1
|
Ounadjela JR, Zhang K, Kobayashi-Kirschvink KJ, Jin K, J C Russell A, Lackner AI, Callahan C, Viggiani F, Dey KK, Jagadeesh K, Maxian T, Prandstetter AM, Nadaf N, Gong Q, Raichur R, Zvezdov ML, Hui M, Simpson M, Liu X, Min W, Knöfler M, Chen F, Haider S, Shu J. Spatial multiomic landscape of the human placenta at molecular resolution. Nat Med 2024; 30:3495-3508. [PMID: 39567716 DOI: 10.1038/s41591-024-03073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 11/22/2024]
Abstract
Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta. We utilized paired single-nucleus (sn)ATAC (assay for transposase accessible chromatin) sequencing and RNA sequencing (RNA-seq), spatial snATAC-seq and RNA-seq, and in situ sequencing and hybridization mapping of transcriptomes at molecular resolution to spatially reconstruct the joint epigenomic and transcriptomic regulatory landscape. Paired analyses unraveled intricate tumor-like gene expression and transcription factor motif programs potentially sustaining the placenta in a hostile uterine environment; further investigation of gene-linked cis-regulatory elements revealed heightened regulatory complexity that may govern trophoblast differentiation and placental disease risk. Complementary spatial mapping techniques decoded these programs within the placental villous core and extravillous trophoblast cell column architecture while simultaneously revealing niche-establishing transcriptional elements and cell-cell communication. Finally, we computationally imputed genome-wide, multiomic single-cell profiles and spatially characterized the placental chromatin accessibility landscape. This spatially resolved, single-cell multiomic framework of the first trimester human placenta serves as a blueprint for future studies on early placental development and pregnancy.
Collapse
Affiliation(s)
- Johain R Ounadjela
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Jin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J C Russell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Viggiani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karthik Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Naeem Nadaf
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiyu Gong
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth Raichur
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan L Zvezdov
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mingyang Hui
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattew Simpson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinwen Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Štafl K, Trávníček M, Janovská A, Kučerová D, Pecnová Ľ, Yang Z, Stepanec V, Jech L, Salker MS, Hejnar J, Trejbalová K. Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta. Proc Natl Acad Sci U S A 2024; 121:e2407519121. [PMID: 39432789 PMCID: PMC11536146 DOI: 10.1073/pnas.2407519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.
Collapse
Affiliation(s)
- Kryštof Štafl
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Martin Trávníček
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Anna Janovská
- CZ-OpenScreen National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Dana Kučerová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Ľubomíra Pecnová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Zhiqi Yang
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Vladimír Stepanec
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Lukáš Jech
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Madhuri S. Salker
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Kateřina Trejbalová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| |
Collapse
|
4
|
Reeves AE, Vilen Z, Fuentecilla TR, Parker CG, Huang ML. Charting the Dynamic Trophoblast Plasma Membrane Identifies LYN As a Functional Regulator of Syncytialization. ACS Chem Biol 2024; 19:2220-2231. [PMID: 39289808 PMCID: PMC11863573 DOI: 10.1021/acschembio.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The differentiation of placental cytotrophoblasts (CTBs) into the syncytiotrophoblast (STB) layer results in a significant remodeling of the plasma membrane proteome. Here, we use a peroxidase-catalyzed proximity labeling strategy to map the dynamic plasma membrane proteomes of CTBs and STBs. Coupled with mass-spectrometry-based proteomics, we identify hundreds of plasma membrane proteins and observe relative changes in protein abundance throughout differentiation, including the upregulation of the plasma-membrane-localized nonreceptor tyrosine kinase LYN. We show that both siRNA-mediated knockdown and small molecule inhibition of LYN kinase function impairs CTB fusion and reduces the expression of syncytialization markers, presenting a function for LYN outside of its canonical role in immunological signaling. Our results demonstrate the use of the proximity labeling platform to discover functional regulators within the plasma membrane and provide new avenues to regulate trophoblast differentiation.
Collapse
Affiliation(s)
- Abigail E Reeves
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Trinity R Fuentecilla
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Christopher G Parker
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
5
|
Peng Y, Zhu J, Zhang Q, Zhang R, Wang Z, Ye Z, Ma N, Qin D, Pei D, Li D. Endogenous retroviral ERVH48-1 promotes human urine cell reprogramming. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:17. [PMID: 39269631 PMCID: PMC11399365 DOI: 10.1186/s13619-024-00200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.
Collapse
Affiliation(s)
- Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou, Guangzhou, Guangdong, 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Zesen Ye
- Guangzhou National Laboratory, Guangzhou, China
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou, Guangzhou, Guangdong, 510530, China
- GuangDong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| |
Collapse
|
6
|
Khare S, Villalba MI, Canul-Tec JC, Cajiao AB, Kumar A, Backovic M, Rey FA, Pardon E, Steyaert J, Perez C, Reyes N. Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins. Nat Struct Mol Biol 2024; 31:1368-1376. [PMID: 38671230 DOI: 10.1038/s41594-024-01295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid β-sheet or 'clamp' with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.
