1
|
Jibril TI, Alzoubi KH, Mhaidat NM, Khabour OF, Alqudah MA, Rababa’h AM, Alrabadi N, Al-udatt D. Sildenafil prevents chronic psychosocial stress-induced working memory impairment: Role of brain-derived neurotrophic factor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100182. [PMID: 38706525 PMCID: PMC11067328 DOI: 10.1016/j.crphar.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Background Psychosocial stress, a common feature in modern societies, impairs cognitive functions. It is suggested that stress hormones and elevated excitatory amino acids during stress are responsible for stress-induced cognitive deficits. Reduced brain-derived neurotrophic factor (BDNF) levels, increased oxidative stress, and alteration of synaptic plasticity biomarkers are also possible contributors to the negative impact of stress on learning and memory. Sildenafil citrate is a selective phosphodiesterase type 5 (PDE5) inhibitor and the first oral therapy for the treatment of erectile dysfunction. It has been shown that sildenafil improves learning and memory and possesses antioxidant properties. We hypothesized that administering sildenafil to stressed rats prevents the cognitive deficit induced by chronic psychosocial stress. Methods Psychosocial stress was generated using the intruder model. Sildenafil 3 mg/kg/day was administered intraperitoneally to animals. Behavioral studies were conducted to test spatial learning and memory using the radial arm water maze. Then, the hippocampal BDNF level and several antioxidant markers were assessed. Results This study revealed that chronic psychosocial stress impaired short-term but not long-term memory. The administration of sildenafil prevented this short-term memory impairment. Chronic psychosocial stress markedly reduced the level of hippocampal BDNF (P˂0.05), and this reduction in BDNF was normalized by sildenafil treatment. In addition, neither chronic psychosocial stress nor sildenafil significantly altered the activity of measured oxidative parameters (P > 0.05). Conclusion Chronic psychosocial stress induces short-term memory impairment. The administration of sildenafil citrate prevented this impairment, possibly by normalizing the level of BDNF.
Collapse
Affiliation(s)
- Tareq I. Jibril
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M. Mhaidat
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A.Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M. Rababa’h
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Doaa Al-udatt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Effects of datumetine on hippocampal NMDAR activity. Toxicol Rep 2021; 8:1131-1142. [PMID: 34150523 PMCID: PMC8190477 DOI: 10.1016/j.toxrep.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
The usage (abuse) of Datura metel is becoming increasingly worrisome among the Nigerian populace especially among the youth considering its side effects such as hallucination. This work was designed to identify the phytochemicals in datura plant that potentially interact with NMDAR as it affects the electrical and memory activities of the brain. Ligand-protein interaction was assessed using autodock vina to identify phytochemicals that can interact with NMDAR. Datumetine was found to have the best interaction fit with NMDAR at both allosteric and orthosteric binding sites. Furthermore, using electrophysiological, behavioural and western blotting techniques, it was observed that the administration of datumetine positively modulates the NMDAR current by prolonging burst duration and interspike interval, induces seizures in C57BL/6 mice. Acute exposure leads to memory deficit on NOR and Y-maze test while immunoblotting results showed increased expression of GluN1 and CamKIIα while pCamKIIα-T286, CREB and BDNF were downregulated. The results showed that the memory deficit seen in datura intoxication is possibly the effects of datumetine on NMDAR.
Collapse
|
3
|
Wang H, He S, Xin J, Zhang T, Sun N, Li L, Ni X, Zeng D, Ma H, Bai Y. Psychoactive Effects of Lactobacillus johnsonii Against Restraint Stress-Induced Memory Dysfunction in Mice Through Modulating Intestinal Inflammation and permeability-a Study Based on the Gut-Brain Axis Hypothesis. Front Pharmacol 2021; 12:662148. [PMID: 34122081 PMCID: PMC8189558 DOI: 10.3389/fphar.2021.662148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Though the underlying mechanism remains elusive, a close relationship between psychological stress and intestinal inflammation has been widely accepted. Such a link is very important to set the basis for our understanding of the critical role of gut-brain axis (GBA) in homeostatic processes in health and disease. Probiotics that could confer benefits to mental health through GBA are referred to as "psychobiotics". This study aimed to further determine whether a potential psychobiotic strain, Lactobacillus johnsonii BS15 could prevent memory dysfunction in mice induced by psychological stress through modulating the gut environment, including intestinal inflammation and permeability. Memory dysfunction in mice was induced by restraint stress (RS), one of the most commonly utilized models to mimic psychological stress. The mice were randomly categorized into three groups including no stress (NS), restraint stress (RS), and probiotic (RS-P) and administered with either phosphate buffered saline (NS and RS groups) or L. johnsonii BS15 (RS-P group) every day from day 1-28. From days 22-28, the mice in RS and RS-P groups were subjected to RS each day. Results revealed that BS15-pretreatment enhanced the performance of RS-induced mice during three different behavioral tests for memory ability and positively modulated the hypothalamic-pituitary-adrenal axis by attenuating the serum corticosterone level. In the hippocampus, L. johnsonii BS15 positively modulated the memory-related functional proteins related to synaptic plasticity, increased neurotransmitter levels, and prevented RS-induced oxidative stress and mitochondria-mediated apoptosis. In the intestines, L. johnsonii BS15 protected the RS-induced mice from damaged gut barrier by enhancing the mRNA levels of tight junction proteins and exerted beneficial effects on the anti-inflammatory cytokine levels reduced by RS. These findings provided more evidence to reveal the psychoactive effect of L. johnsonii BS15 against memory dysfunction in RS-induced mice by modulating intestinal inflammation and permeability.
Collapse
Affiliation(s)
- Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunhui He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhang
- School of Science, Xihua University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Brivio P, Sbrini G, Corsini G, Paladini MS, Racagni G, Molteni R, Calabrese F. Chronic Restraint Stress Inhibits the Response to a Second Hit in Adult Male Rats: A Role for BDNF Signaling. Int J Mol Sci 2020; 21:ijms21176261. [PMID: 32872446 PMCID: PMC7503736 DOI: 10.3390/ijms21176261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Giulia Corsini
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy; (M.S.P.); (R.M.)
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università deglI Studi di Milano, 20133 Milan, Italy; (P.B.); (G.S.); (G.C.); (G.R.)
