1
|
Wang S, Zhang F, Chen J. Application and potential value of curcumin in prostate cancer: a meta-analysis based on animal models. Front Pharmacol 2024; 15:1379389. [PMID: 38783940 PMCID: PMC11111872 DOI: 10.3389/fphar.2024.1379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).
Collapse
Affiliation(s)
- Shiheng Wang
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengxia Zhang
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Chen
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
| |
Collapse
|
2
|
Wu J, Ji H, Li T, Guo H, Xu H, Zhu J, Tian J, Gao M, Wang X, Zhang A. Targeting the prostate tumor microenvironment by plant-derived natural products. Cell Signal 2024; 115:111011. [PMID: 38104704 DOI: 10.1016/j.cellsig.2023.111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prostate cancer is among the most common malignancies for men, with limited therapy options for last stages of the tumor. There are some different options for treatment and control of prostate tumor growth. However, targeting some specific molecules and cells within tumors has been attracted interests in recent years. The tumor microenvironment (TME) has an important role in the initiation of various malignancies, which can also expand the progression of tumor and facilitate invasion of malignant cells. By regulating immune responses and distinct changes in the metabolism of cells in the tumor, TME has substantial effects in the resistance of cancer cells to therapy. TME in various solid cancers like prostate cancer includes various cells, including cancer cells, supportive stromal cells, immunosuppressive cells, and anticancer inflammatory cells. Natural products including herbal-derived agents and also other natural compounds have been well studied for their anti-tumor potentials. These compounds may modulate various signaling pathways involved in TME, such as immune responses, the metabolism of cells, epigenetics, angiogenesis, and extracellular matrix (ECM). This paper provides a review of the current knowledge of prostate TME and complex interactions in this environment. Additionally, the potential use of natural products and also nanoparticles loaded with natural products as therapeutic adjuvants on different cells and therapeutic targets within prostate TME will be discussed.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Hao Ji
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Tiantian Li
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Haifeng Guo
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - HaiFei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jiale Tian
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Mingde Gao
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| | - Aihua Zhang
- The operating room of Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| |
Collapse
|
3
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
4
|
Islam F, Nath N, Zehravi M, Khan J, Jashim SBT, Charde MS, Chakole RD, Kumar KP, Babu AK, Nainu F, Khan SL, Rab SO, Emran TB, Wilairatana P. Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed? NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:39. [PMID: 37843642 PMCID: PMC10579213 DOI: 10.1007/s13659-023-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
The primary approaches to treat cancerous diseases include drug treatment, surgical procedures, biotherapy, and radiation therapy. Chemotherapy has been the primary treatment for cancer for a long time, but its main drawback is that it kills cancerous cells along with healthy ones, leading to deadly adverse health effects. However, genitourinary cancer has become a concern in recent years as it is more common in middle-aged people. So, researchers are trying to find possible therapeutic options from natural small molecules due to the many drawbacks associated with chemotherapy and other radiation-based therapies. Plenty of research was conducted regarding genitourinary cancer to determine the promising role of natural small molecules. So, this review focused on natural small molecules along with their potential therapeutic targets in the case of genitourinary cancers such as prostate cancer, renal cancer, bladder cancer, testicular cancer, and so on. Also, this review states some ongoing or completed clinical evidence in this regard.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Sumiya Ben-Ta Jashim
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Manoj Shrawan Charde
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - Rita Dadarao Chakole
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - K Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Govt. of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), Mehrauli-Badarpur Road, PushpVihar, Sector 3, New Delhi, 110017, India
| | - A Kishore Babu
- Ratnadeep College of Pharmacy, Ratnapur, Jamkhed, Ahmednagar, 413206, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
6
|
Seyed Hosseini E, Alizadeh Zarei M, Tarrahimofrad H, Zamani J, Haddad Kashani H, Ahmad E, Nikzad H. Synergistic effects of dendrosomal nanocurcumin and oxaliplatin on oncogenic properties of ovarian cancer cell lines by down-expression of MMPs. Biol Res 2023; 56:3. [PMID: 36658640 PMCID: PMC9854214 DOI: 10.1186/s40659-023-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Contrary to the advantageous anticancer activities of curcumin (Cur), limited bioavailability and solubility hindered its efficacy. Here, nontoxic dendrosomal nano carrier with Cur was used to overcome these problems. Despite considerable antitumor properties of Oxaliplatin (Oxa), the limiting factors are drug resistance and adverse side-effects. The hypothesis of this study was to evaluate the possible synergism between dendrosomal nanocurcumin (DNC) and Oxa and these agents showed growth regulatory effects on SKOV3 and OVCAR3 cells. METHODS AND MATERIALS In the present study, colony formation, wound healing motility, cell adhesion, transwell invasion and migration assay and cell cycle arrest with or without DNC, Oxa and Combination were defined. In addition to, real time PCR and Western blot were used to analyze AKT, PI3K, PKC, JNK, P38 and MMPs mRNAs and proteins expressions. Docking of MMP-2-Cur, MMP-2-DNC and MMP-2-Oxa was performed and the results of all three complexes were simulated by molecular dynamics. RESULTS Our findings illustrated that DNC had the greatest effect on cell death as compared to the Cur alone. Moreover, the growth inhibitory effects (such as cell death correlated to apoptosis) were more intense if Oxa was added followed by DNC at 4 h interval. However, insignificant effects were observed upon simultaneous addition of these two agents in both cell lines. Besides, a combination of agents synergistically alters the relative expression of MMP-9. CONCLUSIONS The docking results showed that His70 and Asp100 may play a key role at the MMP-2 binding site. The matrigel invasion as well as cell viability of ovarian cancer cell lines SKOV3 and OVCAR3 by DNC alone or in combination with Oxa was inhibited significantly. The inhibitory effects of these agents were due to the differential expression levels of MMP 2 and MMP 9 regulated by multiple downstream signaling cascades. From the molecular dynamic simulation studies, it was confirmed that DNC established a strong interaction with MMP-2.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- grid.444768.d0000 0004 0612 1049Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran ,grid.444768.d0000 0004 0612 1049Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Marziyeh Alizadeh Zarei
- grid.444768.d0000 0004 0612 1049Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| | - Hossein Tarrahimofrad
- grid.419420.a0000 0000 8676 7464Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Javad Zamani
- grid.419420.a0000 0000 8676 7464Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamed Haddad Kashani
- grid.444768.d0000 0004 0612 1049Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- grid.214458.e0000000086837370Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hossein Nikzad
- grid.444768.d0000 0004 0612 1049Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran ,grid.444768.d0000 0004 0612 1049Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Therapeutic Potential of Deflamin against Colorectal Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14246182. [PMID: 36551666 PMCID: PMC9776913 DOI: 10.3390/cancers14246182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.
