1
|
Thai AA, Young RJ, Bressel M, Kelly GL, Sejic N, Tsao SW, Trigos A, Rischin D, Solomon BJ. Characterizing and Targeting of BCL-2 Family Members in Nasopharyngeal Carcinoma. Head Neck 2025; 47:867-877. [PMID: 39474704 DOI: 10.1002/hed.27973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 10/12/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The success of BH3 mimetics in hematological malignancies has spurred interest in their application in solid tumors. We examined the expression of the BCL-2 family of molecules in NPC tumors and cell lines and explored the anticancer efficacy of BH3 mimetics in vitro. METHODS Immunohistochemistry for BCL-2, MCL-1, BCL-xL, and transcriptomic analyses was conducted on NPC tumors. The efficacy of ABT-199, S63845, and ABT-737 were examined as monotherapy and in combination with cisplatin in NPC cell lines. RNA sequencing was performed to identify up and downregulated pathways in sensitive cell lines. RESULTS One hundred and forty-nine EBV-positive NPC and 15 EBV-negative NPC were identified. Expression of BCL-2 was more frequent in EBV-positive NPC. BCL-2, MCL-1, and BCL-xL expression was not prognostic for overall survival. Marked sensitivity was seen with the combination of S63845 and cisplatin in NPC43. CONCLUSION Our study demonstrates the therapeutic potential of combining cisplatin and S63845, which warrants further investigation.
Collapse
Affiliation(s)
- A A Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - R J Young
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M Bressel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - G L Kelly
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - N Sejic
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - A Trigos
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - D Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - B J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Huang C, Qu QR, Hoque MT, Bendayan R. Dolutegravir induces endoplasmic reticulum stress at the blood-brain barrier. FASEB J 2025; 39:e70377. [PMID: 39985305 PMCID: PMC11846018 DOI: 10.1096/fj.202402677rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Dolutegravir (DTG)-based antiretroviral therapy is the contemporary first-line therapy to treat HIV infection. Despite its efficacy, mounting evidence has suggested a higher risk of neuropsychiatric adverse effect (NPAE) associated with DTG use, with a limited understanding of the underlying mechanisms. Our laboratory has previously reported a toxic effect of DTG but not bictegravir (BTG) in disrupting the blood-brain barrier (BBB) integrity. The current study aimed to investigate the underlying mechanism of DTG toxicity. Primary cultures of mouse brain microvascular endothelial cells were treated with DTG and BTG at therapeutically relevant concentrations. RNA sequencing, qPCR, western blot analysis, and cell stress assays (Ca2+ flux, H2DCFDA, TMRE, MTT) were applied to assess the results. The gene ontology (GO) analysis revealed an enriched transcriptome signature of endoplasmic reticulum (ER) stress following DTG treatment. We demonstrated that therapeutic concentrations of DTG but not BTG activated the ER stress sensor proteins (PERK, IRE1, p-IRE1) and downstream ER stress markers (eIF2α, p-eIF2α, Hspa5, Atf4, Ddit3, Ppp1r15a, Xbp1, spliced-Xbp1). In addition, DTG treatment resulted in a transient Ca2+ flux, an aberrant mitochondrial membrane potential, and a significant increase in reactive oxygen species in treated cells. Furthermore, we found that prior treatment with ER sensor or ER stress inhibitors significantly mitigated the DTG-induced downregulation of tight junction proteins (Zo-1, Ocln, Cldn5) and elevation of pro-inflammatory cytokines and chemokines (Il6, Il23a, Il12b, Cxcl1, Cxcl2). The current study provides valuable insights into DTG-mediated cellular toxicity mechanisms, which may serve as a potential explanation for DTG-associated NPAEs in the clinic.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Md. Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Zhou X, Li Z, Ren F, Deng H, Wen J, Xiang Q, Zhou Z, Yang X, Rao C. Endoplasmic reticulum stress and unfolded protein response in renal lipid metabolism. Exp Cell Res 2025; 446:114463. [PMID: 39971174 DOI: 10.1016/j.yexcr.2025.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The endoplasmic reticulum (ER) is a crucial cellular organelle involved in protein synthesis, folding, modification, and transport. Exposure to internal and external stressors can induce endoplasmic reticulum stress (ERS), leading to abnormal protein folding and ER malfunction. This stress can disrupt lipid synthesis, metabolism, and transport processes. Fatty acid oxidation is the primary energy source for the renal system. When energy intake exceeds the storage capacity of adipose tissue, lipids accumulate abnormally in non-adipose tissues, including kidneys, liver, and pancreas. Lipids accumulate in the kidneys of nearly all cell types, including thylakoid membranous, pedunculated, and proximal renal tubular epithelial cells. Intracellular free fatty acids can significantly disrupt renal lipid metabolism, contributing to ischemia-reperfusion acute kidney injury, diabetic nephropathy, renal fibrosis, and lupus nephritis. Consequently, this study delineated the primary signaling pathways and mechanisms of the ERS-induced unfolded protein response, explored the mechanistic link between ERS and lipid metabolism, and elucidated its role in renal lipid metabolism. This study aimed to offer new perspectives on managing and treating renal disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ziyi Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Deng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
4
|
Hou L, Yang X, Liu C, Yu J, Wu Z, Wang Y, Zeng P, Guo J, Shi Y, Zhou J, Liu J. Seneca Valley virus induces mitochondrial apoptosis by activating ER stress or the PERK pathway based on Ca 2+ transfer from ER to mitochondria. J Virol 2025:e0217724. [PMID: 39912666 DOI: 10.1128/jvi.02177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Seneca Valley virus (SVV), also known as Senecavirus A, a porcine pathogen that causes vesicular diseases, is prevalent in pig herds worldwide. SVV infection induces endoplasmic reticulum (ER) stress in PK-15 and BHK-21 cells, accompanied by activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) pathways, which in turn facilitates SVV replication. ER stress is associated with the regulation of Ca2+ homeostasis and mitochondrial apoptosis. However, the precise role of Ca2+ in SVV-induced apoptosis remains unclear. In this study, western blotting, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) detection revealed that either ER stress or the PERK pathway is involved in the apoptosis of SVV-infected cells treated with specific inhibitors. Furthermore, SVV-mediated ER stress markedly contributed to the transfer of Ca2+ from the ER to mitochondria. The subsequent increase in mitochondrial Ca2+ content was accompanied by an increased number of ER membranes near the mitochondria. Finally, the inhibition of mitochondrial Ca2+ overload, ER stress, and the PERK pathway substantially attenuated SVV-mediated mitochondrial dysfunction, as evidenced by analyzing mitochondrial membrane potential (MMP), mitochondrial permeability transition poremPTP, reactive oxygen speciesROS, and adenosine 5'-triphosphate ATP, and the levels of mitochondrial apoptosis. These findings demonstrate that SVV induces mitochondrial apoptosis, which is dependent on ER stress-mediated transmission of Ca2+ from the ER to the mitochondria. IMPORTANCE Viruses have developed multiple mechanisms to facilitate their proliferation or persistence through manipulating various organelles in cells. Seneca Valley virus (SVV), as a novel emerging pathogen associated with vesicular disease, is clinically and economically important infections that affect farm animals. Previously, we had confirmed that SVV-induced endoplasmic reticulum (ER) stress benefited for viral replication. Ca2+, as an intracellular signaling messenger mainly stored in the ER, is regulated by ER stress and then involved in apoptosis. However, the precise mechanism that Ca2+ transfer induced by SVV infection triggered apoptosis remained unclear. Here, we found that SVV infection triggered the Ca2+ transform from ER to mitochondria, resulting in mitochondrial dysfunction, and finally induced mitochondrial apoptosis. Our study shed light on a novel mechanism revealing how ER stress manipulates Ca2+ homeostasis to induce mitochondrial apoptosis and regulate viral proliferation.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ju Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Nasuhidehnavi A, Zarzycka W, Górecki I, Chiao YA, Lee CF. Emerging interactions between mitochondria and NAD + metabolism in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:176-190. [PMID: 39198117 PMCID: PMC11794032 DOI: 10.1016/j.tem.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13790, USA
| | - Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignacy Górecki
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Lin M, Mo Y, Li CM, Liu YZ, Feng XP. GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells. Med Oncol 2025; 42:49. [PMID: 39827214 DOI: 10.1007/s12032-024-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways. These include the promotion of tumor stemness, inhibition of apoptosis, regulation of autophagy, maintenance of tumor microenvironment homeostasis, protection of dormant cells, evasion of senescence, counteraction of autoantibodies against GRP78, facilitation of DNA damage repair, suppression of ferroptosis, and modulation of metabolic reprogramming in tumor cells. Importantly, chemoradiotherapy resistance in cancers are the main reasons for treatment failure in patients, severely affecting their survival. Investigating the mechanisms of GRP78 in tumor therapeutic resistance is essential. In this article, we review the mechanisms by which GRP78 mediates cell survival and chemoradiotherapy resistance in cancers and provide an overview of clinical trials targeting GRP78 therapy.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cheng-Min Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ying-Zhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Xue-Ping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
7
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
8
|
An ZY, Han SZ, Li ZY, Chang SY, Zhang XL, Lu GJ, Zhang T, Quan BH, Yin XJ, Quan LH, Kang JD. Eicosatrienoic acid enhances the quality of in vitro matured porcine oocytes by reducing PRKN-mediated ubiquitination of CISD2. Theriogenology 2024; 230:285-298. [PMID: 39357167 DOI: 10.1016/j.theriogenology.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.
