1
|
Boaro A, Ramos LD, Bastos EL, Bechara EJH, Bartoloni FH. Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113070. [PMID: 39657451 DOI: 10.1016/j.jphotobiol.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.
Collapse
Affiliation(s)
- Andreia Boaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Luiz Duarte Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| | - Erick Leite Bastos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Faria RL, Prado FM, Junqueira HC, Fabiano KC, Diniz LR, Baptista MS, Di Mascio P, Miyamoto S. Plasmalogen oxidation induces the generation of excited molecules and electrophilic lipid species. PNAS NEXUS 2024; 3:pgae216. [PMID: 38894877 PMCID: PMC11184980 DOI: 10.1093/pnasnexus/pgae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.
Collapse
Affiliation(s)
- Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Helena C Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Karen C Fabiano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
4
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
6
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
7
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
8
|
Ramos LD, Gomes TMV, Stevani CV, Bechara EJH. Mining reactive triplet carbonyls in biological systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112712. [PMID: 37116363 DOI: 10.1016/j.jphotobiol.2023.112712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/30/2023]
Abstract
Aliphatic triplet carbonyls can be treated as short-lived radicals, since both species share similar reactions such as hydrogen atom abstraction, cyclization, addition, and isomerization. Importantly, enzyme-generated triplet carbonyls excite triplet molecular oxygen to the highly reactive, electrophilic singlet state by resonance energy transfer, which can react with proteins, lipids, and DNA. Carbonyl triplets, singlet oxygen, and radicals are endowed with the potential to trigger both normal and pathological responses. In this paper, we present a short review of easy, fast, and inexpensive preliminary tests for the detection of transient triplet carbonyls in chemical and biological systems. This paper covers direct and indirect methods to look for triplet carbonyls based on their spectral distribution of chemiluminescence, photoproduct analysis, quenching of light emission by conjugated dienes, and enhancement of light emission by the sensitizer 9,10-dibromoanthracence-2-sulfonate ion (DBAS).
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Thiago M V Gomes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Gonçalves LCP, Angelé-Martinez C, Premi S, Palmatier MA, Prado FM, Di Mascio P, Bastos EL, Brash DE. Chemiexcited Neurotransmitters and Hormones Create DNA Photoproducts in the Dark. ACS Chem Biol 2023; 18:484-493. [PMID: 36775999 PMCID: PMC10276651 DOI: 10.1021/acschembio.2c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In DNA, electron excitation allows adjacent pyrimidine bases to dimerize by [2 + 2] cycloaddition, creating chemically stable but lethal and mutagenic cyclobutane pyrimidine dimers (CPDs). The usual cause is ultraviolet radiation. Alternatively, CPDs can be made in the dark (dCPDs) via chemically mediated electron excitation of the skin pigment melanin, after it is oxidized by peroxynitrite formed from the stress-induced radicals superoxide and nitric oxide. We now show that the dark process is not limited to the unusual structural molecule melanin: signaling biomolecules such as indolamine and catecholamine neurotransmitters and hormones can also be chemiexcited to energy levels high enough to form dCPDs. Oxidation of serotonin, dopamine, melatonin, and related biogenic amines by peroxynitrite created triplet-excited species, evidenced by chemiluminescence, energy transfer to a triplet-state reporter, or transfer to O2 resulting in singlet molecular oxygen. For a subset of these signaling molecules, triplet states created by peroxynitrite or peroxidase generated dCPDs at levels comparable to ultraviolet (UV). Neurotransmitter catabolism by monoamine oxidase also generated dCPDs. These results reveal a large class of signaling molecules as electronically excitable by biochemical reactions and thus potential players in deviant mammalian metabolism in the absence of light.
Collapse
Affiliation(s)
- Leticia C. P. Gonçalves
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
- Present address: Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Carlos Angelé-Martinez
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Sanjay Premi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Present address: Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Meg A. Palmatier
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Fernanda Manso Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Erick L. Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520-8028, USA
| |
Collapse
|
10
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
11
|
Du J, Deng T, Cao B, Wang Z, Yang M, Han J. The application and trend of ultra-weak photon emission in biology and medicine. Front Chem 2023; 11:1140128. [PMID: 36874066 PMCID: PMC9981976 DOI: 10.3389/fchem.2023.1140128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ultra-weak bioluminescence, also known as ultra-weak photon emission (UPE), is one of the functional characteristics of biological organisms, characterized by specialized, low-energy level luminescence. Researchers have extensively studied UPE for decades, and the mechanisms by which UPE is generated and its properties have been extensively investigated. However, there has been a gradual shift in research focus on UPE in recent years toward exploring its application value. To better understand the application and trend of UPE in biology and medicine, we have conducted a review of relevant articles in recent years. Among the several topics covered in this review is UPE research in biology and medicine (including traditional Chinese medicine), primarily focused on UPE as a promising non-invasive tool for diagnosis and oxidative metabolism monitoring as well as a potential tool for traditional Chinese medicine research.