Collapse
Affiliation(s)
- Shashank Khare
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Miryam I Villalba
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Juan C Canul-Tec
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | | | - Anand Kumar
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Nicolas Reyes
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France.
| |
Collapse
|
7
|
Pramono D, Sugimoto K, Kimura T, Miyake A, Nishigaki K. Characterization of the endogenous retrovirus-derived placenta-specific soluble protein EnvV-Fca from domestic cats. FEBS Lett 2024; 598:1792-1806. [PMID: 38604984 DOI: 10.1002/1873-3468.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancestral viruses in the host genome. The present study identified the expression of a defective retroviral env gene belonging to the ERV group V member Env (EnvV) in Felis catus (EnvV-Fca). EnV-Fca was specifically detected in the placental trophoblast syncytiotrophobic layer and expressed as a secreted protein in cultured cells. Genetic analyses indicated that EnvV2 genes are widely present in vertebrates and are under purifying selection among carnivores, suggesting a potential benefit for the host. This study suggests that birds, bats, and rodents carrying EnvV2 may play significant roles as intermediate vectors in spreading or cross-transmitting viruses among species. Our findings provide valuable insights into the evolution of ERV in vertebrate hosts.
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kenji Sugimoto
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Tohru Kimura
- The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| |
Collapse
|
8
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
9
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
10
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
11
|
Cherkasova EA, Chen L, Childs RW. Mechanistic regulation of HERV activation in tumors and implications for translational research in oncology. Front Cell Infect Microbiol 2024; 14:1358470. [PMID: 38379771 PMCID: PMC10877039 DOI: 10.3389/fcimb.2024.1358470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Transcription of distinct loci of human endogenous retroviruses (HERVs) and in some cases, translation of these transcripts have been consistently observed in many types of cancer. It is still debated whether HERV activation serves as a trigger for carcinogenesis or rather occurs as a consequence of epigenetic alterations and other molecular sequelae that characterize cellular transformation. Here we review the known molecular and epigenetic mechanisms of HERV activation in cancer cells as well as its potential contribution to carcinogenesis. Further, we describe the use of HERV expression in cancer diagnostic and characterize the potential of HERV-derived antigens to serve as novel targets for cancer immunotherapy. We believe this review, which summarizes both what is known as well as unknown in this rapidly developing field, will boost interest in research on the therapeutic potential of targeting HERV elements in tumors and the impact of HERV activation in oncogenesis.
Collapse
Affiliation(s)
| | | | - Richard W. Childs
- Laboratory of Transplantation Immunotherapy, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Dopkins N, Singh B, Michael S, Zhang P, Marston JL, Fei T, Singh M, Feschotte C, Collins N, Bendall ML, Nixon DF. Ribosomal profiling of human endogenous retroviruses in healthy tissues. BMC Genomics 2024; 25:5. [PMID: 38166631 PMCID: PMC10759522 DOI: 10.1186/s12864-023-09909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the germline embedded proviral fragments of ancient retroviral infections that make up roughly 8% of the human genome. Our understanding of HERVs in physiology primarily surrounds their non-coding functions, while their protein coding capacity remains virtually uncharacterized. Therefore, we applied the bioinformatic pipeline "hervQuant" to high-resolution ribosomal profiling of healthy tissues to provide a comprehensive overview of translationally active HERVs. We find that HERVs account for 0.1-0.4% of all translation in distinct tissue-specific profiles. Collectively, our study further supports claims that HERVs are actively translated throughout healthy tissues to provide sequences of retroviral origin to the human proteome.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Stephanie Michael
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Jez L Marston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Tongyi Fei
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| |
Collapse
|
13
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
14
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
15
|
Priščáková P, Svoboda M, Feketová Z, Hutník J, Repiská V, Gbelcová H, Gergely L. Syncytin-1, syncytin-2 and suppressyn in human health and disease. J Mol Med (Berl) 2023; 101:1527-1542. [PMID: 37855856 PMCID: PMC10697888 DOI: 10.1007/s00109-023-02385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
In this review, we summarized the results of experimental and clinical studies about three human endogenous retroviruses and their products-syncytin-1, syncytin-2, and suppressyn in human physiology and pathophysiology. We summed up the described connection with various pathological processes and diseases, mainly with pregnancy-induced hypertensive diseases such as preeclampsia, oncogenesis, gestational trophoblastic disease, and multiple sclerosis. Supposed mechanisms of action and the potential of clinical applications are also described.