- Correspondence:
| |
Collapse
|
5
|
Poon CH, Heng BC, Lim LW. New insights on brain-derived neurotrophic factor epigenetics: from depression to memory extinction. Ann N Y Acad Sci 2020; 1484:9-31. [PMID: 32808327 DOI: 10.1111/nyas.14458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Advances in characterizing molecular profiles provide valuable insights and opportunities for deciphering the neuropathology of depression. Although abnormal brain-derived neurotrophic factor (BDNF) expression in depression has gained much support from preclinical and clinical research, how it mediates behavioral alterations in the depressed state remains largely obscure. Environmental factors contribute significantly to the onset of depression and produce robust epigenetic changes. Epigenetic regulation of BDNF, as one of the most characterized gene loci in epigenetics, has recently emerged as a target in research on memory and psychiatric disorders. Specifically, epigenetic alterations of BDNF exons are heavily involved in mediating memory functions and antidepressant effects. In this review, we discuss key research on stress-induced depression from both preclinical and clinical studies, which revealed that differential epigenetic regulation of specific BDNF exons is associated with depression pathophysiology. Considering that BDNF has a central role in depression, we argue that memory extinction, an adaptive response to fear exposure, is dependent on BDNF modulation and holds promise as a prospective target for alleviating or treating depression and anxiety disorders.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| |
Collapse
|
6
|
Alzoubi KH, Alibbini S, Khabour OF, El-Elimat T, Al-Zubi M, Alali FQ. Carob (Ceratonia siliqua L.) Prevents Short-Term Memory Deficit Induced by Chronic Stress in Rats. J Mol Neurosci 2018; 66:314-321. [PMID: 30218423 DOI: 10.1007/s12031-018-1161-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to stressful conditions could impair the normal brain structure and function, specifically the hippocampus-dependent memory. This impairment could be attributed to a decrease in brain-derived neurotrophic factor (BDNF) levels during chronic stress. Knowing that carob [Ceratonia siliqua L. (Fabaceae)] is rich in a wide variety of polyphenols with a high antioxidant value, we hypothesized that the methanolic carob extract (C. siliqua) pods will prevent stress-induced memory impairment. Hence, the methanolic extract of carob pods was investigated for its ability to enhance learning and memory as well as to protect from memory impairment in normal stressed animals. Rats were chronically stressed for 7 weeks via the intruder stress model. Carob extract was administered to animals via intraperitoneal (i.p.) route at a daily dose of 50 mg/kg. Radial arm water maze (RAWM) was utilized to test for spatial learning and memory. In addition, brain tissues were dissected to determine BDNF levels. Chronic stress (CS) impaired short-term spatial memory (number of committed errors: P < 0.05, days to criterion (DTC): P < 0.001). Animal treatment with carob pod extract prevented the short-term memory impairment induced by CS (P < 0.05), while such treatment showed no effect on memory functions of unstressed rats. Moreover, carob pod extract prevented the reduction in the hippocampal BDNF (P < 0.05) induced by chronic stress exposure. In conclusion, CS impaired short-term memory function, while methanolic extract of carob pods prevented this impairment, probably as a result of preventing reduction in BDNF levels in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Sanaa Alibbini
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Al-Zubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Feras Q Alali
- College of Pharmacy, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
7
|
Zhang D, Li H, Sun J, Hu W, Jin W, Li S, Tong S. Antidepressant-Like Effect of Low-Intensity Transcranial Ultrasound Stimulation. IEEE Trans Biomed Eng 2018; 66:411-420. [PMID: 29993461 DOI: 10.1109/tbme.2018.2845689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Transcranial ultrasound stimulation (TUS) is a noninvasive neuromodulation technique with good spatial resolution and deep penetration. This study aims to investigate whether TUS has antidepressant-like effect to depressed rats. METHODS Rats were divided into five groups, including two groups (ST-Ctr and ST-Res) for evaluating the short-term impact of restraint stress and three groups (LT-Ctr-ShamTUS, LT-Res-ShamTUS and LT-Res-TUS) for studying the long-term effects of restraint and TUS stimulation. The TUS-treated rats were subjected to 15 min TUS stimulation to the prelimbic cortex every day for 2 weeks after the restraint. Then, depressive symptoms related behavioral outcomes were estimated in ST-Ctr and ST-Res groups (1 week after restraint), as well as in the other three groups (3 weeks after restraint). RESULTS The 48-h-restraint stress could lead to long lasting reduction of exploratory behavior (1 and 3 weeks after restraint) and protracted anhedonia (only observed 3 weeks after restraint). TUS application successfully reversed the core depressive phenotype, anhedonia, indicated by significantly higher sucrose preference index in LT-Res-TUS group [Formula: see text] than LT-Res-ShamTUS group [Formula: see text]. Furthermore, the brain derived neurotrophic factor expression in left hippocampus was significantly promoted in LT-Res-TUS group [Formula: see text] compared to LT-Res-ShamTUS group [Formula: see text]. In addition, the histologic results of hematoxylin and eosin staining showed no TUS-induced brain tissue injury. CONCLUSION These results demonstrated that low intensity TUS had antidepressant-like effect. SIGNIFICANCE TUS has been speculated to have therapeutic effect in depression. This study provide evidence for the antidepressant-like effects of TUS in rats for the first time.
Collapse
|
8
|
Ortiz JB, Conrad CD. The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Front Neuroendocrinol 2018; 49:114-123. [PMID: 29428548 DOI: 10.1016/j.yfrne.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Chronic stress results in functional and structural changes to the brain and especially the hippocampus. Decades of research have provided insights into the mechanisms by which chronic stress impairs hippocampal-mediated cognition and the corresponding reduction of hippocampal CA3 apical dendritic complexity. Yet, when chronic stress ends and time passes, which we refer to as a "post-stress rest period," hippocampal-mediated spatial memory deficits begin to improve and CA3 apical dendritic arbors increase in complexity. The processes by which the hippocampus improves from a chronically stressed state are not simply the reversal of the mechanisms that produced spatial memory deficits and CA3 apical dendritic retraction. This review will discuss our current understanding of how a chronically stressed hippocampus improves after a post-stress rest period. Untangling the mechanisms that allow for this post-stress plasticity is a critical next step in understanding how to promote resilience in the face of stressors.
Collapse
Affiliation(s)
- J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
9
|
Kai-Xin-San series formulae alleviate depressive-like behaviors on chronic mild stressed mice via regulating neurotrophic factor system on hippocampus. Sci Rep 2017; 7:1467. [PMID: 28469194 PMCID: PMC5431115 DOI: 10.1038/s41598-017-01561-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2017] [Indexed: 01/15/2023] Open
Abstract
Kai-xin-san (KXS) is a famous Chinese medicinal formula applied for treating stress-related psychiatric diseases with the symptoms such as depression, forgetfulness and dizziness. In clinic, the composition ratio of KXS is always varied and KXS series formulae are created. Here, we aim to compare the anti-depressive effect of different ratios of KXS and reveal its action mechanism on regulation of neurotrophic factor system. Firstly, daily intra-gastric administration of chemically standardized extracts of KXS series formulae for seven days significantly alleviated the depressive symptoms of chronic unpredictable mild stressed mice displayed by enhanced sucrose consumptions and decreased immobile time of forced swimming coupled with increased locomotor activities. KXS might fulfill this effect by up-regulating the expressions of NGF, BDNF and Trk receptors in hippocampus, which were confirmed by the treatment of corresponding blockers tPA-stop and K252a. The ratio with higher amounts of Ginseng Radix et Rhizoma and Polygalae Radix exerted most profound effect on anti-depression and regulation enzymes in metabolic pathway of neurotrophic factors. These findings suggested that KXS was beneficial for enhancing supplies, up-regulating receptors, and restoring the dysfunction of metabolic pathway of neurotrophic factors, which might account for its anti-depression effect.