Collapse
Affiliation(s)
- Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
13
|
Ramos LD, Gomes TMV, Quintiliano SAP, Premi S, Stevani CV, Bechara EJH. Biological Schiff bases may generate reactive triplet carbonyls and singlet oxygen: A model study. Free Radic Biol Med 2022; 191:97-104. [PMID: 36049617 DOI: 10.1016/j.freeradbiomed.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil; Centro Universitário Anhanguera - UniA, Brazil
| | - Thiago M V Gomes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Samir A P Quintiliano
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil
| | - Sanjay Premi
- Moffitt Cancer Center, Department of Tumor Biology, Tampa, FL, USA
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
14
|
Zadeh-Haghighi H, Simon C. Radical pairs may play a role in microtubule reorganization. Sci Rep 2022; 12:6109. [PMID: 35414166 PMCID: PMC9005667 DOI: 10.1038/s41598-022-10068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
The exact mechanism behind general anesthesia remains an open question in neuroscience. It has been proposed that anesthetics selectively prevent consciousness and memory via acting on microtubules (MTs). It is known that the magnetic field modulates MT organization. A recent study shows that a radical pair model can explain the isotope effect in xenon-induced anesthesia and predicts magnetic field effects on anesthetic potency. Further, reactive oxygen species are also implicated in MT stability and anesthesia. Based on a simple radical pair mechanism model and a simple mathematical model of MT organization, we show that magnetic fields can modulate spin dynamics of naturally occurring radical pairs in MT. We propose that the spin dynamics influence a rate in the reaction cycle, which translates into a change in the MT density. We can reproduce magnetic field effects on the MT concentration that have been observed. Our model also predicts additional effects at slightly higher fields. Our model further predicts that the effect of zinc on the MT density exhibits isotopic dependence. The findings of this work make a connection between microtubule-based and radical pair-based quantum theories of consciousness.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
15
|
Bai L, Jiang Y, Xia D, Wei Z, Spinney R, Dionysiou DD, Minakata D, Xiao R, Xie HB, Chai L. Mechanistic Understanding of Superoxide Radical-Mediated Degradation of Perfluorocarboxylic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:624-633. [PMID: 34919383 DOI: 10.1021/acs.est.1c06356] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) exhibit strong persistence in sunlit surface waters and in radical-based treatment processes, where superoxide radical (O2•-) is an important and abundant reactive oxygen species. Given that the role of O2•- during the transformation of PFCAs remains largely unknown, we investigated the kinetics and mechanisms of O2•--mediated PFCAs attenuation through complementary experimental and theoretical approaches. The aqueous-phase rate constants between O2•- and C3-C8 PFCAs were measured using a newly designed in situ spectroscopic system. Mechanistically, bimolecular nucleophilic substitution (SN2) is most likely to be thermodynamically feasible, as indicated by density functional theory calculations at the CBS-QB3 level of theory. This pathway was then investigated by ab initio molecular dynamics simulation with free-energy samplings. As O2•- approaches PFCA, the C-F bond at the alpha carbon is spontaneously stretched, leading to the bond cleavage. The solvation mechanism for O2•--mediated PFCA degradation was also elucidated. Our results indicated that although the less polar solvent enhanced the nucleophilicity of O2•-, it also decreased the desolvation process of PFCAs, resulting in reduced kinetics. With these quantitative and mechanistic results, we achieved a defined picture of the O2•--initiated abatement of PFCAs in natural and engineered waters.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ying Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, Aarhus N DK-8200, Denmark
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
16
|
Bechara EJ, Ramos LD, Stevani CV. 5-Aminolevulinic acid: A matter of life and caveats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Ramos LD, Prado FM, Stevani CV, Di Mascio P, Bechara EJH. l-Tryptophan Interactions with the Horseradish Peroxidase-Catalyzed Generation of Triplet Acetone. Photochem Photobiol 2021; 97:327-334. [PMID: 33296511 DOI: 10.1111/php.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Triplet carbonyls generated by chemiexcitation are involved in typical photobiochemical processes in the absence of light. Due to their biradical nature, ultraweak light emission and long lifetime, electronically excited triplet species display typical radical reactions such as isomerization, fragmentation, cycloaddition and hydrogen abstraction. In this paper, we report chemical reactions in a set of amino acid residues induced by the isobutanal/horseradish peroxidase (IBAL/HRP) system, a well-known source of excited triplet acetone (Ac3* ). Accordingly, quenching of Ac3* by tryptophan (Trp) unveiled parallel enzyme damage and inactivation, likely explained by scavenging of IBAL tertiary radical reaction intermediate and Ac3* -derived 2-hydroxy-i-propyl radical. Quenching constants were calculated from Stern-Volmer plots, and the structure of radical adducts was revealed by mass spectrometry. As expected, a concurrent Schiff-type adduct was found to be one of the reaction by-products. These findings draw attention to potential structural and functional changes in enzymes involved in the electronic chemiexcitation of their products.