Collapse
Affiliation(s)
- Petra Priščáková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Michal Svoboda
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Zuzana Feketová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Juraj Hutník
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic
| | - Lajos Gergely
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Sasinkova 4, Bratislava, 811 08, Slovak Republic.
| |
Collapse
|
16
|
Sakurai T, Kusama K, Imakawa K. Progressive Exaptation of Endogenous Retroviruses in Placental Evolution in Cattle. Biomolecules 2023; 13:1680. [PMID: 38136553 PMCID: PMC10741562 DOI: 10.3390/biom13121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Viviparity is made possible by the placenta, a structure acquired relatively recently in the evolutionary history of eutherian mammals. Compared to oviparity, it increases the survival rate of the fetus, owing to the eutherian placenta. Questions such as "How was the placenta acquired?" and "Why is there diversity in placental morphology among mammalian species?" remain largely unsolved. Our present understanding of the molecules regulating placental development remains unclear, owing in no small part to the persistent obscurity surrounding the molecular mechanisms underlying placental acquisition. Numerous genes associated with the development of eutherian placental morphology likely evolved to function at the fetal-maternal interface in conjunction with those participating in embryogenesis. Therefore, identifying these genes, how they were acquired, and how they came to be expressed specifically at the fetal-maternal interface will shed light on some crucial molecular mechanisms underlying placental evolution. Exhaustive studies support the hypothesis that endogenous retroviruses (ERVs) could be evolutional driving forces for trophoblast cell fusion and placental structure in mammalian placentas including those of the bovine species. This review focuses on bovine ERVs (BERVs) and their expression and function in the placenta.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Koriyama 963-8611, Fukushima, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-Ku, Kumamoto 862-8652, Japan;
| |
Collapse
|
17
|
Sugimoto J, Schust DJ, Sugimoto M, Jinno Y, Kudo Y. Controlling Trophoblast Cell Fusion in the Human Placenta-Transcriptional Regulation of Suppressyn, an Endogenous Inhibitor of Syncytin-1. Biomolecules 2023; 13:1627. [PMID: 38002309 PMCID: PMC10668956 DOI: 10.3390/biom13111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cell fusion in the placenta is tightly regulated. Suppressyn is a human placental endogenous retroviral protein that inhibits the profusogenic activities of another well-described endogenous retroviral protein, syncytin-1. In this study, we aimed to elucidate the mechanisms underlying suppressyn's placenta-specific expression. We identified the promoter region and a novel enhancer region for the gene encoding suppressyn, ERVH48-1, and examined their regulation via DNA methylation and their responses to changes in the oxygen concentration. Like other endogenous retroviral genes, the ERVH48-1 promoter sequence is found within a characteristic retroviral 5' LTR sequence. The novel enhancer sequence we describe here is downstream of this LTR sequence (designated EIEs: ERV internal enhancer sequence) and governs placental expression. The placenta-specific expression of ERVH48-1 is tightly controlled by DNA methylation and further regulated by oxygen concentration-dependent, hypoxia-induced transcription factors (HIF1α and HIF2α). Our findings highlight the involvement of (1) tissue specificity through DNA methylation, (2) expression specificity through placenta-specific enhancer regions, and (3) the regulation of suppressyn expression in differing oxygen conditions by HIF1α and HIF2α. We suggest that these regulatory mechanisms are central to normal and abnormal placental development, including the development of disorders of pregnancy involving altered oxygenation, such as preeclampsia, pregnancy-induced hypertension, and fetal growth restriction.
Collapse
Affiliation(s)
- Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| | - Danny J. Schust
- Department of Obstetrics and Gynecology, Duke University, Durham, NC 27710, USA
| | - Makiko Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| | - Yoshihiro Jinno
- Department of Molecular Biology, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| |
Collapse
|
18
|
Shimode S. Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta. Biomolecules 2023; 13:1482. [PMID: 37892164 PMCID: PMC10604696 DOI: 10.3390/biom13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell-cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
Simpson J, Kozak CA, Boso G. Evolutionary conservation of an ancient retroviral gagpol gene in Artiodactyla. J Virol 2023; 97:e0053523. [PMID: 37668369 PMCID: PMC10537755 DOI: 10.1128/jvi.00535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/06/2023] Open
Abstract
The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.
