1
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
2
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
3
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Khan SU, Khan SU, Suleman M, Khan MU, Alsuhaibani AM, Refat MS, Hussain T, Ud Din MA, Saeed S. The Multifunctional TRPC6 Protein: Significance in the Field of Cardiovascular Studies. Curr Probl Cardiol 2024; 49:102112. [PMID: 37774899 DOI: 10.1016/j.cpcardiol.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, Pakistan
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
5
|
Zhang P, Zhou C, Jing Q, Gao Y, Yang L, Li Y, Du J, Tong X, Wang Y. Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy. Apoptosis 2023; 28:1520-1533. [PMID: 37634193 DOI: 10.1007/s10495-023-01882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, 317200, Taizhou, Zhejiang, China.
| |
Collapse
|
6
|
Skov V, Thomassen M, Kjaer L, Larsen MK, Knudsen TA, Ellervik C, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals highly deregulated atherosclerosis genes in Philadelphia-chromosome negative myeloproliferative neoplasms. Eur J Haematol 2023; 111:805-814. [PMID: 37640394 DOI: 10.1111/ejh.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are associated with a huge comorbidity burden, including an increased risk of cardiovascular diseases. Recently, chronic inflammation has been suggested to be the driving force for clonal evolution and disease progression in MPN but also potentially having an impact upon the development of accelerated (premature) atherosclerosis. OBJECTIVES Since chronic inflammation, atherosclerosis, and atherothrombosis are prevalent in MPNs and we have previously shown oxidative stress genes to be markedly upregulated in MPNs, we hypothesized that genes linked to development of atherosclerosis might be highly deregulated as well. METHODS Using whole blood gene expression profiling in patients with essential thrombocythemia (ET; n = 19), polycythemia vera (PV; n = 41), or primary myelofibrosis (PMF; n = 9), we herein for the first time report aberrant expression of several atherosclerosis genes. RESULTS Of 84 atherosclerosis genes, 45, 56, and 46 genes were deregulated in patients with ET, PV, or PMF, respectively. Furthermore, BCL2L1, MMP1, PDGFA, PTGS1, and THBS4 were progressively significantly upregulated and BCL2 progressively significantly downregulated from ET over PV to PMF (all FDR <0.05). CONCLUSIONS We have for the first time shown massive deregulation of atherosclerosis genes in MPNs, likely reflecting the inflammatory state in MPNs in association with in vivo activation of leukocytes, platelets, and endothelial cells being deeply involved in the atherosclerotic process.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lasse Kjaer
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine A Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
7
|
Huang D, Gao W, Zhong X, Wu H, Zhou Y, Ma Y, Qian J, Ge J. Epigenetically altered macrophages promote development of diabetes-associated atherosclerosis. Front Immunol 2023; 14:1196704. [PMID: 37215106 PMCID: PMC10196132 DOI: 10.3389/fimmu.2023.1196704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Atherosclerosis (AS) risk is elevated in diabetic patients, but the underlying mechanism such as involvement of epigenetic control of foam macrophages remains unclear. We have previously shown the importance of immune regulation on endothelial cells to AS development in diabetes. In this study, we examined the hypothesis that diabetes may promote AS through modification of the epigenetic status of macrophages. Methods We employed the Laser Capture Microdissection (LCM) method to evaluate the expression levels of key epigenetic regulators in both endothelial cells and macrophages at the AS lesions of patients. We then assessed the correlation between the significantly altered epigenetic regulator and serum levels of low-density Lipoprotein (LDL), triglycerides (TRIG) and high-density Lipoprotein (HDL) in patients. In vitro, the effects of high glucose on glucose utilization, lactate production, succinate levels, oxygen consumption and polarization in either undifferentiated or differentiated bone marrow-derived macrophages (BMDMs) were analyzed. The effects of depleting this significantly altered epigenetic regulator in macrophages on AS development were assessed in AS-prone diabetic mice. Results Histone deacetylase 3 (HDAC3) was identified as the most significantly altered epigenetic regulator in macrophages from the AS lesions in human diabetic patients. The levels of HDAC3 positively correlated with high serum LDL and TRIG, as well as low serum HDL. High glucose significantly increased glucose utilization, lactate production, succinate levels and oxygen consumption in cultured macrophages, and induced proinflammatory M1-like polarization. Macrophage depletion of HDAC3 significantly attenuated AS severity in AS-prone diabetic mice. Conclusion Epigenetically altered macrophages promote development of diabetes-associated AS, which could be prevented through HDAC3 depletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junbo Ge
- *Correspondence: Juying Qian, ; Junbo Ge,
| |
Collapse
|
8
|
Yang X, Wang C, Zhu G, Guo Z, Fan L. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Exp Cell Res 2023; 427:113587. [PMID: 37044315 DOI: 10.1016/j.yexcr.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to VSMC proliferation and migration in atherosclerosis (AS). Nevertheless, the regulatory mechanism of VSMC phenotypic switching during AS progression is unclear. Here, the role and regulatory mechanism of UCHL5 in VSMC phenotypic switching during AS progression were investigated. METHODS ApoE-/- mice were fed with high fat diet to establish AS model in vivo. VSMCs stimulated by ox-LDL were used as AS cellular model. VSMC proliferation and migration were examined by CCK8 assay and transwell assay, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interactions between METTL14/YTHDF1, UCHL5 and NLRP3 were analyzed using RIP and/or dual-luciferase reporter gene and/or Co-IP assays. NLRP3 ubiquitination was analyzed by ubiquitination analysis. RESULTS UCHL5 was significantly upregulated in AS patients and ox-LDL-treated VSMCs. UCHL5 silencing ameliorated plaque formation and vascular remodeling in vivo and suppressed ox-LDL-induced VSMC proliferation, migration, inflammation and phenotypic switching in vitro. Moreover, METTL14 could increase UCHL5 mRNA m6A level and promoted UCHL5 expression by recruiting YTHDF1. Moreover, UCHL5 overexpression enhanced protein stability by deubiquitinating NLRP3. Rescue studies revealed that NLRP3 overexpression abrogated UCHL5 silencing-mediated biological effects in ox-LDL-treated VSMCs. CONCLUSION UCHL5 modified by METTL14/YTHDF1 axis could facilitate the inflammation and vascular remodeling in atherosclerosis by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Chen Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
9
|
Skaarup KG, Modin D, Nielsen L, Jensen JUS, Biering-Sørensen T. Influenza and cardiovascular disease pathophysiology: strings attached. Eur Heart J Suppl 2023; 25:A5-A11. [PMID: 36937370 PMCID: PMC10021500 DOI: 10.1093/eurheartjsupp/suac117] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A link between influenza infection and cardiovascular morbidity has been known for almost a century. This narrative review examined the cardiovascular complications associated with influenza and the potential mechanisms behind this relationship. The most common reported cardiovascular complications are cardiovascular death, myocardial infarction, and heart failure hospitalization. There are multiple proposed mechanisms driving the increased risk of cardiovascular complications. These mechanics involve influenza-specific effects such as direct cardiac infection and endothelial dysfunction leading to plaque destabilization and rupture, but also hypoxaemia and systemic inflammatory responses including increased metabolic demand, biomechanical stress, and hypercoagulability. The significance of the individual effects is unclear, and thus whether influenza directly or indirectly causes cardiovascular events is unknown. In conclusion, the risk of acute cardiovascular morbidity and mortality is elevated during influenza infection. The proposed underlying pathophysiological mechanisms support this association, but systemic responses to infection may drive this relationship.