Collapse
Affiliation(s)
- Luiz D Ramos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
19
|
O'Connor RM, Greer A. How Tryptophan Oxidation Arises by "Dark" Photoreactions from Chemiexcited Triplet Acetone. Photochem Photobiol 2021; 97:456-459. [PMID: 33386615 DOI: 10.1111/php.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
Dioxetane intermediates readily decompose to chemiluminescent triplet carbonyls, giving rise to what has been paradoxically called photochemistry in the dark. In this issue of Photochemistry and Photobiology, Bechara et al. report on mechanistic advances in such a reaction. With the use of horseradish peroxidase for isobutyraldehyde-derived triplet acetone, light emission from acetone and singlet oxygen can be quenched. The experiments reveal that the reaction depends on oxygen and the amino acid. The analysis reveals that free tryptophan is a target of this form of "carbonyl stress," with the efficient formation of mono-, bi- and tricyclic compounds (N-formylkynurenine, indoline, 1λ2 -indole and 3H-indoles).
Collapse
Affiliation(s)
- Ryan M O'Connor
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
20
|
Shah N, Zhou L. Regulation of Ion Channel Function by Gas Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:139-164. [PMID: 35138614 DOI: 10.1007/978-981-16-4254-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Al‐Nu'airat J, Oluwoye I, Zeinali N, Altarawneh M, Dlugogorski BZ. Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. CHEM REC 2020; 21:315-342. [DOI: 10.1002/tcr.202000143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Jomana Al‐Nu'airat
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Ibukun Oluwoye
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Nassim Zeinali
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Mohammednoor Altarawneh
- United Arab Emirates University Chemical and Petroleum Engineering Department Sheikh Khalifa bin Zayed St Al-Ain 15551 United Arab Emirates
| | - Bogdan Z. Dlugogorski
- Charles Darwin University Energy and Resources Institute, Ellengowan Drive Darwin NT 0909 Australia
| |
Collapse
|
22
|
Abstract
My interest in biological chemistry proceeded from enzymology in vitro to the study of physiological chemistry in vivo Investigating biological redox reactions, I identified hydrogen peroxide (H2O2) as a normal constituent of aerobic life in eukaryotic cells. This finding led to developments that recognized the essential role of H2O2 in metabolic redox control. Further research included studies on GSH, toxicological aspects (the concept of "redox cycling"), biochemical pharmacology (ebselen), nutritional biochemistry and micronutrients (selenium, carotenoids, flavonoids), and the concept of "oxidative stress." Today, we recognize that oxidative stress is two-sided. It has its positive side in physiology and health in redox signaling, "oxidative eustress," whereas at higher intensity, there is damage to biomolecules with potentially deleterious outcome in pathophysiology and disease, "oxidative distress." Reflecting on these developments, it is gratifying to witness the enormous progress in redox biology brought about by the science community in recent years.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Tamura H, Ishikita H. Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics. J Phys Chem A 2020; 124:5081-5088. [PMID: 32482065 DOI: 10.1021/acs.jpca.0c02228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyze the quenching mechanism of singlet molecular oxygen (1O2) by carotenoids, namely lycopene, β-carotene, astaxanthin, and lutein, by means of quantum dynamics calculations and ab initio calculations. The singlet carotenoid (1Car) and 1O2 molecules can form a weakly bound complex via donation of electron density from the highest occupied molecular orbital (HOMO) of the carotenoid to the πg* orbitals of 1O2. The Dexter-type superexchange via charge transfer states (Car•+/O2•-) governs the 1O2 quenching. The Car•+/O2•- states are substantially higher in energy (2-4 eV) than the initial 1Car/1O2 states. The quantum dynamics calculations indicate an ultrafast 1O2 quenching on a timescale of subpicosecond owing to the strong electronic couplings in the carotenoid/O2 complexes. The superexchange mechanism via the Car•+/O2•- states dominates the 1O2 quenching, although the direct two-electron coupling can also play a certain role.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
24
|
Gonçalves LCP, Massari J, Licciardi S, Prado FM, Linares E, Klassen A, Tavares MFM, Augusto O, Di Mascio P, Bechara EJH. Singlet oxygen generation by the reaction of acrolein with peroxynitrite via a 2-hydroxyvinyl radical intermediate. Free Radic Biol Med 2020; 152:83-90. [PMID: 32145303 DOI: 10.1016/j.freeradbiomed.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023]