Collapse
Affiliation(s)
- Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
9
|
Huang R, Zhang C, Xiang Z, Lin T, Ling J, Hu H. Role of mitochondria in renal ischemia-reperfusion injury. FEBS J 2024; 291:5365-5378. [PMID: 38567754 DOI: 10.1111/febs.17130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 12/19/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) has a high morbidity and mortality, representing a worldwide problem. The kidney is an essential organ of metabolism that has high blood perfusion and is the second most mitochondria-rich organ after the heart because of the high ATP demands of its essential functions of nutrient reabsorption, acid-base and electrolyte balance, and hemodynamics. Thus, these energy-intensive cells are particularly vulnerable to mitochondrial dysfunction. As the bulk of glomerular ultrafiltrate reabsorption by proximal tubules occurs via active transport, the mitochondria of proximal tubules must be equipped for detecting and responding to fluctuations in energy availability to guarantee efficient basal metabolism. Any insults to mitochondrial quality control mechanisms may lead to biological disruption, blocking the clearance of damaged mitochondria and resulting in morphological change and tissue dysfunction. Extensive research has shown that mitochondria have pivotal roles in acute kidney disease, so in this article, we discuss the role of mitochondria, their dynamics and mitophagy in renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Zhengjie Xiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Tao Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Jian Ling
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
10
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
11
|
Camacho-Morales A, Noriega LG, Sánchez-García A, Torre-Villalvazo I, Vázquez-Manjarrez N, Maldonado-Ruiz R, Cárdenas-Tueme M, Villegas-Romero M, Alamilla-Martínez I, Rodriguez-Rocha H, Garcia-Garcia A, Corona JC, Tovar AR, Saville J, Fuller M, Gonzalez-Gonzalez JG, Rivas-Estilla AM. Plasma C24:0 ceramide impairs adipose tissue remodeling and promotes liver steatosis and glucose imbalance in offspring of rats. Heliyon 2024; 10:e39206. [PMID: 39640709 PMCID: PMC11620212 DOI: 10.1016/j.heliyon.2024.e39206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Fetal programming by exposure to high-energy diets increases the susceptibility to type 2 diabetes mellitus (T2DM2) in the offspring. Glucose imbalance during fetal programming might be associated to still unknown selective lipid species and their characterization might be beneficial for T2DM diagnosis and treatment. We aim to characterize the effect of the lipid specie, C24:0 ceramide, on glucose imbalance and metabolic impairment in cellular and murine models. A lipidomic analysis identified accumulation of C24:0 ceramide in plasma of offspring rats exposed to high-energy diets during fetal programing, as well as in obese-T2DM subjects. In vitro experiments in 3T3L-1, hMSC and HUH7 cells and in in vivo models of Wistar rats and C57BL/6 mice demonstrated that C24:0 ceramide disrupted glucose balance, and differentiation and lipid accumulation in adipocytes, whereas promoted liver steatosis. Mechanistically, C24:0 ceramide impaired mitochondrial fatty acid oxidation in adipocytes and hepatic cells, tentatively by favoring reactive oxygen species accumulation and calcium overload in the mitochondria; and also, activates endoplasmic reticulum (ER) stress in hepatocytes. We propose that C24:0 ceramide accumulation in the offspring followed a prenatal diet exposure, impair lipid allocation into adipocytes and enhances liver steatosis associated to mitochondrial dysfunction and ER stress, leading to glucose imbalance.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Lilia G. Noriega
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Adriana Sánchez-García
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Natalia Vázquez-Manjarrez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Roger Maldonado-Ruiz
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Marcela Cárdenas-Tueme
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Mariana Villegas-Romero
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Itzayana Alamilla-Martínez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Humberto Rodriguez-Rocha
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Juan Carlos Corona
- Neuroscience Laboratory, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - José Gerardo Gonzalez-Gonzalez
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
12
|
Islam MN, Ebara F, Kawasaki K, Konno T, Tatemoto H, Yamanaka KI. Attenuation of endoplasmic reticulum stress improves invitro growth and subsequent maturation of bovine oocytes. Theriogenology 2024; 228:54-63. [PMID: 39096624 DOI: 10.1016/j.theriogenology.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Endoplasmic reticulum (ER) stress interferes with developmental processes in oocyte maturation and embryo development. Invitro growth (IVG) is associated with low developmental competence, and ER stress during IVG culture may play a role. Therefore, this study aimed to examine the effect of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, on the IVG of bovine oocytes to understand the role of ER stress. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (1.5-1.8 mm) and allowed to grow in vitro for 5 days at 38.5 °C in a humidified atmosphere containing 5 % CO2. Basic growth culture medium was supplemented with TUDCA at various concentrations (0, 50, 100, 250, and 500 μM). After IVG, oocyte diameters were similar among groups, but the antrum formation rate tended to be higher in the TUDCA 100 μM group. The mRNA expression levels of ER stress-associated genes (PERK, ATF6, ATF4, CHOP, BAX, IRE1, and XBP1) in OGCs were downregulated in the TUDCA 100 μM group than those in the control group. Moreover, the TUDCA 100 μM group exhibited reduced ROS production with higher GSH levels and improved in vitro-grown oocyte maturation compared with those in the control group. In contrast, no difference in the developmental competence of embryos following invitro fertilization was observed between the control and TUDCA 100 μM groups. These results indicate that ER stress could impair IVG and subsequent maturation rate of bovine oocytes, and TUDCA could alleviate these detrimental effects. These outcomes might improve the quality of oocytes in IVG culture in assisted reproductive technology.