Collapse
Affiliation(s)
- Kristoffer Grundtvig Skaarup
- Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital—Herlev and Gentofte, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Modin
- Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital—Herlev and Gentofte, Copenhagen, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Nielsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev & Gentofte, CopenhagenDenmark
| | - Jens Ulrik Stæhr Jensen
- Department of Respiratory Medicine, Copenhagen University Hospital, Herlev & Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Guo M, Chen S, Lao J, Liang J, Chen H, Tong J, Huang Y, Jia D, Li Q. 3BDO Alleviates Seizures and Improves Cognitive Function by Regulating Autophagy in Pentylenetetrazol (PTZ)-Kindled Epileptic Mice Model. Neurochem Res 2022; 47:3777-3791. [PMID: 36243819 DOI: 10.1007/s11064-022-03778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3 H)-one (3BDO) is a mTOR agonist that inhibits autophagy. The main purpose of this study is to investigate the effects of 3BDO on seizure and cognitive function by autophagy regulation in pentylenetetrazol (PTZ)-kindled epileptic mice model. The PTZ-kindled epileptic mice model was used in study. The behavioral changes and electroencephalogram (EEG) of the mice in each group were observed. The cognitive functions were tested by Morris water maze test. The loss of hippocampal neurons was detected by hematoxylin-eosin (HE) staining and immunofluorescence analysis. Immunohistochemistry, western blot and q-PCR were employed to detect the expression of autophagy-related proteins and mTOR in the hippocampus and cortex. Less seizures, increased hippocampal neurons and reduced astrocytes of hippocampus were observed in the 3BDO-treated epileptic mice than in the PTZ-kindled epileptic mice. Morris water maze test results showed that 3BDO significantly improved the cognitive function of the PTZ-kindled epileptic mice. Western blot analyses and q-PCR revealed that 3BDO inhibited the expression of LC3, Beclin-1, Atg5, Atg7 and p-ULK1/ULK1, but increased that of p-mTOR/mTOR, p-P70S6K/P70S6K in the hippocampus and temporal lobe cortex of epileptic mice. Immunohistochemistry and immunofluorescence also showed 3BDO inhibited the LC3 expression and increased the mTOR expression in the hippocampus of epileptic mice. In addition, the autophagy activator EN6 reversed the decrease in the 3BDO-induced autophagy and aggravated the seizures and cognitive dysfunction in the epileptic mice. 3BDO regulates autophagy by activating the mTOR signaling pathway in PTZ-kindled epileptic mice model, thereby alleviating hippocampus neuronal loss and astrocytes proliferation, reducing seizures and effectively improving cognitive function. Therefore, 3BDO may have potential value in the treatment of epilepsy.
Collapse
Affiliation(s)
- Meiwen Guo
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Shuang Chen
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jitong Lao
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiantang Liang
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Hao Chen
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Jingyi Tong
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | | | - Dandan Jia
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China.
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| | - Qifu Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, China.
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
11
|
HSPB1 Regulates Autophagy and Apoptosis in Vascular Smooth Muscle Cells in Arteriosclerosis Obliterans. Cardiovasc Ther 2022; 2022:3889419. [PMID: 36474716 PMCID: PMC9678445 DOI: 10.1155/2022/3889419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Small heat shock protein-1 (HSPB1) is a small heat shock protein that participates in many cellular processes and alleviates stress-induced cell injury. Autophagy protects cells from many types of stress and plays a key role in preventing stress in arteriosclerosis obliterans (ASO). However, the roles of HSPB1 in autophagy and apoptosis in the context of ASO pathogenesis remain unclear. Methods In vivo and in vitro studies were used to determine whether HSPB1 is associated with ASO progression. The expression of HSPB1 was measured in normal and sclerotic blood vessels. The role of HSPB1 and its potential downstream signaling pathway were determined in VSMCs by overexpressing and silencing HSPB1. Results A total of 91 ASO patients admitted to and treated at our hospital from Sep. 2020 to Sep. 2021 were selected, and plasma HSPB1 expression was assessed. We divided the patients with ASO into the grade I (n = 39), II (n = 29), III (n = 10), and IV (n = 13) groups according to Fontaine's classification. Plasma HSPB1 levels were markedly decreased in patients with grade III (n = 10) and IV (n = 13) ASO compared with patients with grade I ASO. Furthermore, HSPB1 expression was significantly decreased, and p62 and cleaved caspase-3 were increased in the sclerotic vasculature compared to the normal vasculature (p < 0.05). Overexpression of HSPB1 promoted apoptosis of VSMCs following ox-LDL treatment. Knockdown of HSPB1 led to a marked increase in the expression of LC3II and Beclin-1 in ox-LDL-stimulated VSMCs, whereas knockdown of HSPB1 attenuated these changes (p < 0.05). Importantly, overexpression of HSPB1 promoted the dephosphorylation of JNK in ox-LDL-stimulated VSMCs. Conversely, downregulation of HSPB1 induced the opposite change. Conclusion Loss of HSPB1 promotes VSMC autophagy and inhibits VSMC apoptosis, which are associated with ASO. HSPB1 and its downstream signaling pathways could be potential therapeutic targets for ASO treatment.
Collapse
|
12
|
Kong N, Xu Q, Cui W, Feng X, Gao H. PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1205. [PMID: 36544639 PMCID: PMC9761140 DOI: 10.21037/atm-22-4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022]
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to an intracellular invertase or decarboxylase and is an independent risk factor for atherosclerosis (AS). This study aimed to investigate the therapeutic potential of the PCSK9 inhibitor, inclisiran, and its underlying mechanism in AS. Methods ApoE-/- mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 1, 5, or 10 mg/kg inclisiran. Low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) levels were determined using commercially available kits. Oil Red O staining was applied to detect the aortic plaque area and oil formation. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to induce cell injuries. Cell death was determined using a Hoechst 33342/propidium iodide (PI) dual-staining assay. Cytotoxicity was measured by lactate dehydrogenase (LDH) activity analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were performed to examine the pyroptosis-related factors. Results Inclisiran inhibited the levels of LDL-C, TC, and TG, but increased the HDL-C level in the AS animal model. It also significantly inhibited plaque and oil droplet formation in a dose-dependent manner. Moreover, inclisiran markedly inhibited pyroptosis, as evidenced by the decreased levels of cleaved-caspase-1, NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC), gasdermin-D (GSDMD)-N, interleukin (IL)-1β, and IL-18. Furthermore, inclisiran substantially inhibited cell death and cytotoxicity induced by ox-LDL in HUVECs. Conclusions Inclisiran exerted an anti-atherosclerotic effect by inhibiting pyroptosis. This study provides a theoretical basis for the therapeutic potential of inclisiran in AS.
Collapse
Affiliation(s)
- Ni Kong
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Qin Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Wei Cui
- Basic Medical School, Qingdao University, Qingdao, China
| | - Xiaoying Feng
- School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Huijie Gao
- Department of Immunopharmacology, Jining Medical University, Rizhao, China
| |
Collapse
|
13
|
Circ_0005699 participates in ox-LDL-induced human umbilical vein endothelial cell injury via targeting the miR-636/TLR4/NF-κB pathway. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:cells11132081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
|
15
|
Wang W, Tang W, Shan E, Zhang L, Chen S, Yu C, Gao Y. MiR-130a-5p contributed to the progression of endothelial cell injury by regulating FAS. Eur J Histochem 2022; 66. [PMID: 35638591 PMCID: PMC9201574 DOI: 10.4081/ejh.2022.3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in the development of vascular diseases. However, the effects of miR-130a-5p and its functional targets on atherosclerosis (AS) are still largely unknown. In this regard, our aim is to explore the potentially important role of miR-130a-5p and its target gene during the progression of endothelial cell injury. We first found oxidized low-density lipoprotein (ox-LDL) induced FAS and cell apoptosis in HUVECs. Subsequently, miR-130a-5p expression was verified to be downregulated after ox-LDL treatment and negatively correlated with FAS, and FAS was identified as substantially upregulated in the ox-LDL-treated HUVEC cells. After that, the knockdown of FAS and overexpression of miR-130a-5p together were observed to aggregate ox-LDL-induced reduction of cell viability and apoptosis, cell cycle progression, cell proliferation, cell migration and invasion. In conclusion, we detected that miR-130a-5p contributed to the progression of endothelial cell injury by regulating of FAS, which may provide a new and promising therapeutic target for AS.