Abstract
Acrolein (2-propenal) is an environmental pollutant, food contaminant, and endogenous toxic by-product formed in the thermal decomposition and peroxidation of lipids, proteins, and carbohydrates. Like other α,β-unsaturated aldehydes, acrolein undergoes Michael addition of nucleophiles such as basic amino acids residues of proteins and nucleobases, triggering aging associated disorders. Here, we show that acrolein is also a potential target of the potent biological oxidant, nitrosating and nitrating agent peroxynitrite. In vitro studies revealed the occurrence of 1,4-addition of peroxynitrite (k2 = 6 × 103 M-1 s-1, pH 7.2, 25 °C) to acrolein in air-equilibrated phosphate buffer. This is attested by acrolein concentration-dependent oxygen uptake, peroxynitrite consumption, and generation of formaldehyde and glyoxal as final products. These products are predicted to be originated from the Russell termination of •OOCH=CH(OH) radical which also includes molecular oxygen at the singlet delta state (O21Δg). Accordingly, EPR spin trapping studies with the 2,6-nitrosobenzene-4-sulfonate ion (DBNBS) revealed a 6-line spectrum attributable to the 2-hydroxyvinyl radical adduct. Singlet oxygen was identified by its characteristic monomolecular IR emission at 1,270 nm in deuterated buffer, which was expectedly quenched upon addition of water and sodium azide. These data represent the first report on singlet oxygen creation from a vinylperoxyl radical, previously reported for alkyl- and formylperoxyl radicals, and may contribute to better understand the adverse acrolein behavior in vivo.
Collapse
Affiliation(s)
- Leticia C P Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Júlio Massari
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Saymon Licciardi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Edlaine Linares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aline Klassen
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marina F M Tavares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
25
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2431] [Impact Index Per Article: 486.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
Oliveira MS, Chorociejus G, Angeli JPF, Vila Verde G, Aquino GLB, Ronsein GE, Oliveira MCBD, Barbosa LF, Medeiros MHG, Greer A, Di Mascio P. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 2020; 19:1590-1602. [DOI: 10.1039/d0pp00153h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study shows that new anthracene and naphthalene derivatives function as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. The syntheses of these derivatives are described, as well as some localization testing in cells.
Collapse
Affiliation(s)
| | - Gabriel Chorociejus
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - José Pedro F. Angeli
- Rudolf Virchow Center for Translational Bioimaging
- University of Würzburg
- 97080 Würzburg
- Germany
| | - Giuliana Vila Verde
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Gilberto L. B. Aquino
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Livea F. Barbosa
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Alexander Greer
- Department of Chemistry
- Brooklyn College
- City University of New York
- Brooklyn
- USA
| | - Paolo Di Mascio
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
27
|
Marques EF, Medeiros MHG, Di Mascio P. Singlet oxygen-induced protein aggregation: Lysozyme crosslink formation and nLC-MS/MS characterization. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:894-905. [PMID: 31652372 DOI: 10.1002/jms.4448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Singlet molecular oxygen (1 O2 ) has been associated with a number of physiological processes. Despite the recognized importance of 1 O2 -mediated protein modifications, little is known about the role of this oxidant in crosslink formation and protein aggregation. Thus, using lysozyme as a model, the present study sought to investigate the involvement of 1 O2 in crosslink formation. Lysozyme was photochemically oxidized in the presence of rose bengal or chemically oxidized using [18 O]-labeled 1 O2 released from thermolabile endoperoxides. It was concluded that both 1 O2 generating systems induce lysozyme crosslinking and aggregation. Using SDS-PAGE and nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry, the results clearly demonstrated that 1 O2 is directly involved in the formation of covalent crosslinks involving the amino acids histidine, lysine, and tryptophan.