Collapse
Affiliation(s)
- Md Nuronnabi Islam
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fumio Ebara
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Kokoro Kawasaki
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toshihiro Konno
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
13
|
Napierkowska S, Froment P, Kowalczyk A, Pamuła J, Birger M, Niżański W, Partyka A. The neonicotinoid, imidacloprid, disrupt the chicken sperm quality through calcium efflux. Poult Sci 2024; 103:103959. [PMID: 38943803 PMCID: PMC11261453 DOI: 10.1016/j.psj.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Imidacloprid (IMI), an insecticide from the neonicotinoid group widely used in agriculture, has drawn attention due to its potential harmful effects on non-target species, including bird populations. In the present work, we investigated the effect of IMI on avian semen by in vitro exposure of rooster spermatozoa to this pesticide. The semen was collected twice a week. Samples collected on one day were pooled and incubated with the following IMI concentrations: 0 mM, 0.5 mM, 5 mM, 10 mM, and 50 mM at 36°C for 3 h. Comprehensive semen analysis was carried out after 1 h and 3 h of incubation, evaluating sperm motility parameters with the CASA system and using flow cytometry to assess membrane integrity, mitochondrial activity, acrosome integrity, chromatin structure, intracellular calcium level and apoptosis markers such as: early apoptosis and caspase activation and lipid peroxidation. The results of the first experiment suggest that low concentrations of IMI have a different effect on sperm motility compared to higher concentrations. In IMI samples, we also observed a lower percentage of cells with a high level of calcium ions compared to the control, and a lower level of lipid peroxidation. We concluded that IMI may act as a blocker of calcium channels, preventing the influx of these ions into the cell. To confirm this mechanism, we conducted a second experiment with calcium channel blockers: SNX 325, MRS-1845, and Nifedipine. The results of this experiment confirmed that the mechanism of action of IMI largely relies on the blockade of calcium channels in rooster sperm. Blocking the influx of calcium ions into the cell prevents the formation of Ca²⁺-dependent pores, thereby preventing an increase in cell membrane permeability, ultimately blocking early apoptosis and lipid peroxidation in chicken spermatozoa.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Pascal Froment
- INRAE, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Science, Institute of Animal Breeding, Wrocław, Poland
| | - Jędrzej Pamuła
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Mariusz Birger
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland.
| |
Collapse
|
14
|
Kim SH, Kang DW, Kwon D, Jung YS. Critical role of endoplasmic reticulum stress on bisphenol A-induced cytotoxicity in human keratinocyte HaCaT cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4091-4104. [PMID: 38629620 DOI: 10.1002/tox.24290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 07/14/2024]
Abstract
Bisphenol A (BPA) is widely used in plastic and paper products, and its exposure can occur through skin contact or oral ingestion. The hazardous effects of BPA absorbed through the skin may be more severe; however, few studies have investigated the skin toxicity of BPA. This study investigated the effects of BPA on human epidermal keratinocyte cell lines, which is relevant for skin exposure. BPA treatment reduced cell viability in a time- and concentration-dependent manner and elevated oxidative and endoplasmic reticulum (ER) stress. N-acetylcysteine (NAC), an oxidative stress inhibitor, reduced BPA-induced reactive oxygen species (ROS) levels. However, only 10% of the decreased cell viability was restored at the highest NAC concentration. Treatment with tauroursodeoxycholic acid (TUDCA), which is an ER stress inhibitor, effectively countered the increase in ER stress-related proteins induced by BPA. Moreover, TUDCA treatment led to a reduction in oxidative stress, as demonstrated by the decrease in ROS levels, maintenance of mitochondrial membrane potential, and modulation of stress signaling proteins. Consequently, TUDCA significantly improved BPA-induced cytotoxicity in a concentration-dependent manner. Notably, combined treatment using TUDCA and NAC further reduced the BPA-induced ROS levels; however, no significant difference in cell viability was observed compared with that for TUDCA treatment alone. These findings indicated that the oxidative stress observed following BPA exposure was exacerbated by ER stress. Moreover, the principal factor driving BPA-induced cytotoxicity was indeed ER stress, which has potential implications for developing therapeutic strategies for diseases associated with similar stress responses.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Wan Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
de Antonellis P, Ferrucci V, Miceli M, Bibbo F, Asadzadeh F, Gorini F, Mattivi A, Boccia A, Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Fusco G, Viscardi M, Brandi S, Cerino P, Monaco V, Choi DR, Cheong JH, Iolascon A, Amente S, Monti M, Fava LL, Capasso M, Kim HY, Zollo M. Targeting ATP2B1 impairs PI3K/Akt/FOXO signaling and reduces SARS-COV-2 infection and replication. EMBO Rep 2024; 25:2974-3007. [PMID: 38816514 PMCID: PMC11239940 DOI: 10.1038/s44319-024-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.
Collapse
Affiliation(s)
- Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
| | - Francesca Bibbo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- European School of Molecular Medicine, SEMM, Naples, Italy
| | - Francesca Gorini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | | | - Roberta Russo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Immacolata Andolfo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | | | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Dong-Rac Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Stefano Amente
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Hong-Yeoul Kim
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy.
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- European School of Molecular Medicine, SEMM, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'Federico II' University of Naples, 80131, Naples, Italy.
| |
Collapse
|
17
|
Dell'Anno I, Morani F, Patergnani S, Daga A, Pinton P, Giorgi C, Mutti L, Gemignani F, Landi S. Thonzonium bromide inhibits progression of malignant pleural mesothelioma through regulation of ERK1/2 and p38 pathways and mitochondrial uncoupling. Cancer Cell Int 2024; 24:226. [PMID: 38951927 PMCID: PMC11218145 DOI: 10.1186/s12935-024-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a rare malignancy with a poor prognosis. Current therapies are unsatisfactory and novel cures are urgently needed. In a previous drug screening, we identified thonzonium bromide (TB) as one of the most active compounds against MPM cells. Since the biological effects of TB are poorly known, in this work we departed from some hints of previous studies and investigated several hypotheses. Moreover, we evaluated the efficacy of TB in an in vivo xenograft rodent model. METHODS In vitro assessment was made on five MPM (Mero-14, Mero-25, Ren, NCI-H28, MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A). We evaluated TB ability to affect proliferation, apoptosis, mitochondrial functions and metabolism, and the mevalonate pathway. In vivo assay was carried out on MPM-xenograft NOD-SCID mice (4 mg/kg delivered intraperitoneally, twice a week for 4 weeks) and the overall survival was analysed with Kaplan-Meier curves. RESULTS After TB treatment, we observed the suppression of ERK 1/2 phosphorylation, the increase of BAX expression and p38 phosphorylation. TB affected Ca2+ homeostasis in both mitochondrial and cytosolic compartments, it regulated the mitochondrial functioning, respiration, and ATP production as well as the mevalonate pathway. The in vivo study showed an increased overall survival for TB treated group vs. vehicle control group (P = 0.0076). CONCLUSIONS Both in vitro and in vivo results confirmed the effect of TB on MPM and unravelled novel targets with translational potential.
Collapse
Affiliation(s)
| | | | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Antonio Daga
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
18
|
Thi Thanh Nguyen N, Yoon Lee S. Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction. Biochem Pharmacol 2024; 224:116221. [PMID: 38641308 DOI: 10.1016/j.bcp.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown. Here, we examined the Detroit562 and FaDu cell lines as HNC models with and without a hyperactive PIK3CA mutation (H1047R), respectively, regarding their possible distinct responses to the NSAIDs celecoxib and sulindac sulfide (SUS). Detroit562 cells exhibited relatively high PI3K/Akt pathway-dependent cyclooxygenase-2 (COX-2) expression, associated with cell proliferation. Celecoxib treatment restricted cell proliferation and upregulated endoplasmic reticulum (ER) stress-related markers, including GRP78, C/EBP-homologous protein, activating transcription factor 4, death receptor 5, and reactive oxygen species (ROS). These effects were much stronger in Detroit562 cells than in FaDu cells and were largely COX-2-independent. SUS treatment yielded similar results. Salubrinal (an ER stress inhibitor) and N-acetyl-L-cysteine (a ROS scavenger) prevented NSAID-induced ROS generation and ER stress, respectively, indicating crosstalk between ER and oxidative stress. In addition, celecoxib and/or SUS elevated cleaved caspase-3 levels, Bcl-2-associated X protein/Bcl-2-interacting mediator of cell death expression, and mitochondrial damage, which was more pronounced in Detroit562 than in FaDu cells. Salubrinal and N-acetyl-L-cysteine attenuated celecoxib-induced mitochondrial dysfunction. Collectively, our results suggest that celecoxib and SUS efficiently suppress activating PIK3CA mutation-harboring HNC progression by inducing ER and oxidative stress and mitochondrial dysfunction, leading to apoptotic cell death, further supporting NSAID treatment as a useful strategy for oncogenic PIK3CA-mutated HNC therapy.
