1
|
Mazières S, Condemi S, El Nemer W, Chiaroni J. Rapid change in red cell blood group systems after the main Out of Africa of Homo sapiens. Sci Rep 2025; 15:1597. [PMID: 39848961 PMCID: PMC11757997 DOI: 10.1038/s41598-024-83023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Despite the advances in paleogenomics, red cell blood group systems in ancient human populations remain scarcely known. Pioneer attempts showed that Neandertal and Denisova, two archaic hominid populations inhabiting Eurasia, expressed blood groups currently found in sub-Saharans and a rare "rhesus", part of which is found in Oceanians. Herein we fully pictured the blood group genetic diversity of 22 Homo sapiens and 14 Neandertals from Eurasia living between 120,000 and 20,000 years before present (yBP). From the ABO, Rh, Kell, Duffy, Kidd, MNS, Diego, H, secretor and Indian systems, we noted that the blood group allele diversity in the Neandertals remained unchanged since 120,000 yBP, while H. sapiens conquered Eurasia with blood group alleles presently exclusive to non-African populations, suggesting they may have differentiated right after the Out of Africa, between 70,000 and 45,000 yBP. Notably, Ust'Ishim possessed unknown alleles that may illustrate the lost genetic heritage of the early Eurasians. Lastly, Neandertals shared a unique Rh haplotype from which we updated the current RHD phylogeny. The contribution of this study is twofold. It enlightens the expansion patterns of H sapiens and recalls the anthropological effectiveness of genetic polymorphisms currently being surveyed for transfusion safety and pregnancy monitoring.
Collapse
Affiliation(s)
| | | | - Wassim El Nemer
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Jacques Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| |
Collapse
|
2
|
Neshat S, Rezaei A, Farid A, Javanshir S, Dehghan Niri F, Daneii P, Heshmat-Ghahdarijani K, Sotoudehnia Korani S. Cardiovascular Diseases Risk Predictors: ABO Blood Groups in a Different Role. Cardiol Rev 2024; 32:174-179. [PMID: 35679024 DOI: 10.1097/crd.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to people's health, with extremely high global morbidity, mortality, and disability rates. This study aimed to review the literature that examined the relationship between blood groups and CVD. Many studies have reported that non-O blood groups are associated with an increased risk and severity of coronary artery disease and acute coronary syndromes. Non-O blood groups increase the risk and severity of these conditions by increasing von Willebrand factor and plasma cholesterol levels and inducing endothelial dysfunction and inflammation. They have also been linked with increased coronary artery calcification, coronary lesion complexity, and poor collateral circulation. Blood groups also affect the prognosis of coronary artery disease and acute coronary syndrome and can alter the rate of complications and mortality. Several cardiovascular complications have been described for coronavirus disease 2019, and blood groups can influence their occurrence. No studies have found a significant relationship between the Lewis blood group and CVD. In conclusion, people with non-O blood groups should be vigilantly monitored for cardiovascular risk factors as prevention and proper treatment of these risk factors may mitigate their risk of CVD and adverse cardiovascular events.
Collapse
Affiliation(s)
- Sina Neshat
- From the Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Cardiology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Armita Farid
- Department of Cardiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Department of Cardiology, School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dehghan Niri
- From the Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Padideh Daneii
- From the Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
3
|
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int J Mol Sci 2023; 24:15044. [PMID: 37894724 PMCID: PMC10606600 DOI: 10.3390/ijms242015044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
| | - Ivan D. Dimov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical Academy, 153012 Ivanovo, Russia
| |
Collapse
|
4
|
Cid E, Yamamoto M, Barrero L, Yamamoto F. The stem region of group A transferase is crucial for its specificity, and its alteration promotes heterologous Forssman synthase activity. Sci Rep 2023; 13:13996. [PMID: 37634031 PMCID: PMC10460411 DOI: 10.1038/s41598-023-40900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Some stem region mutants of human blood group A transferase (hAT) possess Forssman synthase (FS) activity, but very little is known about the mechanisms responsible for this enzymatic crosstalk. We performed confocal microscopy and image analysis to determine whether different intra-Golgi localization was accountable for this acquired activity. We also performed structural modeling and mutational and normal mode analyses. We introduced new mutations in the stem region and tested its FS and AT activities. No differences in subcellular localization were found between hAT and FS-positive mutants. AlphaFold models of hAT and mFS (mouse Forssman synthase) showed that the hAT stem region has a tether-like stem region, while in mFS, it encircles its catalytic domain. In silico analysis of FS-positive mutants indicated that stem region mutations induced structural changes, decreasing interatomic interactions and mobility of hAT that correlated with FS activity. Several additional mutations introduced in that region also bestowed FS activity without altering the AT activity: hAT 37-55 aa substitution by mFS 34-52, 37-55 aa deletion, and missense mutations: S46P, Q278Y, and Q286M. Stem region structure, mobility, and interactions are crucial for hAT specificity. Moreover, stem region mutations can lead to heterologous Forssman activity without changes in the catalytic machinery.