Collapse
|
16
|
Hao Y, Yang Z, Li Q, Wang Z, Liu J, Wang J. 5-Heptadecylresorcinol Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice by Modulating SIRT3 Signaling: The Possible Beneficial Effects of Whole Grain Consumption. Mol Nutr Food Res 2022; 66:e2101114. [PMID: 35297565 DOI: 10.1002/mnfr.202101114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 12/17/2022]
Abstract
SCOPE Whole grain consumption has been proven to be inversely associated with the risk of cardiovascular diseases. As a biomarker for whole grain dietary intake, 5-heptadecylresorcinol (AR-C17) has attracted increased attention due to its potential health-improving activity. However, the beneficial effect of AR-C17 on atherosclerosis prevention and the underlying mechanism remain unclear. METHODS AND RESULTS High-fat diet fed apolipoprotein E-deficient (ApoE-/- ) mice are administrated with or without AR-C17 (30 and 150 mg kg-1 ) for 16 weeks. Histological staining is performed for plaque analysis. Immunofluorescence, western blot, and seahorse cell analysis are carried out to investigate the action of mechanism of AR-C17. The results indicate that AR-C17 supplementation lowered serum total cholesterol, triglyceride, VLDL-C, and LDL-C levels. Moreover, the atherosclerotic plaques in the aortic root region of mice heart are significantly reduced by AR-C17 intervention compared with ApoE-/- control group. In addition, AR-C17 treatment alleviates endothelial cell damage and apoptosis by improving mitochondrial function via sirtuin3 signaling pathway both in ApoE-/- mice and oxidized-LDL-treated human umbilical vein endothelial cells. CONCLUSION AR-C17 may be applied as a promising grain-based dietary bioactive ingredient for atherosclerosis prevention. Meanwhile, as a mitochondrial protective agent, it can offer support for the suggested health claim of whole grain diet.
Collapse
Affiliation(s)
- Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
17
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
18
|
Wei Q, Ren H, Zhang J, Yao W, Zhao B, Miao J. An Inhibitor of Grp94 Inhibits OxLDL-Induced Autophagy and Apoptosis in VECs and Stabilized Atherosclerotic Plaques. Front Cardiovasc Med 2021; 8:757591. [PMID: 34938782 PMCID: PMC8687133 DOI: 10.3389/fcvm.2021.757591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Oxidized low-density lipoprotein (oxLDL) induces vascular endothelial cell (VEC) injury and atherosclerosis through activating endoplasmic reticulum stress. Expression of glucose-regulated protein 94 (Grp94) is induced by endoplasmic reticulum stress and Grp94 is involved in cardiovascular diseases. This study aimed to determine the role of Grp94 in oxLDL-induced vascular endothelial cell injury and atherosclerosis. Methods and Results: An inhibitor of Grp94, HCP1, was used to investigate the role of Grp94 in oxLDL-induced VEC injury in human umbilical vein endothelial cells and atherosclerosis in apolipoprotein E−/− mice. Results showed that HCP1 inhibited autophagy and apoptosis induced by oxLDL in VECs. And we found that Grp94 might interact with adenosine monophosphate-activated protein kinase (AMPK) and activate its activity. HCP1 inhibited AMPK activity and overexpression of Grp94 blocked the effect of HCP1. Besides, HCP1 activated the activity of mechanistic target of rapamycin complex 1 (mTORC1), co-treatment with AMPK activator acadesine eliminated the effect of HCP1 on mTORC1 activity as well as autophagy. In apolipoprotein E−/− mice, HCP1 suppressed autophagy and apoptosis of atherosclerotic plaque endothelium. In addition, HCP1 increased the content of collagen, smooth muscle cells, and anti-inflammatory macrophages while reducing the activity of MMP-2/9 and pro-inflammatory macrophages in the atherosclerotic lesion. Conclusion: HCP1 inhibited oxLDL-induced VEC injury and promoted the stabilization of atherosclerotic plaque in apoE−/− mice. Grp94 might be a potential therapeutic target in the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qun Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China.,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Wen Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Baoxiang Zhao
- School of Chemistry and Chemical Engineering, Institute of Organic Chemistry, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
19
|
Wang XY, Ma TL, Chen KN, Pang ZY, Wang H, Huang JM, Qi GB, Wang CZ, Jiang ZX, Gong LJ, Wang Z, Jiang C, Yan ZQ. Accumulation of LDL/ox-LDL in the necrotic region participates in osteonecrosis of the femoral head: a pathological and in vitro study. Lipids Health Dis 2021; 20:167. [PMID: 34823555 PMCID: PMC8620162 DOI: 10.1186/s12944-021-01601-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common but intractable disease that appears to involve lipid metabolic disorders. Although numerous studies have demonstrated that high blood levels of low-density lipoprotein (LDL) are closely associated with ONFH, there is limited evidence to explain the pathological role of LDL. Pathological and in vitro studies were performed to investigate the role of disordered metabolism of LDL and oxidized LDL (ox-LDL) in the femoral head in the pathology of ONFH. Methods Nineteen femoral head specimens from patients with ONFH were obtained for immunohistochemistry analysis. Murine long-bone osteocyte Y4 cells were used to study the effects of LDL/ox-LDL on cell viability, apoptosis, and metabolism process of LDL/ox-LDL in osteocytes in normoxic and hypoxic environments. Results In the pathological specimens, marked accumulation of LDL/ox-LDL was observed in osteocytes/lacunae of necrotic regions compared with healthy regions. In vitro studies showed that ox-LDL, rather than LDL, reduced the viability and enhanced apoptosis of osteocytes. Pathological sections indicated that the accumulation of ox-LDL was significantly associated with impaired blood supply. Exposure to a hypoxic environment appeared to be a key factor leading to LDL/ox-LDL accumulation by enhancing internalisation and oxidation of LDL in osteocytes. Conclusions The accumulation of LDL/ox-LDL in the necrotic region may contribute to the pathology of ONFH. These findings could provide new insights into the prevention and treatment of ONFH. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01601-x.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan Province, China.,Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tian-Le Ma
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Kang-Ning Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhi-Ying Pang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Guo-Bin Qi
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chen-Zhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zeng-Xin Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
20
|
Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, Wan X, Tian J, Li Z, He Z, Huang W, Liang C, Zhang Z, Yang L, Tian J, Yu B, Sun B. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics 2021; 11:9358-9375. [PMID: 34646375 PMCID: PMC8490524 DOI: 10.7150/thno.62797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Rationale: Atherosclerosis plaque rupture (PR) is the pathological basis and chief culprit of most acute cardiovascular events and death. Given the complex and important role of macrophage apoptosis and autophagy in affecting plaque stability, an important unanswered question include is whether, and how, immunity-related GTPase family M protein (IRGM) and its mouse orthologue IRGM1 affect macrophage survival and atherosclerotic plaque stability. Methods: To investigate whether serum IRGM of ST-segment elevation myocardial infarction (STEMI) patients is related to plaque morphology, we divided 85 STEMI patients into those with and without plaque rupture (PR and non-PR, respectively) based on OCT image analysis, and quantified the patients' serum IRGM levels. Next, we engineered Irgm1 deficient mice (Irgm1+/-) and chimera mice with Irgm1 deficiency in the bone marrow on an ApoE-/- background, which were then fed a high-fat diet for 16 weeks. Pathological staining was used to detect necrotic plaque cores, ratios of neutral lipids and cholesterol crystal, as well as collagen fiber contents in these mice to characterize plaque stability. In addition, immunofluorescence, immunohistochemical staining and western blot were used to detect the apoptosis of macrophages in the plaques. In vitro, THP-1 and RAW264.7 cells were stimulated with ox-LDL to mimic the in vivo environment, and IRGM/IRGM1 expression were modified by specific siRNA (knockdown) or IRGM plasmid (knocked-in). The effect of IRGM/Irgm1 on autophagy and apoptosis of macrophages induced by ox-LDL was then evaluated. In addition, we introduced inhibitors of the JNK/p38/ERK signaling pathway to verify the specific mechanism by which Irgm1 regulates RAW264.7 cell apoptosis. Results: The serum IRGM levels of PR patients is significantly higher than that of non-PR patients and healthy volunteers, which may be an effective predictor of PR. On a high-fat diet, Irgm1-deficient mice exhibit reduced necrotic plaque cores, as well as neutral lipid and cholesterol crystal ratios, with increased collagen fiber content. Additionally, macrophage apoptosis is inhibited in the plaques of Irgm1-deficient mice. In vitro, IRGM/Irgm1 deficiency rapidly inhibits ox-LDL-induced macrophage autophagy while inhibiting ox-LDL-induced macrophage apoptosis in late stages. Additionally, IRGM/Irgm1 deficiency suppresses reactive oxygen species (ROS) production in macrophages, while removal of ROS effectively inhibits macrophage apoptosis induced by IRGM overexpression. We further show that Irgm1 can affect macrophage apoptosis by regulating JNK/p38/ERK phosphorylation in the MAPK signaling pathway. Conclusions: Serum IRGM may be related to the process of PR in STEMI patients, and IRGM/Irgm1 deficiency increases plaque stability. In addition, IRGM/Irgm1 deficiency suppresses macrophage apoptosis by inhibiting ROS generation and MAPK signaling transduction. Cumulatively, these results suggest that targeting IRGM may represent a new treatment strategy for the prevention and treatment of acute cardiovascular deaths caused by PR.