Collapse
Affiliation(s)
- Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea.
| |
Collapse
|
19
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
20
|
Zhang YZ, Lai HL, Huang C, Jiang ZB, Yan HX, Wang XR, Xie C, Huang JM, Ren WK, Li JX, Zhai ZR, Yao XJ, Wu QB, Leung ELH. Tanshinone IIA induces ER stress and JNK activation to inhibit tumor growth and enhance anti-PD-1 immunotherapy in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155431. [PMID: 38537440 DOI: 10.1016/j.phymed.2024.155431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.
Collapse
Affiliation(s)
- Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Huan-Ling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ze-Bo Jiang
- Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, Guangdong, China
| | - Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xuan-Run Wang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Wen-Kang Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Zhi-Ran Zhai
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao.
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China.
| |
Collapse
|
21
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
22
|
Sammari H, Jedidi S, Selmi H, Jridi M, Ayari A, Sebai H. Phytochemical Properties of Crataegus azarolus Berries Decoction Extract and Evaluation of its Protective Activity Against Acetic Acid-Induced Ulcerative Colitis in Rats. Dose Response 2024; 22:15593258241226890. [PMID: 38223297 PMCID: PMC10785741 DOI: 10.1177/15593258241226890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The present study aims to evaluate the protective effect of Crataegus azarolus berries decoction extract (CAB-DE) against acetic acid-induced ulcerative colitis as well as the mechanisms implicated in such protection. Adult male Wistar rats were separated into seven groups: Control (H2O), acetic acid (AA), AA + various doses of CAB-DE (100, 200, and 400 mg/kg, b.w.,p.o.), and AA + sulfasalazine (100 mg/kg, b.w.,p.o.) or gallic acid (50 mg/kg, b.w.,p.o.) during 10 days. All rats were kept fasting overnight and ulcerative colitis was induced by rectal infusion of AA (300 mg kg-1, b.w.) (3%, v/v, 5 mL kg-1 b.w), for 30 s. The colon was rapidly excised and macroscopically examined to measure ulcerated surfaces and the ulcer index. In vitro, we found that CAB-DE exhibited a high antioxidant activity against DPPH radical (IC50 = 164.17 ± 4.78 μg/mL). In vivo, pretreatment with CAB-DE significantly protected the colonic mucosa against AA-induced damage by stimulating mucus secretion, reducing ulcer index as well as histopathological changes. Also, CAB-DE limited the oxidative status induced by AA in the colonic mucosa, as assessed by MDA and H2O2 increased levels and the depletion of both enzymatic activities and non-enzymatic levels. In addition, AA intoxication increased iron and calcium levels in colonic mucosa and plasma, while CAB-DE pretreatment regulated all intracellular mediators deregulation and significantly reduced inflammatory markers such as CRP (1.175 ± .04 ─ .734 ± .06 μg/dl) and ALP (161.53 ± 5.02 ─ 98.60 ± 4.21 UI/L) levels. We suggest that CAB-DE protected against AA-induced ulcerative colitis due in part to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Houcem Sammari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Saber Jedidi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Houcine Selmi
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Mourad Jridi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Ala Ayari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Hichem Sebai
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de la Manouba, Manouba, Tunisie
| |
Collapse
|
23
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
24
|
Günther M, Dabare S, Fuchs J, Gunesch S, Hofmann J, Decker M, Culmsee C. Flavonoid-Phenolic Acid Hybrids Are Potent Inhibitors of Ferroptosis via Attenuation of Mitochondrial Impairment. Antioxidants (Basel) 2023; 13:44. [PMID: 38247469 PMCID: PMC10812788 DOI: 10.3390/antiox13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.
Collapse
Affiliation(s)
- Madeline Günther
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
| | - Samentha Dabare
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Jennifer Fuchs
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
25
|
Park JH, Kim MS, Yun DH, Kim YC. Apoptosis/Necroptosis Inducing Thiazole-Containing Artificial Polypeptide for Immunogenic Cell Death of Cancer. ACS APPLIED BIO MATERIALS 2023; 6:5290-5300. [PMID: 38044569 DOI: 10.1021/acsabm.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Immunogenic cell death (ICD) has emerged as a promising approach to cancer immunotherapy. During ICD, cancer cell death and the release of damage-associated molecular pattern (DAMP) signals occur simultaneously. Increased production of reactive oxygen species (ROS) and severe endoplasmic reticulum stress are necessary for enhanced ICD. Furthermore, the levels of ROS and reduced glutathione (GSH) are involved in various cell death mechanisms. The thiazole ring structure has gained considerable interest as a functional moiety for anticancer agents. This study designed and synthesized a positively charged cell-penetrating polypeptide with a thiazole functional moiety (NS). The NS internalizes into the cancer cells through direct penetration and endo-lysosomal escape. The NS induces mitochondrial depolarization and ER stress in a concentration-dependent manner, leading to a significant ROS production and GSH depletion. Consequently, the ICD of cancer cells is activated, resulting in the release of DAMP signals. Furthermore, NS causes a shift in the cell death pathway from apoptosis to necroptosis as the concentration increases. In this study, we confirmed the possibility of NS as a promising ICD inducer that can be used while varying the concentration according to the cancer type.
Collapse
Affiliation(s)
- Jeong Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mun Sik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Do Hyun Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Zhang S, Li Y, Zhu W, Zhang L, Lei L, Tian X, Chen K, Shi W, Cong B. Endoplasmic reticulum stress induced by turbulence of mitochondrial fusion and fission was involved in stressed cardiomyocyte injury. J Cell Mol Med 2023; 27:3313-3325. [PMID: 37593898 PMCID: PMC10623534 DOI: 10.1111/jcmm.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Mitochondria are sensitive organelles that sense intrinsic and extrinsic stressors and maintain cellular physiological functions through the dynamic homeostasis of mitochondrial fusion and fission. Numerous pathological processes are associated with mitochondrial fusion and fission disorders. However, the molecular mechanism by which stress induces cardiac pathophysiological changes through destabilising mitochondrial fusion and fission is unclear. Therefore, this study aimed to investigate whether the endoplasmic reticulum stress signalling pathway initiated by the turbulence of mitochondrial fusion and fission under stressful circumstances is involved in cardiomyocyte damage. Based on the successful establishment of the classical stress rat model of restraint plus ice water swimming, we measured the content of serum lactate dehydrogenase. We used haematoxylin-eosin staining, special histochemical staining, RT-qPCR and western blotting to clarify the cardiac pathology, ultrastructural changes and expression patterns of mitochondrial fusion and fission marker proteins and endoplasmic reticulum stress signalling pathway proteins. The results indicated that mitochondrial fusion and fission markers and proteins of the endoplasmic reticulum stress JNK signalling pathway showed significant abnormal dynamic changes with the prolongation of stress, and stabilisation of mitochondrial fusion and fission using Mdivi-1 could effectively improve these abnormal expressions and ameliorate cardiomyocyte injury. These findings suggest that stress could contribute to pathological cardiac injury, closely linked to the endoplasmic reticulum stress JNK signalling pathway induced by mitochondrial fusion and fission turbulence.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Yingmin Li
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Weihao Zhu
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Lihua Zhang
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Lei Lei
