1
|
Wang L, Liu C, Chen J, He X, He H, Qin Q, Yang M. The role of largemouth bass NF-κB/p65: Inhibition of LMBV and activator of IL-18 promoter. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110120. [PMID: 39832538 DOI: 10.1016/j.fsi.2025.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nuclear factor-κB (NF-κB)/p65, a vital signaling molecule in the NF-κB pathway, participates in diverse physiological functions and host-virus interactions. However, the involvement of NF-κB/p65 in fish virus infection remains poorly understood. In this study, we explored the role of the p65 in virus infection and its impact on IL-18 regulation in largemouth bass (Micropterus salmoides). Bioinformatics analysis showed that the ORF sequence of Msp65 spanned 1941 bp, encoding 646 amino acids with two conserved functional domains, including RHD and IPT domain. Msp65 mRNA was presented in various tissues, with higher levels detected in the liver and gill. After exposure to largemouth bass virus (LMBV), red grouper nervous necrosis virus, lipopolysaccharide and poly (I:C), Msp65 expression was activated in vivo. In addition, the antiviral role of Msp65 were explored. In vitro, Msp65 overexpression hindered LMBV replication and formation of viral assembly site. In vivo, we found that disruption of Msp65 by using maslinic acid (MA) notably promoted the infectivity of LMBV, indicating its antiviral capabilities in largemouth bass. Besides, the downregulation of Msp65 suppressed the expression of inflammatory and interferon signaling molecules. Conversely, Msp65 overexpression boosted the activities of IFN-I, IFN-III and ISRE promoters, suggesting the positive regulation of Msp65 on interferon immune pathway. Furthermore, to unveil the regulatory role of Msp65 on MsIL-18, a promoter investigation was conducted. The luciferase reporter assay demonstrated that Msp65 positively influenced the expression of MsIL-18. Subsequent analysis suggested that the putative binding sites for MsIL-18 could potentially reside within the -228 to -203 bp of the MsIL-18 promoter. These findings illustrated that Msp65 involved in LMBV infection by modulating immune responses, presenting a novel insight into the antiviral mechanisms of p65 in bony fish.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Fishery, Guangdong Ocean University, Guangdong Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China
| | - Cuiyu Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hongxi He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
Vilkeviciute A, Pileckaite E, Bruzaite A, Cebatoriene D, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Zaliuniene D, Liutkeviciene R. Evaluating TAB2, IKBKB, and IKBKG Gene Polymorphisms and Serum Protein Levels and Their Association with Age-Related Macular Degeneration and Its Treatment Efficiency. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2072. [PMID: 39768951 PMCID: PMC11677027 DOI: 10.3390/medicina60122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Age-related macular degeneration (AMD) is the leading cause of blindness, affecting millions worldwide. Its pathogenesis involves the death of the retinal pigment epithelium (RPE), followed by photoreceptor degeneration. Although AMD is multifactorial, various genetic markers are strongly associated with the disease and may serve as biomarkers for evaluating treatment efficacy. This study investigates TAB2 rs237025, IKBKB rs13278372, and IKBKG rs2472395 variants and their respective serum protein concentrations in relation to AMD occurrence and exudative AMD treatment response to anti-VEGF treatment. Materials and Methods: The case-control study involved 961 individuals, and they were divided into three groups: control, early AMD, and exudative AM patients. Genotyping of selected SNPs were conducted using a real-time polymerase chain reaction method (RT-PCR). Based on the clinical OCT and BCVA data, patients with exudative AMD were categorized into one of two groups: responders and non-responders. The data obtained were analyzed using the "IBM SPSS Statistics 29.0" software program. Results: Our study revealed that TAB2 rs237025 allele A was identified as a risk factor for early and exudative AMD development. The same associations remained only in females with exudative AMD but not in males, suggesting gender-specific pathogenetic pathways in exudative AMD. Analysis of IKBKB rs13278372 or serum IKBKB protein associations with early or exudative AMD occurrence in the Lithuanian population revealed no significant associations. On the other hand, we found that each A allele of IKBKB rs13278372 was associated with a worse response to anti-VEGF treatment (OR = 0.347; 95% CI: 0.145-0.961; p = 0.041). These results suggest a potential marker for future studies evaluating anti-VEGF treatment for exudative AMD patients. IKBKG rs2472395 was a protective variant for early AMD in males and for exudative AMD in females only. Also, IKBKG protein concentration was lower in exudative AMD relative to the control group (median (IQR): 0.442 (0.152) vs. 0.538 (0.337), p = 0.015). Moreover, exudative AMD patients who carry the GG genotype of IKBKG rs2472394 exhibited significantly reduced serum IKBKG concentrations compared to the controls (median (IQR): 0.434 (0.199) vs. 0.603 (0.335), p = 0.012), leading to the hypothesis that the IKBKG rs2472394 variant might play a role in protein concentration differences and exudative AMD development. Conclusions: Our study identified the TAB2 rs237025 allele A as a significant risk factor for both early and exudative AMD, with gender-specific associations observed in females with exudative AMD, suggesting distinct pathogenetic pathways. While IKBKB rs13278372 and serum IKBKB protein levels showed no significant association with AMD development, the A allele of IKBKB rs13278372 was associated with a worse response to anti-VEGF treatment, indicating its potential as a marker for treatment outcomes. Additionally, the IKBKG rs2472395 variant was found to be protective for early AMD in males and exudative AMD in females, and lower IKBKG protein levels were associated with exudative AMD, particularly in patients with the GG genotype of IKBKG rs2472394, suggesting its role in protein concentration and disease progression. These findings highlight genetic markers that may contribute to AMD pathogenesis and treatment response.
Collapse
Affiliation(s)
- Alvita Vilkeviciute
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
| | - Enrika Pileckaite
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
| | - Akvile Bruzaite
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (D.C.); (D.Z.)
| | - Greta Gedvilaite-Vaicechauskiene
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (D.C.); (D.Z.)
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (D.C.); (D.Z.)
| | - Rasa Liutkeviciene
- Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania; (E.P.); (A.B.); (G.G.-V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (D.C.); (D.Z.)
| |
Collapse
|
3
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
4
|
Zhang K, Lin G, Nie Z, Jin S, Bing X, Li Z, Li M. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway. Mol Cell Biochem 2024; 479:2069-2079. [PMID: 37566200 DOI: 10.1007/s11010-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell's abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC's progression and development.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Mingru Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China.