Collapse
Affiliation(s)
- J'Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Kaneko-Ishino T, Ishino F. Retrovirus-Derived RTL/SIRH: Their Diverse Roles in the Current Eutherian Developmental System and Contribution to Eutherian Evolution. Biomolecules 2023; 13:1436. [PMID: 37892118 PMCID: PMC10604271 DOI: 10.3390/biom13101436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Eutherians have 11 retrotransposon Gag-like (RTL)/sushi-ichi retrotransposon homolog (SIRH) genes presumably derived from a certain retrovirus. Accumulating evidence indicates that the RTL/SIRH genes play a variety of roles in the current mammalian developmental system, such as in the placenta, brain, and innate immune system, in a eutherian-specific manner. It has been shown that the functional role of Paternally Expressed 10 (PEG10) in placental formation is unique to the therian mammals, as are the eutherian-specific roles of PEG10 and PEG11/RTL1 in maintaining the fetal capillary network and the endocrine regulation of RTL7/SIRH7 (aka Leucine Zipper Down-Regulated in Cancer 1 (LDOCK1)) in the placenta. In the brain, PEG11/RTL1 is expressed in the corticospinal tract and hippocampal commissure, mammalian-specific structures, and in the corpus callosum, a eutherian-specific structure. Unexpectedly, at least three RTL/SIRH genes, RTL5/SIRH8, RTL6/SIRH3, and RTL9/SIRH10, play important roles in combating a variety of pathogens, namely viruses, bacteria, and fungi, respectively, suggesting that the innate immunity system of the brain in eutherians has been enhanced by the emergence of these new components. In this review, we will summarize the function of 10 out of the 11 RTL/SIRH genes and discuss their roles in eutherian development and evolution.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Kanagawa 259-1193, Japan
| | - Fumitoshi Ishino
- Center for Experimental Animals, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Xue X, Wu X, Liu L, Liu L, Zhu F. ERVW-1 Activates ATF6-Mediated Unfolded Protein Response by Decreasing GANAB in Recent-Onset Schizophrenia. Viruses 2023; 15:1298. [PMID: 37376599 PMCID: PMC10304270 DOI: 10.3390/v15061298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Schizophrenia, a mental disorder, afflicts 1% of the worldwide population. The dysregulation of homeostasis in the endoplasmic reticulum (ER) has been implicated in schizophrenia. Moreover, recent studies indicate that ER stress and the unfolded protein response (UPR) are linked to this mental disorder. Our previous research has verified that endogenous retrovirus group W member 1 envelope (ERVW-1), a risk factor for schizophrenia, is elevated in individuals with schizophrenia. Nevertheless, no literature is available regarding the underlying relationship between ER stress and ERVW-1 in schizophrenia. The aim of our research was to investigate the molecular mechanism connecting ER stress and ERVW-1 in schizophrenia. Here, we employed Gene Differential Expression Analysis to predict differentially expressed genes (DEGs) in the human prefrontal cortex of schizophrenic patients and identified aberrant expression of UPR-related genes. Subsequent research indicated that the UPR gene called XBP1 had a positive correlation with ATF6, BCL-2, and ERVW-1 in individuals with schizophrenia using Spearman correlation analysis. Furthermore, results from the enzyme-linked immunosorbent assay (ELISA) suggested increased serum protein levels of ATF6 and XBP1 in schizophrenic patients compared with healthy controls, exhibiting a strong correlation with ERVW-1 using median analysis and Mann-Whitney U analysis. However, serum GANAB levels were decreased in schizophrenic patients compared with controls and showed a significant negative correlation with ERVW-1, ATF6, and XBP1 in schizophrenic patients. Interestingly, in vitro experiments verified that ERVW-1 indeed increased ATF6 and XBP1 expression while decreasing GANAB expression. Additionally, the confocal microscope experiment suggested that ERVW-1 could impact the shape of the ER, leading to ER stress. GANAB was found to participate in ER stress regulated by ERVW-1. In conclusion, ERVW-1 induced ER stress by suppressing GANAB expression, thereby upregulating the expression of ATF6 and XBP1 and ultimately contributing to the development of schizophrenia.
Collapse
Affiliation(s)
- Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| | | | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
22
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
24
|
Bose A, Kasle G, Jana R, Maulik M, Thomas D, Mulchandani V, Mukherjee P, Koval M, Das Sarma J. Regulatory role of endoplasmic reticulum resident chaperone protein ERp29 in anti-murine β-coronavirus host cell response. J Biol Chem 2023; 299:102836. [PMID: 36572185 PMCID: PMC9788854 DOI: 10.1016/j.jbc.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine β-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where β-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Grishma Kasle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Deepthi Thomas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
25
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
26
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms232416071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| |
Collapse
|
27
|
Human Endogenous Retroviruses: Friends and Foes in Urology Clinics. Int Neurourol J 2022; 26:275-287. [PMID: 36599336 PMCID: PMC9816444 DOI: 10.5213/inj.2244284.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are originated from ancient exogenous retroviruses, which infected human germ line cells millions of years ago. HERVs have generally lost their replication and retrotransposition abilities, but adopted physiological roles in human biology. Though mostly inactive, HERVs can be reactivated by internal and external factors such as inflammations and environmental conditions. Their aberrant expression can participate in various human malignancies with complex etiology. This review describes the features and functions of HERVs in urological subjects, such as urological cancers and human reproduction. It provides the current knowledge of the HERVs and useful insights helping practice in urology clinics.