Collapse
Affiliation(s)
- Emili Cid
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain.
| | - Miyako Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| | - Laura Barrero
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| | - Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute, Ctra. de Can Ruti, Cami de Les Escoles S/N, 08916, Badalona, Spain
| |
Collapse
|
5
|
Gueuning M, Thun GA, Wittig M, Galati AL, Meyer S, Trost N, Gourri E, Fuss J, Sigurdardottir S, Merki Y, Neuenschwander K, Busch Y, Trojok P, Schäfer M, Gottschalk J, Franke A, Gassner C, Peter W, Frey BM, Mattle-Greminger MP. Haplotype sequence collection of ABO blood group alleles by long-read sequencing reveals putative A1-diagnostic variants. Blood Adv 2023; 7:878-892. [PMID: 36129841 PMCID: PMC10025113 DOI: 10.1182/bloodadvances.2022007133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/21/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022] Open
Abstract
In the era of blood group genomics, reference collections of complete and fully resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (ie, separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using the latest third-generation long-read sequencing, we generated a collection of fully resolved sequences for all 6 main ABO allele groups: ABO∗A1/A2/B/O.01.01/O.01.02/O.02. We selected 77 samples from an ABO genotype data set (n = 25 200) of serologically typed Swiss blood donors. The entire ABO gene was amplified in 2 overlapping long-range polymerase chain reactions (covering ∼23.6 kb) and sequenced by long-read Oxford Nanopore sequencing. For quality validation, 2 samples per ABO group were resequenced using Illumina and Pacific Biosciences technology. All 154 full-length ABO sequences were resolved as haplotypes. We observed novel, distinct sequence patterns for each ABO group. Most genetic diversity was found between, not within, ABO groups. Phylogenetic tree and haplotype network analyses highlighted distinct clades of each ABO group. Strikingly, our data uncovered 4 genetic variants putatively specific for ABO∗A1, for which direct diagnostic targets are currently lacking. We validated A1-diagnostic potential using whole-genome data (n = 4872) of a multiethnic cohort. Overall, our sequencing strategy proved powerful for producing high-quality ABO haplotypes and holds promise for generating similar collections for other blood groups. The publicly available collection of 154 haplotypes will serve as a valuable resource for molecular analyses of ABO, as well as studies about the function and evolutionary history of ABO.
Collapse
Affiliation(s)
- Morgan Gueuning
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Gian Andri Thun
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | | | - Stefan Meyer
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Nadine Trost
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Elise Gourri
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Sonja Sigurdardottir
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Yvonne Merki
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Kathrin Neuenschwander
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | | | | | | | - Jochen Gottschalk
- Department of Pathogen Screening, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Christoph Gassner
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
- Institute for Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Wolfgang Peter
- Stefan Morsch Foundation, Birkenfeld, Germany
- Institute for Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Beat M. Frey
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
- Department of Molecular Diagnostics and Cytometry, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
- Department of Pathogen Screening, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | - Maja P. Mattle-Greminger
- Department of Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| |
Collapse
|
6
|
Yamamoto F. A historical overview of advances in molecular genetic/genomic studies of the ABO blood group system. Glycoconj J 2022; 39:207-218. [PMID: 34757541 PMCID: PMC8578530 DOI: 10.1007/s10719-021-10028-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/30/2022]
Abstract