Collapse
Affiliation(s)
- Emerson Finco Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Tsolekile N, Ncapayi V, Obiyenwa GK, Matoetoe M, Songca S, Oluwafemi OS. Synthesis of meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS 4) - CuInS/ZnS quantum dots conjugate as an improved photosensitizer. Int J Nanomedicine 2019; 14:7065-7078. [PMID: 31507320 PMCID: PMC6720160 DOI: 10.2147/ijn.s211959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Metal-free, water-soluble and highly stable meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) has been studied for their singlet oxygen quantum yield. However, TPPS4 suffers from inherent shortcomings. To address these, TPPS4 was conjugated to ternary copper indium sulphide/ zinc sulphide (CuInS2/ZnS) quantum dots (QDs). PURPOSE We herein report for the first time the synthesis of TPPS4-CuInS/ZnS QDs conjugate as an improved photosensitizer. METHODS Water-soluble TPPS4 was synthesized from tetraphenylporphyrin (TPPH2) after silica-gel purification. The CuInS/ZnS QDs were synthesized by hydrothermal method at a Cu:In ratio of 1:4. The porphyrin-QDs conjugate was formed via the daggling sulfonyl bond of the porphyrin and amine bond of the QDs. The effect of pH on the optical properties of TPPS4 was evaluated. The effect of Zn:Cu + In ratio on the ZnS shell passivation was examined to reduce structural defects on the as-synthesized QDs. RESULTS Various spectroscopic techniques were used to confirm the successful conversion of the organic TPPH2 to water-soluble TPPS4. The singlet oxygen generation evaluation shows an improved singlet oxygen quantum yield from 0.19 for the porphyrin (TPPS4) alone to 0.69 after conjugation (CuInS/ZnS-TPPS4) with an increase in the reaction rate constant (k (s-1)).
Collapse
Affiliation(s)
- Ncediwe Tsolekile
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, Johannesburg2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg2028, South Africa
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town2000, South Africa
| | - Vuyelwa Ncapayi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, Johannesburg2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg2028, South Africa
| | - Gabriel K Obiyenwa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg2028, South Africa
- Department of Chemistry, Federal University Lokoja, Lokoja, Nigeria
| | - Mangaka Matoetoe
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town2000, South Africa
| | - Sandile Songca
- Department of Chemistry, University of Zululand, Kwadlangezwa3886, South Africa
| | - Oluwatobi S Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, Johannesburg2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg2028, South Africa
| |
Collapse
|
29
|
Pospíšil P, Prasad A, Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules 2019; 9:E258. [PMID: 31284470 PMCID: PMC6681336 DOI: 10.3390/biom9070258] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023] Open
Abstract
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
30
|
Robinson-Duggon J, Mariño-Ocampo N, Barrias P, Zúñiga-Núñez D, Günther G, Edwards AM, Greer A, Fuentealba D. Mechanism of Visible-Light Photooxidative Demethylation of Toluidine Blue O. J Phys Chem A 2019; 123:4863-4872. [DOI: 10.1021/acs.jpca.9b03588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- José Robinson-Duggon
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 0824, Panamá
| | - Nory Mariño-Ocampo
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Pablo Barrias
- Laboratorio de Cinética y Fotoquímica, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile
| | - Daniel Zúñiga-Núñez
- Laboratorio de Cinética y Fotoquímica, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile
| | - Germán Günther
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Ana María Edwards
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Denis Fuentealba
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
31
|
Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature 2019; 566:548-552. [DOI: 10.1038/s41586-019-0947-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022]
|
32
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
33
|
Kazakov DV, Nazyrov TI, Safarov FE, Yaremenko IA, Terent'ev AO. Chemiluminescence in the reaction of 1,2,4,5-tetraoxanes with ferrous ions in the presence of xanthene dyes: fundamentals and perspectives of analytical applications. Photochem Photobiol Sci 2019; 18:1130-1137. [DOI: 10.1039/c8pp00472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reaction of biologically active bridged 1,2,4,5-tetraoxanes and diperoxide of trifluoroacetone with Fe2+ ions in the presence of xanthenes, methylene blue and methylene green is accompanied by bright chemiluminescence.