Collapse
|
21
|
Du H, Yang L, Zhang X. Matrix Metalloproteinase-7 Aggravated the Oxidized Low Density Lipoprotein-Induced Damage of Human Vascular Endothelial Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: Vascular endothelial injury could induce many cardiovascular diseases. Recently, some studies have indicated that matrix metalloproteinase-7 (MMP-7) was associated with the occurrence and development of cardiovascular diseases. However, whether higher levels of
MMP-7 were associated with the occurrence of the vascular endothelial injury is unclear. Material and methods: In this study, ox-LDL was used for the simulation of vascular endothelial injury in HUVECs. Next, we detected the expression of MMP-7 in these cells. After that, we established
the cell models with MMP-7 overexpression and knockdown, respectively. At last, the apoptosis and inflammation of HUVECs were detected with corresponding assays. Results: After the stimulation of ox-LDL, the expression of MMP-7 was enhanced compared to the control groups. After the
stimulation of ox-LDL and the overexpression of MMP-7, the apoptosis rates of HUVECs were enhanced, while MMP-7 knockdown led to the decreased apoptosis rates of these cells. Furthermore, after the stimulation of ox-LDL and overexpression of MMP-7, the expression of inflammatory factors (IL-6,
IL-1β and TNF-α) was promoted. Additionally, the expression of these proteins was repressed after knockdown of MMP-7. Conclusion: MMP-7 aggravated the ox-LDL-induced damage of HUVECs by promoting the apoptosis and inflammation of these cells.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Clinical Laboratory, PKUCare Luzhong Hospital, Zibo, Shandong 255400, China
| | - Lili Yang
- Department of General Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiaoqian Zhang
- Department of Clinical Laboratory, PKUCare Luzhong Hospital, Zibo, Shandong 255400, China
| |
Collapse
|
22
|
Lupse B, Annamalai K, Ibrahim H, Kaur S, Geravandi S, Sarma B, Pal A, Awal S, Joshi A, Rafizadeh S, Madduri MK, Khazaei M, Liu H, Yuan T, He W, Gorrepati KDD, Azizi Z, Qi Q, Ye K, Oberholzer J, Maedler K, Ardestani A. Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Rep 2021; 36:109490. [PMID: 34348155 PMCID: PMC8421018 DOI: 10.1016/j.celrep.2021.109490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to β-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic β-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate β-cell death. PHLPPs directly dephosphorylate and regulate activities of β-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control β-cell apoptosis. Genetic inhibition of PHLPPs markedly improves β-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic β cells in diabetes.
Collapse
Affiliation(s)
- Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Hazem Ibrahim
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Supreet Kaur
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Bhavishya Sarma
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Anasua Pal
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Sushil Awal
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Arundhati Joshi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Sahar Rafizadeh
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Murali Krishna Madduri
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Mona Khazaei
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Wei He
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | | | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran
| | - Qi Qi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jose Oberholzer
- Charles O. Strickler Transplant Center, University of Virginia Medical Center, Charlottesville, VA 22903, USA
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran.
| |
Collapse
|
23
|
Sowka A, Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells 2021; 10:cells10061485. [PMID: 34204799 PMCID: PMC8231548 DOI: 10.3390/cells10061485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.
Collapse
|
24
|
Role of macrophage autophagy in atherosclerosis: modulation by bioactive compounds. Biochem J 2021; 478:1359-1375. [PMID: 33861844 DOI: 10.1042/bcj20200894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with lipid metabolism disorder. Autophagy is a catabolic process and contributes to maintaining cellular homeostasis. Substantial evidence suggests that defective autophagy is implicated in several diseases, including atherosclerosis, while increased autophagy mitigates atherosclerosis development. Thus, understanding the mechanisms of autophagy regulation and its association with atherosclerosis is vital to develop new therapies against atherosclerosis. Dietary bioactive compounds are non-nutrient natural compounds that include phenolics, flavonoids, and carotenoids. Importantly, these bioactive compounds possess anti-inflammatory, antioxidant, and antibacterial properties that may alleviate various chronic diseases. Recently, examining the effects of bioactive compounds on autophagy activity in atherogenesis has drawn considerable attention. The current review discusses the role of macrophage autophagy in the development and progression of atherosclerosis. We also summarize our current knowledge of the therapeutic potential of bioactive compounds on atherosclerosis and autophagy.
Collapse
|
25
|
Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Front Cell Dev Biol 2021; 9:641852. [PMID: 33937238 PMCID: PMC8083902 DOI: 10.3389/fcell.2021.641852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the main cause of mortality in metabolic-related diseases, including cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways, thereby contributing to increased risks of developing atherosclerosis and T2DM. Autophagy is a lysosomal degradation process that plays an important role in maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect against the progression of atherosclerotic plaques, while excessive autophagy activation leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic homeostasis is essential for the development and outcome of atherosclerosis. Here, we discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic mechanisms of atherosclerosis and potential therapeutic drugs that target these molecular mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
26
|
Song EJ, Ahn S, Min SK, Ha J, Oh GT. Combined application of rapamycin and atorvastatin improves lipid metabolism in apolipoprotein E-deficient mice with chronic kidney disease. BMB Rep 2021. [PMID: 33050984 PMCID: PMC8016660 DOI: 10.5483/bmbrep.2021.54.3.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis arising from the pro-inflammatory conditions associated with chronic kidney disease (CKD) increases major cardiovascular morbidity and mortality. Rapamycin (RAPA) is known to inhibit atherosclerosis under CKD and non-CKD conditions, but it can cause dyslipidemia; thus, the co-application of lipid-lowering agents is recommended. Atorvastatin (ATV) has been widely used to reduce serum lipids levels, but its synergistic effect with RAPA in CKD remains unclear. Here, we analyzed the effect of their combined treatment on atherosclerosis stimulated by CKD in apolipoprotein E-deficient (ApoE−/−) mice. Oil Red O staining revealed that treatment with RAPA and RAPA+ ATV, but not ATV alone, significantly decreased the atherosclerotic lesions in the aorta and aortic sinus, compared to those seen in the control (CKD) group. The co-administration of RAPA and ATV improved the serum lipid profile and raised the expression levels of proteins involved in reverse cholesterol transport (LXRα, CYP7A1, ABCG1, PPARγ, ApoA1) in the liver. The CKD group showed increased levels of various genes encoding atherosclerosis-promoting cytokines in the spleen (Tnf-α, Il-6 and Il-1β) and aorta (Tnf-α and Il-4), and these increases were attenuated by RAPA treatment. ATV and RAPA+ATV decreased the levels of Tnf-α and Il-1β in the spleen, but not in the aorta. Together, these results indicate that, in CKD-induced ApoE−/− mice, RAPA significantly reduces the development of atherosclerosis by regulating the expression of inflammatory cytokines and the co-application of ATV improves lipid metabolism.
Collapse
Affiliation(s)
- Eun Ju Song
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sanghyun Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Oxidatively Modified LDL Suppresses Lymphangiogenesis via CD36 Signaling. Antioxidants (Basel) 2021; 10:antiox10020331. [PMID: 33672291 PMCID: PMC7926875 DOI: 10.3390/antiox10020331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Arterial accumulation of plasma-derived LDL and its subsequent oxidation contributes to atherosclerosis. Lymphatic vessel (LV)-mediated removal of arterial cholesterol has been shown to reduce atherosclerotic lesion formation. However, the precise mechanisms that regulate LV density and function in atherosclerotic vessels remain to be identified. The aim of this study was to investigate the role of native LDL (nLDL) and oxidized LDL (oxLDL) in modulating lymphangiogenesis and underlying molecular mechanisms. Western blotting and immunostaining experiments demonstrated increased oxLDL expression in human atherosclerotic arteries. Furthermore, elevated oxLDL levels were detected in the adventitial layer, where LV are primarily present. Treatment of human lymphatic endothelial cells (LEC) with oxLDL inhibited in vitro tube formation, while nLDL stimulated it. Similar results were observed with Matrigel plug assay in vivo. CD36 deletion in mice and its siRNA-mediated knockdown in LEC prevented oxLDL-induced inhibition of lymphangiogenesis. In addition, oxLDL via CD36 receptor suppressed cell cycle, downregulated AKT and eNOS expression, and increased levels of p27 in LEC. Collectively, these results indicate that oxLDL inhibits lymphangiogenesis via CD36-mediated regulation of AKT/eNOS pathway and cell cycle. These findings suggest that therapeutic blockade of LEC CD36 may promote arterial lymphangiogenesis, leading to increased cholesterol removal from the arterial wall and reduced atherosclerosis.