| |
Collapse
|
5
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
6
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
7
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
8
|
Turnham DJ, Mullen MS, Bullock NP, Gilroy KL, Richards AE, Patel R, Quintela M, Meniel VS, Seaton G, Kynaston H, Clarkson RWE, Phesse TJ, Nelson PS, Haffner MC, Staffurth JN, Pearson HB. Development and Characterisation of a New Patient-Derived Xenograft Model of AR-Negative Metastatic Castration-Resistant Prostate Cancer. Cells 2024; 13:673. [PMID: 38667288 PMCID: PMC11049137 DOI: 10.3390/cells13080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Manisha S. Mullen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Nicholas P. Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | | | - Anna E. Richards
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Radhika Patel
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marcos Quintela
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Gillian Seaton
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Howard Kynaston
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Urology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Richard W. E. Clarkson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Peter S. Nelson
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| |
Collapse
|
9
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
11
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
12
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Gao T, Zhang M, Li M, Wang X, Yao W, Shu W, Tang W, Zhang X. Nuezhenoside G13 from Osmanthus fragrans fruit ameliorates Concanavalin A-induced autoimmune hepatitis by regulating the NF-κB/MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117257. [PMID: 37852338 DOI: 10.1016/j.jep.2023.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osmanthus fragrans fruit (OFF) exhibits hepatoprotective function, and it is consumed as food and used in traditional medicine in China. Nuezhenoside G13 (G13) is present in the highest levels in OFF. Autoimmune hepatitis (AIH) is a manifestation of liver disease and seriously endangers health. However, it remains unclear whether G13 affects AIH. AIM OF THE STUDY To clarify the effect of G13 on AIH and its exact underlying mechanism from a new perspective. MATERIALS AND METHODS We used a Concanavalin A-induced AIH mouse model and lipopolysaccharide-treated Raw264.7 cells to quantify serum biochemical indicators and confirm whether G13 exhibited protective effects in the AIH mice. Furthermore, we evaluated the effect of G13 via hematoxylin and eosin and immunohistochemical staining. We used enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction to quantify the inflammatory factors. We confirmed that G13 inhibited apoptosis via terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Molecular docking, immunofluorescence, and western blotting experiments of G13 and key proteins of the NF-κB/MAPK pathway revealed that G13 alleviated inflammation. In addition, Cell Counting Kit-8, ELISA, NO detection, and western blotting assays were performed. Finally, we used an inhibitor of the p38 MAPK to verify that G13 reduced inflammation through the NF-κB/MAPK pathway in Raw264.7 cells. RESULTS The in vivo experiments revealed that G13 improved oxidative stress and apoptosis. In addition, G13 decreased the expression levels of CD4+, CD8+, F4/80+, and Ly6G and the secretion of inflammatory factors. Interestingly, G13 reduced the phosphorylation levels of IκBα, NF-κB, JNK, ERK1/2, and p38. Additionally, the in vitro experiments revealed that G13 alleviated inflammation through the NF-κB/MAPK pathway in lipopolysaccharide-treated Raw264.7 cells. Furthermore, molecular docking demonstrated that the binding fraction of G13 with these proteins was high. CONCLUSION G13 suppressed oxidative stress, apoptosis, and inflammation in a Concanavalin A-induced AIH mouse model. Furthermore, G13 exerted its effect through the NF-κB/MAPK pathway.
Collapse
Affiliation(s)
- Ting Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Meng Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xiaoli Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Wenhan Yao
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Wenjie Shu
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Weizhuo Tang
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China.
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
14
|
Manohar K, Mesfin FM, Liu J, Shelley WC, Brokaw JP, Markel TA. Effect of Oral Chondroitin Sulfate Supplementation on Acute Brain Injury in a Murine Necrotizing Enterocolitis Model. J Am Coll Surg 2024; 238:82-98. [PMID: 37870229 DOI: 10.1097/xcs.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating condition where inflammatory changes and necrosis in the gut results in activation of brain microglia and subsequent neurodevelopmental impairment. Chondroitin sulfate (CS) is a glycosaminoglycan in human breast milk that is absent in conventional formulas. We hypothesized that oral formula supplementation with CS during a murine model of experimental NEC would not only attenuate intestinal injury, but also brain injury. STUDY DESIGN NEC was induced in mouse pups on postnatal days (PNDs) 5 to 8. Three conditions were studied: (1) breastfed controls, (2) NEC, and (3) NEC+enteral CS (formula+200 mg/kg/d of CS). Pups were euthanized on PND 9 or reunited with dams by the evening of PND 8. Intestinal segments were H&E stained, and immunohistochemistry was performed on brain tissue for Iba-1 to assess for microglial morphology and cortical changes. Neurodevelopmental assays were performed on mice reunited with foster dams on PND 9. Single-cell RNA-sequencing analysis was performed on human intestinal epithelial cells exposed to (1) nothing, (2) hydrogen peroxide (H 2 O 2 ) alone, or (3) H 2 O 2 + CS to look at the differential gene expression between groups. Groups were compared with ANOVA or Kruskal-Wallis tests as appropriate with p < 0.05 considered significant. RESULTS Compared with NEC, mice treated with oral CS showed improved clinical outcomes, decreased intestinal injury, and attenuated microglial activation and deleterious cortical change. Mice with CS performed better on early neurodevelopmental assays when compared with NEC alone. Single-cell analysis of HIEC-6 cells demonstrated that CS treatment down regulated several inflammatory pathways including nuclear factor κB-suggesting an explanation for the improved Th17 intestinal cytokine profile. CONCLUSIONS Oral CS supplementation improved both physiological, clinical, and developmental outcomes. These data suggest that CS is a safe compound for formula supplementation for the prevention of NEC.
Collapse
Affiliation(s)
- Krishna Manohar
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| | - Fikir M Mesfin
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| | - Jianyun Liu
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| | - W Christopher Shelley
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| | - John P Brokaw
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| | - Troy A Markel
- From the Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN (Manohar, Mesfin, Liu, Shelley, Brokaw, Markel)
| |
Collapse
|
15
|
Shinde A, Tang X, Singh R, Brindley DN. Infliximab, a Monoclonal Antibody against TNF-α, Inhibits NF-κB Activation, Autotaxin Expression and Breast Cancer Metastasis to Lungs. Cancers (Basel) 2023; 16:52. [PMID: 38201482 PMCID: PMC10778319 DOI: 10.3390/cancers16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates inflammatory pathways, which determine cell survival, death and tumor progression. One candidate pathway involves the increased secretion of autotaxin, which produces lysophosphatidate that signals through six G-protein-coupled receptors. Significantly, autotaxin is one of the 40-50 most upregulated genes in metastatic tumors. In this study, we investigated the effects of TNF-α by blocking its action with a monoclonal antibody, Infliximab, and studied the effects on autotaxin secretion and tumor progression. Infliximab had little effect on tumor growth, but it decreased lung metastasis by 60% in a syngeneic BALB/c mouse model using 4T1 breast cancer cells. Infliximab-treated mice also showed a decrease in proliferation and metastatic markers like Ki-67 and vimentin in tumors. This was accompanied by decreases in NF-κB activation, autotaxin expression and the concentrations of plasma and tumor cytokines/chemokines which are involved in metastasis. We also demonstrated a positive correlation of TNF-α -NF-κB and ATX expression in breast cancer patients using cancer databases. Studies in vitro showed that TNF-α-induced NF-κB activation increases autotaxin expression and the clone forming ability of 4T1 breast cancer cells. This report highlights the potential role of Infliximab as an additional approach to attenuate signaling through the autotaxin-lysophosphatidate-inflammatory cycle and decrease mortality from metastatic cancer.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
16
|
Baig TA, Haniffa HM, Siddiqui H, Shah SF, Jabeen A. A new acyl derivative of sulfadimethoxine inhibits phagocyte oxidative burst and ameliorates inflammation in a mice model of zymosan-induced generalised inflammation. Inflammopharmacology 2023; 31:3303-3316. [PMID: 37971604 DOI: 10.1007/s10787-023-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer's, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI-MS and HRFAB-MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1β, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.