Collapse
Affiliation(s)
- Dmitri V. Kazakov
- Non-profit Scientific
- Educational and Innovational Partnership “Centre of Diagnostics for Nanostructures and Nanomaterials”
- 119991 Moscow
- Russia
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
| | - Timur I. Nazyrov
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
- 450054 Ufa
- Russia
| | - Farit E. Safarov
- Ufa Institute of Chemistry – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences
- 450054 Ufa
- Russia
| | - Ivan A. Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry of the RAS
- 119991 Moscow
- Russia
| | | |
Collapse
|
34
|
Li Y, Chen R, Zhou H, Shi Y, Qin C, Gao Y, Zhang G, Gao Y, Xiao L, Jia S. Observation of Singlet Oxygen with Single-Molecule Photosensitization by Time-Dependent Photon Statistics. J Phys Chem Lett 2018; 9:5207-5212. [PMID: 30122039 DOI: 10.1021/acs.jpclett.8b02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The singlet oxygen has been widely applied to the treatment of physiological diseases, and the photosensitized generation of singlet oxygen is the main means of its physiological applications. On the basis of the fluctuation of fluorescence field from single photosensitizer, we characterize the generation of singlet oxygen at single molecule level with the time-dependent photon statistical method. By measuring the time-tagged-time-resolved single-molecule fluorescence photons, we analyze the time-dependent Mandel-Q parameter, which has been performed at different oxygen environment. It is shown that the single molecule not only offers an efficient way of generating singlet oxygen in ambient condition but also provides insights for the fluctuation of singlet oxygen in the nanoscale environment. The method of time-dependent photon statistics provides a convenient methodology for observing photosensitizers generating singlet oxygen in real time at single photosensitizer level.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ying Shi
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yajun Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
35
|
Idikuda V, Gao W, Grant K, Su Z, Liu Q, Zhou L. Singlet oxygen modification abolishes voltage-dependent inactivation of the sea urchin spHCN channel. J Gen Physiol 2018; 150:1273-1286. [PMID: 30042141 PMCID: PMC6122923 DOI: 10.1085/jgp.201711961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Photochemically or metabolically generated singlet oxygen (1O2) reacts broadly with macromolecules in the cell. Because of its short lifetime and working distance, 1O2 holds potential as an effective and precise nanoscale tool for basic research and clinical practice. Here we investigate the modification of the spHCN channel that results from photochemically and chemically generated 1O2 The spHCN channel shows strong voltage-dependent inactivation in the absence of cAMP. In the presence of photosensitizers, short laser pulses transform the gating properties of spHCN by abolishing inactivation and increasing the macroscopic current amplitude. Alanine replacement of a histidine residue near the activation gate within the channel's pore abolishes key modification effects. Application of a variety of chemicals including 1O2 scavengers and 1O2 generators supports the involvement of 1O2 and excludes other reactive oxygen species. This study provides new understanding about the photodynamic modification of ion channels by 1O2 at the molecular level.
Collapse
Affiliation(s)
- Vinay Idikuda
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Weihua Gao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Khade Grant
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Zhuocheng Su
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
36
|
Massima Mouele ES, Fatoba OO, Babajide O, Badmus KO, Petrik LF. Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9265-9282. [PMID: 29446027 DOI: 10.1007/s11356-018-1392-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Advanced oxidation processes (AOPs) particularly non-thermal plasmas based on electrical discharges have been widely investigated for water and wastewater treatment. Dielectric barrier discharges (DBDs) generate large amounts of selective and non-selective reactive oxygen species (ROS) such as ozone, hydrogen peroxide, atomic oxygen, superoxide molecular anions and hydroxyl radicals, having been proved to be efficient for water decontamination among various forms of electrical discharge systems. The detection and quantification methods of these oxygen species in non-thermal plasmas have been reviewed. However, their application in dielectric barrier discharge has not been well studied. It is therefore imperative to summarise the various detection and quantification methods for oxygen-based species determination in AOPs, aqueous systems and non-thermal plasma processes. Thereafter, reviewed methods are suggested for the determination of ROS in DBD configurations to understand the consumption trend of these oxidants during treatment of water effluents and to evaluate the performance of the treatment reactor configuration towards the degradation of targeted pollutants.