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Xiaofei Tian
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Ke Chen
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Weibo Shi
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| | - Bin Cong
- Department of Forensic MedicineHebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular IdentificationShijiazhuangChina
| |
Collapse
|
27
|
Pathak T, Benson JC, Johnson MT, Xin P, Abdelnaby AE, Walter V, Koltun WA, Yochum GS, Hempel N, Trebak M. Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560521. [PMID: 37873177 PMCID: PMC10592933 DOI: 10.1101/2023.10.02.560521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The endoplasmic reticulum (ER) stores large amounts of calcium (Ca2+), and the controlled release of ER Ca2+ regulates a myriad of cellular functions. Although altered ER Ca2+ homeostasis is known to induce ER stress, the mechanisms by which ER Ca2+ imbalance activate ER stress pathways are poorly understood. Stromal-interacting molecules STIM1 and STIM2 are two structurally homologous ER-resident Ca2+ sensors that synergistically regulate Ca2+ influx into the cytosol through Orai Ca2+ channels for subsequent signaling to transcription and ER Ca2+ refilling. Here, we demonstrate that reduced STIM2, but not STIM1, in colorectal cancer (CRC) is associated with poor patient prognosis. Loss of STIM2 causes SERCA2-dependent increase in ER Ca2+, increased protein translation and transcriptional and metabolic rewiring supporting increased tumor size, invasion, and metastasis. Mechanistically, STIM2 loss activates cMyc and the PERK/ATF4 branch of ER stress in an Orai-independent manner. Therefore, STIM2 and PERK/ATF4 could be exploited for prognosis or in targeted therapies to inhibit CRC tumor growth and metastasis.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - J. Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Martin T. Johnson
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
- Penn State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, United States
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, United States
| | - Gregory S. Yochum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, United States
| | - Nadine Hempel
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
28
|
Tak J, Kim SG. Effects of toxicants on endoplasmic reticulum stress and hepatic cell fate determination. Toxicol Res 2023; 39:533-547. [PMID: 37779594 PMCID: PMC10541383 DOI: 10.1007/s43188-023-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 10/03/2023] Open
Abstract
Toxicant-induced injury is a significant global health issue. However, the mechanisms through which toxicants such as carbon tetrachloride, acetaminophen, dimethylformamide, cocaine, and morphine induce the death of multiple cell types and contribute to liver toxicity are highly complex. This phenomenon involves intricate signaling pathways in association with oxidative stress, inflammation, and activation of death receptors, which are closely linked to endoplasmic reticulum (ER) stress. ER stress initially triggers the unfolded protein response, which either promotes cell survival or causes cell death at later times, depending on the severity and duration of the stress. Thus, comprehending the molecular basis governing cell fate determination in the context of ER stress may provide key insights into the prevention and treatment of toxicant-induced injury. This review summarizes our current understanding of agents that trigger different forms of ER stress-mediated cell death, necroptosis, ferroptosis, pyroptosis, and apoptosis, and covers the underlying molecular basis of toxicant-induced ER stress, as well as potential target molecules.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
29
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
30
|
Oshitari T. Neurovascular Cell Death and Therapeutic Strategies for Diabetic Retinopathy. Int J Mol Sci 2023; 24:12919. [PMID: 37629100 PMCID: PMC10454228 DOI: 10.3390/ijms241612919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness worldwide. DR was recently defined as a neurovascular disease associated with tissue-specific neurovascular impairment of the retina in patients with diabetes. Neurovascular cell death is the main cause of neurovascular impairment in DR. Thus, neurovascular cell protection is a potential therapy for preventing the progression of DR. Growing evidence indicates that a variety of cell death pathways, such as apoptosis, necroptosis, ferroptosis, and pyroptosis, are associated with neurovascular cell death in DR. These forms of regulated cell death may serve as therapeutic targets for ameliorating the pathogenesis of DR. This review focuses on these cell death mechanisms and describes potential therapies for the treatment of DR that protect against neurovascular cell death.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
31
|
Mazevet M, Belhadef A, Ribeiro M, Dayde D, Llach A, Laudette M, Belleville T, Mateo P, Gressette M, Lefebvre F, Chen J, Bachelot-Loza C, Rucker-Martin C, Lezoualch F, Crozatier B, Benitah JP, Vozenin MC, Fischmeister R, Gomez AM, Lemaire C, Morel E. EPAC1 inhibition protects the heart from doxorubicin-induced toxicity. eLife 2023; 12:e83831. [PMID: 37551870 PMCID: PMC10484526 DOI: 10.7554/elife.83831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marion Laudette
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | - Tiphaine Belleville
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | | | | | | | - Ju Chen
- Basic Cardiac Research UCSD School of Medicine La JollaSan DiegoUnited States
| | - Christilla Bachelot-Loza
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Catherine Rucker-Martin
- Faculté de Médecine, Université Paris-SaclayLe Kremlin BicêtreFrance
- Inserm UMR_S 999, Hôpital Marie LannelongueLe Plessis RobinsonFrance
| | - Frank Lezoualch
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | | | | | | | | | | | - Christophe Lemaire
- Université Paris-SaclayOrsayFrance
- Université Paris-Saclay, UVSQ, InsermOrsayFrance
| | | |
Collapse
|
32
|
Dave KM, Stolz DB, Manickam DS. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin Drug Deliv 2023; 20:1769-1788. [PMID: 37921194 DOI: 10.1080/17425247.2023.2279115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Cai N, Chen X, Liu J, Wen Z, Wen S, Zeng W, Lin S, Chen Y, Shi G, Zeng L. Glucokinase activator improves glucose tolerance and induces hepatic lipid accumulation in mice with diet-induced obesity. LIVER RESEARCH 2023; 7:124-135. [PMID: 39958949 PMCID: PMC11791924 DOI: 10.1016/j.livres.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 02/18/2025]
Abstract
Background and aims Type 2 diabetes mellitus remains a substantial medical problem with increasing global prevalence. Pharmacological research is becoming increasingly focused on personalized treatment strategies. Drug development based on glucokinase (GK) activation is an important strategy for lowering blood glucose. This study aimed to investigate the effect of GK activation on glucose and lipid metabolism in diet-induced obese mice. Materials and methods Mice were fed with a high-fat diet (HFD) for 16 weeks to induce obesity, followed by a GK activator (GKA, AZD1656) or vehicle treatment by gavage for 4 weeks. The effect of GKA treatment on glucose metabolism was evaluated using glucose and insulin tolerance tests. Hepatic lipid accumulation was assessed by hematoxylin and eosin staining, Oil Red O staining, and transmission electron microscopy. The underlying mechanism of GK activation in glucose and lipid metabolism in the liver was studied using transcriptomic analysis, with a mechanistic study in mouse livers in vivo and AML12 cells in vitro. Results GK activation by GKA treatment improved glucose tolerance in HFD-fed mice while increasing hepatic lipid accumulation. Transcriptomic analysis of liver tissues indicated the lipogenesis and protein kinase RNA-like endoplasmic reticulum kinase (PERK)-unfolded protein response (UPR) pathway activations in GKA-treated HFD-fed mice. Inhibition of the ACC activity, which is an important protein in lipogenesis, attenuated GKA treatment-induced lipid accumulation and PERK-UPR activation in vitro. Conclusions GK activation improved glucose tolerance and insulin sensitivity while inducing hepatic lipid accumulation by increasing the lipogenic gene expression, which subsequently activated the hepatic PERK-UPR signaling pathway.