Collapse
|
8
|
Al-Rabia MW, Alhakamy NA, Rizg WY, Alghaith AF, Ahmed OAA, Fahmy UA. Boosting curcumin activity against human prostatic cancer PC3 cells by utilizing scorpion venom conjugated phytosomes as promising functionalized nanovesicles. Drug Deliv 2022; 29:807-820. [PMID: 35266425 PMCID: PMC8920388 DOI: 10.1080/10717544.2022.2048133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PC) is emerging as one of the leading causes of mortality and morbidity worldwide. Curcumin (CUR) is a well-known phytochemical, and scorpion venom (SV) is a natural peptide with proven anticancer properties. However, these natural bioactive agents are limited by low solubility, low bioavailability, poor thermal stability, and short half-lives. Therefore, the aim of this study was to fabricate SV-conjugated CUR phytosomes as promising functionalized nanovesicles and assess their anticancer efficacy in human prostatic cancer PC3 cells. CUR-Phytosome-SV was fabricated using experimental design software in which the zeta potential and particle sizes were used as dependent variables. The anticancer effect of the fabricated formulation was determined by performing a tetrazolium (MTT) assay, cell cycle analysis, annexin V staining, and examining the expression levels of Bcl-associated X-protein (Bax), p53, caspase-3, B-cell lymphoma 2 (Bcl-2), nuclear factor kappa beta (NF-kB), and tumor necrosis factor alpha (TNF-α). The particle size of the nanoconjugates was found to be in the range of 137.5 ± 7.9 to 298.4 ± 11.9 nm, and the zeta potential was 2.9 ± 0.1 to 26.9 ± 1.2 mV. The outcome of the MTT assay showed that curcumin-Phospholipon®-scorpion venom (CUR-PL-SV) exhibited a satisfactory level of cytotoxicity, and the IC50 was found to be lower than CUR and PL-SV individually. Cell cycle analysis showed predominantly cell cycle arrest at the G2-M and pre-G1 phases. In contrast, annexin V staining showed significant early and late apoptosis events in addition to increased necrosis when PC3 cells were treated with CUR-PL-SV. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed a reduction in expression of Bax, p53, caspase-3, NF-kB, TNF-α, and an increase in Bcl-2 expression. Moreover, a MMP analysis showed a reduction in mitochondrial permeability and hence confirmed the superior anticancer potential of CUR-PL-SV. Thus, the present study showed significant anticancer potency of SV-conjugated CUR phytosomes against human prostatic cancer PC3 cells, making it a novel treatment approach for PC.
Collapse
Affiliation(s)
- Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Bolger GT, Pucaj K, Minta YO, Sordillo P. Relationship Between the In Vitro Efficacy, Pharmacokinetics and In Vivo Efficacy of Curcumin. Biochem Pharmacol 2022; 205:115251. [PMID: 36130650 DOI: 10.1016/j.bcp.2022.115251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Considerable interest continues to be focused on the development of curcumin either as an effective stand-alone therapeutic or as an adjunct therapy to established therapies. Curcumin (1, 7-bis (4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5- dione; also called diferuloylmethane) is a polyphenolic phytochemical extracted from the root of curcuma longa, commonly called turmeric. Despite evidence from in vitro (cell culture) and preclinical studies in animals, clinical studies have not provided strong evidence for a therapeutic effect of curcumin. The relevance of curcumin as a drug has been questioned based on its classification as a compound with pan assay interference and invalid metabolic panaceas properties bringing into question the relevance of the therapeutic targets identified for curcumin. To some extent this is due to the lack of a complete understanding of the link between the in vitro (cell culture activity), pharmacokinetics and in vivo activity of curcumin. In this review and using NF-κB as a cellular target for curcumin, we have investigated the relationship between the potency of curcumin as an inhibitor of NF-κB in cell culture, the pharmacokinetics of curcumin and curcumin's anticancer and anti-inflammatory effects in preclinical models of cancer and inflammation. Plausible explanations and rationale are provided to link these activities together and suggest that both curcumin and its more soluble Phase II metabolite curcumin glucuronide may play a key role in the treatment effects of curcumin in vivo mediated at NF-κB.