Collapse
Affiliation(s)
- Tariq Ahmad Baig
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon M Haniffa
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
17
|
Zhang XH, Cui H, Zheng SM, Lu Y, Yuan HW, Zhang L, Wang HH, Du RS. Electroacupuncture regulates microglial polarization via inhibiting NF-κB/COX2 pathway following traumatic brain injury. Brain Res 2023; 1818:148516. [PMID: 37562566 DOI: 10.1016/j.brainres.2023.148516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Neuroinflammation and oxidative stress are important pathological mechanisms following traumatic brain injury (TBI). The NF-κB/COX2 pathway regulates neuroinflammation and oxidative damage, while microglia also play an important role in neuroinflammation. Since NF-κB is involved in microglial polarization, targeting this pathway and microglial polarization is a critical component of TBI treatment. Currently, electroacupuncture (EA) is widely used to treat various symptoms after TBI, but the mechanisms of EA remain poorly understood. Additionally, the optimal frequency of EA remains unclear, which affects its efficacy. This study focuses on exploring the optimal frequency parameters of EA on TBI and investigating the underlying mechanisms of EA through NF-κB/COX2 pathway and microglial polarization. METHODS The study was divided into two parts. In Experiment 1, 42 Sprague Dawley (SD) rats were induced and randomly divided into seven groups (n = 6). Except for the sham group, all rats underwent controlled cortical impact (CCI) to establish TBI model. Four EA groups (with different frequencies) and manual acupuncture (without current stimulation) received stimulation on the acupoints of Shuigou (GV26), Fengchi (GB20) and Neiguan (PC6) once a day for 7 days. The neurological function was assessed by modified Neurological Severity Scores (mNSS), and the rats' memory and learning were examined by the Morris water maze (MWM). SOD, MDA, and GSH-Px were detected to evaluate the levels of oxidative stress. The levels of IL-1β, IL-6, and TNF-α were evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Detection of the above indicators indicated a treatment group that exerted the strongest neuroprotection against TBI, we then conducted Experiment 2 using this screened acupuncture treatment to investigate the mechanism of acupuncture. 48 rats were randomly divided into four groups (n = 12): sham, TBI model, acupuncture and PDTC (NF-κB inhibitor). Evaluations of mNSS, MWM test, SOD, MDA, GSH-Px, IL-1β, IL-6, TNF-α, and IL-10 were the same as in Experiment 1. Western blot was applied for detecting the expression levels of NF-κB, p-NF-κB, COX2, and Arg-1. TUNEL was used to examine neuronal apoptosis. Brain structure was observed by H&E. Iba-1, COX2, and Arg-1 were investigated by immunofluorescence staining. RESULTS EA with frequency of 2/100 Hz markedly improved neuronal and cognitive function as compared to the other treatment groups. Moreover, it downregulated the expression of MDA, IL-6, IL-1β, and TNF-α and upregulated the levels of SOD and GSH-Px. In addition, Both EA with 2/100 Hz and PDTC reduced the levels of p-NF-κB, COX2 and M1 markers (COX2, IL-6, IL-1β, TNF-α) and increased the levels of M2 markers (Arg-1, IL-10). Moreover, they had similar effects on reducing inflammation, oxidative stress and apoptosis, and improving neuronal and cognitive function. CONCLUSIONS The collective findings strongly suggest that EA with 2/100 Hz can improve neurologic function by suppressing neuroinflammation, oxidative stress and apoptosis. Additionally, we confirm that EA promotes microglial polarization towards the M2 phenotype through the suppression of NF-κB/COX2 pathway, thus exerting neuroprotective effects after TBI.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Hai Cui
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Shu-Mei Zheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Hong-Wen Yuan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Hong-Hong Wang
- Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, China
| | - Ruo-Sang Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Mou W, Zhao Z, Gao L, Fu L, Li J, Jiao A, Peng Y, Yu T, Guo Y, Chen L, Wang H, Liu J, Qin Q, Xu B, Liu X, He J, Gui J. An Atypical Incontinentia Pigmenti Female with Persistent Mucocutaneous Hyperinflammation and Immunodeficiency Caused by a Novel Germline IKBKG Missense Mutation. J Clin Immunol 2023; 43:2165-2180. [PMID: 37831401 DOI: 10.1007/s10875-023-01564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/02/2023] [Indexed: 10/14/2023]
Abstract
While most missense mutations of the IKBKG gene typically result in Ectodermal Dysplasia with Immunodeficiency, there have been rare reported instances of missense mutations of the IKBKG gene causing both Incontinentia Pigmenti (IP) and immunodeficiency in female patients. In this study, we described an atypical IP case in a 19-year-old girl, characterized by hyperpigmented and verrucous skin areas over the entire body. Remarkably, she experienced recurrent red papules whenever she had a feverish upper respiratory tract infection. Immunohistochemical staining unveiled a substantial accumulation of CD68+ macrophages alongside the TNF-α positive cells in the dermis tissue of new pustules, with increased apoptotic basal keratinocytes in the epidermis tissue of these lesions. Starting from the age of 8 years old, the patient suffered from severe and sustained chronic respiratory mucous membrane scar hyperplasia and occluded subglottic lumen. In addition to elevated erythrocyte sedimentation rate values, inflammatory cells were observed in the pathologic lesions of endobronchial biopsies and Bronchoalveolar Lavage Fluid (BALF) smear. Further histological analysis revealed a destructive bronchus epithelium integrity with extensive necrosis. Simultaneously, the patient experienced recurrent incomplete intestinal obstructions and lips contracture. The patient's BALF sample displayed an augmented profile of proinflammatory cytokines and chemokines, suggesting a potential link to systemic hyperinflammation, possibly underlying the pathogenic injuries affecting the subglottic, respiratory, and digestive systems. Furthermore, the patient presented with recurrent pneumonias and multiple warts accompanied by a T+BlowNKlow immunophenotype. Next generation sequencing showed that the patient carried a novel de novo germline heterozygous missense mutation in the IKBKG gene (c. 821T>C, p. L274P), located in the highly conserved CC2 domain. TA-cloning sequencing of patient's cDNA yielded 30 mutant transcripts out of 44 clones. In silico analysis indicated that the hydrogen bond present between Ala270 and Leu274 in the wild-type NEMO was disrupted by the Leu274Pro mutation. However, this mutation did not affect NEMO expression in peripheral blood mononuclear cells (PBMCs). Moreover, patient PBMCs exhibited significantly impaired TNF-α production following Lipopolysaccharide (LPS) stimulation. X-chromosome inactivation in T cells and neutrophils were not severely skewed. Reduced levels of IκBα phosphorylation and degradation in patient's PBMCs were observed. The NF-κB luciferase reporter assay conducted using IKBKG-deficient HEK293T cells revealed a significant reduction in NF-kB activity upon LPS stimulation. These findings adds to the ever-growing knowledge on female IP that might contribute to the better understanding of this challenging disorder.
Collapse
Affiliation(s)
- Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhipeng Zhao
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Liwei Gao
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Libing Fu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jia Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anxia Jiao
- Department of Interventional Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tong Yu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yan Guo
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Lanqin Chen
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Hao Wang
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Jun Liu
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Qiang Qin
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Baoping Xu
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Xiuyun Liu
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China.
| | - Jianxin He
- Department of Pulmonology, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China.