Collapse
|
10
|
The effects of desipramine, fluoxetine, or tianeptine on changes in bulbar BDNF levels induced by chronic social instability stress and inflammation. Pharmacol Rep 2017; 69:520-525. [PMID: 31994095 DOI: 10.1016/j.pharep.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stress is a major predisposing factor in the development of psychiatric disorders and potential source of augmented inflammatory processes in the brain. Increasing body of evidence shows an important role of alterations in the olfactory bulbs (OBs) function in stress-related disorders. The aim of the present study was to investigate the impact of antidepressants on the alterations of brain-derived neurotrophic factor (BDNF) induced by lipopolysaccharide (LPS) in female rats subjected to chronic social instability stress (CSIS). METHODS 9 weeks old female rats were subjected to CSIS and injected ip once daily with desipramine (10 mg/kg), fluoxetine (5 mg/kg), or tianeptine (10 mg/kg) for 4 weeks. On the last day of the experiment, rats being at the estrus phase of cycle were injected ip with LPS (1 mg/kg) or saline. RESULTS The BDNF mRNA and protein levels were evaluated in the olfactory bulbs. and the BDNF protein levels were measured in plasma. A single LPS administration in the stressed rats resulted in significant decrease in the bulbar BDNF mRNA, but not in the protein level. Chronic administration of desipramine, fluoxetine, or tianeptine increased the BDNF mRNA expression and protein levels in the LPS-injected stressed rats. There was no effect of the studied antidepressants on the reduction of the plasma BDNF protein level induced by CSIS and LPS. CONCLUSIONS These results suggest that studied antidepressants were effective in inhibiting the impact of LPS on BDNF expression in the stressed rats what may be significant for beneficial action of this drugs.
Collapse
|
11
|
Sun L, Fang L, Lian B, Xia JJ, Zhou CJ, Wang L, Mao Q, Wang XF, Gong X, Liang ZH, Bai SJ, Liao L, Wu Y, Xie P. Biochemical effects of venlafaxine on astrocytes as revealed by 1H NMR-based metabolic profiling. MOLECULAR BIOSYSTEMS 2017; 13:338-349. [PMID: 28045162 DOI: 10.1039/c6mb00651e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a serotonin–norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects.
Collapse
|
12
|
Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiol Behav 2016; 178:66-81. [PMID: 27887995 DOI: 10.1016/j.physbeh.2016.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
The current understanding of how chronic stress impacts hippocampal dendritic arbor complexity and the subsequent relationship to hippocampal-dependent spatial memory is reviewed. A surge in reports investigating hippocampal dendritic morphology is occurring, but with wide variations in methodological detail being reported. Consequently, this review systematically outlines the basic neuroanatomy of relevant hippocampal features to help clarify how chronic stress or glucocorticoids impact hippocampal dendritic complexity and how these changes occur in parallel with spatial cognition. Chronic stress often leads to hippocampal CA3 apical dendritic retraction first with other hippocampal regions (CA3 basal dendrites, CA1, dentate gyrus, DG) showing dendritic retraction when chronic stress is sufficiently robust or long lasting. The stress-induced reduction in hippocampal CA3 apical dendritic arbor complexity often coincides with impaired hippocampal function, such as spatial learning and memory. Yet, when chronic stress ends and a post-stress recovery period ensues, the atrophied dendritic arbors and poor spatial abilities often improve. However, this process differs from a simple reversal of chronic stress-induced deficits. Recent reports suggest that this return to baseline-like functioning is uniquely different from non-stressed controls, emphasizing the need for further studies to enhance our understanding of how a history of stress subsequently alters an organism's spatial abilities. To provide a consistent framework for future studies, this review concludes with an outline for a quick and easy reference on points to consider when planning chronic stress studies with the goal of measuring hippocampal dendritic complexity and spatial ability.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| | - Jessica M Judd
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
13
|
Wang YL, Wang JX, Hu XX, Chen L, Qiu ZK, Zhao N, Yu ZD, Sun SZ, Xu YY, Guo Y, Liu C, Zhang YZ, Li YF, Yu CX. Antidepressant-like effects of albiflorin extracted from Radix paeoniae Alba. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:9-15. [PMID: 26719283 DOI: 10.1016/j.jep.2015.12.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/14/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Albiflorin, a monoterpene glycoside, is a main component of Radix paeoniae Alba, which could be a Chinese herbal medicine used in the treatment of psychiatric disorders. However, the exact role of albiflorin in depression is poorly understood. AIM OF THE STUDY The current study aimed to evaluate the antidepressant effect of albiflorin in mice and rats, and the possible mechanism was also determined. MATERIALS AND METHODS The antidepressant-like effects of albiflorin was determined by using animal models of depression including forced swim and tail suspension tests in mice and chronic unpredictable stress (CUS) in rats. The acting mechanism was explored by determining the effect of albiflorin on the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus by western blot and the levels of monoamine in the hippocampus by HPLC. RESULTS Our results showed that 7 days treatment with albiflorin significantly decreased immobility time in the forced swimming test (FST) and the tail suspension test (TST) at doses of 3.5, 7.0 and 14.0mg/kg without alter the locomotor activity in mice. Moreover, western blot analysis showed that albiflorin could increase the expression of BDNF in the hippocampus. We further exposed rats to a chronic unpredictable stress (CUS) protocol for a period of 35d to induce depressive-like behaviors. We found that chronic treatment with albiflorin, at doses of 7.0 and 14.0mg (i.g., once daily for 35d), restored the sucrose preference in CUS rats. In the open-field test, albiflorin significantly increased the number of crossings and rearings in the CUS rats at three doses. Moreover, chronic treatment with albiflorin up-regulated the hippocampal BDNF expression levels and the hippocampal 5-HT, 5-HIAA, and NA levels. CONCLUSION Albiflorin produced significant antidepressant-like effects, which were closely related to the hippocampal 5-HT/NE increase and BDNF expression. Our data indicated that albiflorin could be a potential anti-depressant drug.
Collapse
Affiliation(s)
- Yu-Lu Wang
- College of Pharmacy, Fujian Medical University, Fuzhou 350108, China; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing-Xia Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Xu Hu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Li Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhi-Kun Qiu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Nan Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zi-Dan Yu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shu-Zheng Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuan-Yuan Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yan Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chang Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chang-Xi Yu
- College of Pharmacy, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
14
|
van Zyl PJ, Dimatelis JJ, Russell VA. Behavioural and biochemical changes in maternally separated Sprague-Dawley rats exposed to restraint stress. Metab Brain Dis 2016; 31:121-33. [PMID: 26555398 DOI: 10.1007/s11011-015-9757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Early life adversity has been associated with the development of various neuropsychiatric disorders in adulthood such as depression and anxiety. The aim of this study was to determine if stress during adulthood can exaggerate the depression-/anxiety-like behaviour observed in the widely accepted maternally separated (MS) Sprague-Dawley (SD) rat model of depression. A further aim was to determine whether the behavioural changes were accompanied by changes in hippocampal brain-derived neurotrophic factor (BDNF) and the protein profile of the prefrontal cortex (PFC). Depression-/anxiety-like behaviour was measured in the elevated plus maze, open field and forced swim test (FST) in the MS SD rats exposed to chronic restraint stress in adulthood. As expected, MS increased immobility of SD rats in the FST but restraint stress did not enhance this effect of MS on SD rats. A proteomic analysis of the PFC revealed a decrease in actin-related proteins in MS and non-separated rats subjected to restraint stress as well as a decrease in mitochondrial energy-related proteins in the stressed rat groups. Since MS during early development causes a disruption in the hypothalamic-pituitary-adrenal axis and long-term changes in the response to subsequent stress, it may have prevented restraint stress from exerting its effects on behaviour. Moreover, the decrease in proteins related to mitochondrial energy metabolism in MS rats with or without subsequent restraint stress may be related to stress per se and not depression-like behaviour, because rats subjected to restraint stress displayed similar decreases in energy-related proteins and spent less time immobile in the FST than control rats.