Collapse
Affiliation(s)
| | | | - Yvonne O Minta
- Nucro-Technics, Department of Toxicology, Toronto, ON, Canada
| | | |
Collapse
|
10
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
11
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
12
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Prasad S, Saha P, Chatterjee B, Chaudhary AA, Lall R, Srivastava AK. Complexity of Tumor Microenvironment: Therapeutic Role of Curcumin and Its Metabolites. Nutr Cancer 2022; 75:1-13. [PMID: 35818029 DOI: 10.1080/01635581.2022.2096909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) is a complex network of cellular and non-cellular components surrounding the tumor. The cellular component includes fibroblasts, adipocytes, endothelial cells, and immune cells, while non-cellular components are tumor vasculature, extracellular matrix and signaling molecules. The tumor cells have constant close interaction with their surrounding TME components that facilitate their growth, survival, and metastasis. Targeting a complex TME network and its interaction with the tumor can offer a novel strategy to disrupt cancer cell progression. Curcumin, from turmeric rhizome, is recognized as a safe and effective natural therapeutic agent against multiple diseases including cancer. Here the effects of curcumin and its metabolites on tumor-TME interaction modulating ability have been described. Curcumin and its metabolites regulate TME by inhibiting the growth of its cellular components such as cancer-associated adipocytes, cancer-associated fibroblast, tumor endothelial cells, tumor-stimulating immune cells, and inducing anticancer immune cells. They also inhibit the interplay of tumor cells to TME by suppressing non-cellular components such as extracellular matrix, and associated tumor promoting signaling-pathways. In addition, curcumin inhibits the inflammatory environment, suppresses angiogenic factors, and increases antioxidant status in TME. Overall, curcumin has the capability to regulate TME components and their interaction with tumor cells.
Collapse
Affiliation(s)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia
| | - Rajiv Lall
- Noble Pharma, LLC, Menomonie, Wisconsin, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Shaikh S, Shaikh J, Naba YS, Doke K, Ahmed K, Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:298-320. [PMID: 35582033 PMCID: PMC9019276 DOI: 10.20517/cdr.2020.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Curcumin, a polyphenol, has a wide range of biological properties such as anticancer, antibacterial, antitubercular, cardioprotective and neuroprotective. Moreover, the anti-proliferative activities of Curcumin have been widely studied against several types of cancers due to its ability to target multiple pathways in cancer. Although Curcumin exhibited potent anticancer activity, its clinical use is limited due to its poor water solubility and faster metabolism. Hence, there is an immense interest among researchers to develop potent, water-soluble, and metabolically stable Curcumin analogs for cancer treatment. While drug resistance remains a major problem in cancer therapy that renders current chemotherapy ineffective, curcumin has shown promise to overcome the resistance and re-sensitize cancer to chemotherapeutic drugs in many studies. In the present review, we are summarizing the role of curcumin in controlling the proliferation of drug-resistant cancers and development of curcumin-based therapeutic applications from cell culture studies up to clinical trials.
Collapse
Affiliation(s)
- Siraj Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Javed Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Yusufi Sadia Naba
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India
| | - Kailas Doke
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Khursheed Ahmed
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Mujahid Yusufi
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| |
Collapse
|
15
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
16
|
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci 2021; 22:ijms222413659. [PMID: 34948455 PMCID: PMC8708931 DOI: 10.3390/ijms222413659] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in humans. Despite rapid developments in diagnostic methods and therapies, metastasis and resistance to administrated drugs are the main obstacles to successful treatment. Therefore, the main challenge should be the diagnosis and design of optimal therapeutic strategies for patients to increase their chances of responding positively to treatment and increase their life expectancy. In many types of cancer, a deregulation of multiple pathways has been found. This includes disturbances in cellular metabolism, cell cycle, apoptosis, angiogenesis, or epigenetic modifications. Additionally, signals received from the microenvironment may significantly contribute to cancer development. Chemical agents obtained from natural sources seem to be very attractive alternatives to synthetic compounds. They can exhibit similar anti-cancer potential, usually with reduced side effects. It was reported that natural compounds obtained from fruits and vegetables, e.g., polyphenols, flavonoids, stilbenes, carotenoids and acetogenins, might be effective against cancer cells in vitro and in vivo. Several published results indicate the activity of natural compounds on protein expression by its influence on transcription factors. They could also be involved in alterations in cellular response, cell signaling and epigenetic modifications. Such natural components could be used in our diet for anti-cancer protection. In this review, the activities of natural compounds, including anti-cancer properties, are described. The influence of natural agents on cancer cell metabolism, proliferation, signal transduction and epigenetic modifications is highlighted.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Correspondence:
| |
Collapse
|
17
|
Facina CH, Campos SGP, Ruiz TFR, Góes RM, Vilamaior PSL, Taboga SR. Protective effect of the association of curcumin with piperine on prostatic lesions: New perspectives on BPA-induced carcinogenesis. Food Chem Toxicol 2021; 158:112700. [PMID: 34838672 DOI: 10.1016/j.fct.2021.112700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a chemical agent which can exert detrimental effects on the male reproductive system, especially the prostate gland. In this study we described the efficacy of the dietary agent curcumin, alone or combined with piperine, to suppress the impact of BPA on the prostate. Adult gerbils were divided into nine experimental groups (n = 7 each group), regarding control (water and oil), exposed to BPA (50 μg/kg/day in water) or curcumin (100 mg/kg) and/or piperine (20 mg/kg). To evaluate the effects of the phytotherapic agents, the other groups received oral doses every two days, BPA plus curcumin (BCm), piperine (BP), and curcumin + piperine (BCmP). BPA promoted prostatic inflammation and morphological lesions in ventral and dorsolateral prostate lobes, associated with an increase in androgen receptor-positive cells and nuclear atypia, mainly in the ventral lobe. Curcumin and piperine helped to minimize these effects. BPA plus piperine or curcumin showed a reduction in nuclear atypical phenotype, indicating a beneficial effect of phytochemicals. Thus, these phytochemicals minimize the deleterious action of BPA in prostatic lobes, especially when administered in association. The protective action of curcumin and piperine consumption is associated with weight loss, anti-inflammatory potential, and control of prostate epithelial cell homeostasis.