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
19
|
Goyal G, Kalonia H, Lather V. Therapeutic Potential of Catechin as an IKK-β Inhibitor for the Management of Arthritis: In vitro and In vivo Approach. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:172-179. [PMID: 38235046 PMCID: PMC10790745 DOI: 10.4103/jpbs.jpbs_280_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 01/19/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is associated with increased levels of cytokines, for instance, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interleukin-1 (IL-1), which exhibit potent pro-inflammatory effects and are contributing factors to disease progression. A range of cytokines, cell adhesion molecules, and enzymes that are implicated in the debilitating effects of RA are transcribed by nuclear factor kappa. Objectives The purpose of this research was to characterize the efficacy of "catechin" as an IkappaB kinase-beta (IKK-β) inhibitor in collagen-induced arthritis (CIA) model in mice, as IKK-β is crucial in the transmission of signal-inducible NF-κβ activation. Methods Arthritis was brought on in Bagg and Albino, but it is written BALB/c (BALB/c) male mice through subcutaneous immunization with bovine type II collagen on days 0 and 21. Catechin is given orally every day after the onset of the disease. Clinical evaluation of the prevalence and severity of the condition was done throughout the trial, and biochemical testing was done at the end (day 42). Results In vitro findings of the study demonstrated catechin as a potent inhibitor of IKK-β with Half maximal Inhibitory Concentration (IC50) values of 2.90 μM and 4.358 μM in IKK-β and NF-κβ transactivation activity assay, respectively. Furthermore, catechin (dose range of 10-100 mg/kg, p.o.) was effective in reducing disease incidence and clinical signs in a dose-dependent manner, with an Effective Dose for 50% of the population (ED50) value of 79.579 mg/kg. The findings of this study demonstrate dose-dependent efficacy in terms of both disease severity (clinical scoring) and inflammatory markers (biochemical evaluation of the serum and joints). Conclusions IKK inhibitors are a prospective target for the creation of new therapeutics for arthritis and other inflammatory diseases because it has been suggested that this enzyme is crucial in the pathophysiology of RA. The finding of this study suggests that "catechin" represents a novel inhibitor of IKK-β with promising anti-inflammatory activity.
Collapse
Affiliation(s)
- Gourav Goyal
- Centre for Pharmaceutical Chemistry and Analysis, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Harikesh Kalonia
- Wockhardt Research Centre, Wockhardt Pharmaceutical Pvt Ltd., Aurangabad, Maharashtra, India
| | - Viney Lather
- Centre for Pharmaceutical Chemistry and Analysis, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Boyce BF, Li J, Yao Z, Xing L. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis. Endocrinol Metab (Seoul) 2023; 38:504-521. [PMID: 37749800 PMCID: PMC10613774 DOI: 10.3803/enm.2023.501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
Maintenance of skeletal integrity requires the coordinated activity of multinucleated bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts form resorption lacunae on bone surfaces in response to cytokines by fusion of precursor cells. Osteoblasts are derived from mesenchymal precursors and lay down new bone in resorption lacunae during bone remodeling. Nuclear factorkappa B (NF-κB) signaling regulates osteoclast and osteoblast formation and is activated in osteoclast precursors in response to the essential osteoclastogenic cytokine, receptor activator of NF-κB ligand (RANKL), which can also control osteoblast formation through RANK-RANKL reverse signaling in osteoblast precursors. RANKL and some pro-inflammatory cytokines, including tumor necrosis factor (TNF), activate NF-κB signaling to positively regulate osteoclast formation and functions. However, these cytokines also limit osteoclast and osteoblast formation through NF-κB signaling molecules, including TNF receptor-associated factors (TRAFs). TRAF6 mediates RANKL-induced osteoclast formation through canonical NF-κB signaling. In contrast, TRAF3 limits RANKL- and TNF-induced osteoclast formation, and it restricts transforming growth factor β (TGFβ)-induced inhibition of osteoblast formation in young and adult mice. During aging, neutrophils expressing TGFβ and C-C chemokine receptor type 5 (CCR5) increase in bone marrow of mice in response to increased NF-κB-induced CC motif chemokine ligand 5 (CCL5) expression by mesenchymal progenitor cells and injection of these neutrophils into young mice decreased bone mass. TGFβ causes degradation of TRAF3, resulting in decreased glycogen synthase kinase-3β/β-catenin-mediated osteoblast formation and age-related osteoporosis in mice. The CCR5 inhibitor, maraviroc, prevented accumulation of TGFβ+/CCR5+ neutrophils in bone marrow and increased bone mass by inhibiting bone resorption and increasing bone formation in aged mice. This paper updates current understanding of how NF-κB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast and osteoblast formation and activation with a focus on the role of TRAF3 signaling, which can be targeted therapeutically to enhance bone mass.
Collapse
Affiliation(s)
- Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Chaudhri EN, Abbott JM, Islam NN, Weber CA, Coban MA, Bilgili A, Squire JD, Mantia S, Wierenga KJ, Caulfield TR. Statistical Mechanics Metrics in Pairing and Parsing In Silico and Phenotypic Data of a Novel Genetic NFκB1 (c.T638A) Variant. Genes (Basel) 2023; 14:1855. [PMID: 37895204 PMCID: PMC10606260 DOI: 10.3390/genes14101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Mutations in NFκB1, a transcriptional regulator of immunomodulating proteins, are a known cause of inborn errors of immunity. Our proband is a 22-year-old male with a diagnosis of common variable immunodeficiency (CVID), cytopenias with massive splenomegaly, and nodular regenerative hyperplasia of the liver. Genetic studies identified a novel, single-point mutation variant in NFκB1, c. T638A p. V213E. (2) Methods: Next-generation panel sequencing of the patient uncovered a novel single-point mutation in the NFκB1 gene that was modeled using the I-TASSER homology-modeling software, and molecular dynamics were assessed using the YASARA2 software (version 20.14.24). (3) Results: This variant replaces valine with glutamic acid at position 213 in the NFκB1 sequence. Molecular modeling and molecular dynamic studies showed altered dynamics in and around the rel homology domain, ankyrin regions, and death domain of the protein. We postulate that these changes alter overall protein function. (4) Conclusions: This case suggests the pathogenicity of a novel variant using protein-modeling techniques and molecular dynamic simulations.
Collapse
Affiliation(s)
- Eman N. Chaudhri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Jessica M. Abbott
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Naeyma N. Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Caleb A. Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ahmet Bilgili
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| | | | - Sarah Mantia
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Klaas J. Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA (K.J.W.)
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; (E.N.C.); (J.M.A.); (N.N.I.); (C.A.W.); (A.B.)
| |
Collapse
|
22
|
Ricci S, Abu-Rumeileh S, Campagna N, Barbati F, Stagi S, Canessa C, Lodi L, Palterer B, Maggi L, Matucci A, Vultaggio A, Annunziato F, Azzari C. Case Report: A child with NFKB1 haploinsufficiency explaining the linkage between immunodeficiency and short stature. Front Immunol 2023; 14:1224603. [PMID: 37600787 PMCID: PMC10434558 DOI: 10.3389/fimmu.2023.1224603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
We report the case of a patient with common variable immunodeficiency (CVID) presenting with short stature and treated with recombinant human growth hormone (rhGH). Whole exome sequencing revealed a novel single-nucleotide duplication in the NFKB1 gene (c.904dup, p.Ser302fs), leading to a frameshift and thus causing NFKB1 haploinsufficiency. The variant was considered pathogenic and was later found in the patient's mother, also affected by CVID. This is the first reported case of a patient with CVID due to NFKB1 mutation presenting with short stature. We analyzed the interconnection between NFKB1 and GH - IGF-1 pathways and we hypothesized a common ground for both CVID and short stature in our patient.