Collapse
Affiliation(s)
- P J van Zyl
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa.
| | - J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
15
|
Amin SN, Gamal SM, Esmail RSEN, Aziz TMA, Rashed LA. Cognitive effects of acute restraint stress in male albino rats and the impact of pretreatment with quetiapine versus ghrelin. J Integr Neurosci 2015; 13:669-92. [PMID: 25391717 DOI: 10.1142/s0219635214500253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stress is any condition that seriously affects the balance of the organism physiologically and psychologically. Stress activates the hypothalamic-pituitary-adrenal (HPA) releasing glucocorticoid hormones that produce generalized effects on different body systems including the nervous system. This study aimed to investigate the effect of acute restraint stress (ARS) on cognitive performance by measuring spatial working memory in Y-maze, behavior (anxiety and exploratory behavior) in open field test, expression of synaptophysin and glial fibrillary acidic protein (GFAP) in the hippocampus by immunohistochemistry, dopaminergic receptors (D2) in the basal ganglia by gene expression and comparing the effect of ghrelin and quetiapine on the previous parameters. 36 adult male albino rats constituted the animal model of this work and have been divided into six groups: control group, control group exposed to ARS, quetiapine group, quetiapine group exposed to ARS, ghrelin group and ghrelin group exposed to ARS. We demonstrated more neuroprotective effect for quetiapine compared to ghrelin on stress response, anxiety behavior and working spatial memory impairment due to ARS.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Kasr Al Ainy St. Cairo, Egypt 11562, Egypt
| | | | | | | | | |
Collapse
|
16
|
Baranova KA, Rybnikova EA, Samoilov MO. The neurotrophin BDNF is involved in the development and prevention of stress-induced psychopathologies. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
18
|
NMDA receptor dysregulation in chronic state: A possible mechanism underlying depression with BDNF downregulation. Neurochem Int 2014; 79:88-97. [DOI: 10.1016/j.neuint.2014.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
|
19
|
Nowacka MM, Paul-Samojedny M, Bielecka AM, Obuchowicz E. Chronic social instability stress enhances vulnerability of BDNF response to LPS in the limbic structures of female rats: A protective role of antidepressants. Neurosci Res 2014; 88:74-83. [DOI: 10.1016/j.neures.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
|
20
|
Abstract
Increasing number of studies has during the last decade linked neurotrophic factors with the pathophysiology of neuropsychiatric disorders and with the mechanisms of action of drugs used for the treatment of these disorders. In particular, brain-derived neurotrophic factor BDNF and its receptor TrkB have been connected with the pathophysiology in mood disorders, and there is strong evidence that BDNF signaling is critically involved in the recovery from depression with both pharmacological and psychological means. Neurotrophins play a central role in neuronal plasticity and network connectivity in developing adult brain, and recent evidence links plasticity and network rewiring with mood disorders and their treatment. Therefore, neurotrophins should not be seen as happiness factors but as critical tools in the process where brain networks are optimally tuned to environment, and it is against this background that the effects of neurotrophins on neuropsychiatric disorders should be looked at.
Collapse
Affiliation(s)
- E Castrén
- Neuroscience Center, University of Helsinki, 56, 00014, Helsinki, Finland,
| |
Collapse
|
21
|
de Foubert G, Khundakar AA, Zetterström TS. Effects of repeated 5-HT6 receptor stimulation on BDNF gene expression and cell survival. Neurosci Lett 2013; 553:211-5. [DOI: 10.1016/j.neulet.2013.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
22
|
Zarros A, Byrne AM, Boomkamp SD, Tsakiris S, Baillie GS. Lanthanum-induced neurotoxicity: solving the riddle of its involvement in cognitive impairment? Arch Toxicol 2013; 87:2031-2035. [DOI: 10.1007/s00204-013-1112-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
23
|
Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. ACTA ACUST UNITED AC 2012; 1:351-63. [PMID: 16921405 PMCID: PMC1550735 DOI: 10.1017/s1740925x05000219] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The brain is remarkably responsive to its interactions with the environment, and its morphology is altered by experience in measurable ways. Histological examination of the brains of animals exposed to either a complex ('enriched') environment or learning paradigm, compared with appropriate controls, has illuminated the nature of experience-induced morphological plasticity in the brain. For example, this research reveals that changes in synapse number and morphology are associated with learning and are stable, in that they persist well beyond the period of exposure to the learning experience. In addition, other components of the nervous system also respond to experience: oligodendrocytes and axonal myelination might also be permanently altered, whereas changes in astrocytes and cerebrovasculature are more transient and appear to be activity- rather than learning-driven. Thus, experience induces multiple forms of plasticity in the brain that are apparently regulated, at least in part, by independent mechanisms.
Collapse
Affiliation(s)
- Julie A Markham
- Beckman Institute, University of Illinois, 405 N. Matthews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
24
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
25
|
Kodish I, Rockhill C, Varley C. Pharmacotherapy for anxiety disorders in children and adolescents. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22275849 PMCID: PMC3263391 DOI: 10.31887/dcns.2011.13.4/ikodish] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anxiety disorders are the most common mental health diagnoses in youth, and carry risks for ongoing impairments and subsequent development of other psychiatric comorbidities into adulthood. This article discusses considerations for assessment and treatment of anxiety disorders in youth, with a focus on the evidence base of pharmacologic treatment and important clinical considerations to optimize care. We then briefly describe the impact of anxiety on neuronal elements of fear circuitry to highlight how treatments may ameliorate impairments through enhanced plasticity Overall, pharmacotherapy for anxiety disorders is effective in improving clinical symptoms, particularly in combination with psychotherapy. Response is typically seen within several weeks, yet longitudinal studies are limited. Selective serotonin reuptake inhibitors are thought to be relatively safe and effective for acute treatment of several classes of anxiety disorders in youth, with increasing evidence supporting the role of neuronal plasticity in recovery.
Collapse
Affiliation(s)
- Ian Kodish
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | |
Collapse
|
26
|
Zhao Y, Wang Z, Dai J, Chen L, Huang Y, Zhan Z. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav Brain Res 2011; 228:339-50. [PMID: 22198054 DOI: 10.1016/j.bbr.2011.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 01/20/2023]
Abstract
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress.