Collapse
Affiliation(s)
- Nan Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuanrong Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siyin Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, Guangdong, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Pham JH, Stankowska DL. Mitochondria-associated endoplasmic reticulum membranes (MAMs) and their role in glaucomatous retinal ganglion cell degeneration-a mini review. Front Neurosci 2023; 17:1198343. [PMID: 37250427 PMCID: PMC10213334 DOI: 10.3389/fnins.2023.1198343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, commonly associated with elevated intraocular pressure (IOP), leading to degeneration of the optic nerve and death of retinal ganglion cells, the output neurons in the eye. In recent years, many studies have implicated mitochondrial dysfunction as a crucial player in glaucomatous neurodegeneration. Mitochondrial function has been an increasingly researched topic in glaucoma, given its vital role in bioenergetics and propagation of action potentials. One of the most metabolically active tissues in the body characterized by high oxygen consumption is the retina, particularly the retinal ganglion cells (RGCs). RGCs, which have long axons that extend from the eyes to the brain, rely heavily on the energy generated by oxidative phosphorylation for signal transduction, rendering them more vulnerable to oxidative damage. In various glaucoma models, mitochondrial dysfunction and stress from protein aggregates in the endoplasmic reticulum (ER) have been observed in the RGCs. However, it has been shown that the two organelles are connected through a network called mitochondria-associated ER membranes (MAMs); hence this crosstalk in a pathophysiological condition such as glaucoma should be evaluated. Here, we review the current literature suggestive of mitochondrial and ER stress related to glaucoma, indicating potential cross-signaling and the potential roles of MAMs.
Collapse
Affiliation(s)
- Jennifer H. Pham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
35
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
36
|
Mahley RW. Apolipoprotein E4 targets mitochondria and the mitochondria-associated membrane complex in neuropathology, including Alzheimer's disease. Curr Opin Neurobiol 2023; 79:102684. [PMID: 36753858 DOI: 10.1016/j.conb.2023.102684] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Apolipoprotein (apo) E4 sets the stage for neuropathology in Alzheimer's disease (AD) by causing mitochondrial dysfunction and altering mitochondria-associated membranes. Contact and apposition of mitochondrial-endoplasmic reticulum membranes are enhanced in brain cells in AD and associated with increases in tethering and spacing proteins that modulate many cellular processes. Contact site protein levels are higher in apoE4 cells. In apoE4 neurons, the NAD+/NADH ratio is lowered, reactive oxygen species are increased, and NAD/NADH pathway components and redox proteins are decreased. Oxidative phosphorylation is impaired and reserve ATP generation capacity is lacking. ApoE4 neurons have ∼50% fewer respiratory complex subunits (e.g., ATP synthase) and may increase translocase levels of the outer and inner mitochondrial membranes to facilitate delivery of nucleus-encoded complex subunits. Respiratory complex assembly relies on mitochondrial cristae organizing system subunits that are altered in apoE4 cells, and apoE4 increases mitochondrial proteases that control respiratory subunit composition for complex assembly.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Departments of Pathology and Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
38
|
Zhang L, Li S, Cong M, Liu Z, Dong Z, Zhao M, Gao K, Hu L, Qiao H. Lemon-Derived Extracellular Vesicle-like Nanoparticles Block the Progression of Kidney Stones by Antagonizing Endoplasmic Reticulum Stress in Renal Tubular Cells. NANO LETTERS 2023; 23:1555-1563. [PMID: 36727669 DOI: 10.1021/acs.nanolett.2c05099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kidney stones, represented by the calcium oxalate (CaOx) type, are highly prevalent and recrudescent. Cumulative evidence shows regular consumption of lemonade intervenes with stone development. However, the detailed mechanism remains obscure. Here, extracellular vesicle-like nanoparticles (LEVNs) isolated from lemonade are demonstrated to traffick from the gut to the kidney, primarily enriched in tubule cells. Oral administration of LEVNs significantly alleviates the progression of kidney stones in rats. Mechanistically, in addition to altering the crystallization of CaOx toward a less stable subtype, LEVNs suppress the CaOx-induced endoplasmic reticulum stress response of tubule cells, as indicated by homeostasis of specific signaling molecules and restoration of subcellular function, thus indirectly inhibiting stone formation. To exercise this regulation, endocytosed LEVNs traffick along the microtubules throughout the cytoplasm and are eventually recruited into lysosomes. In conclusion, this study reveals a LEVNs-mediated mechanism against renal calculi and provides positive evidence for consumption of lemonade preventing stone formation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Simin Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Cong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoya Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyue Dong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongzhi Qiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
39
|
XBP1 modulates endoplasmic reticulum and mitochondria crosstalk via regulating NLRP3 in renal ischemia/reperfusion injury. Cell Death Discov 2023; 9:69. [PMID: 36801911 PMCID: PMC9938143 DOI: 10.1038/s41420-023-01360-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
The functional status of mitochondria and the endoplasmic reticulum are central to renal ischemia/reperfusion injury (IRI). X-box binding protein 1 (XBP1) is an important transcription factor in endoplasmic reticulum stress. NLR family pyrin domain containing-3 (NLRP3) inflammatory bodies are closely related to renal IRI. In vivo and in vitro, we examined the molecular mechanisms and functions of XBP1-NLRP3 signaling in renal IRI, which influences ER-mitochondrial crosstalk. In this study, mice were subjected to 45 min of unilateral renal warm ischemia, the other kidney resected, and reperfusion was performed for 24 h in vivo. In vitro, murine renal tubular epithelial cells (TCMK-1) were exposed to hypoxia for 24 h and reoxygenation for 2 h. Tissue or cell damage was evaluated by measuring blood urea nitrogen and creatinine levels, histological staining, flow cytometry, terminal deoxynucleotidyl transferase-mediated nick-end labeling, diethylene glycol staining, and transmission electron microscopy (TEM). Western blotting, immunofluorescence staining, and ELISA were used to analyze protein expression. Whether XBP1 regulates the NLRP3 promoter was evaluated using a luciferase reporter assay. Kidney damage was reduced with decreasing blood urea nitrogen, creatinine, interleukin-1β, and interleukin-18 levels. XBP1 deficiency reduced tissue damage and cell apoptosis, protecting the mitochondria. Disruption of XBP1 was associated with reduced NLRP3 and cleaved caspase-1 levels and markedly improved survival. In vitro in TCMK-1 cells, XBP1 interference inhibited caspase-1-dependent mitochondrial damage and reduced the production of mitochondrial reactive oxygen species. The luciferase assay showed that spliced XBP1 isoforms enhanced the activity of the NLRP3 promoter. These findings reveal that XBP1 downregulation suppresses the expression of NLRP3, a potential regulator of endoplasmic reticulum mitochondrial crosstalk in nephritic injury and a potential therapeutic target in XBP1-mediated aseptic nephritis.