Collapse
|
28
|
Sakahashi Y, Higashisaka K, Isaka R, Izutani R, Seo J, Furuta A, Yamaki-Ushijima A, Tsujino H, Haga Y, Nakashima A, Tsutsumi Y. Silver nanoparticles suppress forskolin-induced syncytialization in BeWo cells. Nanotoxicology 2022; 16:883-894. [PMID: 36595448 DOI: 10.1080/17435390.2022.2162994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Opportunities for the exposure of pregnant women to engineered nanoparticles have been increasing with the expanding use of these materials. Therefore, there are concerns that nanoparticles could have adverse effects on the establishment and maintenance of pregnancy. The effects of nanoparticles on the mother and fetus have been evaluated from this perspective, but there is still little knowledge about the effects on placentation and function acquisition, which are essential for the successful establishment and maintenance of pregnancy. Formation of the syncytiotrophoblast is indispensable for the acquisition of placental function, and impairment of syncytialization inevitably affects pregnancy outcomes. Here, we assessed the effect of nanoparticles on placental formation by using forskolin-treated BeWo cells, a typical in vitro model of trophoblast syncytialization. Immunofluorescence staining analysis revealed that silver nanoparticles with a diameter of 10 nm (nAg10) (at 0.156 µg/mL) significantly decreased the proportion of syncytialized BeWo cells, but gold nanoparticles with a diameter of 10 nm did not. Consistently, only nAg10 (at 0.156 µg/mL) significantly suppressed forskolin-induced elevation of CGB and SDC1 mRNA expression levels and human chorionic gonadotropin β production in a dose-dependent manner; these molecules are all markers of syncytialization. Besides, nAg10 significantly decreased the expression of ERVFRD-1, which encodes proteins associated with cell fusion. Moreover, nAg10 tended to suppress the expression of sFlt-1 e15a, a placental angiogenesis marker. Collectively, our data suggest that nAg10 could suppress formation of the syncytiotrophoblast and that induce placental dysfunction and the following poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuji Sakahashi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Ryo Isaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rina Izutani
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Jiwon Seo
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hirofumi Tsujino
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,The Museum of Osaka University, Toyonaka, Osaka, Japan
| | - Yuya Haga
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Frank JA, Singh M, Cullen HB, Kirou RA, Benkaddour-Boumzaouad M, Cortes JL, Garcia-Perez J, Coyne CB, Feschotte C. Evolution and antiviral activity of a human protein of retroviral origin. Science 2022; 378:422-428. [PMID: 36302021 PMCID: PMC10542854 DOI: 10.1126/science.abq7871] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous retroviruses are abundant components of mammalian genomes descended from ancient germline infections. In several mammals, the envelope proteins encoded by these elements protect against exogenous viruses, but this activity has not been documented with endogenously expressed envelopes in humans. We report that the human genome harbors a large pool of envelope-derived sequences with the potential to restrict retroviral infection. To test this, we characterized an envelope-derived protein, Suppressyn. We found that Suppressyn is expressed in human preimplantation embryos and developing placenta using its ancestral retroviral promoter. Cell culture assays showed that Suppressyn, and its hominoid orthologs, could restrict infection by extant mammalian type D retroviruses. Our data support a generalizable model of retroviral envelope co-option for host immunity and genome defense.
Collapse
Affiliation(s)
- John A. Frank
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Harrison B. Cullen
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Raphael A. Kirou
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Meriem Benkaddour-Boumzaouad
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
| | - Jose L. Cortes
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- Eppendorf; Iberica, Spain
| | - Jose Garcia-Perez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital; Edinburgh, UK
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| |
Collapse
|
31
|
Del Valle RP, McLaughlin RN. Stealing genes and facing consequences. Science 2022; 378:356-357. [DOI: 10.1126/science.ade4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human genome contains a domesticated viral envelope gene with antiviral activity
Collapse
|
32
|
Ma Q, Beal JR, Song X, Bhurke A, Bagchi IC, Bagchi MK. Extracellular Vesicles Secreted by Mouse Decidual Cells Carry Critical Information for the Establishment of Pregnancy. Endocrinology 2022; 163:6758297. [PMID: 36219207 PMCID: PMC9761388 DOI: 10.1210/endocr/bqac165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/19/2022]
Abstract
The mouse decidua secretes many factors that act in a paracrine/autocrine manner to critically control uterine decidualization, neovascularization, and tissue remodeling that ensure proper establishment of pregnancy. The precise mechanisms that dictate intercellular communications among the uterine cells during early pregnancy remain unknown. We recently reported that conditional deletion of the gene encoding the hypoxia-inducible transcription factor 2 alpha (Hif2α) in mouse uterus led to infertility. Here, we report that HIF2α in mouse endometrial stromal cells (MESCs) acts via the cellular trafficking regulator RAB27b to control the secretion of extracellular vesicles (EVs) during decidualization. We also found that Hif2α-regulated pathways influence the biogenesis of EVs. Proteomic analysis of EVs secreted by decidualizing MESCs revealed that they harbor a wide variety of protein cargoes whose composition changed as the decidualization process progressed. The EVs enhanced the differentiation capacity of MESCs and the production of angiogenic factors by these cells. We also established that matrix metalloproteinase-2, a prominent EV cargo protein, modulates uterine remodeling during decidualization. Collectively, our results support the concept that EVs are central to the mechanisms by which the decidual cells communicate with each other and other cell types within the uterus to facilitate successful establishment of pregnancy.