Collapse
Affiliation(s)
- S. Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Florence, Italy
| | - S. Abu-Rumeileh
- Department of Health Sciences, University of Florence, Florence, Italy
| | - N. Campagna
- Department of Health Sciences, University of Florence, Florence, Italy
| | - F. Barbati
- Department of Health Sciences, University of Florence, Florence, Italy
| | - S. Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Endocrinology Division, Section of Pediatrics, Meyer Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Florence, Italy
| | - C. Canessa
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Florence, Italy
| | - L. Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Florence, Italy
| | - B. Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - L. Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A. Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - A. Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - F. Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - C. Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Florence, Italy
| |
Collapse
|
23
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Rathore D, Marino MJ, Nita-Lazar A. Omics and systems view of innate immune pathways. Proteomics 2023; 23:e2200407. [PMID: 37269203 DOI: 10.1002/pmic.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Multiomics approaches to studying systems biology are very powerful techniques that can elucidate changes in the genomic, transcriptomic, proteomic, and metabolomic levels within a cell type in response to an infection. These approaches are valuable for understanding the mechanisms behind disease pathogenesis and how the immune system responds to being challenged. With the emergence of the COVID-19 pandemic, the importance and utility of these tools have become evident in garnering a better understanding of the systems biology within the innate and adaptive immune response and for developing treatments and preventative measures for new and emerging pathogens that pose a threat to human health. In this review, we focus on state-of-the-art omics technologies within the scope of innate immunity.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J Marino
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Minić S, Cerovac N, Novaković I, Gazikalović S, Popadić S, Trpinac D. The Impact of the IKBKG Gene on the Appearance of the Corpus Callosum Abnormalities in Incontinentia Pigmenti. Diagnostics (Basel) 2023; 13:diagnostics13071300. [PMID: 37046518 PMCID: PMC10093331 DOI: 10.3390/diagnostics13071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Incontinentia pigmenti (IP) is a rare skin disease combined with anomalies of the teeth, eyes, and central nervous system (CNS). Mutations of the IKBKG gene are responsible for IP. Among the most frequent CNS abnormalities found in IP using magnetic resonance imaging (MRI) are corpus callosum (CC) abnormalities. The aim of the study was to determine the presence of CC abnormalities, their relationship with the IKBKG mutations, and the possible presence of mutations of other genes. A group of seven IP patients was examined. Analyses of the IKBKG gene and the X-chromosome inactivation pattern were performed, as well as MRI and whole exome sequencing (WES) with the focus on the genes relevant for neurodegeneration. WES analysis showed IKBKG mutation in all examined patients. A patient who had a mutation of a gene other than IKBKG was excluded from further study. Four of the seven patients had clinically diagnosed CNS anomalies; two out of four had MRI-diagnosed CC anomalies. The simultaneous presence of IKBKG mutation and CC abnormalities and the absence of other mutations indicate that IKBKG may be the cause of CC abnormalities and should be included in the list of genes responsible for CC abnormalities.
Collapse
|
26
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
27
|
Pan W, Meshcheryakov VA, Li T, Wang Y, Ghosh G, Wang VYF. Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation. eLife 2023; 12:e86258. [PMID: 36779700 PMCID: PMC9991059 DOI: 10.7554/elife.86258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Tianjie Li
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Yi Wang
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of MacauTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaMacao
- Cancer Centre, Faculty of Health Sciences, University of MacauTaipaChina
| |
Collapse
|
28
|
Chen LY, Pang XY, Chen C, Xu HG. NF-κB regulates the expression of STING via alternative promoter usage. Life Sci 2023; 314:121336. [PMID: 36586574 DOI: 10.1016/j.lfs.2022.121336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
AIMS Stimulator of interferon genes (STING) is a transmembrane protein in endoplasmic reticulum and plays crucial roles in autophagy, antiviral and anti-tumor responses. However, there are few studies on the transcriptional regulation mechanism of STING. MAIN METHODS The 5' RACE experiment was used to determine the location of STING promoters. Luciferase reporting assay confirmed the activity and core region of STING internal promoter. Site-directed mutagenesis confirmed that NF-κB regulates the activity of STING promoters. The regulation of NF-κB on STING was investigated by real-time quantitative PCR, western blot, chromatin immunoprecipitation assay and lipopolysaccharide (LPS) inflammatory cell model. KEY FINDINGS There was also a transcription start site at the 17 bp sequence upstream of STING second exon. STING-285 was the core region of the internal promoter. After NF-κB binding site mutation, the activity of STING internal promoter decreased significantly. In addition, we found that NF-κB can bind to the promoter region of wild-type STING. Overexpression of NF-κB significantly increased the activity of STING internal promoter and wild-type promoter, while knockdown of endogenous NF-κB significantly inhibited the activity of STING promoters. The binding of NF-κB to STING promoters in vivo were confirmed by chromatin immunoprecipitation assay. Meanwhile, we stimulated HeLa cells with LPS to activate the NF-κB pathway and found that STING expression was up-regulated. SIGNIFICANCE These results suggest that transcription factor NF-κB positively regulates the expression of STING via alternative promoter usage. This provides a new basis and potential drug targets for the clinical treatment of STING related diseases.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Can Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Ebrahimi N, Afshinpour M, Fakhr SS, Kalkhoran PG, Shadman-Manesh V, Adelian S, Beiranvand S, Rezaei-Tazangi F, Khorram R, Hamblin MR, Aref AR. Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance. Crit Rev Oncol Hematol 2023; 182:103920. [PMID: 36702423 DOI: 10.1016/j.critrevonc.2023.103920] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Although, in some cases, treatment can increase patient survival and reduce cancer recurrence, in many cases, tumors can develop resistance to therapy leading to recurrence. One of the main reasons for recurrence and therapy resistance is the presence of cancer stem cells (CSCs). CSCs possess a self-renewal ability, and their stemness properties lead to the avoidance of apoptosis, and allow a new clone of cancer cells to emerge. Numerous investigations inidicated the involvment of cellular signaling pathways in embryonic development, and growth, repair, and maintenance of tissue homeostasis, also participate in the generation and maintenance of stemness in colorectal CSCs. This review discusses the role of Wnt, NF-κB, PI3K/AKT/mTOR, Sonic hedgehog, and Notch signaling pathways in colorectal CSCs, and the possible modulating drugs that could be used in treatment for resistant CRC.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of cell and molecular & microbiology, Faculty of Science and technology, University of Isfahan, Isfahan, Iran
| | - Maral Afshinpour
- Department of chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Hamar, Norway
| | - Paniz Ghasempour Kalkhoran
- Department of Cellular and Molecular Biology_Microbiology, Faculty of Advanced Science and Technology, Tehran Medical science, Islamic Azad University, Tehran, Iran
| | - Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA 02210, USA.
| |
Collapse
|
30
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
31
|
Stephenson AA, Taggart DJ, Xu G, Fowler JD, Wu H, Suo Z. The inhibitor of κB kinase β (IKKβ) phosphorylates IκBα twice in a single binding event through a sequential mechanism. J Biol Chem 2023; 299:102796. [PMID: 36528060 PMCID: PMC9843440 DOI: 10.1016/j.jbc.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase β (IKKβ) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKβ-catalyzed phosphorylation of IκBα residues Ser32 and Ser36 within a conserved destruction box motif. To investigate the catalytic mechanism of IKKβ, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKβ. Phosphorylation of full-length IκBα catalyzed by IKKβ was characterized by a fast exponential phase followed by a slower linear phase. The maximum observed rate (kp) of IKKβ-catalyzed phosphorylation of IκBα was 0.32 s-1 and the binding affinity of ATP for the IKKβ•IκBα complex (Kd) was 12 μM. Substitution of either Ser32 or Ser36 with Ala, Asp, or Cys reduced the amplitude of the exponential phase by approximately 2-fold. Thus, the exponential phase was attributed to phosphorylation of IκBα at Ser32 and Ser36, whereas the slower linear phase was attributed to phosphorylation of other residues. Interestingly, the exponential rate of phosphorylation of the IκBα(S32D) phosphomimetic amino acid substitution mutant was nearly twice that of WT IκBα and 4-fold faster than any of the other IκBα amino acid substitution mutants, suggesting that phosphorylation of Ser32 increases the phosphorylation rate of Ser36. These conclusions were supported by parallel experiments using GST-IκBα(1-54) fusion protein substrates bearing the first 54 residues of IκBα. Our data suggest a model wherein, IKKβ phosphorylates IκBα at Ser32 followed by Ser36 within a single binding event.
