrated that p53-R273H promotes EMT and induced pluripotency of CSCs in cancer cells exposed to doxorubicin, mainly through Zeb1 and β-catenin transcription factors. Our results further indicate that restoration of p53 through inhibition of ceramide glycosylation might be an effective treatment approach for targeting cancers heterozygously harboring TP53 missense mutations.
Collapse
Affiliation(s)
- Salman B Hosain
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sachin K Khiste
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mohammad B Uddin
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Vindya Vorubindi
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Catherine Ingram
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sifang Zhang
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ronald A Hill
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
48
|
Parrales A, Thoenen E, Iwakuma T. The interplay between mutant p53 and the mevalonate pathway. Cell Death Differ 2017; 25:460-470. [PMID: 29238070 DOI: 10.1038/s41418-017-0026-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Missense mutations in the TP53 gene lead to accumulation of dysfunctional TP53 proteins in tumors, showing oncogenic gain-of-function (GOF) activities. Stabilization of mutant TP53 (mutp53) is required for the GOF; however, the mechanisms by which mutp53 promotes cancer progression and how mutp53 stability is regulated are not completely understood. Recent work from our laboratory has identified statins, inhibitors of the mevalonate pathway, as degraders of conformational mutp53. Specific reduction of mevalonate-5-phosphate (MVP), a metabolic intermediate in the mevalonate pathway, by statins or mevalonate kinase (MVK) knockdown triggers CHIP ubiquitin ligase-mediated degradation of conformational mutp53 by inhibiting interaction between mutp53 and DNAJA1, a Hsp40 family member. Thus, the mevalonate pathway contributes to mutp53 stabilization. Given that mutp53 is shown to promote cancer progression by upregulating mRNA expression of mevalonate pathway enzymes by binding to the sterol regulatory element-binding protein 2 (SREBP2) and subsequently increasing activities of mevalonate pathway-associated oncogenic proteins (e.g., Ras, Rho, YAP/TAZ), there is a positive-feedback loop between mutp53 and the mevalonate pathway. Here, we summarize recent evidence linking the mevalonate pathway-mutp53 axis with cancer progression and further discuss the clinical relevance of this axis.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Elizabeth Thoenen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
49
|
Overaccumulation of p53-mediated autophagy protects against betulinic acid-induced apoptotic cell death in colorectal cancer cells. Cell Death Dis 2017; 8:e3087. [PMID: 28981110 PMCID: PMC5682653 DOI: 10.1038/cddis.2017.485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Betulinic acid (BA) exhibits cytotoxic activity against some cancer cells. However, the molecular mechanism of BA against CRC cells was little reported. Here, we proved that BA elicited CRC cells' growth inhibition and apoptosis in a dose-dependent manner. In addition, BA treatment induced autophagy via inhibiting the AKT-MTOR signaling pathway. Inhibition of autophagy by either administration of autophagic inhibitor chloroquine or siRNA-mediated knockdown of ATG5 could augment BA-induced apoptotic cell death as well as inhibition of cell proliferation. Moreover, we found that p53 was firstly activated by short exposure to BA and then was rapidly degraded via the ubiquitin-mediated degradation pathway in both wtp53 and mutp53 CRC cells. Notably, more preferential cytotoxicity of BA was obtained in mutp53 cells (IC50 values: HT29, 125 μM; SW480, 58 μM) rather than wtp53 cells (IC50 values: HCT116, 178 μM). Further experiments demonstrated that siRNA-mediated p53 knockdown attenuated BA-induced autophagy, and forced overexpression of p53 augmented BA-induced autophagy, indicating that p53-enhanced BA-induced autophagy. Moreover, BA enhanced the sensitivity of mutp53 cells to chemotherapy drugs such as 5-FU and ADR by degradation of mutp53. Overall, our study proved that BA could induce CRC cell death by inducing apoptosis and reduce the overaccumulation of BA-induced protective autophagy by degrading wtp53 and mutp53 dependent on the ubiquitin-mediated degradation pathway to achieve killer effect, suggesting that BA might serve as a novel desirable drug for mutp53 cancer therapy.
Collapse
|
50
|
Madsen SD, Russell KC, Tucker HA, Glowacki J, Bunnell BA, O'Connor KC. Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2017; 8:201. [PMID: 28962588 PMCID: PMC5622446 DOI: 10.1186/s13287-017-0649-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/14/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a mixture of progenitors that are heterogeneous in their regenerative potential. Development of MSC therapies with consistent efficacy is hindered by the absence of an immunophenotype of MSC heterogeneity. This study evaluates decoy TRAIL receptor CD264 as potentially the first surface marker to detect cellular aging in heterogeneous MSC cultures. METHODS CD264 surface expression, regenerative potential, and metrics of cellular aging were assessed in vitro for marrow MSCs from 12 donors ages 20-60 years old. Male and female donors were age matched. Expression of CD264 was compared with that of p16, p21, and p53 during serial passage of MSCs. RESULTS When CD264+ cell content was 20% to 35%, MSC cultures from young (ages 20-40 years) and older (ages 45-60 years) donors proliferated rapidly and differentiated extensively. Older donor MSCs containing < 35% CD264+ cells had a small size and negligible senescence despite the donor's advanced chronological age. Above the 35% threshold, CD264 expression inversely correlated with proliferation and differentiation potential. When CD264+ cell content was 75%, MSCs were enlarged and mostly senescent with severely compromised regenerative potential. There was no correlation of the older donors' chronological age to either CD264+ cell content or the regenerative potential of the donor MSCs. CD264 was upregulated after p53 and had a similar expression profile to that of p21 during serial passage of MSCs. No sex-linked differences were detected in this study. CONCLUSIONS These results suggest that CD264 is a surface marker of cellular age for MSCs, not the chronological age of the MSC donor. CD264 is first upregulated in MSCs at an intermediate stage of cellular aging and remains upregulated as aging progresses towards senescence. The strong inverse correlation of CD264+ cell content to the regenerative potential of MSCs has possible application to assess the therapeutic potential of patient MSCs, standardize the composition and efficacy of MSC therapies, and facilitate aging research on MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A Bunnell
- Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA. .,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|