Collapse
Affiliation(s)
- Yunan Zhao
- Key Laboratory of Brain Research, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
27
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
28
|
Loftis JM. Sertoli cell therapy: a novel possible treatment strategy for treatment-resistant major depressive disorder. Med Hypotheses 2011; 77:35-42. [PMID: 21454019 DOI: 10.1016/j.mehy.2011.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 12/27/2022]
Abstract
By the year 2020, depression will be the 2nd most common health problem in the world. Current medications to treat depression are effective in less than 50% of patients. There is the need for novel treatments for depression to address the high rates of resistance to current treatment and the chronic residual symptoms in many patients treated for depression. The heterogeneity of major depressive disorder suggests that multiple neurocircuits and neurochemicals are involved in its pathogenesis thus, finding an alternative to neurotransmitter agonist- or antagonist-based treatments offers an important new approach. Cellular therapy is an emerging treatment strategy for multiple diseases, including depression. Based upon their in vivo function as "nurse cells" within the testis and the documented viability, efficacy, and safety of Sertoli cells transplanted into multiple tissues, including brain, the potential for these cells to provide a neuroprotective, anti-inflammatory, and trophic environment for neurons should be considered. It is proposed that the combination of self-protective, immunoregulatory and trophic properties of Sertoli cells may confer a unique potential for depression treatment and avoid many of the risks and challenges associated with stem cell therapies. At the very least, studies of the effects of Sertoli cell transplantation will add substantially to our understanding of the cellular and molecular processes that underlie depression.
Collapse
Affiliation(s)
- J M Loftis
- Research & Development Service, Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
29
|
Abstract
Anxiety disorders comprise the most prevalent mental health disorders among children and adults. Psychotherapy and pharmacotherapy are effective in improving clinical impairments from anxiety disorders and maintaining these improvements. This article discusses how to obtain a suitable diagnosis for anxiety disorders in youth for implementing appropriate treatments, focusing on the evidence base for pharmacologic treatment. Clinical guidelines are discussed, including Food and Drug Administration indications and off-label use of medications, and considerations for special populations and youth with comorbidities are highlighted. Findings suggest moderate effectiveness of medication, particularly selective serotonin reuptake inhibitors, in the treatment of anxiety disorders in youth.
Collapse
|
30
|
Espinosa-Oliva A, de Pablos R, Villarán R, Argüelles S, Venero J, Machado A, Cano J. Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol Aging 2011; 32:85-102. [DOI: 10.1016/j.neurobiolaging.2009.01.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/28/2022]
|
31
|
Wager-Smith K, Markou A. Depression: a repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci Biobehav Rev 2011; 35:742-64. [PMID: 20883718 PMCID: PMC3777427 DOI: 10.1016/j.neubiorev.2010.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/19/2022]
Abstract
Depression is a major contributor to the global burden of disease and disability, yet it is poorly understood. Here we review data supporting a novel theoretical model for the biology of depression. In this model, a stressful life event leads to microdamage in the brain. This damage triggers an injury repair response consisting of a neuroinflammatory phase to clear cellular debris and a spontaneous tissue regeneration phase involving neurotrophins and neurogenesis. During healing, released inflammatory mediators trigger sickness behavior and psychological pain via mechanisms similar to those that produce physical pain during wound healing. The depression remits if the neuronal injury repair process resolves successfully. Importantly, however, the acute psychological pain and neuroinflammation often transition to chronicity and develop into pathological depressive states. This hypothesis for depression explains substantially more data than alternative models, including why emerging data show that analgesic, anti-inflammatory, pro-neurogenic and pro-neurotrophic treatments have antidepressant effects. Thus, an acute depressive episode can be conceptualized as a normally self-limiting but highly error-prone process of recuperation from stress-triggered neuronal microdamage.
Collapse
Affiliation(s)
- Karen Wager-Smith
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | |
Collapse
|
32
|
Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 2010; 44:808-16. [PMID: 20172535 DOI: 10.1016/j.jpsychires.2010.01.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 01/29/2023]
Abstract
Chronic unpredictable stress (CUS) is a widely used animal model of depression. The present study was undertaken to investigate behavioral, physiological and molecular effects of CUS and/or chronic antidepressant treatment (venlafaxine or imipramine) in the same set of animals. Anhedonia, a core symptom of depression, was assessed by measuring consumption of a palatable solution. Exposure to CUS reduced intake of a palatable solution and this effect was prevented by chronic antidepressant treatment. Moreover, chronic antidepressant treatment decreased depressive-like behavior in a modified forced swim test in stressed rats. Present evidence suggests a role for brain-derived neurotrophic factor (BDNF) in depression. BDNF mRNA levels in the ventral and dorsal hippocampus were assessed by in situ hybridization. Exposure to CUS was not correlated with a decrease but rather with an increase in BDNF mRNA expression in both the dentate gyrus of the dorsal hippocampus and the CA3 region of the ventral hippocampus indicating that there is no simple link between depression-like behaviors per se and brain BDNF levels in rats. However, a significant increase in BDNF mRNA levels in the dentate gyrus of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity.
Collapse
|
33
|
Naert G, Ixart G, Maurice T, Tapia-Arancibia L, Givalois L. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress. Mol Cell Neurosci 2010; 46:55-66. [PMID: 20708081 DOI: 10.1016/j.mcn.2010.08.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/28/2022] Open
Abstract
Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation.
Collapse
Affiliation(s)
- Gaelle Naert
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, Inserm U710, F-34095 Montpellier, France
| | | | | | | | | |
Collapse
|
34
|
Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shekhar A. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 2010; 27:339-50. [PMID: 19960531 DOI: 10.1002/da.20642] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is a major monoamine neurotransmitter that has widespread effects across multiple brain areas to regulate arousal and stress responses. The underlying function of the NE cortical system is to balance vigilance/scanning behavior with focused attention on novel environmental stimuli and the state of arousal. The central NE system is involved intrinsically with the stress response system, and dysregulation within the NE system has been implicated in the pathogenesis of anxiety and depressive disorders. Central NE activity paradoxically has either anxiogenic or anxiolytic effects, depending on whether the time course of the stress is acute or chronic, whether the stress is predictable or unpredictable, and which underlying brain regions are affected. Under conditions of chronic stress, NE system activity dysregulation of the hypothalamic-pituitary-adrenal system may turn a homeostatic stress response into a pathological stress response. Data suggest that the NE interplay with the serotonin system may exert neurobiological normalization of the pathophysiological state of anxious depression. Accordingly, pharmacological interventions targeting the NE system can result in anxiolytic, rather than anxiogenic, outcomes when used to treat patients with anxiety and depression.