Collapse
Affiliation(s)
- Camila Helena Facina
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
18
|
Rampino A, Annese T, Margari A, Tamma R, Ribatti D. Nutraceuticals and their role in tumor angiogenesis. Exp Cell Res 2021; 408:112859. [PMID: 34637764 DOI: 10.1016/j.yexcr.2021.112859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/15/2023]
Abstract
Angiogenesis plays a pivotal role in cancer initiation, maintenance, and progression. Diet may inhibit, retard or reverse these processes affecting angiogenesis (angioprevention). Nutraceuticals, such as omega-3 fatty acids, amino acids, proteins, vitamins, minerals, fibers, and phenolic compounds, improve health benefits as they are a source of bioactive compounds that, among other effects, can regulate angiogenesis. The literature concerning the pro-angiogenic and/or anti-angiogenic nutraceuticals and the possible activated pathways in cancer and other non-neoplastic diseases by in vivo and in vitro experiments are reviewed.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Anna Margari
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
19
|
Herrero de la Parte B, Rodeño-Casado M, Iturrizaga Correcher S, Mar Medina C, García-Alonso I. Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats. Biomedicines 2021; 9:biomedicines9091183. [PMID: 34572369 PMCID: PMC8467247 DOI: 10.3390/biomedicines9091183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background: New therapeutic approaches are an essential need for patients suffering from colorectal cancer liver metastases. Curcumin, a well-known plant-derived polyphenol, has been shown to play a role in the modulation of multiple signaling pathways involved in the development and progression of certain cancer cells in vitro. This study aims to assess the anti-tumor effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo. Methods: On CC531 cultures, the cell viability and cell migration capacity were analyzed (wound healing test) 24, 48, and 72 h after treatment with curcumin (15, 20, 25, or 30 µM). Additionally, in WAG/RijHsd tumor-bearing rats, the total and individual liver lobe tumor volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess the possible effects on the liver function. Results: In vitro studies showed curcumin’s greatest effects 48h after application, when all of the tested doses reduced cell proliferation by more than 30%. At 72 h, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. The wound healing test also showed that curcumin inhibits migration capacity. In vivo, curcumin slowed down the tumor volume of liver implants by 5.6-fold (7.98 ± 1.45 vs. 1.41 ± 1.33; p > 0.0001). Conclusions: Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
- Correspondence:
| | - Mikel Rodeño-Casado
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
| |
Collapse
|
20
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is Curcumin the Answer to Future Chemotherapy Cocktail? Molecules 2021; 26:4329. [PMID: 34299604 PMCID: PMC8303331 DOI: 10.3390/molecules26144329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.
Collapse
Affiliation(s)
- Wei-Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Thet-Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| |
Collapse
|
22
|
Almatroodi SA, Syed MA, Rahmani AH. Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer. Recent Pat Anticancer Drug Discov 2021; 16:3-29. [PMID: 33143616 DOI: 10.2174/1574892815999201102214602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, an active compound of turmeric spice, is one of the most-studied natural compounds and has been widely recognized as a chemopreventive agent. Several molecular mechanisms have proven that curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as in the inhibition of the carcinogenesis process. OBJECTIVE To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. METHODS A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed Central, and Google scholar for the implication of curcumin in cancer management, along with a special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com, and www.freshpatents.com. RESULT Recent studies based on cancer cells have proven that curcumin has potential effects against cancer cells as it prevents the growth of cancer and acts as a cancer therapeutic agent. Besides, curcumin exerted anti-cancer effects by inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion, and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. CONCLUSION Accumulating evidences suggest that curcumin has the potential to inhibit cancer growth, induce apoptosis, and modulate various cell signaling pathway molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy, and safe dose in the management of various cancers.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Translational Research Lab, Jamia Millia Islamia, New Delhi 110025, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
23
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
24
|
Curcumin against Prostate Cancer: Current Evidence. Biomolecules 2020; 10:biom10111536. [PMID: 33182828 PMCID: PMC7696488 DOI: 10.3390/biom10111536] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition characterized by remarkably enhanced rates of cell proliferation paired with evasion of cell death. These deregulated cellular processes take place following genetic mutations leading to the activation of oncogenes, the loss of tumor suppressor genes, and the disruption of key signaling pathways that control and promote homeostasis. Plant extracts and plant-derived compounds have historically been utilized as medicinal remedies in different cultures due to their anti-inflammatory, antioxidant, and antimicrobial properties. Many chemotherapeutic agents used in the treatment of cancer are derived from plants, and the scientific interest in discovering plant-derived chemicals with anticancer potential continues today. Curcumin, a turmeric-derived polyphenol, has been reported to possess antiproliferative and proapoptotic properties. In the present review, we summarize all the in vitro and in vivo studies examining the effects of curcumin in prostate cancer.