Collapse
Affiliation(s)
- Qiuyan Ma
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob R Beal
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiangning Song
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Arpita Bhurke
- Carle Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Indrani C Bagchi
- Correspondence: Indrani C. Bagchi, PhD, Departments of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA. ; or Milan K. Bagchi, PhD, Departments of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| | - Milan K Bagchi
- Correspondence: Indrani C. Bagchi, PhD, Departments of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA. ; or Milan K. Bagchi, PhD, Departments of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Simpson J, Kozak CA, Boso G. Cross-species transmission of an ancient endogenous retrovirus and convergent co-option of its envelope gene in two mammalian orders. PLoS Genet 2022; 18:e1010458. [PMID: 36240227 PMCID: PMC9604959 DOI: 10.1371/journal.pgen.1010458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.
Collapse
Affiliation(s)
- J’Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
34
|
Imakawa K, Kusama K, Kaneko-Ishino T, Nakagawa S, Kitao K, Miyazawa T, Ishino F. Endogenous Retroviruses and Placental Evolution, Development, and Diversity. Cells 2022; 11:cells11152458. [PMID: 35954303 PMCID: PMC9367772 DOI: 10.3390/cells11152458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The main roles of placentas include physical protection, nutrient and oxygen import, export of gasses and fetal waste products, and endocrinological regulation. In addition to physical protection of the fetus, the placentas must provide immune protection throughout gestation. These basic functions are well-conserved; however, placentas are undoubtedly recent evolving organs with structural and cellular diversities. These differences have been explained for the last two decades through co-opting genes and gene control elements derived from transposable elements, including endogenous retroviruses (ERVs). However, the differences in placental structures have not been explained or characterized. This manuscript addresses the sorting of ERVs and their integration into the mammalian genomes and provides new ways to explain why placental structures have diverged.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan
- Correspondence: ; Tel.: +81-96-386-2652
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Nakagawa 259-1193, Japan
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Fumitoshi Ishino
- Institute of Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
35
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
36
|
Involvement of the HERV-derived cell-fusion inhibitor, suppressyn, in the fusion defects characteristic of the trisomy 21 placenta. Sci Rep 2022; 12:10552. [PMID: 35732788 PMCID: PMC9218086 DOI: 10.1038/s41598-022-14104-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Suppressyn (SUPYN) is the first host-cell encoded mammalian protein shown to inhibit cell–cell fusion. Its expression is restricted to the placenta, where it negatively regulates syncytia formation in villi. Since its chromosomal localization overlaps with the Down syndrome critical region and the TS21 placenta is characterized by delayed maturation of cytotrophoblast cells and reduced syncytialization, we hypothesized a potential link between changes in SUPYN expression and morphologic abnormalities in the TS21 placenta. Here we demonstrate that an increase in chromosomal copy number in the TS21 placenta is associated with: (1) reduced fusion of cytotrophoblast cells into syncytiotrophoblast in vivo, (2) increased SUPYN transcription, translation and secretion in vivo, (3) increased SUPYN/syncytin-1 receptor degradation in vivo, (4) increased SUPYN transcription and secretion ex vivo, (5) decreased cytotrophoblast cell fusion ex vivo, and (6) reciprocal response of changes in SUPYN and CGB in TS21 placental cells ex vivo. These data suggest direct links between immature placentation in Down syndrome and increased SUPYN. Finally, we report a significant increase in secreted SUPYN concentration in maternal serum in women with pregnancies affected by Down syndrome, suggesting that SUPYN may be useful as an alternate or additional diagnostic marker for this disease.