In 1990, 90 years after the discovery of ABO blood groups by Karl Landsteiner, my research team at the Molecular Biology Laboratory of the now-defunct Biomembrane Institute elucidated the molecular genetic basis of the ABO polymorphism. Henrik Clausen, Head of the Immunology Laboratory, initiated the project by isolating human group A transferase (AT), whose partial amino acid sequence was key to its success. Sen-itiroh Hakomori, the Scientific Director, provided all the institutional support. The characterization started from the 3 major alleles (A1, B, and O), and proceeded to the alleles of A2, A3, Ax and B3 subgroups and also to the cis-AB and B(A) alleles, which specify the expression of A and B antigens by single alleles. In addition to the identification of allele-specific single nucleotide polymorphism (SNP) variations, we also experimentally demonstrated their functional significance in glycosyltransferase activity and sugar specificity of the encoded proteins. Other scientists interested in blood group genes later characterized more than 250 ABO alleles. However, recent developments in next-generation sequencing have enabled the sequencing of millions of human genomes, transitioning from the era of genetics to the era of genomics. As a result, numerous SNP variations have been identified in the coding and noncoding regions of the ABO gene, making ABO one of the most studied loci for human polymorphism. As a tribute to Dr. Hakomori's scientific legacy, a historical overview in molecular genetic/genomic studies of the human ABO gene polymorphism is presented, with an emphasis on early discoveries made at his institute.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
7
|
Jadhao S, Davison CL, Roulis EV, Schoeman EM, Divate M, Haring M, Williams C, Shankar AJ, Lee S, Pecheniuk NM, Irving DO, Hyland CA, Flower RL, Nagaraj SH. RBCeq: A robust and scalable algorithm for accurate genetic blood typing. EBioMedicine 2022; 76:103759. [PMID: 35033986 PMCID: PMC8763639 DOI: 10.1016/j.ebiom.2021.103759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background While blood transfusion is an essential cornerstone of hematological care, patients requiring repetitive transfusion remain at persistent risk of alloimmunization due to the diversity of human blood group polymorphisms. Despite the promise, user friendly methods to accurately identify blood types from next-generation sequencing data are currently lacking. To address this unmet need, we have developed RBCeq, a novel genetic blood typing algorithm to accurately identify 36 blood group systems. Methods RBCeq can predict complex blood groups such as RH, and ABO that require identification of small indels and copy number variants. RBCeq also reports clinically significant, rare, and novel variants with potential clinical relevance that may lead to the identification of novel blood group alleles. Findings The RBCeq algorithm demonstrated 99·07% concordance when validated on 402 samples which included 29 antigens with serology and 9 antigens with SNP-array validation in 14 blood group systems and 59 antigens validation on manual predicted phenotype from variant call files. We have also developed a user-friendly web server that generates detailed blood typing reports with advanced visualization (https://www.rbceq.org/). Interpretation RBCeq will assist blood banks and immunohematology laboratories by overcoming existing methodological limitations like scalability, reproducibility, and accuracy when genotyping and phenotyping in multi-ethnic populations. This Amazon Web Services (AWS) cloud based platform has the potential to reduce pre-transfusion testing time and to increase sample processing throughput, ultimately improving quality of patient care. Funding This work was supported in part by Advance Queensland Research Fellowship, MRFF Genomics Health Futures Mission (76,757), and the Australian Red Cross LifeBlood. The Australian governments fund the Australian Red Cross Lifeblood for the provision of blood, blood products and services to the Australian community.
Collapse
Affiliation(s)
- Sudhir Jadhao
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Candice L Davison
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia
| | - Eileen V Roulis
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Elizna M Schoeman
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia
| | - Mayur Divate
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Mitchel Haring
- Office of eResearch, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Chris Williams
- Office of eResearch, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Arvind Jaya Shankar
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Simon Lee
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - David O Irving
- Research and Development, Australian Red Cross Blood Service, Sydney, New South Wales, Australia
| | - Catherine A Hyland
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Robert L Flower
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
8
|
Cid E, Yamamoto M, Yamamoto F. Mixed-Up Sugars: Glycosyltransferase Cross-Reactivity in Cancerous Tissues and Their Therapeutic Targeting. Chembiochem 2021; 23:e202100460. [PMID: 34726327 DOI: 10.1002/cbic.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Indexed: 11/11/2022]
Abstract
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.