Collapse
|
25
|
Mohajeri M, Bianconi V, Ávila-Rodriguez MF, Barreto GE, Jamialahmadi T, Pirro M, Sahebkar A. Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol Res 2020; 156:104765. [PMID: 32217147 DOI: 10.1016/j.phrs.2020.104765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology & Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
27
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
28
|
Effects of Cu(II) and Zn(II) coordination on the trypanocidal activities of curcuminoid-based ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Katta S, Srivastava A, Thangapazham RL, Rosner IL, Cullen J, Li H, Sharad S. Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20194891. [PMID: 31581661 PMCID: PMC6801832 DOI: 10.3390/ijms20194891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022] Open
Abstract
The androgen receptor is one of the key targets for prostate cancer treatment. Despite its less satisfactory effects, chemotherapy is the most common treatment option for metastatic and/or castration-resistant patients. There are constant needs for novel anti-prostate cancer therapeutic/prevention agents. Curcumin, a known chemo-preventive agent, was shown to inhibit prostate cancer cell growth. This study aimed to unravel the inhibitory effect of curcumin in prostate cancer through analyzing the alterations of expressions of curcumin targeting genes clusters in androgen-dependent LNCaP cells and androgen-independent metastatic C4-2B cells. Hierarchical clustering showed the highest number of differentially expressed genes at 12 h post treatment in both cells, suggesting that the androgen-dependent/independent manner of curcumin impacts on prostate cancer cells. Evaluation of significantly regulated top canonical pathways highlighted that Transforming growth factor beta (TGF-β), Wingless-related integration site (Wnt), Phosphoinositide 3-kinase/Protein Kinase B/ mammalian target of rapamycin (PIK3/AKT(PKB)/mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling were primarily inhibited, and Phosphatase and tensin homolog (PTEN) dependent cell cycle arrest and apoptosis pathways were elevated with curcumin treatment. The short term (3–24 h) and long term (48 h) effect of curcumin treatment revealed 31 and four genes modulated in both cell lines. TGF-β signaling, including the androgen/TGF-β inhibitor Prostate transmembrane protein androgen-induced 1 (PMEPA1), was the only pathway impacted by curcumin treatment after 48 h. Our findings also established that MYC Proto-Oncogene, basic helix-loop-helix (bHLH) Transcription Factor (MYC) signaling was down-regulated in curcumin-treated cell lines. This study established, for the first time, novel gene-networks and signaling pathways confirming the chemo-preventive and cancer-growth inhibitory nature of curcumin as a natural anti-prostate cancer compound.
Collapse
Affiliation(s)
- Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Arun Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Rajesh L Thangapazham
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Department of Urology, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| |
Collapse
|
30
|
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G, Cravotto G, Guiot C, Stura I, Cavalli R, Dianzani C. Low-dose curcuminoid-loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. NANOTECHNOLOGY 2019; 30:214004. [PMID: 30654342 DOI: 10.1088/1361-6528/aaff96] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing recurrences and metastasis of prostate cancer after prostatectomy by administering adjuvant therapies is quite a controversial issue. In addition to effectiveness, absence of side effects and long term toxicity are mandatory. Curcuminoids (Curc) extracted with innovative techniques and effectively loaded by polymeric nanobubbles (Curc-NBs) satisfy such requirements. Curc-NBs showed stable over 30 d, were effectively internalized by tumor cells and were able to slowly release Curc in a sustained way. Significant biological effects were detected in PC-3 and DU-145 cell lines where Curc-NBs were able to inhibit adhesion and migration, to promote cell apoptosis and to affect cell viability and colony-forming capacity in a dose-dependent manner. Since the favourable effects are already detectable at very low doses, which can be reached at a clinical level, the actual drug concentration can be visualized and monitored by US or MRI, Curc-NBs can be proposed as an effective adjuvant theranostic tool.
Collapse
Affiliation(s)
- F Bessone
- Department of Drug Science & Technology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yedjou CG, Mbemi AT, Noubissi F, Tchounwou SS, Tsabang N, Payton M, Miele L, Tchounwou PB. Prostate Cancer Disparity, Chemoprevention, and Treatment by Specific Medicinal Plants. Nutrients 2019; 11:E336. [PMID: 30720759 PMCID: PMC6412894 DOI: 10.3390/nu11020336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men. The global burden of this disease is rising. Its incidence and mortality rates are higher in African American (AA) men compared to white men and other ethnic groups. The treatment decisions for PC are based exclusively on histological architecture, prostate-specific antigen (PSA) levels, and local disease state. Despite advances in screening for and early detection of PC, a large percentage of men continue to be diagnosed with metastatic disease including about 20% of men affected with a high mortality rate within the African American population. As such, this population group may benefit from edible natural products that are safe with a low cost. Hence, the central goal of this article is to highlight PC disparity associated with nutritional factors and highlight chemo-preventive agents from medicinal plants that are more likely to reduce PC. To reach this central goal, we searched the PubMed Central database and the Google Scholar website for relevant papers. Our search results revealed that there are significant improvements in PC statistics among white men and other ethnic groups. However, its mortality rate remains significantly high among AA men. In addition, there are limited studies that have addressed the benefits of medicinal plants as chemo-preventive agents for PC treatment, especially among AA men. This review paper addresses this knowledge gap by discussing PC disparity associated with nutritional factors and highlighting the biomedical significance of three medicinal plants (curcumin, garlic, and Vernonia amygdalina) that show a great potential to prevent/treat PC, as well as to reduce its incidence/prevalence and mortality, improve survival rate, and reduce PC-related health disparity.
Collapse
Affiliation(s)
- Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Ariane T Mbemi
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Solange S Tchounwou
- Department of Biology, University of Mississippi, 214 Shoemaker Hall, P.O. Box 1848, MS 38677, USA.
| | - Nole Tsabang
- Department of Animal Biology, Higher Institute of Environmental Sciences, Yaounde P.O.Box 16317, Cameroon.
| | - Marinelle Payton
- Center of Excellence in Minority Health and Health Disparities, School of Public Health, Jackson State University, Jackson Medical Mall-Thad Cochran Center, 350 West Woodrow Wilson Avenue, Jackson, MS 39213, USA.
| | - Lucio Miele
- Department of Genetics, LSU Health Sciences Center, School of Medicine, 533 Bolivar Street, Room 657, New Orleans, LA 70112, USA.
| | - Paul B Tchounwou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| |
Collapse
|
32
|
The Role of Curcumin in Prevention and Management of Metastatic Disease. Int J Mol Sci 2018; 19:ijms19061716. [PMID: 29890744 PMCID: PMC6032261 DOI: 10.3390/ijms19061716] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
In the last two decades, targeted therapies have enhanced tumor patient care and treatment success, however, metastatic growth still cannot be stopped efficiently and, therefore, mortality rates remain high. Prevention strategies against formation of metastases are the most promising approach we have, however, due to lack of clinical validation studies, they have not yet entered routine clinical care. In order to smooth the way for efficient prevention, further preclinical and large clinical studies are required. In this context, the underlying molecular mechanisms and factors that lead to metastatic growth have to be explored, and potential preventive agents have to be tested. Thereby, special attention has to be paid to natural bioactive compounds which do not exert major adverse effects, like the plant-derived polyphenol Curcumin, which is known to be a powerful antitumor agent. So far, most of the preclinical studies with Curcumin have focused on its effect on inhibiting tumor cell proliferation and invasion, although, it is known that it also inhibits metastatic spread in vivo. This review discusses the preventive potential of this natural compound not only against tumor onset, but also against formation of metastases.