Collapse
|
29
|
Sequencing Analysis of mRNA Profile in Endothelial Cells in Response to ox-LDL. Biochem Genet 2021; 59:767-780. [PMID: 33528699 DOI: 10.1007/s10528-021-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The pathogenesis of atherosclerosis (AS) and abnormal endothelial cells apoptosis is a multifactorial biological process. Oxidized low density lipoprotein (ox-LDL) is a critical factor in the formation of AS. However, the exact mechanism is still not clear. Therefore, the aim of this study was to investigate some genes and biological pathways in endothelial cells apoptosis in response to ox-LDL. First, our results has validated that ox-LDL is an effective inducer of endothelial cells apoptosis, then, transcriptome sequencing was used to detect differential expression genes. In total, 71 differentially expressed genes (DEGs) were identified, including 32 upregulated genes and 39 downregulated genes. GO analysis showed that DEGs were mainly enriched in cytokine-mediated signaling pathway, gene expression, external side of plasma membrane, steroid binding, and signaling receptor binding. After KEGG analysis, the DEGs mainly focused on the following biochemical signaling pathways, including Signaling molecules and interaction (such as ICOSLG, IL6, ITGAM, TNFRSF13C and VTCN1), Signal transduction (such as IL13RA2, IL6, ITGAM, PDE5A, SGK3 and TNFRSF13C), Immune system (such as FCGR2A, ICOSLG, IL6, ITGAM and TNFRSF13C), and so on. These genes may play a dominant role in HAECs apoptosis and AS genesis. The above prediction and analysis provide an important basis for our follow-up study of the mechanism of these genes, which might be used as molecular targets or diagnostic biomarkers for AS.
Collapse
|
30
|
Choi SH, Agatisa-Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, Tsimikas S, Miller YI. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:e82-e96. [PMID: 33356389 PMCID: PMC8105271 DOI: 10.1161/atvbaha.120.315485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Ayelet Gonen
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Alisa Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Jungsu Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Elena Alekseeva
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Sotirios Tsimikas
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Yury I. Miller
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
31
|
Xu Y, Miao C, Cui J, Bian X. miR-92a-3p promotes ox-LDL induced-apoptosis in HUVECs via targeting SIRT6 and activating MAPK signaling pathway. ACTA ACUST UNITED AC 2021; 54:e9386. [PMID: 33470395 PMCID: PMC7812905 DOI: 10.1590/1414-431x20209386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Atherosclerosis could be induced by multiple factors, including hypertension, hyperlipidemia, and smoking, and its pathogenesis has not been fully elucidated. MicroRNAs have been shown to possess great anti-atherosclerotic potential, but the precise function of miR-92a-3p in atherosclerosis and its potential molecular mechanism have not been well clarified. Flow cytometry assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay were performed to evaluate effects of oxidized low-density lipoprotein (ox-LDL) on proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs), respectively. Malondialdehyde and superoxide dismutase levels in cell lysate were assessed with biochemical kits. The expression levels of miR-92a-3p and Sirtuin6 (SIRT6) in HUVECs exposed to ox-LDL were estimated by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the protein levels of SIRT6, c-Jun N-terminal kinase (JNK), phosphorylation JNK (p-JNK), p38 mitogen activated protein kinase (p38 MAPK), and phosphorylation p38 MAPK (p-p38 MAPK) were measured by western blot assays. The relationship between miR-92a-3p and SIRT6 was confirmed by dual-luciferase reporter assay. Ox-LDL induced apoptosis and oxidative stress in HUVECs in concentration- and time-dependent manners. Conversely, miR-92a-3p silencing inhibited apoptosis and SIRT6 expression in HUVECs. The overexpression of miR-92a-3p enhanced apoptosis and phosphorylation levels of JNK and p38 MAPK as well as inhibited proliferation in ox-LDL-induced HUVECs. In addition, SIRT6 was a target of miR-92a-3p. miR-92a-3p negatively regulated SIRT6 expression in ox-LDL-induced HUVECs to activate MAPK signaling pathway in vitro. In summary, miR-92a-3p promoted HUVECs apoptosis and suppressed proliferation in ox-LDL-induced HUVECs by targeting SIRT6 expression and activating MAPK signaling pathway.
Collapse
Affiliation(s)
- Yingchun Xu
- Department of Cardiology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China
| | - Chunbo Miao
- Department of Internal Medicine, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China
| | - Jinzhen Cui
- Department of Internal Medicine, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China
| | - Xiaoli Bian
- Department of Cardiology, Yangzhou Jiangdu People's Hospital, Jiangdu District, Yangzhou, Jiangsu, China
| |
Collapse
|
32
|
Shao X, Liu Z, Liu S, Lin N, Deng Y. Astragaloside IV alleviates atherosclerosis through targeting circ_0000231/miR-135a-5p/CLIC4 axis in AS cell model in vitro. Mol Cell Biochem 2021; 476:1783-1795. [PMID: 33439448 DOI: 10.1007/s11010-020-04035-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) have shown to act as crucial mediators in atherosclerosis (AS) development. The purpose of our study was to explore the role of Astragaloside IV (ASV) and circular RNA_0000231 (circ_0000231) in AS using AS cell model. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to analyze cell viability and apoptosis. Migration ability was assessed by transwell migration assay and wound healing assay. The inflammatory response was evaluated via enzyme-linked immunosorbent assay (ELISA). Oxidative status was assessed via matching commercial kits. Western blot assay was conducted to detect the expression of monocyte chemoattractant protein 1 (MCP1), intercellular adhesion molecule 1 (ICAM1), and chloride intracellular channel 4 (CLIC4). The levels of circ_0000231, its linear form Rho GTPase activating protein 12 (ARHGAP12), microRNA-135a-5p (miR-135a-5p), and CLIC4 messenger RNA (mRNA) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Circ_0000231-miRNA interactions were established using Starbase and Circbank softwares, while the targets of miR-135a-5p were explored by Starbase software. Dual-luciferase reporter assay and RNA-pull down assay were used to verify these target interactions. ASV suppressed the apoptosis, inflammation, and oxidative stress while recovered the viability and migration ability of HUVECs which were mediated by oxidized low-density lipoprotein (ox-LDL). Circ_0000231 overexpression antagonized the protective role of ASV in ox-LDL-induced HUVECs. MiR-135a-5p was verified as a direct target of circ_0000231, and circ_0000231 contributed to ox-LDL-induced cell injury of HUVECs through down-regulating miR-135a-5p. MiR-135a-5p directly interacted with the 3' untranslated region (3'-UTR) of CLIC4 mRNA in HUVECs, and miR-135a-5p protected HUVECs against ox-LDL-induced injury through down-regulating CLIC4. ASV protected HUVECs against ox-LDL-induced injury through targeting circ_0000231/miR-135a-5p/CLIC4 axis. Targeting circ_0000231/miR-135a-5p/CLIC4 axis might provide a novel insight to develop effective strategy for AS treatment.
Collapse
Affiliation(s)
- Xiao Shao
- Changchun University of traditional Chinese medicine, Changchun city, Jilin Province, China
| | - Zhaozheng Liu
- Department of Cardiology, Affiliated Hospital of Changchun University of traditional Chinese medicine, Changchun city, Jilin Province, China
| | - Shanshan Liu
- Department of Pediatrics, The Second Hospital of Fushun, Fushun city, Liaoning Province, China
| | - Na Lin
- Department of Cardiology and rehabilitation, Affiliated Hospital of Changchun University of traditional Chinese medicine, Changchun city, Jilin Province, China
| | - Yue Deng
- Department of Cardiology, Affiliated Hospital of Changchun University of traditional Chinese medicine, Changchun city, Jilin Province, China.
| |
Collapse
|
33
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
34
|
Loss of GRB2 associated binding protein 1 in arteriosclerosis obliterans promotes host autophagy. Chin Med J (Engl) 2020; 134:73-80. [PMID: 33323827 PMCID: PMC7862813 DOI: 10.1097/cm9.0000000000001255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy. Methods: In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1. Results: The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein. Conclusion: Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.