Collapse
|
37
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
40
|
Could the Human Endogenous Retrovirus-Derived Syncytialization Inhibitor, Suppressyn, Limit Heterotypic Cell Fusion Events in the Decidua? Int J Mol Sci 2021; 22:ijms221910259. [PMID: 34638599 PMCID: PMC8508417 DOI: 10.3390/ijms221910259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Proper placental development relies on tightly regulated trophoblast differentiation and interaction with maternal cells. Human endogenous retroviruses (HERVs) play an integral role in modulating cell fusion events in the trophoblast cells of the developing placenta. Syncytin-1 (ERVW-1) and its receptor, solute-linked carrier family A member 5 (SLC1A5/ASCT2), promote fusion of cytotrophoblast (CTB) cells to generate the multi-nucleated syncytiotrophoblast (STB) layer which is in direct contact with maternal blood. Another HERV-derived protein known as Suppressyn (ERVH48-1/SUPYN) is implicated in anti-fusogenic events as it shares the common receptor with ERVW-1. Here, we explore primary tissue and publicly available datasets to determine the distribution of ERVW-1, ERVH48-1 and SLC1A5 expression at the maternal-fetal interface. While SLC1A5 is broadly expressed in placental and decidual cell types, ERVW-1 and ERVH48-1 are confined to trophoblast cell types. ERVH48-1 displays higher expression levels in CTB and extravillous trophoblast, than in STB, while ERVW-1 is generally highest in STB. We have demonstrated through gene targeting studies that suppressyn has the ability to prevent ERVW-1-induced fusion events in co-culture models of trophoblast cell/maternal endometrial cell interactions. These findings suggest that differential HERV expression is vital to control fusion and anti-fusogenic events in the placenta and consequently, any imbalance or dysregulation in HERV expression may contribute to adverse pregnancy outcomes.
Collapse
|
41
|
Oxidative stress-induced impairment of trophoblast function causes preeclampsia through the unfolded protein response pathway. Sci Rep 2021; 11:18415. [PMID: 34531444 PMCID: PMC8446002 DOI: 10.1038/s41598-021-97799-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Pre-eclampsia (PE) is a pregnancy-specific disorder, characterized by hypertension and proteinuria. In PE, trophoblasts mediated inadequate remodeling of uterine spiral arteries seem to interrupt uteroplacental blood flow, one of the hallmarks in the early onset of PE (EO-PE). This, in turn, results in placental ischemia–reperfusion injury during hypoxia and reoxygenation episodes, leading to the generation of reactive oxygen species (ROS) and oxidative stress (OS). But still it is debatable if OS is a cause or consequence of PE. In this present study, we have investigated the effects of OS on PE placentae and trophoblast cell functions using BeWo and HTR8/SVneo cell lines. PE placental tissues showed abnormal ultrastructure, high level of reactive oxygen species (ROS) with altered unfolded protein responses (UPR) in compare with term placental tissues. Similar to PE placentae, during OS induction, the trophoblast cells showed altered invasion and migration properties with significantly variable expression of differentiation and invasion markers, e.g., syncytin and MMPs. The effect was rescued by antioxidant, N-acetyl cysteine, thereby implying a ROS-specific effect and in the trophoblast cells, OS triggers UPR pathway through IRE1α-XBP1 axis. Taken together, these findings highlight the harmful effect of unfolded protein response, which was induced due to OS on trophoblast cells and deformed invasion and differentiation programme and can be extended further to clinical settings to identify clinically approved antioxidants during pregnancy as a therapeutic measure to reduce the onset of PE.
Collapse
|
42
|
Dotan A, Kanduc D, Muller S, Makatsariya A, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am J Reprod Immunol 2021; 86:e13494. [PMID: 34407240 PMCID: PMC8420155 DOI: 10.1111/aji.13494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Oogenesis, the process of egg production by the ovary, involves a complex differentiation program leading to the production of functional oocytes. This process comprises a sequential pathway of steps that are finely regulated. The question related to SARS‐CoV‐2 infection and fertility has been evoked for several reasons, including the mechanism of molecular mimicry, which may contribute to female infertility by leading to the generation of deleterious autoantibodies, possibly contributing to the onset of an autoimmune disease in infected patients. Objective The immunological potential of the peptides shared between SARS‐CoV‐2 spike glycoprotein and oogenesis‐related proteins; Thus we planned a systematic study to improve our understanding of the possible effects of SARS‐CoV‐2 infection on female fertility using the angle of molecular mimicry as a starting point. Methods A library of 82 human proteins linked to oogenesis was assembled at random from UniProtKB database using oogenesis, uterine receptivity, decidualization, and placentation as a key words. For the analyses, an artificial polyprotein was built by joining the 82 a sequences of the oogenesis‐associated proteins. These were analyzed by searching the Immune Epitope DataBase for immunoreactive SARS‐CoV‐2 spike glycoprotein epitopes hosting the shared pentapeptides. Results SARS‐CoV‐2 spike glycoprotein was found to share 41 minimal immune determinants, that is, pentapeptides, with 27 human proteins that relate to oogenesis, uterine receptivity, decidualization, and placentation. All the shared pentapeptides that we identified, with the exception of four, are also present in SARS‐CoV‐2 spike glycoprotein–derived epitopes that have been experimentally validated as immunoreactive.