Collapse
|
33
|
Seseogullari-Dirihan R, Tekbas Atay M, Pashley DH, Tezvergil-Mutluay A. Inhibitory effect of curcuminoid pretreatments on endogenous dentin proteases. Dent Mater J 2018; 37:445-452. [PMID: 29491199 DOI: 10.4012/dmj.2017-116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the effect of curcuminoids on the dentin endogenous protease activity. Demineralized dentin were pretreated with 50 or 100 µM of three different curcuminoids for 60 s and incubated up to 3 months. Untreated beams served as controls. Dry dentin mass was measured after incubation. Aliquots were analyzed for the quantity of ICTP and CTX releases for MMP and cathepsin-K mediated degradation, respectively. The effect of curcuminoids on matrix-bound MMP and soluble rhMMP-9 were measured using an activity assay. Data were subjected to repeated-measures-ANOVA (α=0.05). Gelatinolytic activity was analyzed using zymography. ICTP and CTX release and dry mass loss of curcuminoid-treated groups were significantly lower than the control. Inhibition of rhMMP-9 varied from 29-49% among curcumonoid-treated groups, whereas no inhibition was observed at untreated control (p>0.05). Results were confirmed by zymography. The study showed that the pretreatment of dentin matrices by curcuminoids decreases endogenous protease activity-mediated degradation in dentin.
Collapse
Affiliation(s)
| | - Meltem Tekbas Atay
- Department of Restorative Dentistry, Faculty of Dentistry, Trakya University
| | | | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku.,Turku University Hospital, TYKS, University of Turku
| |
Collapse
|
34
|
Harbuzariu A, Gonzalez-Perez RR. Leptin-Notch axis impairs 5-fluorouracil effects on pancreatic cancer. Oncotarget 2018; 9:18239-18253. [PMID: 29719602 PMCID: PMC5915069 DOI: 10.18632/oncotarget.24435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
5-FU chemotherapy is a current strategy to treat pancreatic cancer (PC), but unfortunately chemoresistance is eventually developed in most patients. Obesity is a risk factor for PC that could affect 5-FU effectiveness through the adipokine leptin, which is a known proliferation, survival factor and Notch inducer. We investigated whether leptin signaling affects 5-FU cytotoxicity on PC. To this end, tumorspheres developed from BxPC-3 and MiaPaCa-2 PC cells were treated with 5-FU, leptin, inhibitors for Notch (DAPT) and leptin signaling (IONP-LPrA2) and ATP-binding cassette of proteins (Probenecid). Leptin treatment decreased 5-FU cytotoxicity, and increased cell proliferation, colony forming ability, stem cell, pluripotency, EMT markers, drug efflux proteins (ABCC5, ABCC11) and Notch. In addition, leptin reduced the 5-FU effects on apoptosis by decreasing pro-apoptotic (Bax, Caspase-3 activation and PARP degradation) and increasing anti-apoptotic factors (RIP and Bcl-XL). Leptin's effects on PC tumorspheres treated with 5-FU were reduced by IONP-LPrA2 and were mainly Notch signaling- dependent and more evident in MiaPaCa-2-derived tumorspheres. Present results suggest that leptin could impair 5-FU cytotoxicity and promote chemoresistance. Therefore, targeting the leptin-Notch axis could be a novel way to improve 5-FU therapy for PC patients, especially in obesity context.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
35
|
Vialinin A, an Edible Mushroom-Derived p-Terphenyl Antioxidant, Prevents VEGF-Induced Neovascularization In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018. [PMID: 29541344 PMCID: PMC5818888 DOI: 10.1155/2018/1052102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased side toxicities and development of drug resistance are the major concern for the cancer chemotherapy using synthetic drugs. Therefore, identification of novel natural antioxidants with potential therapeutic efficacies is important. In the present study, we have examined how the antioxidant and anti-inflammatory activities of vialinin A, a p-terphenyl compound derived from Chinese edible mushroom T. terrestris and T. vialis, prevents human umbilical vascular endothelial cell (HUVEC) neovascularization in vitro and in vivo models. Pretreatment of HUVECs with vialinin A prevents vascular endothelial growth factor- (VEGF) induced HUVEC cell growth in a dose-dependent manner. Further, vialinin A also inhibits VEGF-induced migration as well as tube formation of HUVECs. Treatment of HUVECs prevents VEGF-induced generation of reactive oxygen species (ROS) and malondialdehyde (MDA) and also inhibits VEGF-induced NF-κB nuclear translocation as well as DNA-binding activity. The VEGF-induced release of various angiogenic cytokines and chemokines in HUVECs was also significantly blunted by vialinin A. Most importantly, in a mouse model of Matrigel plug assay, vialinin A prevents the formation of new blood vessels and the expression of CD31 and vWF. Thus, our results indicate a novel role of vialinin A in the prevention of neovascularization and suggest that anticancer effects of vialinin A could be mediated through its potent antioxidant and antiangiogenic properties.