Collapse
|
35
|
Lipophagy in atherosclerosis. Clin Chim Acta 2020; 511:208-214. [DOI: 10.1016/j.cca.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
|
36
|
Guan Z, Shi L, Wang T, Xu Y, Xu T. Low Molecular Weight Fucoidan from Saccharina Japonica Ameliorates the Antioxidant Capacity and Reduces Plaque Areas in Aorta in Apoe-Deficient Mice with Atherosclerosis. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02278-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Ren K, Xu XD, Yu XH, Li MQ, Shi MW, Liu QX, Jiang T, Zheng XL, Yin K, Zhao GJ. LncRNA-modulated autophagy in plaque cells: a new paradigm of gene regulation in atherosclerosis? Aging (Albany NY) 2020; 12:22335-22349. [PMID: 33154191 PMCID: PMC7695379 DOI: 10.18632/aging.103786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The development of atherosclerosis is accompanied by the functional deterioration of plaque cells, which leads to the escalation of endothelial inflammation, abnormal vascular smooth muscle cell phenotype switching and the accumulation of lipid-laden macrophages within vascular walls. Autophagy, a highly conserved homeostatic mechanism, is critical for the delivery of cytoplasmic substrates to lysosomes for degradation. Moderate levels of autophagy prevent atherosclerosis by safeguarding plaque cells against apoptosis, preventing inflammation, and limiting the lipid burden, whereas excessive autophagy exacerbates cell damage and inflammation and thereby accelerates the formation of atherosclerotic plaques. Increasing lines of evidence suggest that long noncoding RNAs can be either beneficial or detrimental to atherosclerosis development by regulating the autophagy level. This review summarizes the research progress related to 1) the significant role of autophagy in atherosclerosis and 2) the effects of the lncRNA-mediated modulation of autophagy on the plaque cell fate, inflammation levels, proliferative capacity, and cholesterol metabolism and subsequently on atherogenesis.
Collapse
Affiliation(s)
- Kun Ren
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China.,Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hai Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Qi Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| | - Meng-Wen Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xian Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ting Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, Calgary, AB, Canada.,Key Laboratory of Molecular Targets and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
38
|
miR-4286/TGF-β1/Smad3-Negative Feedback Loop Ameliorated Vascular Endothelial Cell Damage by Attenuating Apoptosis and Inflammatory Response. J Cardiovasc Pharmacol 2020; 75:446-454. [PMID: 32141990 DOI: 10.1097/fjc.0000000000000813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS), known as the chronic inflammatory disease, results from the dysfunction of vascular endothelial cells (VECs). Transforming growth factor-β1 (TGF-β1) has been reported to be induced by oxidized low-density lipoprotein (ox-LDL) and contribute to AS-related vascular endothelial cell damage. This work planned to study the mechanism of TGF-β1 in vascular endothelial cell damage. We found that TGF-β1 was activated by ox-LDL in human umbilical vascular endothelial cells (HUVECs). Silence of TGF-β1 reversed the inductive effect of ox-LDL on apoptosis and inflammatory response of HUVECs. Mechanistically, microRNA-4286 (miR-4286) targeted and inhibited TGF-β1 to inhibit Smad3, and Smad3 bound to the promoter of miR-4286 to repress its transcription. Rescue assays indicated that miR-4286 ameliorated the ox-LDL-induced apoptosis and inflammatory response through inhibiting TGF-β1. In conclusion, our study first demonstrated that miR-4286/TGF-β1/Smad3-negative feedback loop ameliorated vascular endothelial cell damage by attenuating apoptosis and inflammatory response, providing new thoughts for promoting the treatment of AS.
Collapse
|
39
|
Huang D, Gao W, Zhong X, Ge J. NLRP3 activation in endothelia promotes development of diabetes-associated atherosclerosis. Aging (Albany NY) 2020; 12:18181-18191. [PMID: 32966239 PMCID: PMC7585081 DOI: 10.18632/aging.103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Inflammatory damage to endothelial cells plays a pivotal role in the diabetes-provoked atherosclerosis (AS). PYD domains-containing protein 3 (NLRP3) induces formation of inflammasome activates caspase-1, which subsequently cleaves the precursor form of IL-1β (pro-IL-1β) into the processed, secreted form IL-1β to promote the immune responses in AS. However, it is not known whether NLRP3 activation specifically in endothelial cells causes AS. Here, in an in vitro model for AS, we showed that NLRP3-depleted human aortic endothelial cells (HAECs) became resistant to apoptotic cell death, maintained proliferative potential and reduced reactive oxygen species (ROS) production upon treatment with oxidized low-density lipoprotein (ox-LDL). Next, the role of NLRP3 in endothelial cells in the development of diabetes-associated AS was assessed in endothelial cell-specific NLRP3 mutant, ApoE (-/-) mice (APOEKO/Tie2p-Cre/NLRP3MKO), compared to control ApoE (-/-) mice (APOEKO), supplied with either high-fat diet (HFD), or normal diet (ND). We found that endothelia-specific NLRP3-depletion significantly attenuated AS severity in mice treated with HFD, likely through reduced apoptotic death of endothelial cells and production of ROS. Together, our data suggest that NLRP3 activation in endothelial cells promotes development of diabetes-associated AS.
Collapse
Affiliation(s)
- Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
40
|
Apoptotic exosome-like vesicles regulate endothelial gene expression, inflammatory signaling, and function through the NF-κB signaling pathway. Sci Rep 2020; 10:12562. [PMID: 32724121 PMCID: PMC7387353 DOI: 10.1038/s41598-020-69548-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Persistent endothelial injury promotes maladaptive responses by favoring the release of factors leading to perturbation in vascular homeostasis and tissue architecture. Caspase-3 dependent death of microvascular endothelial cells leads to the release of unique apoptotic exosome-like vesicles (ApoExo). Here, we evaluate the impact of ApoExo on endothelial gene expression and function in the context of a pro-apoptotic stimulus. Endothelial cells exposed to ApoExo differentially express genes involved in cell death, inflammation, differentiation, and cell movement. Endothelial cells exposed to ApoExo showed inhibition of apoptosis, improved wound closure along with reduced angiogenic activity and reduced expression of endothelial markers consistent with the first phase of endothelial-to-mesenchymal transition (endoMT). ApoExo interaction with endothelial cells also led to NF-κB activation. NF-κB is known to participate in endothelial dysfunction in numerous diseases. Silencing NF-κB reversed the anti-apoptotic effect and the pro-migratory state and prevented angiostatic properties and CD31 downregulation in endothelial cells exposed to ApoExo. This study identifies vascular injury-derived extracellular vesicles (ApoExo) as novel drivers of NF-κB activation in endothelial cells and demonstrates the pivotal role of this signaling pathway in coordinating ApoExo-induced functional changes in endothelial cells. Hence, targeting ApoExo-mediated NF-κB activation in endothelial cells opens new avenues to prevent endothelial dysfunction.
Collapse
|
41
|
PDK1 Regulates the Maintenance of Cell Body and the Development of Dendrites of Purkinje Cells by pS6 and PKCγ. J Neurosci 2020; 40:5531-5548. [PMID: 32487697 DOI: 10.1523/jneurosci.2496-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a critical role in the development of mammalian brain. Here, we investigated the role of PDK1 in Purkinje cells (PCs) by generating the PDK1-conditional knock-out mice (cKO) through crossing PV-cre or Pcp2-cre mice with Pdk1fl/fl mice. The male mice were used in the behavioral testing, and the other experiments were performed on mice of both sexes. These PDK1-cKO mice displayed decreased cerebellar size and impaired motor balance and coordination. By the electrophysiological recording, we observed the reduced spontaneous firing of PCs from the cerebellar slices of the PDK1-cKO mice. Moreover, the cell body size of PCs in the PDK1-cKO mice was time dependently reduced compared with that in the control mice. And the morphologic complexity of PCs was also decreased after PDK1 deletion. These effects may have contributed to the reduction of the rpS6 (reduced ribosomal protein S6) phosphorylation and the PKCγ expression in PDK1-cKO mice since the upregulation of pS6 by treatment of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1, the agonist of mTOR1, partly rescued the reduction in the cell body size of the PCs, and the delivery of recombinant adeno-associated virus-PKCγ through cerebellar injection rescued the reduced complexity of the dendritic arbor in PDK1-cKO mice. Together, our data suggest that PDK1, by regulating rpS6 phosphorylation and PKCγ expression, controls the cell body maintenance and the dendritic development in PCs and is critical for cerebellar motor coordination.SIGNIFICANCE STATEMENT Here, we show the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in Purkinje cells (PCs). The ablation of PDK1 in PCs resulted in a reduction of cell body size, and dendritic complexity and abnormal spontaneous firing, which attributes to the motor defects in PDK1-conditional knock-out (cKO) mice. Moreover, the ribosomal protein S6 (rpS6) phosphorylation and the expression of PKCγ are downregulated after the ablation of PDK1. Additionally, upregulation of rpS6 phosphorylation by3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1 partly rescued the reduction in cell body size of PCs, and the overexpression of PKCγ in PDK1-KO PCs rescued the reduction in the dendritic complexity. These findings indicate that PDK1 contributes to the maintenance of the cell body and the dendritic development of PCs by regulating rpS6 phosphorylation and PKCγ expression.