Collapse
|
40
|
Kim TW. Nodakenin Induces ROS-Dependent Apoptotic Cell Death and ER Stress in Radioresistant Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12020492. [PMID: 36830050 PMCID: PMC9952086 DOI: 10.3390/antiox12020492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Angelica gigas exerts powerful anti-tumor and anti-cancer effects in various cancer cell types. However, there have been few studies regarding the anti-cancer effect of nodakenin, a bioactive compound of Angelica gigas, in vivo and in vitro on breast cancers. I found that nodakenin, in a concentration-dependent manner, inhibits breast cancer cell viability and decreases the tumor volume in mice. Additionally, nodakenin induces caspase-3-dependent apoptosis in breast cancer cells; however, the combination of Z-VAD-FMK and nodakenin suppresses the caspase-3-dependent apoptotic cell death. Furthermore, nodakenin mediates apoptotic cell death via the PERK-mediated signaling pathway and calcium (Ca2+) release, and nodakenin combined with thapsigargin induces synergistic cell death by inhibiting sarco/endoplasmic reticulum (ER) Ca2+-ATPase. However, knockdown of PERK or CHOP inhibits Ca2+ generation and caspase-dependent apoptosis in nodakenin-treated breast cancer cells. Nodakenin induces ROS and Ca2+ generation, ER stress, and apoptotic cell death; however, the knockdown of Nox4 inhibits ROS generation and ER stress- and caspase-dependent apoptotic cell death. In addition, nodakenin combined with radiation overcomes radioresistance in radioresistant breast cancer cells by suppressing epithelial-mesenchymal transition phenotypes, including the decrease in E-cadherin and the increase in N-cadherin and vimentin. Therefore, these findings indicate that nodakenin may be a novel therapeutic strategy for breast cancers.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, 123 Dongdae-ro, Gyeongju 38066, Gyeongbuk, Republic of Korea
| |
Collapse
|
41
|
Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
42
|
Ray MN, Ozono M, Nakao M, Sano S, Kogure K. Only one carbon difference determines the pro-apoptotic activity of α-tocopheryl esters. FEBS J 2023; 290:1027-1048. [PMID: 36083714 DOI: 10.1111/febs.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
α-Tocopheryl succinate (TS), a redox-silent succinyl ester of natural α-Tocopherol, has emerged as a novel anti-cancer agent. However, the underlying mechanism is unclear. We found that the terminal dicarboxylic moiety of tocopheryl esters contributes to apoptosis induction and thus cytotoxicity. To further examine this relationship, we compared the pro-apoptotic activity of TS, which has four carbon atoms in the terminal dicarboxylic moiety, to that of a newly synthesized, tocopheryl glutarate (Tglu), which has five. Cytotoxicity assays in vitro confirmed that TS stimulated apoptosis, while Tglu was non-cytotoxic. In investigating biological mechanisms leading to these opposing effects, we found that TS caused an elevation of intracellular superoxide, but Tglu did not. TS increased intracellular Ca2+ in cultured cells, suggesting induction of endoplasmic reticulum (ER) stress; however, Tglu did not affect Ca2+ homeostasis. 1,4,5-trisphosphate (IP3 ) receptor antagonist 2-Aminoethyl diphenylborinate (2-APB) decreased TS-induced intracellular Ca2+ , restored mitochondrial activity and cell viability in TS-treated cells, establishing the ER-mitochondria relationship in apoptosis induction. Moreover, real-time PCR, immunostaining and Western blotting assays revealed that TS downregulated glucose-regulated protein 78 (GRP78), which maintains ER homeostasis and promotes cell survival. Conversely, Tglu upregulates GRP78. Taken together, our results suggest a model in which TS-mediated superoxide production and GRP78 inhibition induce ER stress, which elevates intracellular Ca2+ and depolarizes mitochondria, leading to apoptosis. Because Tglu does not affect superoxide generation and increases GRP78 expression, it inhibits ER stress and is thereby non-cytotoxic. Our research provides insight into the structure-activity relationship of tocopheryl esters regarding the induction of apoptosis.
Collapse
Affiliation(s)
- Manobendro Nath Ray
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Japan
| | - Mizune Ozono
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Michiyasu Nakao
- Department of Molecular Medicinal Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Shigeki Sano
- Department of Molecular Medicinal Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
43
|
Park KC, Kim JM, Kim SY, Kim SM, Lim JH, Kim MK, Fang S, Kim Y, Mills GB, Noh SH, Cheong JH. PMCA inhibition reverses drug resistance in clinically refractory cancer patient-derived models. BMC Med 2023; 21:38. [PMID: 36726166 PMCID: PMC9893610 DOI: 10.1186/s12916-023-02727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cancer cells have developed molecular strategies to cope with evolutionary stressors in the dynamic tumor microenvironment. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) is a metabolic rheostat that regulates diverse cellular adaptive behaviors, including growth and survival. However, the mechanistic role of PGC1α in regulating cancer cell viability under metabolic and genotoxic stress remains elusive. METHODS We investigated the PGC1α-mediated survival mechanisms in metabolic stress (i.e., glucose deprivation-induced metabolic stress condition)-resistant cancer cells. We established glucose deprivation-induced metabolic stress-resistant cells (selected cells) from parental tumor cells and silenced or overexpressed PGC1α in selected and parental tumor cells. RESULTS Several in vitro and in vivo mouse experiments were conducted to elucidate the contribution of PGC1α to cell viability in metabolic stress conditions. Interestingly, in the mouse xenograft model of patient-derived drug-resistant cancer cells, each group treated with an anti-cancer drug alone showed no drastic effects, whereas a group that was co-administered an anti-cancer drug and a specific PMCA inhibitor (caloxin or candidate 13) showed marked tumor shrinkage. CONCLUSIONS Our results suggest that PGC1α is a key regulator of anti-apoptosis in metabolic and genotoxic stress-resistant cells, inducing PMCA expression and allowing survival in glucose-deprived conditions. We have discovered a novel therapeutic target candidate that could be employed for the treatment of patients with refractory cancers.
Collapse
Affiliation(s)
- Ki Cheong Park
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Yong Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Mo Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Hong Lim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ki Kim
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS Genome Center, New drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon, 22014, Republic of Korea
| | - Gordon B Mills
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung Hoon Noh
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,YUMC-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Biochemistry & Molecular Biology, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Moutan Cortex Extract Modulates Macrophage Activation via Lipopolysaccharide-Induced Calcium Signaling and ER Stress-CHOP Pathway. Int J Mol Sci 2023; 24:ijms24032062. [PMID: 36768384 PMCID: PMC9916843 DOI: 10.3390/ijms24032062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Moutan Cortex, Paeonia suffruticosa root, has long been used as a medicine for the treatment of inflammatory diseases. The aim of this study was to evaluate the modulative properties of Moutan Cortex water extract (CP) on endoplasmic reticulum (ER) stress-related macrophage activation via the calcium-CHOP pathway. RAW 264.7 mouse macrophages were activated by lipopolysaccharide (LPS), and the levels of various inflammatory mediators from RAW 264.7 were evaluated. The multiplex cytokine assay was used to investigate both cytokines and growth factors, and RT-PCR was used to investigate the expressions of inflammation-related genes, such as CHOP. Data represent the levels of NO and cytosolic calcium in LPS-stimulated RAW 264.7 were significantly inhibited by CP as well as hydrogen peroxide (p < 0.05). Minutely, NO production in LPS-stimulated RAW 264.7 incubated with CP at concentrations of 25, 50, 100, and 200 µg/mL for 24 h was 97.32 ± 1.55%, 95.86 ± 2.26%, 94.64 ± 1.83%, and 92.69 ± 2.31% of the control value (LPS only), respectively (p < 0.05). Calcium release in LPS-stimulated RAW 264.7 incubated with CP at concentrations of 25, 50, 100, and 200 µg/mL for 18 h was 95.78 ± 1.64%, 95.41 ± 1.14%, 94.54 ± 2.76%, and 90.89 ± 3.34% of the control value, respectively (p < 0.05). Hydrogen peroxide production in LPS-stimulated RAW 264.7 incubated with CP at concentrations of 25, 50, 100, and 200 µg/mL for 24 h was 79.15 ± 7.16%, 63.83 ± 4.03%, 46.27 ± 4.38%, and 40.66 ± 4.03% of the control value, respectively (p < 0.05). It is interesting that the production of IL-6, TNF-α, G-CSF, MIP-1α, MIP-2, and M-CSF in LPS-stimulated RAW 264.7 were significantly inhibited by CP (p < 0.05), while the production of LIX, LIF, RANTES, and MIP-1β showed a meaningful decrease. CP at concentrations of 25, 50, 100, and 200 µg/mL significantly reduced the transcription of Chop, Camk2α, NOS, STAT1, STAT3, Ptgs2, Jak2, c-Jun, Fas, c-Fos, TLR3, and TLR9 in LPS-stimulated RAW 264.7 (p < 0.05). CP at concentrations of 25, 50, and 100 µg/mL significantly reduced the phosphorylation of STAT3, p38 MAPK, and IκB-α in LPS-stimulated RAW 264.7 (p < 0.05). These results suggest that CP might modulate macrophage activation via LPS-induced calcium signaling and the ER stress-CHOP pathway.