Collapse
|
36
|
Anirudhan TS, Anila MM, Franklin S. Synthesis characterization and biological evaluation of alginate nanoparticle for the targeted delivery of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1125-1134. [DOI: 10.1016/j.msec.2017.04.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
|
37
|
Xie J, Yong Y, Dong X, Du J, Guo Z, Gong L, Zhu S, Tian G, Yu S, Gu Z, Zhao Y. Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14281-14291. [PMID: 28381089 DOI: 10.1021/acsami.7b02622] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Low water solubility, extensive metabolism, and drug resistance are the existing unavoidable disadvantages of the insoluble drug curcumin in biomedical applications. Herein, we employed d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-functionalized near-infrared (NIR)-triggered photothermal mesoporous nanocarriers with bamboo charcoal nanoparticles (TPGS-BCNPs) to load and deliver curcumin for improving its bioavailability. This system could considerably increase the accumulation of curcumin in cancer cells for enhanced curcumin bioavailability via simultaneously promoting the cellular internalization of the as-synthesized composite (TPGS-BCNPs@curcumin) by the size effect of NPs and considerably triggering controlled curcumin release from TPGS-BCNPs@curcumin by NIR stimulation and reducing efflux of curcumin by the P-glycoprotein (P-gp) inhibition of TPGS, so as to enhance the therapeutic effect of curcumin and realize a better chemo-photothermal synergetic therapy in vitro and in vivo. Besides cancer therapy, studies indicated that curcumin and some carbon materials could be used as radical scavengers that play an important role in the radioprotection of normal cells. Hence, we also investigated the free-radical-scavenging ability of the TPGS-BCNPs@curcumin composite in vitro to preliminarily evaluate its radioprotection ability for healthy tissues. Therefore, our work provides a multifunctional delivery system for curcumin bioavailability enhancement, chemo-photothermal synergetic therapy of cancer, and radioprotection of healthy tissues.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Yuan Yong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Jiangfeng Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Linji Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University , Gaotanyan 30, Chongqing 400038, China
| | - Shicang Yu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University , Gaotanyan 30, Chongqing 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| |
Collapse
|
38
|
Lu CW, Hao JL, Yao L, Li HJ, Zhou DD. Efficacy of curcumin in inducing apoptosis and inhibiting the expression of VEGF in human pterygium fibroblasts. Int J Mol Med 2017; 39:1149-1154. [PMID: 28393179 PMCID: PMC5403353 DOI: 10.3892/ijmm.2017.2944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
Pterygium is an inflammatory and degenerative ocular surface disease, in which the conjunctiva on the cornea grows to form a fibrous tissue in the shape of a triangle. Although pterygium surgery is used broadly in clinical practice, its high recurrence rate poses a great concern for patients and doctors. In the present study, we examined the effects of curcumin on the apoptosis and proliferation of human pterygium fibroblasts (HPFs) in an in vitro culture system. HPFs were incubated with curcumin for 24 to 72 h (5, 20, 80 or 200 µmol/l). The proliferation-inhibiting effects of curcumin were assayed by MTT assay at different time points and at various concentrations. The expression of vascular endothelial growth factor (VEGF) in each group was detected by RT-qPCR and ELISA. The apoptotic effects of curcumin were detected by flow cytometry (FCM). Treatment with curcumin at 80 µmol/l for 48 h significantly inhibited HPF proliferation. Curcumin significant induced the apoptosis of HPFs. Our findings thus suggest that curcumin suppress cell proliferation in the pterygium by inducing HPF apoptosis and inhibiting VEGF expression. Thus, curcumin has potential for use as a novel agent for the treatment of pterygium in the near future.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Yao
- Department of Dermatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40-41:35-47. [DOI: 10.1016/j.semcancer.2016.03.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
|
40
|
Bu Y, Jia QA, Ren ZG, Xue TC, Zhang QB, Zhang KZ, Zhang QB, You Y, Tian H, Qin LX, Tang ZY. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells. Oncotarget 2016; 6:40068-80. [PMID: 26517671 PMCID: PMC4741880 DOI: 10.18632/oncotarget.5313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/09/2015] [Indexed: 01/27/2023] Open
Abstract
Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells.
Collapse
Affiliation(s)
- Yang Bu
- Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Qing-An Jia
- Cancer Center, Institutes of Biomedical Sciences, General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Ke-Zhi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Qiang-Bo Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hui Tian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Lun-Xiu Qin
- Cancer Center, Institutes of Biomedical Sciences, General Surgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
41
|
Polyphenol-based nutraceuticals for the control of angiogenesis: Analysis of the critical issues for human use. Pharmacol Res 2016; 111:384-393. [PMID: 27402192 DOI: 10.1016/j.phrs.2016.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022]
Abstract
Angiogenesis, the formation of new blood-vessel, is crucial in the pathogenesis of several diseases, and thus represents a druggable target for the prevention and treatment of different disorders. It is nowadays well kwon how diet can control cancer development and progression, and how the use of certain diet components can prevent cancer development. Several studies, also from our lab, now indicate that natural plant products including nutraceuticals modulate tumor angiogenesis. In this review, it is reported how phytochemicals, comprising hydroxytyrosol, resveratrol, genistein, curcumin, and the green tea component epigallocatechin-3-gallate among the others, negatively regulate angiogenesis. A single plant-derived compound may affect both endothelial and tumor cells, with the common denominator of anti-inflammatory and radical scavenger activities. Beside these positive features, documented in cellular and animal models, a series of critical issues should be considered from a pharmacological point of view as: what is the best source of bioactive compounds: food and beverages, extracted phytocomplexes, isolated nutraceuticals or synthetic analogues? How is the bioavailability of the compounds of interest in relation to the above source? Is there any biological activity by circulating metabolic derivatives? What is the best formulation, administration route and posology? How safe are in humans? How strong and reliable are the clinical trials designed for their use alone or in combination with conventional chemotherapy? After a dissertation of these critical points, the conclusion can be drawn that novel and effective strategies should be optimized to improve their bioavailability and efficacy, considering their exploitation as chemopreventive and/or curative approaches.