Collapse
|
42
|
Li H, Liu Y, Huang J, Liu Y, Zhu Y. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population. J Clin Lab Anal 2020; 34:e23430. [PMID: 32557866 PMCID: PMC7595889 DOI: 10.1002/jcla.23430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Allowing for the significance of single nucleotide polymorphisms (SNPs) in reflecting disease risk, this investigation attempted to uncover whether SNPs situated in lncRNA GAS5/miR‐21/mTOR axis were associated with risk and prognosis of coronary heart disease (CHD) among a Chinese Han population. Methods Altogether 436 patients with CHD were recruited as cases, and meanwhile, 471 healthy volunteers were included into the control group. Besides, SNPs of GAS5/MIR‐21/mTOR axis were genotyped utilizing mass spectrometry. Chi‐square test was applied to figure out SNPs that were strongly associated with CHD risk and prognosis, and combined effects of SNPs and environmental parameters on CHD risk were evaluated through multifactor dimensionality reduction (MDR) model. Results Single nucleotide polymorphisms of GAS5 (ie, rs2067079 and rs6790), MIR‐21 (ie, rs1292037), and mTOR (rs2295080, rs2536, and rs1034528) were associated with susceptibility to CHD, and also Gensini score change of patients with CHD (P < .05). MDR results further demonstrated that rs2067079 and rs2536 were strongly interactive in elevating CHD risk (P < .05), while smoking, rs6790 and rs2295080 showed powerful reciprocity in predicting Gensini score change of patients with CHD (P < .05). Conclusion Single nucleotide polymorphisms of lncRNA GAS5/miR‐21/mTOR axis might interact with smoking to regulate CHD risk, which was conducive to diagnosis and prognostic anticipation of CHD.
Collapse
Affiliation(s)
- Hu Li
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yingxue Liu
- Department of Outpatient, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Jinyan Huang
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yu Liu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yufeng Zhu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| |
Collapse
|
43
|
Zhu W, Liu S. The role of human cytomegalovirus in atherosclerosis: a systematic review. Acta Biochim Biophys Sin (Shanghai) 2020; 52:339-353. [PMID: 32253424 DOI: 10.1093/abbs/gmaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a progressive vascular disease with increasing morbidity and mortality year by year in modern society. Human cytomegalovirus (HCMV) infection is closely associated with the development of atherosclerosis. HCMV infection may accelerate graft atherosclerosis and the development of transplant vasculopathy in organ transplantation. However, our current understanding of HCMV-associated atherosclerosis remains limited and is mainly based on clinical observations. The underlying mechanism of the involvement of HCMV infection in atherogenesis remains unclear. Here, we summarized current knowledge regarding the multiple influences of HCMV on a diverse range of infected cells, including vascular endothelial cells, vascular smooth muscle cells, monocytes, macrophages, and T cells. In addition, we described potential HCMV-induced molecular mechanisms, such as oxidative stress, endoplasmic reticulum stress, autophagy, lipid metabolism, and miRNA regulation, which are involved in the development of HCMV-associated atherogenesis. Gaining an improved understanding of these mechanisms will facilitate the development of novel and effective therapeutic strategies for the treatment of HCMV-related cardiovascular disease.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Research Institute, First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Clinical Laboratory, First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
44
|
Bian W, Jing X, Yang Z, Shi Z, Chen R, Xu A, Wang N, Jiang J, Yang C, Zhang D, Li L, Wang H, Wang J, Sun Y, Zhang C. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging (Albany NY) 2020; 12:6385-6400. [PMID: 32267831 PMCID: PMC7185106 DOI: 10.18632/aging.103034] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in the development of vascular diseases. However, the effect of lncRNA NORAD on atherosclerosis remains unknown. This study aimed to investigate the effect NORAD on endothelial cell injury and atherosclerosis. Ox-LDL-treated human umbilical vein endothelial cells (HUVECs) and high-fat-diet (HFD)-fed ApoE−/− mice were used as in vitro and in vivo models. Results showed that NORAD-knockdown induced cell cycle arrest in G0/G1 phase, aggravated ox-LDL-induced cell viability reduction, cell apoptosis, and cell senescence along with the increased expression of Bax, P53, P21 and cleaved caspase-3 and the decreased expression of Bcl-2. The effect of NORAD on cell viability was further verified via NORAD-overexpression. NORAD- knockdown increased ox-LDL-induced reactive oxygen species, malondialdehyde, p-IKBα expression levels and NF-κB nuclear translocation. Proinflammatory molecules ICAM, VCAM, and IL-8 were also increased by NORAD- knockdown. Additionally, we identified the strong interaction of NORAD and IL-8 transcription repressor SFPQ in HUVECs. In ApoE−/− mice, NORAD-knockdown increased the lipid disorder and atherosclerotic lesions. The results have suggested that lncRNA NORAD attenuates endothelial cell senescence, endothelial cell apoptosis, and atherosclerosis via NF-κB and p53–p21 signaling pathways and IL-8, in which NORAD-mediated effect on IL-8 might through the direct interaction with SFPQ.
Collapse
Affiliation(s)
- Weihua Bian
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaohong Jing
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhiyu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhen Shi
- Department of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Ruiyao Chen
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou 325027, China
| | - Aili Xu
- Department of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Na Wang
- Department of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Jing Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cheng Yang
- Department of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Daolai Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Li
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Haiyan Wang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Juan Wang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yeying Sun
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiang Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, China.,Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou 325027, China
| |
Collapse
|
45
|
Hua Z, Ma K, Liu S, Yue Y, Cao H, Li Z. LncRNA ZEB1-AS1 facilitates ox-LDL-induced damage of HCtAEC cells and the oxidative stress and inflammatory events of THP-1 cells via miR-942/HMGB1 signaling. Life Sci 2020; 247:117334. [DOI: 10.1016/j.lfs.2020.117334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
|
46
|
Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids 2020; 52:477-486. [PMID: 32108266 DOI: 10.1007/s00726-020-02829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/08/2020] [Indexed: 01/15/2023]
Abstract
Chronic mTORc1 hyperactivation via obesity-induced hyperleucinaemia has been implicated in the development of insulin resistance, yet the direct impact of leucine on insulin-stimulated glucose uptake in muscle cells remains unclear. To address this, differentiated L6 myotubes were subjected to various compounds designed to either inhibit mTORc1 activity (rapamycin), blunt leucine intracellular import (BCH), or activate mTORc1 signalling (3BDO), prior to the determination of the uptake of the glucose analogue, 2-deoxyglucose (2-DG), in response to 1 mM insulin. In separate experiments, L6 myotubes were subject to various media concentrations of leucine (0-0.8 mM) for 24 h before 2-DG uptake in response to insulin was assessed. Both rapamycin and BCH blunted 2-DG uptake, irrespective of insulin administration, and this occurred in parallel with a decline in mTOR, 4E-BP1, and p70S6K phosphorylation status, but little effect on AKT phosphorylation. In contrast, reducing leucine media concentrations suppressed 2-DG uptake, both under insulin- and non-insulin-stimulated conditions, but did not alter the phosphorylation state of AKT-mTORc1 components examined. Unexpectedly, 3BDO failed to stimulate mTORc1 signalling, but, nonetheless, caused a significant increase in 2-DG uptake under non-insulin-stimulated conditions. Both leucine and mTORc1 influence glucose uptake in muscle cells independent of insulin administration, and this likely occurs via distinct but overlapping mechanisms.