Collapse
Affiliation(s)
- Andrew W Goddard
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Calabrese F, Molteni R, Racagni G, Riva MA. Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 2009; 34 Suppl 1:S208-16. [PMID: 19541429 DOI: 10.1016/j.psyneuen.2009.05.014] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/22/2009] [Accepted: 05/23/2009] [Indexed: 01/19/2023]
Abstract
Although stress represents the major environmental element of susceptibility for mood disorders, the relationship between stress and disease remains to be fully established. In the present article we review the evidence in support for a role of neuronal plasticity, and in particular of neurotrophic factors. Even though decreased levels of norepinephrine and serotonin may underlie depressive symptoms, compelling evidence now suggests that mood disorders are characterized by reduced neuronal plasticity, which can be brought about by exposure to stress at different stages of life. Indeed the expression of neurotrophic molecules, such as the neurotrophin BDNF, is reduced in depressed subjects as well as in experimental animals exposed to adverse experience at early stages of life or at adulthood. These changes show an anatomical specificity and might be sustained by epigenetic mechanisms. Pharmacological intervention may normalize such defects and improve neuronal function through the modulation of the same factors that are defective in depression. Several studies have demonstrated that chronic, but not acute, antidepressant treatment increases the expression of BDNF and may enhance its localization at synaptic level. Antidepressant treatment can normalize deficits in neurotrophin expression produced by chronic stress paradigms, but may also alter the modulation of BDNF under acute stressful conditions. In summary, there is good agreement in considering neuronal plasticity, and the expression of key proteins such as the neurotrophin BDNF, as a central player for the effects of stress on brain function and its implication for psychopathology. Accordingly, effective treatments should not limit their effects to the control of neurotransmitter and hormonal dysfunctions, but should be able to normalize defective mechanisms that sustain the impairment of neuronal plasticity.
Collapse
Affiliation(s)
- Francesca Calabrese
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
36
|
Lovejoy DA, Rotzinger S, Barsyte-Lovejoy D. Evolution of complementary peptide systems: teneurin C-terminal-associated peptides and corticotropin-releasing factor superfamilies. Ann N Y Acad Sci 2009; 1163:215-20. [PMID: 19456342 DOI: 10.1111/j.1749-6632.2008.03629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In chordates, the corticotropin-releasing factor (CRF) family of peptides consists of four paralogous lineages that include CRF, urocortin/urotensin-I, urocortin 2, and urocortin 3. Related to the CRF peptide family is the diuretic hormone family found in insects. This family consists of a number of paralogous lineages within the Insecta. The teneurin C-terminal-associated peptides (TCAP) are a recently described family of peptides with evolutionary origins around the same time as the CRF family. This family consists of four independent lineages in chordates that are orthologous to peptides in the Insecta. Like CRF, the peptides are 40 or 41 amino acids in length and share about 20% sequence identity to the CRF family members. Each of the four TCAP peptides is encoded by an exon that is closely associated with the teneurin gene. Recent studies indicate that TCAP can block CRF-mediated c-fos expression in the brain and modulate CRF-mediated behaviors. Thus, the TCAP family may act, in part, to modulate the physiological actions of the CRF family.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
37
|
Lewitus GM, Wilf-Yarkoni A, Ziv Y, Shabat-Simon M, Gersner R, Zangen A, Schwartz M. Vaccination as a novel approach for treating depressive behavior. Biol Psychiatry 2009; 65:283-8. [PMID: 18722594 DOI: 10.1016/j.biopsych.2008.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depressive behavior in animals is often associated with reduced levels of brain-derived neurotrophic factor (BDNF) and impaired neurogenesis in the hippocampus. Recent studies showed that T cells recognizing central nervous system (CNS)-specific antigens can regulate adult hippocampal neurogenesis and expression of BDNF. On the basis of these findings, we hypothesized that controlling CNS specific immune activity by immunization with a myelin-related peptide may have an antidepressant effect. METHODS We investigated the impact of immunization with a CNS related peptide, on the behavioral and cellular outcomes of chronic mild stress (CMS; an animal model for depression) in rats. RESULTS Immunization with a weak agonist of a myelin-derived peptide ameliorated depressive behavior such as anhedonia (measured by sucrose preference), induced by CMS in rats. The behavioral outcome was accompanied by restoration of hippocampal BDNF levels and neurogenesis. CONCLUSIONS The results of this study introduce a novel approach of immunization with CNS-related antigens as a therapeutic means for fighting depression. Vaccination, as an antidepressant therapy, may invoke several molecular and cellular pathways that are known to be regulated by antidepressant drugs. Therefore, we suggest that immune-based therapies should be considered for treatment of depression.
Collapse
Affiliation(s)
- Gil M Lewitus
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Donovan MH, Yamaguchi M, Eisch AJ. Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus. Hippocampus 2008; 18:435-9. [PMID: 18240316 DOI: 10.1002/hipo.20410] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the regulation of adult hippocampal neurogenesis, presumably via its primary receptor, TrkB. However, controversy exists about how BDNF affects neurogenesis (e.g., proliferation vs. survival/differentiation). This controversy arises, in part, due to the lack of information about whether and when TrkB is expressed on adult neural precursors in vivo. We utilized multiple methods to analyze proliferating and maturing cells in the adult mouse subgranular zone (SGZ) for TrkB protein. Using bromodeoxyuridine (BrdU) to "birthdate" cells, we found that the proportion of proliferating cells that were TrkB-immunoreactive (IR) was low and remained low for at least 1 week, but increased with further survival after BrdU labeling. Use of the nestin-GFP transgenic mouse and the immature neuron marker, doublecortin (Dcx), revealed that the likelihood of being TrkB-IR increased with presumed maturity of the cell type. Stem-like cells, which rarely divide, were likely to express TrkB protein. However, early progenitors (GFP+/Dcx-) and late progenitors (GFP+/Dcx+), both of which are still in the cell cycle, were unlikely to be TrkB-IR. Immature neuroblasts (GFP-/Dcx+) were more likely to express TrkB, especially as they presented a more mature morphology. Taken together, these findings emphasize that expression of TrkB protein is closely linked to progression toward neuronal maturity. This provides evidence that maturing, but not proliferating, cells in the adult mouse SGZ have the molecular machinery necessary to respond directly to BDNF. Furthermore, these findings lay critical groundwork for further exploration of the role of BDNF-TrkB signaling in regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Michael H Donovan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | |
Collapse
|
39
|
Rantamäki T, Castrén E. Targeting TrkB neurotrophin receptor to treat depression. Expert Opin Ther Targets 2008; 12:705-15. [DOI: 10.1517/14728222.12.6.705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Foster JA, MacQueen G. Neurobiological factors linking personality traits and major depression. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2008; 53:6-13. [PMID: 18286867 DOI: 10.1177/070674370805300103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To examine the neurobiological basis of personality and depression. METHOD We examined preclinical and clinical studies related to neuroanatomy, neuroendocrine, molecular, and genetic alterations in depressed patients. We considered whether common neurobiological factors might be shared between personality and depression. RESULTS Preclinical studies provide insights into the neurobiological mechanisms underlying the pathophysiology of depression including neuroendocrine alterations in hypothalamic-pituitary-adrenal (HPA) function, neuroanatomical alterations in key brain regions, and alterations in neurotrophin and serotonergic signalling systems. Clinical studies show similar alterations in depressed patients. Evidence suggests that neuroendocrine alterations in HPA function may contribute to personality traits. Brain regions implicated in depression, including the hippocampus and the anterior cingulate cortex, might play a role in personality. Key molecules implicated in depression have been extensively studied with reference to personality traits, particularly neuroticism. To date, physiological measures (serum and positron emission tomography) provide the strongest evidence implicating brain-derived neurotrophic factor and serotonin in personality, while genetic evidence is less convincing. CONCLUSIONS A neurobiological link exists between personality and depression; however, more work is needed to provide an understanding of the nature of this relation and to link this work with clinical studies examining the influence of personality factors on depression.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University
| | | |
Collapse
|
41
|
Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007; 18:391-418. [PMID: 17762509 DOI: 10.1097/fbp.0b013e3282ee2aa8] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) is characterized by structural and neurochemical changes in limbic structures, including the hippocampus, that regulate mood and cognitive functions. Hippocampal atrophy is observed in patients with depression and this effect is blocked or reversed by antidepressant treatments. Brain-derived neurotrophic factor and other neurotrophic/growth factors are decreased in postmortem hippocampal tissue from suicide victims, which suggests that altered trophic support could contribute to the pathophysiology of MDD. Preclinical studies demonstrate that exposure to stress leads to atrophy and cell loss in the hippocampus as well as decreased expression of neurotrophic/growth factors, and that antidepressant administration reverses or blocks the effects of stress. Accumulating evidence suggests that altered neurogenesis in the adult hippocampus mediates the action of antidepressants. Chronic antidepressant administration upregulates neurogenesis in the adult hippocampus and this cellular response is required for the effects of antidepressants in certain animal models of depression. Here, we review cellular (e.g. adult neurogenesis) and behavioral studies that support the neurotrophic/neurogenic hypothesis of depression and antidepressant action. Aberrant regulation of neuronal plasticity, including neurogenesis, in the hippocampus and other limbic nuclei may result in maladaptive changes in neural networks that underlie the pathophysiology of MDD.