Collapse
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell signaling/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France.,Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,President of Ariel University, Ariel, Israel.,Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| |
Collapse
|
43
|
Matsuzawa A, Lee J, Nakagawa S, Itoh J, Takahashi Ueda M, Mitsuhashi S, Kochi Y, Kaneko-Ishino T, Ishino F. HERV-Derived Ervpb1 Is Conserved in Simiiformes, Exhibiting Expression in Hematopoietic Cell Lineages Including Macrophages. Int J Mol Sci 2021; 22:ijms22094504. [PMID: 33925887 PMCID: PMC8123466 DOI: 10.3390/ijms22094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The ERVPb1 gene in humans is derived from an envelope (Env) gene of a human endogenous retrovirus group, HERV-P(b). The ERVPb1 gene reportedly has a conserved open reading frame (ORF) in Old World monkeys. Although its forced expression led to cell-fusion in an ex vivo cell culture system, like other Env-derived genes such as syncytin-1 and -2, its mRNA expression is not placenta-specific, but almost ubiquitous, albeit being quite low in human tissues and organs, implying a distinct role for ERVPb1. (2) Methods: To elucidate the cell lineage(s) in which the ERVPb1 protein is translated in human development, we developed a novel, highly sensitive system for detecting HERV-derived proteins/peptides expressed in the tissue differentiation process of human induced pluripotent stem cells (iPSCs). (3) Results: We first determined that ERVPb1 is also conserved in New World monkeys. Then, we showed that the ERVPb1 protein is translated from a uniquely spliced ERVPb1 transcript in hematopoietic cell lineages, including a subset of macrophages, and further showed that its mRNA expression is upregulated by lipopolysaccharide (LPS) stimulation in primary human monocytes. (4) Conclusions: ERVPb1 is unique to Simiiformes and actually translated in hematopoietic cell lineages, including a subset of macrophages.
Collapse
Affiliation(s)
- Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (J.L.)
| | - Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (J.L.)
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan;
| | - Johbu Itoh
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan;
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.T.U.); (S.M.); (Y.K.)
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.T.U.); (S.M.); (Y.K.)
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.T.U.); (S.M.); (Y.K.)
| | - Tomoko Kaneko-Ishino
- Department of Nursing, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
- Correspondence: (T.K.-I.); (F.I.)
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (J.L.)
- Correspondence: (T.K.-I.); (F.I.)
| |
Collapse
|
44
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
45
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
46
|
van der Kuyl AC. Contemporary Distribution, Estimated Age, and Prehistoric Migrations of Old World Monkey Retroviruses. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:46-67. [PMID: 36417189 PMCID: PMC9620922 DOI: 10.3390/epidemiologia2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Abstract
Three versions of syncytiotrophoblast exist in the human placenta: an invasive type associated with the implanting conceptus, non-invasive villous type of definitive placenta, and placental bed giant cells. Syncytins are encoded by modified env genes of endogenous retroviruses (ERV), but how they contribute functionally to placental syncytial structures is unclear. A minimum of eight genes (ERVW1, ERVFRD-1, ERVV-1, ERVV-2, ERVH48-1, ERVMER34-1, ERV3-1, & ERVK13-1) encoding syncytin family members are expressed in human trophoblast, the majority from implantation to term. ERVW1 (Syncytin 1) and ERVFRD-1 (Syncytin 2) are considered the major fusogens, but, when the expression of their genes is analyzed by single cell RNAseq in first trimester placenta, their transcripts are distinctly patterned and also differ from those of their proposed binding partners, SLC1A5 and MFSD2A, respectively. ERVRH48-1 (suppressyn or SUPYN) and ERVMER34-1 are probable negative regulators of fusion and co-expressed, primarily in cytotrophoblast. The remaining genes and their products have been little studied. Syncytin expression is a feature of placental development in almost all eutherian mammals studied, in at least one marsupial, and in viviparous lizards, which lack the trophoblast lineage. Their expression has been inferred to be essential for pregnancy success in the mouse. All the main human ERV genes arose following independent retroviral insertion events, none of which trace back to the divergence of eutherians and metatherians (marsupials). While syncytins may be crucial for placental development, it seems unlikely that they helped orchestrate the divergence of eutherians and marsupials.
Collapse
|
48
|
Sauter D, Kirchhoff F. Evolutionary conflicts and adverse effects of antiviral factors. eLife 2021; 10:e65243. [PMID: 33450175 PMCID: PMC7811402 DOI: 10.7554/elife.65243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital TübingenTübingenGermany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
| |
Collapse
|
49
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
50
|
Wang T, Doucet-O’Hare TT, Henderson L, Abrams RPM, Nath A. Retroviral Elements in Human Evolution and Neural Development. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:1-9. [PMID: 33693440 PMCID: PMC7943042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tara T. Doucet-O’Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rachel P. M. Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA,Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA,Correspondence should be addressed to Avindra Nath;
| |
Collapse
|