Collapse
|
47
|
Tu Q, Li Y, Jin J, Jiang X, Ren Y, He Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. PHARMACEUTICAL BIOLOGY 2019; 57:778-786. [PMID: 31741405 PMCID: PMC6882478 DOI: 10.1080/13880209.2019.1688843] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Context: Curcumin could ameliorate diabetic nephropathy (DN), but the mechanism remains unclear.Objective: The efficacy of curcumin on epithelial-to-mesenchymal transition (EMT) of podocyte and autophagy in vivo and in vitro was explored.Materials and methods: Thirty male Sprague-Dawley rats were divided into the normal, model and curcumin (300 mg/kg/d, i.g., for 8 weeks) groups. Rats received streptozotocin (50 mg/kg, i.p.) and high-fat-sugar diet to induce DN. Biochemical indicators and histomorphology of renal tissues were observed. In addition, cultured mouse podocytes (MPC5) was induced to EMT with serum from DN rats, and then exposed to curcumin (40 µM) with or without fumonisin B1, an Akt specific activator or 3BDO, the mTOR inducer. Western blot analysed the levels of EMT and autophagy associated proteins.Results: Administration of curcumin obviously reduced the levels of blood glucose, serum creatinine, urea nitrogen and urine albumen (by 28.4, 37.6, 33.5 and 22.4%, respectively), and attenuated renal histomorphological changes in DN rats. Podocytes were partially fused and autophagic vacuoles were increased in curcumin-treated rats. Furthermore, curcumin upregulated the expression of E-cadherin and LC3 proteins and downregulated the vimentin, TWIST1, p62, p-mTOR, p-Akt and P13K levels in DN rats and MPC5 cells. However, fumonisin B1 or 3BDO reversed the effects of curcumin on the expression of these proteins in cells.Discussion and conclusions: The protection against development of DN by curcumin treatment involved changes in inducing autophagy and alleviating podocyte EMT, through the PI3k/Akt/mTOR pathway, providing the scientific basis for further research and clinical applications of curcumin.
Collapse
Affiliation(s)
- Qiudi Tu
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Xinxin Jiang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Yan Ren
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| |
Collapse
|
48
|
ASK1 Mediates Apoptosis and Autophagy during oxLDL-CD36 Signaling in Senescent Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2840437. [PMID: 31772703 PMCID: PMC6854215 DOI: 10.1155/2019/2840437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023]
Abstract
Vessel damage by oxidized low-density lipoprotein (oxLDL) increases reactive oxygen species (ROS) and the membrane receptor cluster of differentiation 36 (CD36), involving various vascular pathological processes. In this study, the role of apoptosis signal-regulating kinase 1 (ASK1) as a cellular effector via the oxLDL-CD36 signaling axis, and its related mechanism as a downstream responder of CD36, was investigated in senescent human aortic endothelial cells (HAECs). To inhibit oxLDL-triggered vascular damage, HAECs and monocytes were treated with the CD36-neutralizing antibody or the ASK1 inhibitor NQDI-1. The oxLDL-triggered increases in ROS and CD36 elevated active ASK1 in the senescent HAECs. The ROS increase induced apoptosis, whereas CD36 neutralization or ASK1 inhibition protected against cell death. The blocking of CD36 increased senescent HAEC autophagy. In monocytes, oxLDL also induced CD36 expression and autophagy, the latter of which still occurred following ASK1 inhibition but not after CD36 neutralization. These findings suggest that oxLDL exposure activates ASK1, as a CD36 downstream responder, to accelerate apoptosis, particularly in senescent HAECs. ASK1's involvement in monocytic autophagy was due to endoplasmic reticulum stress resulting from the oxLDL load, suggesting that oxLDL loading on aged vessels causes atherosclerotic endothelial dysfunction mediated by active ASK1.
Collapse
|
49
|
Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cell Dev Biol Anim 2019; 55:801-811. [PMID: 31502193 DOI: 10.1007/s11626-019-00395-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
Endothelial cell apoptosis and renin-angiotensin-aldosterone system (RAAS) activation are the major pathological mechanisms for cardiovascular disease and heart failure; however, the interaction and mechanism between them remain unclear. Investigating the role of PTP1B in angiotensin II (Ang II)-induced apoptosis of primary cardiac microvascular endothelial cells (CMECs) may provide direct evidence of the link between endothelial cell apoptosis and RAAS. Isolated rat CMECs were treated with different concentrations of Ang II to induce apoptosis, and an Ang II concentration of 4 nM was selected as the effective dose for the subsequent studies. The CMECs were cultured for 48 h with or without Ang II (4 nM) in the absence or presence of the PTP1B inhibitor TCS 401 (8 μM) and the PI3K inhibitor LY294002 (10 μM). The level of CMEC apoptosis was assessed by TUNEL staining and caspase-3 activity. The protein expressions of PTP1B, PI3K, Akt, p-Akt, Bcl-2, Bax, caspase-3, and cleaved caspase-3 were determined by Western blot (WB). The results showed that Ang II increased apoptosis of CMECs, upregulated PTP1B expression, and inhibited the PI3K/Akt pathway. Furthermore, cotreatment with PTP1B inhibitor significantly decreased the number of apoptotic CMECs induced by Ang II, along with increased PI3K expression, phosphorylation of Akt and the ratio of Bcl-2/Bax, decreased caspase-3 activity, and a cleaved caspase-3/caspase-3 ratio, while treatment with LY294002 partly inhibited the anti-apoptotic effect of the PTP1B inhibitor. Ang II induces apoptosis of primary rat CMECs via regulating the PTP1B/PI3K/Akt pathway.
Collapse
|
50
|
Zhang Q, Hu J, Wu Y, Luo H, Meng W, Xiao B, Xiao X, Zhou Z, Liu F. Rheb (Ras Homolog Enriched in Brain 1) Deficiency in Mature Macrophages Prevents Atherosclerosis by Repressing Macrophage Proliferation, Inflammation, and Lipid Uptake. Arterioscler Thromb Vasc Biol 2019; 39:1787-1801. [DOI: 10.1161/atvbaha.119.312870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective:
Macrophage foam cell formation is an important process in atherosclerotic plaque development. The small GTPase Rheb (Ras homolog enriched in brain 1) regulates endocytic trafficking that is critical for foam cell formation. However, it is unclear whether and how macrophage Rheb regulates atherogenesis, which are the focuses of the current study.
Approach and Results:
Immunofluorescence study confirmed the colocalization of Rheb in F4/80 and Mac-2 (galectin-3)–labeled lesional macrophages. Western blot and fluorescence-activated cell sorting analysis showed that Rheb expression was significantly increased in atherosclerotic lesions of atherosclerosis-prone (apoE
−/−
[apolipoprotein E deficient]) mice fed with Western diet. Increased Rheb expression was also observed in oxidized LDL (low-density lipoprotein)–treated macrophages. To investigate the in vivo role of macrophage Rheb, we established mature Rheb
mKO
(macrophage-specific Rheb knockout) mice by crossing the Rheb floxed mice with
F4/80-cre
mice. Macrophage-specific knockout of Rheb in mice reduced Western diet–induced atherosclerotic lesion by 32%, accompanied with a decrease in macrophage content in plaque. Mechanistically, loss of Rheb in macrophages repressed oxidized LDL–induced lipid uptake, inflammation, and macrophage proliferation. On the contrary, lentivirus-mediated overexpression of Rheb in macrophages increased oxidized LDL–induced lipid uptake and inflammation, and the stimulatory effect of Rheb was suppressed by the mTOR (mammalian target of rapamycin) inhibitor rapamycin or the PKA (protein kinase A) activator forskolin.
Conclusions:
Macrophage Rheb plays important role in Western diet–induced atherosclerosis by promoting macrophage proliferation, inflammation, and lipid uptake. Inhibition of expression and function of Rheb in macrophages is beneficial to prevent diet-induced atherosclerosis.
Collapse
Affiliation(s)
- Qinghai Zhang
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, Hunan (Q.Z.)
| | - Jie Hu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Yan Wu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Hairong Luo
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Wen Meng
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Bo Xiao
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Biology, Southern University of Science and Technology, Shenzhen, China (B.X.)
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China (X.X.)
| | - Zhiguang Zhou
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Feng Liu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| |
Collapse
|