Collapse
Affiliation(s)
- Anthony A Stephenson
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - David J Taggart
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Guozhou Xu
- The Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Jason D Fowler
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Hao Wu
- The Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Zucai Suo
- The Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA; The Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| |
Collapse
|
32
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Cohn IS, Henrickson SE, Striepen B, Hunter CA. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2261-2268. [PMID: 36469846 PMCID: PMC9731348 DOI: 10.4049/jimmunol.2200512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Giancola R, Oliva F, Gallorini M, Michetti N, Gissi C, Moussa F, Antonetti Lamorgese Passeri C, Colosimo A, Berardi AC. CD200 as a Potential New Player in Inflammation during Rotator Cuff Tendon Injury/Repair: An In Vitro Model. Int J Mol Sci 2022; 23:ijms232315165. [PMID: 36499497 PMCID: PMC9738060 DOI: 10.3390/ijms232315165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Rotator cuff tendon (RCT) disease results from multifactorial mechanisms, in which inflammation plays a key role. Pro-inflammatory cytokines and tendon stem cell/progenitor cells (TSPCs) have been shown to participate in the inflammatory response. However, the underlying molecular mechanism is still not clear. In this study, flow cytometry analyses of different subpopulations of RCT-derived TSPCs demonstrate that after three days of administration, TNFα alone or in combination with IFNγ significantly decreases the percentage of CD146+CD49d+ and CD146+CD49f+ but not CD146+CD109+ TSPCs populations. In parallel, the same pro-inflammatory cytokines upregulate the expression of CD200 in the CD146+ TSPCs population. Additionally, the TNFα/IFNγ combination modulates the protein expression of STAT1, STAT3, and MMP9, but not fibromodulin. At the gene level, IRF1, CAAT (CAAT/EBPbeta), and DOK2 but not NF-κb, TGRF2 (TGFBR2), and RAS-GAP are modulated. In conclusion, although our study has several important limitations, the results highlight a new potential role of CD200 in regulating inflammation during tendon injuries. In addition, the genes analyzed here might be new potential players in the inflammatory response of TSPCs.
Collapse
Affiliation(s)
- Raffaella Giancola
- Department of Haematology, Transfusion Medicine and Biotechnologies, Cytofluorimetry and Cell Sorting Service, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Francesco Oliva
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | | | - Noemi Michetti
- Department of Haematology, Transfusion Medicine and Biotechnologies, Cytofluorimetry and Cell Sorting Service, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Clarissa Gissi
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Fadl Moussa
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Doctoral School of Science and Technology, Lebanese University, Beirut 1107, Lebanon
| | | | - Alessia Colosimo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Anna Concetta Berardi
- Department of Haematology, Transfusion Medicine and Biotechnologies, Laboratory of Stem Cells, Ospedale Spirito Santo, 65122 Pescara, Italy
- Correspondence: or
| |
Collapse
|
35
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
36
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, Kariya R, Okada S, Takeshita H, Seki Y, Yano H, Komohara Y, Yoshida R, Nakayama H, Li JD, Saito H, Jono H. Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int 2022; 22:358. [PMID: 36376983 PMCID: PMC9664721 DOI: 10.1186/s12935-022-02781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor suppressor CYLD dysfunction by loss of its expression, triggers malignant transformation, especially drug resistance and tumor invasion/metastasis. Although loss of CYLD expression is significantly associated with poor prognosis in a large variety of tumors, no clinically-effective treatment for CYLD-negative cancer patients is available. METHODS We focused on oral squamous cell carcinoma (OSCC), and sought to develop novel therapeutic agents for CYLD-negative cancer patients with poor prognosis. CYLD-knockdown OSCC cells by using CYLD-specific siRNA, were used to elucidate and determine the efficacy of novel drug candidates by evaluating cell viability and epithelial-mesenchymal transition (EMT)-like change. Therapeutic effects of candidate drug on cell line-derived xenograft (CDX) model and usefulness of CYLD as a novel biomarker using patient-derived xenograft (PDX) model were further investigated. RESULTS CYLD-knockdown OSCC cells were resistant for all currently-available cytotoxic chemotherapeutic agents for OSCC, such as, cisplatin, 5-FU, carboplatin, docetaxel, and paclitaxel. By using comprehensive proteome analysis approach, we identified epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, played key roles in CYLD-knockdown OSCC cells. Indeed, cell survival rate in the cisplatin-resistant CYLD-knockdown OSCC cells was markedly inhibited by treatment with clinically available EGFR tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib. In addition, gefitinib was significantly effective for not only cell survival, but also EMT-like changes through inhibiting transforming growth factor-β (TGF-β) signaling in CYLD-knockdown OSCC cells. Thereby, overall survival of CYLD-knockdown CDX models was significantly prolonged by gefitinib treatment. Moreover, we found that CYLD expression was significantly associated with gefitinib response by using PDX models. CONCLUSIONS Our results first revealed that EGFR-targeted molecular therapies, such as EGFR-TKIs, could have potential to be novel therapeutic agents for the CYLD-negative OSCC patients with poor prognosis.
Collapse
Affiliation(s)
- Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mimi Kai
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanae Tsurekawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shota Uchino
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kou Yonemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hisashi Takeshita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
37
|
Impact of selenium nanoparticles in the regulation of inflammation. Arch Biochem Biophys 2022; 732:109466. [DOI: 10.1016/j.abb.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
38
|
Janpaijit S, Lertpatipanpong P, Sillapachaiyaporn C, Baek SJ, Charoenkiatkul S, Tencomnao T, Sukprasansap M. Anti-neuroinflammatory effects of Cleistocalyx nervosum var. paniala berry-seed extract in BV-2 microglial cells via inhibition of MAPKs/NF-κB signaling pathway. Heliyon 2022; 8:e11869. [DOI: 10.1016/j.heliyon.2022.e11869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
|
39
|
González-Moles MÁ, Keim-del Pino C, Ramos-García P. Hallmarks of Cancer Expression in Oral Lichen Planus: A Scoping Review of Systematic Reviews and Meta-Analyses. Int J Mol Sci 2022; 23:13099. [PMID: 36361889 PMCID: PMC9658487 DOI: 10.3390/ijms232113099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/05/2023] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease of unknown etiology and likely autoimmune nature that is currently considered an oral potentially malignant disorder, implying that patients suffering from this process are at risk of developing oral cancer in their lifetime. The molecular alterations that develop in OLP and that make the affected oral epithelium predisposed to malignancy are unknown, although, as in other autoimmune diseases (ulcerative colitis, primary biliary cirrhosis, etc.), they may be linked to oncogenesis-promoting effects mediated by the inflammatory infiltrate. So far there is no in-depth knowledge on how these hallmarks of cancer are established in the cells of the oral epithelium affected by OLP. In this scoping review of systematic reviews and meta-analyses the state of evidence based knowledge in this field is presented, to point out gaps of evidence and to indicate future lines of research. MEDLINE, Embase, Cochrane Library and Dare were searched for secondary-level studies published before October 2022. The results identified 20 systematic reviews and meta-analyses critically appraising the hallmarks tumor-promoting inflammation (n = 17, 85%), sustaining proliferative signaling (n = 2, 10%), and evading growth suppressors (n = 1, 5%). No evidence was found for the other hallmarks of cancer in OLP. In conclusion, OLP malignization hypothetically derives from the aggressions of the inflammatory infiltrate and a particular type of epithelial response based on increased epithelial proliferation, evasion of growth-suppressive signals and lack of apoptosis. Future evidence-based research is required to support this hypothesis.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Carmen Keim-del Pino
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
40
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
41
|
Zhou M, Ren X, Yan X, Sun Y, Xu T. Rho-GDP-dissociation inhibitor-γ negatively regulates NF-κB signaling by promoting the degradation of TAK1 in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104496. [PMID: 35870543 DOI: 10.1016/j.dci.2022.104496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transforming growth factor-beta activated kinase 1 (TAK1) is an adaptor molecular in TLR-mediated NF-κB signaling pathway and plays indispensable roles in innate immunity. As the most typical innate immune pathway, the strict regulation of NF-κB signaling pathway is particularly important. Rho-GDP-dissociation inhibitor-γ (Rho-GDIγ) is a member of the Rho protein family that regulates many important physiological processes. In this study, we demonstrated the mechanism of suppressing TAK1 expression in the teleost and found that Rho-GDIγ negatively regulated the NF-κB signaling pathway mediated by TAK1. We determined that TAK1 could directly interact with Rho-GDIγ. It is interesting that Rho-GDIγ promotes TAK1 degradation through the ubiquitin proteasome pathway. This study brings a new experimental basis to the teleost fish innate immune signaling pathway. Moreover, this discovery may provide new insights into innate immune regulation mechanism in mammals.