Collapse
Affiliation(s)
- Emile S Massima Mouele
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa.
| | - Olanrewaju Ojo Fatoba
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Omotola Babajide
- Mechanical Engineering Department, Cape Peninsula University of Technology, Bellville, South Africa
| | - Kassim O Badmus
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Leslie F Petrik
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
37
|
Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chemi- and Bioluminescence of Cyclic Peroxides. Chem Rev 2018; 118:6927-6974. [PMID: 29493234 DOI: 10.1021/acs.chemrev.7b00649] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Stefan Schramm
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Romain Berraud-Pache
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Isabelle Navizet
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 , Valencia , Spain
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil
| | - Roland Lindh
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
38
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
39
|
Pathak V, Prasad A, Pospíšil P. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II. PLoS One 2017; 12:e0181732. [PMID: 28732060 PMCID: PMC5521840 DOI: 10.1371/journal.pone.0181732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Collapse
Affiliation(s)
- Vinay Pathak
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
40
|
Bastos EL, Farahani P, Bechara EJ, Baader WJ. Four-membered cyclic peroxides: Carriers of chemical energy. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3725] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Pooria Farahani
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Etelvino J.H. Bechara
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Wilhelm Josef Baader
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
41
|
Usmanov DT, Chen LC, Hiraoka K, Wada H, Nonami H, Yamabe S. Mass spectrometric monitoring of oxidation of aliphatic C6-C8 hydrocarbons and ethanol in low pressure oxygen and air plasmas. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1187-1195. [PMID: 27706870 DOI: 10.1002/jms.3890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n-hexane, cyclohexane, n-heptane, n-octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M - H]+ and [M - 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M - H + O]+ and [M - 3H + O]+ , respectively. By the tandem mass spectrometry analysis of [M - H + O]+ and [M - 3H + O]+ , H2 O, olefins (and/or cycloalkanes) and oxygen-containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6 H14+• with O2 and of C6 H13+ (CH3 CH2 CH+ CH2 CH2 CH3 ) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6 H13+ leads to the formation of protonated ketone, CH3 CH2 C(=OH+ )CH2 CH2 CH3 . In air plasma, [M - H + O]+ became predominant over carbocations, [M - H]+ and [M - 3H]+ . For ethanol, the protonated acetic acid CH3 C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dilshadbek T Usmanov
- Clean Energy Research Center, University of Yamanashi, Takeda-4, Kofu, Yamanashi, 400-8511, Japan
- Institute of Ion-Plasma and Laser Technologies, Durmon Yoli Street 33, Tashkent, 100125, Uzbekistan
| | - Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Takeda-4, Kofu, Yamanashi, 400-8511, Japan
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, Takeda-4, Kofu, Yamanashi, 400-8511, Japan
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka, 833-0041, Japan
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-0905, Japan
| | - Shinichi Yamabe
- Department of Material Science, Nara Institute of Science and Technology, Takayama-cho, 8916-5, Ikoma, Nara, 630-0101, Japan
| |
Collapse
|
42
|
Footitt S, Palleschi S, Fazio E, Palomba R, Finch-Savage WE, Silvestroni L. Ultraweak Photon Emission from the Seed Coat in Response to Temperature and Humidity-A Potential Mechanism for Environmental Signal Transduction in the Soil Seed Bank. Photochem Photobiol 2016; 92:678-87. [PMID: 27389858 PMCID: PMC5031227 DOI: 10.1111/php.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Seeds beneath the soil sense the changing environment to time germination and seedling emergence with the optimum time of year for survival. Environmental signals first impact with the seed at the seed coat. To investigate whether seed coats have a role in environmental sensing we investigated their ultraweak photon emission (UPE) under the variable temperature, relative humidity and oxygen conditions they could experience in the soil seed bank. Using a custom‐built luminometer we measured UPE intensity and spectra (300–700 nm) from Phaseolus vulgaris seeds, seed coats and cotyledons. UPE was greatest from the internal surface of the seed coat. Seed coat UPE increased concomitantly with both increasing temperature and decreasing relative humidity. Emission was oxygen dependent and it was abolished by treatment with dinitrophenylhydrazine, demonstrating the key role of seed coat carbonyls in the phenomenon. We hypothesize that beneath the soil surface the attenuation of light (virtual darkness: low background noise) enables seeds to exploit UPE for transducing key environmental variables in the soil (temperature, humidity and oxygen) to inform them of seasonal and local temperature patterns. Overall, seed coats were found to have potential as effective transducers of key fluctuating environmental variables in the soil.