Collapse
|
42
|
Jordan BC, Mock CD, Thilagavathi R, Selvam C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci 2016; 152:135-44. [PMID: 27018446 DOI: 10.1016/j.lfs.2016.03.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Abstract
Primary prostate cancer, also known as prostate adenocarcinoma (PCa), is a devastating cancer in men worldwide. Europe and developing countries of Asia have fewer reported cases of prostate cancer compared to increasing cases in the United States with higher incidence in Black men. Risk factors associated with prostate cancer are aging, genetics, lifestyle, high body mass index as well as carcinogenic exposure to carbon-containing fuels, tobacco, and charbroiled meats. Hormone therapy and radical prostatectomy are commonly implemented treatments. The >20.000 prostate cancer deaths of 2013 suggest that there exists a need for enhanced chemopreventive and therapeutic agents for prostate cancer treatment. Fruits, vegetables, and red wines contain high levels of polyphenolic levels. Consumption of these products may provide chemoprevetion of PCa. Curcumin, the major compound from the turmeric rhizome Curcuma longa has long been used for medicinal purposes as an antiseptic and wound healing. This review focuses on curcumin's therapeutic effectiveness in vitro and in vivo in prostate cancer models. The review will highlight the mechanisms of actions of curcumin in the signaling pathways of prostate cancer.
Collapse
Affiliation(s)
- Brian C Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Charlotta D Mock
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
43
|
Jadhav V, Ray P, Sachdeva G, Bhatt P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci 2016; 148:41-52. [DOI: 10.1016/j.lfs.2016.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/02/2023]
|
44
|
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci 2016; 148:313-28. [PMID: 26876915 DOI: 10.1016/j.lfs.2016.02.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Abstract
In recent years, natural compounds have received considerable attention in preventing and curing most dreadful diseases including cancer. The reason behind the use of natural compounds in chemoprevention is associated with fewer numbers of side effects than conventional chemotherapeutics. Curcumin (diferuloylmethane, PubMed CID: 969516), a naturally occurring polyphenol, is derived from turmeric, which is used as a common Indian spice. It governs numerous intracellular targets, including proteins involved in antioxidant response, immune response, apoptosis, cell cycle regulation and tumor progression. A huge mass of available studies strongly supports the use of Curcumin as a chemopreventive drug. However, the main challenge encountered is the low bioavailability of Curcumin. This extensive review covers various therapeutic interactions of Curcumin with its recognized cellular targets involved in cancer treatment, strategies to overcome the bioavailability issue and adverse effects associated with Curcumin consumption.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, Delhi University, South Campus, New Delhi, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mulana-Ambala, India.
| |
Collapse
|
45
|
Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, Chong IW. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway. PLoS One 2015; 10:e0144462. [PMID: 26656720 PMCID: PMC4675518 DOI: 10.1371/journal.pone.0144462] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/18/2015] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue is now considered as an endocrine organ involved in metabolic and inflammatory reactions. Adiponectin, a 244-amino acid peptide hormone, is associated with insulin resistance and carcinogenesis. Curcumin (diferuloylmethane) is the principal curcuminoid of the popular Indian spice, turmeric. Curcumin possesses antitumor effects, including the inhibition of neovascularization and regulation of cell cycle and apoptosis. However, the effects of adiponectin and curcumin on non-small cell lung cancer (NSCLC) remain unclear. In this study, we evaluated the expression of adiponectin in paired tumors and normal lung tissues from 77 patients with NSCLC using real-time polymerase chain reaction, western blotting, and immunohistochemistry. Kaplan-Meier survival analysis showed that patients with low adiponectin expression ratio (<1) had significantly longer survival time than those with high expression ratio (>1) (p = 0.015). Curcumin inhibited the migratory and invasive ability of A549 cells via the inhibition of adiponectin expression by blocking the adiponectin receptor 1. Curcumin treatment also inhibited the in vivo tumor growth of A549 cells and adiponectin expression. These results suggest that adiponectin can be a prognostic indicator of NSCLC. The effect of curcumin in decreasing the migratory and invasive ability of A549 cells by inhibiting adiponectin expression is probably mediated through NF-κB/MMP pathways. Curcumin could be an important potential adjuvant therapeutic agent for lung cancer in the future.
Collapse
Affiliation(s)
- Jong-Rung Tsai
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Shah-Hwa Chou
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Division of Chest Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jen Cheng
- Department of Health Management, Division of Thoracic Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jhi-Jhu Hwang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10:1615-1623. [PMID: 26640527 DOI: 10.3892/etm.2015.2749] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giovanni Giannatempo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Alfredo DE Lillo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| |
Collapse
|
47
|
Esmatabadi MJD, Farhangi B, Safari Z, Kazerooni H, Shirzad H, Zolghadr F, Sadeghizadeh M. Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression. Asian Pac J Cancer Prev 2015; 16:2473-81. [DOI: 10.7314/apjcp.2015.16.6.2473] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
49
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
50
|
Piccolella M, Crippa V, Messi E, Tetel MJ, Poletti A. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacol Res 2013; 79:13-20. [PMID: 24184124 DOI: 10.1016/j.phrs.2013.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022]
Abstract
In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status.
Collapse
Affiliation(s)
- Margherita Piccolella
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Elio Messi
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy
| | - Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | - Angelo Poletti
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Italy.
| |
Collapse
|