Collapse
Affiliation(s)
- Ming Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
42
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
43
|
Lu Z, Deng M, Ma G, Chen L. TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF- κB signalling pathway. PeerJ 2022; 10:e13815. [PMID: 36061751 PMCID: PMC9435518 DOI: 10.7717/peerj.13815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023] Open
Abstract
Tripartite motif (TRIM) 38 is a ubiquitin E3 protein ligase that is involved in various intracellular physiological processes. However, the role of TRIM38 in myocardial ischaemia/reperfusion (I/R) injury remains to be elucidated. We aimed to establish an in vitro cellular hypoxia/reperfusion (H/R) model to explore the role and potential mechanisms of TRIM38 in H9c2, a rat cardiomyoblast cell line. Recombinant adenoviruses for silencing or overexpressing TRIM38 were constructed and transfected into H9c2 cells. Western blotanalysisshowed that TRIM38 expression was significantly decreased after H/R injury. Functionally, TRIM38 expression relieved inflammatory responses and oxidative stress, and inhibited H/R-induced apoptosis in H9c2 cells. Mechanistically, TRIM38 overexpression inhibited H/R-induced transforming growth factor beta-activated kinase 1 (TAK1)/nuclear factor-kappa B (NF-κB) pathway activity in H9c2 cells. The opposite results were observed after TRIM38 knockdown. Furthermore, H/R-induced injury aggravated by TRIM38 deficiency in H9c2 cells was reversed upon treatment with 5Z-7-oxozeaenol, a TAK1 inhibitor. Therefore, TRIM38 reduction attenuated the anti-apoptotic capacity and anti-inflammatory potential of H/R-stimulated H9c2 cells by activating the TAK1/NF-κB signalling pathway. Specifically, TRIM38 alleviated H/R-induced H9c2 cell injury by promoting TNF receptor-associated factor 6 degradation, which led to the inactivation of the TAK1/NF-κB signalling pathway. Thus, our study provides new insights into the molecular mechanisms underlying H/R-induced myocardial injuries.
Collapse
Affiliation(s)
- Zhengri Lu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Mengen Deng
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China,Department of Cardiology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Minić S, Trpinac D, Novaković I, Cerovac N, Dobrosavljević Vukojević D, Rosain J. Challenges in Rare Diseases Diagnostics: Incontinentia Pigmenti with Heterozygous GBA Mutation. Diagnostics (Basel) 2022; 12:diagnostics12071711. [PMID: 35885615 PMCID: PMC9318020 DOI: 10.3390/diagnostics12071711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rare diseases represent a diagnostic challenge due to their number, variety of clinical phenomena, and possibility of a simultaneous presence of two or more diseases. An illustration of this challenge is an occurrence of a late diagnosis of a proband initially diagnosed with West syndrome, later revealed to be caused by Incontinentia pigmenti (IP). Furthermore, 20 years later, it was discovered that the proband was also a carrier of a heterozygous GBA gene mutation. The methods used in diagnostics were as follows: IKBKG gene analysis, the X-chromosome inactivation assay, analyses of the genes relevant for neurodegeneration, WES analysis, analysis of biochemical parameters typical for Gaucher disease (GD), and autoantibodies including IFN-α2a and IFN-ω. To avoid overlooking IP and other possible rare disease diagnoses, carefully searching for dermatological signs in these conditions is recommended. It is important that the diagnostic criteria are based on quality and extensive data from multiple studies of each rare disease. Establishing precise diagnostic criteria for as many rare diseases as possible and establishing a publicly accessible database of rare diseases with a search possibility according to phenotypic abnormalities and genetic mutations would greatly facilitate and speed up the establishment of an accurate diagnosis.
Collapse
Affiliation(s)
- Snežana Minić
- A Clinics of Dermatovenerology, University Clinical Center of Serbia, Deligradska 34, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Correspondence: ; Tel.: +38-164-199-8867
| | - Dušan Trpinac
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia;
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia;
| | - Nataša Cerovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic for Neurology and Psychiatry for Children and Youth, University Clinical Center of Serbia, Dr. Subotica 6a, 11000 Belgrade, Serbia
| | - Danijela Dobrosavljević Vukojević
- A Clinics of Dermatovenerology, University Clinical Center of Serbia, Deligradska 34, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France;
- Imagine Institute, University of Paris, 75015 Paris, France
| |
Collapse
|
45
|
Heltberg M, von Borries M, Bendix PM, Oddershede LB, Jensen MH. Temperature Controls Onset and Period of NF- κB Oscillations and can Lead to Chaotic Dynamics. Front Cell Dev Biol 2022; 10:910738. [PMID: 35794861 PMCID: PMC9251302 DOI: 10.3389/fcell.2022.910738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
The transcription factor NF-κB plays a vital role in the control of the immune system, and following stimulation with TNF-α its nuclear concentration shows oscillatory behaviour. How environmental factors, in particular temperature, can control the oscillations and thereby affect gene stimulation is still remains to be resolved question. In this work, we reveal that the period of the oscillations decreases with increasing temperature. We investigate this using a mathematical model, and by applying results from statistical physics, we introduce temperature dependency to all rates, resulting in a remarkable correspondence between model and experiments. Our model predicts how temperature affects downstream protein production and find a crossover, where high affinity genes upregulates at high temperatures. Finally, we show how or that oscillatory temperatures can entrain NF-κB oscillations and lead to chaotic dynamics presenting a simple path to chaotic conditions in cellular biology.