Collapse
Affiliation(s)
- Heath D Schmidt
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Rantamäki T, Hendolin P, Kankaanpää A, Mijatovic J, Piepponen P, Domenici E, Chao MV, Männistö PT, Castrén E. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32:2152-62. [PMID: 17314919 DOI: 10.1038/sj.npp.1301345] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies suggest that brain-derived neurotrophic factor and its receptor TrkB are critically involved in the therapeutic actions of antidepressant drugs. We have previously shown that the antidepressants imipramine and fluoxetine produce a rapid autophosphorylation of TrkB in the rodent brain. In the present study, we have further examined the biochemical and functional characteristics of antidepressant-induced TrkB activation in vivo. We show that all the antidepressants examined, including inhibitors of monoamine transporters and metabolism, activate TrkB rapidly in the rodent anterior cingulate cortex and hippocampus. Furthermore, the results indicate that acute and long-term antidepressant treatments induce TrkB-mediated activation of phospholipase-Cgamma1 (PLCgamma1) and increase the phosphorylation of cAMP-related element binding protein, a major transcription factor mediating neuronal plasticity. In contrast, we have not observed any modulation of the phosphorylation of TrkB Shc binding site, phosphorylation of mitogen-activated protein kinase or AKT by antidepressants. We also show that in the forced swim test, the behavioral effects of specific serotonergic antidepressant citalopram, but not those of the specific noradrenergic antidepressant reboxetine, are crucially dependent on TrkB signaling. Finally, brain monoamines seem to be critical mediators of antidepressant-induced TrkB activation, as antidepressants reboxetine and citalopram do not produce TrkB activation in the brains of serotonin- or norepinephrine-depleted mice. In conclusion, our data suggest that rapid activation of the TrkB neurotrophin receptor and PLCgamma1 signaling is a common mechanism for all antidepressant drugs.
Collapse
Affiliation(s)
- Tomi Rantamäki
- Neuroscience Center, University of Helsinki, PO box 56, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Joëls M, Karst H, Krugers HJ, Lucassen PJ. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 2007; 28:72-96. [PMID: 17544065 DOI: 10.1016/j.yfrne.2007.04.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/12/2007] [Accepted: 04/20/2007] [Indexed: 12/19/2022]
Abstract
In normal life, organisms are repeatedly exposed to brief periods of stress, most of which can be controlled and adequately dealt with. The presently available data indicate that such brief periods of stress have little influence on the shape of neurons or adult neurogenesis, yet change the physiological function of cells in two time-domains. Shortly after stress excitability in limbic areas is rapidly enhanced, but also in brainstem neurons which produce catecholamines; collectively, during this phase the stress hormones promote focused attention, alertness, vigilance and the initial steps in encoding of information linked to the event. Later on, when the hormone concentrations are back to their pre-stress level, gene-mediated actions by corticosteroids reverse and normalize the enhanced excitability, an adaptive response meant to curtail defense reactions against stressors and to enable further storage of relevant information. When stress is experienced repetitively in an uncontrollable and unpredictable manner, a cascade of processes in brain is started which eventually leads to profound, region-specific alterations in dendrite and spine morphology, to suppression of adult neurogenesis and to inappropriate functional responses to a brief stress exposure including a sensitized activation phase and inadequate normalization of brain activity. Although various compounds can effectively prevent these cellular changes by chronic stress, the exact mechanism by which the effects are accomplished is poorly understood. One of the challenges for future research is to link the cellular changes seen in animal models for chronic stress to behavioral effects and to understand the risks they can impose on humans for the precipitation of stress-related disorders.
Collapse
Affiliation(s)
- Marian Joëls
- SILS-CNS, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Luellen BA, Bianco LE, Schneider LM, Andrews AM. Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. GENES BRAIN AND BEHAVIOR 2007; 6:482-90. [PMID: 17156118 DOI: 10.1111/j.1601-183x.2006.00279.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates monoamine neuronal growth, survival and function in development and throughout adulthood. At 18 months of age, mice with constitutive reductions in BDNF expression show decreased serotonin innervation in the hippocampus compared with age-matched wildtype mice. It is not known, however, whether age-accelerated loss of serotonergic innervation in BDNF(+/-) mice occurs in other brain regions, advances beyond 18 months or is associated with alterations in other neurotransmitter systems. In this study, immunocytochemistry was used to assess serotonergic and catecholaminergic innervation in 26-month-old BDNF(+/-) mice. Age-related loss of serotonin axons in the hippocampus was potentiated in BDNF(+/-) mice compared with wildtype mice at this late age, particularly in the CA1 subregion. By contrast, aging BDNF(+/-) mice showed increased serotonin innervation of the basomedial nucleus of the amygdala. In the noradrenergic system, BDNF(+/-) mice showed reduced numbers of cell bodies and fibers in the locus coeruleus compared with age-matched wildtype mice, whereas no changes were observed in dopaminergic innervation with respect to genotype. In vivo zero net flux microdialysis in awake mice showed a significant decrease in extracellular serotonin levels in the hippocampus in BDNF(+/-) mice at 20 months of age. Thus, reduced BDNF is associated with altered serotonergic and noradrenergic innervation in aging mice and, in particular, with accelerated loss of serotonergic innervation to the hippocampus that is manifest as a decrease in basal neurotransmission.