Collapse
|
45
|
Guo D, Dai X, Liu K, Liu Y, Wu J, Wang K, Jiang S, Sun F, Wang L, Guo B, Yang D, Huang L. A Self-Reinforcing Nanoplatform for Highly Effective Synergistic Targeted Combinatary Calcium-Overload and Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202424. [PMID: 36640265 DOI: 10.1002/adhm.202202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Indexed: 01/15/2023]
Abstract
While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Guo
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyong Dai
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kewei Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuhong Liu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiamin Wu
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Kun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Shengwei Jiang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fen Sun
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lijun Wang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Laiqiang Huang
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, State Key Laboratory of Chemical Oncogenomics, Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Cappabianca L, Zelli V, Pellegrini C, Sebastiano M, Maccarone R, Clementi M, Chiominto A, Ruggeri P, Cardelli L, Ruggieri M, Sbaffone M, Fargnoli MC, Guadagni S, Farina AR, Mackay AR. The Alternative TrkAIII Splice Variant, a Targetable Oncogenic Participant in Human Cutaneous Malignant Melanoma. Cells 2023; 12:237. [PMID: 36672171 PMCID: PMC9856487 DOI: 10.3390/cells12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Post-therapeutic relapse, poor survival rates and increasing incidence justify the search for novel therapeutic targets and strategies in cutaneous malignant melanoma (CMM). Within this context, a potential oncogenic role for TrkA in CMM is suggested by reports of NTRK1 amplification, enhanced TrkA expression and intracellular TrkA activation associated with poor prognosis. TrkA, however, exhibits tumour-suppressing properties in melanoma cell lines and has recently been reported not to be associated with CMM progression. To better understand these contradictions, we present the first analysis of potential oncogenic alternative TrkA mRNA splicing, associated with TrkA immunoreactivity, in CMMs, and compare the behaviour of fully spliced TrkA and the alternative TrkAIII splice variant in BRAF(V600E)-mutated A375 melanoma cells. Alternative TrkA splicing in CMMs was associated with unfolded protein response (UPR) activation. Of the several alternative TrkA mRNA splice variants detected, TrkAIII was the only variant with an open reading frame and, therefore, oncogenic potential. TrkAIII expression was more frequent in metastatic CMMs, predominated over fully spliced TrkA mRNA expression in ≈50% and was invariably linked to intracellular phosphorylated TrkA immunoreactivity. Phosphorylated TrkA species resembling TrkAIII were also detected in metastatic CMM extracts. In A375 cells, reductive stress induced UPR activation and promoted TrkAIII expression and, in transient transfectants, promoted TrkAIII and Akt phosphorylation, enhancing resistance to reductive stress-induced death, which was prevented by lestaurtinib and entrectinib. In contrast, fully spliced TrkA was dysfunctional in A375 cells. The data identify fully spliced TrkA dysfunction as a novel mechanism for reducing melanoma suppression, support a causal relationship between reductive stress, UPR activation, alternative TrkAIII splicing and TrkAIII activation and characterise a targetable oncogenic pro-survival role for TrkAIII in CMM.
Collapse
Affiliation(s)
- Lucia Cappabianca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Chiominto
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Pathology, Saint Salvatory Hospital, 67100 L’Aquila, Italy
| | - Pierdomenico Ruggeri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ludovica Cardelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marianna Ruggieri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maddalena Sbaffone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria-Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Department of Dermatology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Antonietta R. Farina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew R. Mackay
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
47
|
Panagaki T, Randi EB, Szabo C, Hölscher C. Incretin Mimetics Restore the ER-Mitochondrial Axis and Switch Cell Fate Towards Survival in LUHMES Dopaminergic-Like Neurons: Implications for Novel Therapeutic Strategies in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1149-1174. [PMID: 37718851 PMCID: PMC10657688 DOI: 10.3233/jpd-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration. OBJECTIVE In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress. METHODS We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin. RESULTS We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide. CONCLUSIONS The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B. Randi
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian Hölscher
- Research & Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
48
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. ER stress and inflammation crosstalk in obesity. Med Res Rev 2023; 43:5-30. [PMID: 35975736 DOI: 10.1002/med.21921] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) governs the proper folding of polypeptides and proteins through various chaperones and enzymes residing within the ER organelle. Perturbation in the ER folding process ensues when overwhelmed protein folding exceeds the ER handling capacity, leading to the accumulation of misfolded/unfolded proteins in the ER lumen-a state being referred to as ER stress. In turn, ER stress induces a gamut of signaling cascades, termed as the "unfolded protein response" (UPR) that reinstates the ER homeostasis through a panel of gene expression modulation. This type of UPR is usually deemed "adaptive UPR." However, persistent or unresolved ER stress hyperactivates UPR response, which ultimately, triggers cell death and inflammatory pathways, termed as "maladaptive/terminal UPR." A plethora of evidence indicates that crosstalks between ER stress (maladaptive UPR) and inflammation precipitate obesity pathogenesis. In this regard, the acquisition of the mechanisms linking ER stress to inflammation in obesity might unveil potential remedies to tackle this pathological condition. Herein, we aim to elucidate key mechanisms of ER stress-induced inflammation in the context of obesity and summarize potential therapeutic strategies in the management of obesity through maneuvering ER stress and ER stress-associated inflammation.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ne N Wu
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood-Brain Barrier Endothelium. Int J Mol Sci 2022; 24:ijms24010183. [PMID: 36613623 PMCID: PMC9820675 DOI: 10.3390/ijms24010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 and iso-Aβ42 activate mitochondrial respiration compared to p-Aβ42. The isomerized form promotes a greater cytotoxicity and mitochondrial dysfunction, causing maximum oxidative stress. Thus, Aβ42, p-Aβ42 and iso-Aβ42 isoforms differently affect the BBBs' cell redox parameters, significantly modulating the functioning of the mitochondria. The changes in the level of modified Aβ forms can contribute to the BBBs' breakdown during AD.
Collapse
|
50
|
Li R, Ren Y, Mo G, Swider Z, Mikoshiba K, Bement WM, Liu XJ. Inositol 1, 4, 5-trisphosphate receptor is required for spindle assembly in Xenopus oocytes. Mol Biol Cell 2022; 33:br27. [PMID: 36129775 PMCID: PMC9727787 DOI: 10.1091/mbc.e22-06-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extent to which calcium signaling participates in specific events of animal cell meiosis or mitosis is a subject of enduring controversy. We have previously demonstrated that buffering intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, a fast calcium chelator), but not ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA, a slow calcium chelator), rapidly depolymerizes spindle microtubules in Xenopus oocytes, suggesting that spindle assembly and/or stability requires calcium nanodomains-calcium transients at extremely restricted spatial-temporal scales. In this study, we have investigated the function of inositol-1,4,5-trisphosphate receptor (IP3R), an endoplasmic reticulum (ER) calcium channel, in spindle assembly using Trim21-mediated depletion of IP3R. Oocytes depleted of IP3R underwent germinal vesicle breakdown but failed to emit the first polar body and failed to assemble proper meiotic spindles. Further, we developed a cell-free spindle assembly assay in which cytoplasm was aspirated from single oocytes. Spindles assembled in this cell-free system were encased in ER membranes, with IP3R enriched at the poles, while disruption of either ER organization or calcium signaling resulted in rapid spindle disassembly. As in intact oocytes, formation of spindles in cell-free oocyte extracts also required IP3R. We conclude that intracellular calcium signaling involving IP3R-mediated calcium release is required for meiotic spindle assembly in Xenopus oocytes.
Collapse
Affiliation(s)
- Ruizhen Li
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada
| | - Yanping Ren
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Guolong Mo
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zackary Swider
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - Katsuhiko Mikoshiba
- SIAIS ShanghaiTech University, Middle Huaxia Road, Shanghai 201210, China,Faculty of Science, Toho University Miyama, Funabashi, Chiba, 247-8510 Japan
| | - William M. Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin—Madison, Madison, WI 53706,Center for Quantitative Cell Imaging, University of Wisconsin—Madison, Madison, WI 53706
| | - X. Johné Liu
- Ottawa Hospital Research Institute, The Ottawa Hospital—General Campus, Ottawa, ON K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, ON K1H 8M5, Canada,*Address correspondence to: Johné Liu ()
| |
Collapse
|