Collapse
Affiliation(s)
| | | | | | | | - Mogens H. Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Guan T, Ding LG, Lu BY, Guo JY, Wu MY, Tan ZQ, Hou SZ. Combined Administration of Curcumin and Chondroitin Sulfate Alleviates Cartilage Injury and Inflammation via NF-κB Pathway in Knee Osteoarthritis Rats. Front Pharmacol 2022; 13:882304. [PMID: 35662715 PMCID: PMC9161211 DOI: 10.3389/fphar.2022.882304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a degenerative chronic disease that most often occurs in the knee joint. Studies have shown that some food supplements, such as curcumin and chondroitin sulfate, are effective in treating knee osteoarthritis (KOA) by exhibiting different protective effects. In this study, we further investigated the combined therapeutic effects of curcumin and chondroitin sulfate on cartilage injury in rats with arthritis. Methods: An experimental KOA model was induced by monosodium iodoacetate (MIA) in rats. All rats were randomly divided into five groups: Ctrl (control), model (saline), Cur (20 mg/kg curcumin in saline), CS (100 mg/kg chondroitin sulfate in saline), and CA (20 mg/kg curcumin and 100 mg/kg chondroitin sulfate in saline); drugs were given 2 weeks after MIA injection. The histomorphological changes of cartilage were observed by safranin fast green staining, H&E staining, and micro-CT scanning. Also, the levels of PGE2, TNF-α and IL-1β in the arthral fluid and serum were determined by the ELISA kits. The activities of SOD, CAT, COMP, MMP-3, and type II collagen were detected by biochemical kits. The expressions of TLR4, p-NF-κB, NF-κB, and COX-2 in cartilage were detected by Western blot. Results: Data show that serum levels of IL-1β (p < 0.05), SOD (p < 0.0001), and MMP-3 (p < 0.001) were downregulated significantly in the CA group when compared to those in the model group. Meanwhile, obvious repair of cartilage with higher contains collagen II (p < 0.0001) could be observed in the CA group than the ones in Cur or CS group. In addition, significant downregulation of the expression of p-p65/p65 (p < 0.05) was found in the CA group. Conclusion: Our findings showed that combined administration of curcumin and chondroitin sulfate could exert better repair for KOA in rat models. This may hold great promise for discovering potential drugs to treat KOA and may improve treatment options for it.
Collapse
Affiliation(s)
- Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liu-Gang Ding
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Bao-Yuan Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Guo
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
| | - Mei-Yin Wu
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
| | - Zhi-Qun Tan
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
- Institute for Memory Impairments and Neurological Disorder, University of California, Irvine, Irvine, CA, United States
| | - Shao-Zhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Jiang J, Zeng J, He Q, Yang J, Wang S, Zhang Z. NEMO Gene Mutations in Two Chinese Females with Incontinentia Pigmenti. Clin Cosmet Investig Dermatol 2022; 15:815-821. [PMID: 35547601 PMCID: PMC9084220 DOI: 10.2147/ccid.s363683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Purpose To identify the mutations of the NEMO gene in two Chinese females with incontinentia pigmenti. Patients and Methods Patients were both from Nanchong, Sichuan Province. Genomic DNA was extracted from the peripheral blood of patients and patient 1's father. The mutations of the NEMO gene in patient 1 by GAP polymerase chain reaction and Sanger sequencing and her father were detected. NEMO-specific polymerase chain reaction and Sanger sequencing were used to identify the NEMO gene mutation in patient 2. Results DNA analysis identified a rare frameshift mutation, c.723_c.724insCAGG(p.A242QfsX15) in exon 5 of the NEMO gene in patient 1 with a family history but not in her healthy father. The common deletion of exons 4-10 of the NEMO gene was found in sporadic patient 2. Conclusion Our data revealed that the rare frameshift mutation, c.723_c.724insCAGG(p.A242QfsX15) in exon 5 of the NEMO gene in patient 1 and the deletion of exons 4-10 of the NEMO gene in patient 2 could cause the occurrence of IP. Genetic testing is helpful for early diagnosis and genetic counseling for families.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Junjie Zeng
- Department of Dermatology, Taikang Sichuan Southwest Hospital Company Limited, Chengdu, Sichuan Province, People’s Republic of China
| | - Qi He
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Jiao Yang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Shenglan Wang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Zhengzhong Zhang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| |
Collapse
|
48
|
Fan W, Liu X, Zhang J, Qin L, Du J, Li X, Qian S, Chen H, Qian P. TRIM67 Suppresses TNFalpha-Triggered NF-kB Activation by Competitively Binding Beta-TrCP to IkBa. Front Immunol 2022; 13:793147. [PMID: 35273593 PMCID: PMC8901487 DOI: 10.3389/fimmu.2022.793147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB plays an important role in modulation of inflammatory pathways, which are associated with inflammatory diseases, neurodegeneration, apoptosis, immune responses, and cancer. Increasing evidence indicates that TRIM proteins are crucial role in the regulation of NF-κB signaling pathways. In this study, we identified TRIM67 as a negative regulator of TNFα-triggered NF-κB activation. Ectopic expression of TRIM67 significantly represses TNFα-induced NF-κB activation and the expression of pro-inflammatory cytokines TNFα and IL-6. In contrast, Trim67 depletion promotes TNFα-induced expression of TNFα, IL-6, and Mcp-1 in primary mouse embryonic fibroblasts. Mechanistically, we found that TRIM67 competitively binding β-transducin repeat-containing protein (β-TrCP) to IκBα results inhibition of β-TrCP-mediated degradation of IκBα, which finally caused inhibition of TNFα-triggered NF-κB activation. In summary, our findings revealed that TRIM67 function as a novel negative regulator of NF-κB signaling pathway, implying TRIM67 might exert an important role in regulation of inflammation disease and pathogen infection caused inflammation.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinyan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Suhong Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
The Expression, Prognostic Value, and Immunological Correlation of MCEMP1 and its Potential Role in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8167496. [PMID: 35378772 PMCID: PMC8976619 DOI: 10.1155/2022/8167496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
Purpose Gastric cancer (GC) is a lethal cancer with a poor 5-year relative survival, which requires a new research perspective. Our study aims to explore the biological impact of the mast cell-expressed membrane protein 1 (MCEMP1) in GC, which includes its expression and potential biological functions. Methods The expression of MCEMP1 was assessed through public databases. The GO, KEGG, and GESA analyses were conducted to explore the biofunction of MCEMP1. And ssGSEA was used to analyze the infiltration of the immune cells for MCEMP1. The proliferation, migration, and invasion of GC cells were analyzed through CCK8, colony-forming, wound healing, Transwell, and Western blot assay. Results The expression of MCEMP1 was higher in GC tissues. Further, we found a close relationship between MCEMP1 and poorer prognosis of gastric cancer by prognostic analysis. The functional analysis showed that MCEMP1 is involved in immune, inflammation, and metabolism-related pathways. The ssGSEA analysis indicated MCEMP1 mRNA expression was associated with immune infiltration of multiple immune cells. In cellular experiments, the invasion and metastasis of gastric cancer cells could be promoted by regulating the rise of MCEMP1 expression. Western blot analysis showed that regulation of MCEMP1 expression can affect EMT-related protein expression and that NF-κB expression is involved in this process. Conclusion MCEMP1 shows a potential value for the prognosis in GC. And, abnormal expression of MCEMP1 in GC is correlated with tumor immune cell infiltration. In in vitro experiments, MCEMP1 can affect the proliferation, migration, and invasion of GC cells by regulating EMT, in which TLR4/NOD2/NF-κB was involved.
Collapse
|
50
|
Understanding the functional role of membrane confinements in TNF-mediated signaling by multiscale simulations. Commun Biol 2022; 5:228. [PMID: 35277586 PMCID: PMC8917213 DOI: 10.1038/s42003-022-03179-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe interaction between TNFα and TNFR1 is essential in maintaining tissue development and immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated signaling pathways is preferentially through the soluble form of TNFα, which can also induce the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale simulation framework to compare receptor clustering induced by soluble and membrane-bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the conformational dynamics of membrane-bound ligands are restricted, which affects the clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide spatial platform for downstream signaling pathway, our studies offer new mechanistic insights about why the activation of TNFR1-mediated signaling pathways is not preferred by membrane-bound form of TNFα.
Collapse
|