Collapse
Affiliation(s)
- Steven Footitt
- School of Life Sciences, University of Warwick, Warwickshire, UK.
| | - Simonetta Palleschi
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Eugenio Fazio
- Department of Fundamental and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Raffaele Palomba
- The National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy
| | | | | |
Collapse
|
43
|
Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci Rep 2016; 6:20094. [PMID: 26831215 PMCID: PMC4757480 DOI: 10.1038/srep20094] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022] Open
Abstract
In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.
Collapse
|
44
|
Ghogare AA, Miller JM, Mondal B, Lyons AM, Cengel KA, Busch TM, Greer A. Fluorinated Photodynamic Therapy Device Tips and their Resistance to Fouling for In Vivo Sensitizer Release. Photochem Photobiol 2016; 92:166-72. [PMID: 26451683 PMCID: PMC4839978 DOI: 10.1111/php.12538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 01/10/2023]
Abstract
We describe progress on a one-step photodynamic therapy (PDT) technique that is simple: device tip delivery of sensitizer, oxygen and light simultaneously. Control is essential for their delivery to target sites to generate singlet oxygen. One potential problem is the silica device tip may suffer from biomaterial fouling and the pace of sensitizer photorelease is slowed. Here, we have used biomaterial (e.g. proteins, cells, etc.) from SQ20B head and neck tumors and whole blood for an assessment of fouling of the silica tips by adsorption. It was shown that by exchanging the native silica tip for a fluorinated tip, a better nonstick property led to an increased sensitizer output by ~10%. The fluorinated tip gave a sigmoidal photorelease where singlet oxygen is stabilized to physical quenching, whereas the native silica tip with unprotected SiO-H groups gave a slower (pseudolinear) photorelease. A further benefit from fluorinated silica is that 15% less biomaterial adheres to its surface compared to native silica based on a bicinchoninic acid assay (BCA) and X-ray photoelectron spectroscopy (XPS) measurements. We discuss how the fluorination of the device tip increases biofouling resistance and can contribute to a new pointsource PDT tool.
Collapse
Affiliation(s)
- Ashwini A. Ghogare
- Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York, 11210, United States
| | - Joann M. Miller
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bikash Mondal
- Department of Chemistry and Graduate Center, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alan M. Lyons
- Department of Chemistry and Graduate Center, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Greer
- Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York, 11210, United States
| |
Collapse
|
45
|
Zhou X, Wang Y, Si J, Zhou R, Gan L, Di C, Xie Y, Zhang H. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro. Sci Rep 2015; 5:16925. [PMID: 26577055 PMCID: PMC4649627 DOI: 10.1038/srep16925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen (1O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce 1O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial 1O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by 1O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.,Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key laboratory of Heavy Ion Radiation Biology and Medicine Institute of Nuclear Physics, Chinese Academy of Sciences.,Key laboratory of Heavy-ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
46
|
Rác M, Sedlářová M, Pospíšil P. The formation of electronically excited species in the human multiple myeloma cell suspension. Sci Rep 2015; 5:8882. [PMID: 25744165 PMCID: PMC4351533 DOI: 10.1038/srep08882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/10/2015] [Indexed: 01/29/2023] Open
Abstract
In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls (3)(R = O)*. The kinetics of (3)(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of (3)(R = O)*, the formation of singlet oxygen ((1)O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of (1)O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of (1)O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of (3)(R = O)* and (1)O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed.
Collapse
Affiliation(s)
- Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
47
|
Farahani P, Lundberg M, Lindh R, Roca-Sanjuán D. Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane. Phys Chem Chem Phys 2015; 17:18653-64. [DOI: 10.1039/c5cp02269j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report on the molecular basis of excited-state chemical processes that are induced by intramolecular chemiexcitation rather than by irradiation.
Collapse
Affiliation(s)
- Pooria Farahani
- Department of Chemistry-Ångström
- Uppsala University
- SE-751 20 Uppsala
- Sweden
- Instituto de Ciencia Molecular
| | - Marcus Lundberg
- Department of Chemistry-Ångström
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | - Roland Lindh
- Department of Chemistry-Ångström
- Uppsala University
- SE-751 20 Uppsala
- Sweden
| | | |
Collapse
|