Collapse
Affiliation(s)
- B A Luellen
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4615, USA
| | | | | | | |
Collapse
|
45
|
Li XM, Xu H. Evidence for neuroprotective effects of antipsychotic drugs: implications for the pathophysiology and treatment of schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:107-42. [PMID: 17178473 DOI: 10.1016/s0074-7742(06)77004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin-Min Li
- Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan Saskatoon, SK, Canada
| | | |
Collapse
|
46
|
Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism and mood disorders: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1326-9. [PMID: 16626843 DOI: 10.1016/j.pnpbp.2006.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/21/2006] [Accepted: 03/03/2006] [Indexed: 11/17/2022]
Abstract
This study examined the relationship between a MnSOD gene (MnSOD) polymorphism (Ala-9Val) and mood disorders such as major depressive disorder (MDD) and bipolar I disorder (BD). Eighty patients with BD, 61 patients with MDD and 106 healthy controls were enrolled in this study and genotyped using a polymerase chain reaction-based method. The patients with MDD and BD, and the controls had a similar distribution of the genotypes and alleles in the Ala-9Val MnSOD polymorphism. The combined analysis (MDD plus BD) also failed to find any association between the Ala-9Val MnSOD polymorphism and mood disorders. Subgroup analyses according to the clinical variables such as the family history, age at onset, psychotic features and suicide history failed to identify any association with the Ala-9Val MnSOD polymorphism. This preliminary data suggests that at least in the Korean population, the Ala-9Val MnSOD polymorphism is not associated with the development of mood disorders or their clinical parameters. However, more study with a larger population sample will be needed.
Collapse
|
47
|
Bhat MS, Rao G, Murthy KD, Bhat PG. Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 4:35-42. [PMID: 17342239 PMCID: PMC1810373 DOI: 10.1093/ecam/nel049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 06/18/2006] [Indexed: 12/17/2022]
Abstract
The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.
Collapse
Affiliation(s)
- M. Surekha Bhat
- Department of Biochemistry, Department of Physiology, Melaka Manipal Medical College and Department of Biochemistry, Kasturba Medical College Manipal 576104, India
| | - Guruprasad Rao
- Department of Biochemistry, Department of Physiology, Melaka Manipal Medical College and Department of Biochemistry, Kasturba Medical College Manipal 576104, India
| | - K. Dilip Murthy
- Department of Biochemistry, Department of Physiology, Melaka Manipal Medical College and Department of Biochemistry, Kasturba Medical College Manipal 576104, India
| | - P. Gopalakrishna Bhat
- Department of Biochemistry, Department of Physiology, Melaka Manipal Medical College and Department of Biochemistry, Kasturba Medical College Manipal 576104, India
| |
Collapse
|
48
|
Mitsukawa K, Mombereau C, Lötscher E, Uzunov DP, van der Putten H, Flor PJ, Cryan JF. Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders. Neuropsychopharmacology 2006; 31:1112-22. [PMID: 16237391 DOI: 10.1038/sj.npp.1300926] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulation of neurotransmission via group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) has recently been implicated in the pathophysiology of affective disorders, such as major depression and anxiety. For instance, mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) showed antidepressant and anxiolytic-like effects in a variety of stress-related paradigms, including the forced swim stress and the stress-induced hyperthermia tests. Deletion of mGluR7 reduces also amygdala- and hippocampus-dependent conditioned fear and aversion responses. Since the hypothalamic-pituitary-adrenal (HPA) axis regulates the stress response we investigate whether parameters of the HPA axis at the levels of selected mRNA transcripts and endocrine hormones are altered in mGluR7-deficient mice. Over all, mGluR7-/- mice showed only moderately lower serum levels of corticosterone and ACTH compared with mGluR7+/+ mice. More strikingly however, we found strong evidence for upregulated glucocorticoid receptor (GR)-dependent feedback suppression of the HPA axis in mice with mGluR7 deficiency: (i) mRNA transcripts of GR were significantly upregulated in the hippocampus of mGluR7-/- animals, (ii) similar increases were seen with 5-HT1A receptor transcripts, which are thought to be directly controlled by the transcription factor GR and finally (iii) mGluR7-/- mice showed elevated sensitivity to dexamethasone-induced suppression of serum corticosterone when compared with mGluR7+/+ animals. These results indicate that mGluR7 deficiency causes dysregulation of HPA axis parameters, which may account, at least in part, for the phenotype of mGluR7-/- mice in animal models for anxiety and depression. In addition, we present evidence that protein levels of brain-derived neurotrophic factor are also elevated in the hippocampus of mGluR7-/- mice, which we discuss in the context of the antidepressant-like phenotype found in those animals. We conclude that genetic ablation of mGluR7 in mice interferes at multiple sites in the neuronal circuitry and molecular pathways implicated in affective disorders.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Body Weight/drug effects
- Body Weight/genetics
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Dexamethasone/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glucocorticoids/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Immunoassay/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/metabolism
- RNA, Messenger/metabolism
- Radioimmunoassay/methods
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Metabotropic Glutamate/deficiency
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stress, Physiological/metabolism
Collapse
Affiliation(s)
- Kayo Mitsukawa
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
de Pablos RM, Villarán RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A. Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 2006; 26:5709-19. [PMID: 16723527 PMCID: PMC6675274 DOI: 10.1523/jneurosci.0802-06.2006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 12/29/2022] Open
Abstract
Inflammation could be involved in some neurodegenerative disorders that accompany signs of inflammation. However, because sensitivity to inflammation is not equal in all brain structures, a direct relationship is not clear. Our aim was to test whether some physiological circumstances, such as stress, could enhance susceptibility to inflammation in the prefrontal cortex (PFC), which shows a relative resistance to inflammation. PFC is important in many brain functions and is a target for some neurodegenerative diseases. We induced an inflammatory process by a single intracortical injection of 2 microg of lipopolysaccharide (LPS), a potent proinflammogen, in nonstressed and stressed rats. We evaluated the effect of our treatment on inflammatory markers, neuronal populations, BDNF expression, and behavior of several mitogen-activated protein (MAP) kinases and the transcription factor cAMP response element-binding protein. Stress strengthens the changes induced by LPS injection: microglial activation and proliferation with an increase in the levels of the proinflammatory cytokine tumor necrosis factor-alpha; loss of cells such as astroglia, seen as loss of glial fibrillary acidic protein immunoreactivity, and neurons, studied by neuronal-specific nuclear protein immunohistochemistry and GAD67 and NMDA receptor 1A mRNAs expression by in situ hybridization. A significant increase in the BDNF mRNA expression and modifications in the levels of MAP kinase phosphorylation were also found. In addition, we observed a protective effect from RU486 [mifepristone (11beta-[p-(dimethylamino)phenyl]-17beta-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], a potent inhibitor of the glucocorticoid receptor activation. All of these data show a synergistic effect between inflammation and stress, which could explain the relationship described between stress and some neurodegenerative pathologies.
Collapse
|
50
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|