Collapse
Affiliation(s)
- Emili Cid
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Miyako Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Fumiichiro Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| |
Collapse
|
9
|
Cornetti L, Ebert D. No evidence for genetic sex determination in Daphnia magna. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202292. [PMID: 34150315 PMCID: PMC8206689 DOI: 10.1098/rsos.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms of sex determination (SD) differ widely across the tree of life. In genotypic sex determination (GSD), genetic elements determine whether individuals are male or female, while in environmental sex determination (ESD), external cues control the sex of the offspring. In cyclical parthenogens, females produce mostly asexual daughters, but environmental stimuli such as crowding, temperature or photoperiod may cause them to produce sons. In aphids, sons are induced by ESD, even though GSD is present, with females carrying two X chromosomes and males only one (X0 SD system). By contrast, although ESD exists in Daphnia, the two sexes were suggested to be genetically identical, based on a 1972 study on Daphnia magna (2n=20) that used three allozyme markers. This study cannot, however, rule out an X0 system, as all three markers may be located on autosomes. Motivated by the life cycle similarities of Daphnia and aphids, and the absence of karyotype information for Daphnia males, we tested for GSD (homomorphic sex chromosomes and X0) systems in D. magna using a whole-genome approach by comparing males and females of three genotypes. Our results confirm the absence of haploid chromosomes or haploid genomic regions in D. magna males as well as the absence of sex-linked genomic regions and sex-specific single-nucleotide polymorphisms. Within the limitations of the three studied populations here and the methods used, we suggest that our results make the possibility of genetic differences among sexes in the widely used Daphnia model system very unlikely.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| |
Collapse
|
10
|
Abegaz SB. Human ABO Blood Groups and Their Associations with Different Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6629060. [PMID: 33564677 PMCID: PMC7850852 DOI: 10.1155/2021/6629060] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Human ABO blood type antigens exhibit alternative phenotypes and genetically derived glycoconjugate structures that are located on the red cell surface which play an active role in the cells' physiology and pathology. Associations between the blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. However, due to lack of antigens of some blood groups, there have been some contentious issues with the association between the ABO blood group and vulnerability to certain infectious and noninfectious diseases. OBJECTIVE To review different literatures that show the association between ABO blood groups and different diseases. METHOD Original, adequate, and recent articles on the same field were researched, and the researcher conducted a comprehensive review on this topic. Thus, taking out critical discussions, not only a descriptive summary of the topic but also contradictory ideas were fully retrieved and presented in a clear impression. In addition, some relevant scientific papers published in previous years were included. The article search was performed by matching the terms blood types/groups with a group of terms related to different diseases. The articles were screened and selected based on the title and abstract presented. RESULTS The susceptibility to various diseases, such as cancer, cardiovascular diseases, infections and hematologic disorders, cognitive disorders, circulatory diseases, metabolic diseases, and malaria, has been linked with ABO blood groups. Moreover, blood group AB individuals were found to be susceptible to an increased risk of cognitive impairment which was independent of geographic region, age, race, and gender. Disorders such as hypertension, obesity, dyslipidemia, cardiovascular disease (CVD), and diabetes were also more prevalent in individuals with cognitive impairment. Early etiological studies indicated that blood type O has a connection with increased incidence of cholera, plague, tuberculosis infections, and mumps, whereas blood type A is linked with increased incidence of smallpox and Pseudomonas aeruginosa infection; blood type B is also associated with increased incidence of gonorrhea, tuberculosis, and Streptococcus pneumoniae, E. coli, and salmonella infections; and blood type AB is associated with increased incidence of smallpox and E. coli and salmonella infections. Diabetes mellitus, hypercholesterolemia, arterial hypertension, and family history for ischemic heart disease are the most common risk factors for cardiovascular diseases and can be genetically transmitted to offspring. Higher incidence of cancers in the stomach, ovaries, salivary glands, cervix, uterus, and colon/rectum was common in blood type A people than in O type people. The link between the ABO blood type and thromboembolic diseases and bleeding risk are intervened by the glycosyltransferase activity and plasma levels and biologic activity of vWF (Von Willebrand factor), a carrier protein for coagulation factor VIII which is low in O type. CONCLUSION Several studies related to the ABO phenotype show that genetically determined human ABO blood groups were correspondingly linked with an increased risk of various infectious and noninfectious diseases. However, further investigations are needed particularly on the molecular level of ABO blood groups and their association with various diseases.
Collapse
Affiliation(s)
- Silamlak Birhanu Abegaz
- Woldia University, Faculty of Natural and Computational Sciences, Department of Biology, Ethiopia
| |
Collapse
|
11
|
Pendu JL, Breiman A, Rocher J, Dion M, Ruvoën-Clouet N. ABO Blood Types and COVID-19: Spurious, Anecdotal, or Truly Important Relationships? A Reasoned Review of Available Data. Viruses 2021; 13:160. [PMID: 33499228 PMCID: PMC7911989 DOI: 10.3390/v13020160] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. Second, O individuals are less prone to thrombosis and vascular dysfunction than non-O individuals and therefore could be at a lesser risk in case of severe lung dysfunction. Here, we review the literature on the topic in light of these hypotheses. We find that between-study variation may be explained by differences in study settings and that both mechanisms are likely at play. Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.
Collapse
Affiliation(s)
- Jacques Le Pendu
- CRCINA, INSERM, Université de Nantes, F-44000 Nantes, France; (A.B.); (J.R.); (N.R.-C.)
| | - Adrien Breiman
- CRCINA, INSERM, Université de Nantes, F-44000 Nantes, France; (A.B.); (J.R.); (N.R.-C.)
- CHU de Nantes, F-44000 Nantes, France
| | - Jézabel Rocher
- CRCINA, INSERM, Université de Nantes, F-44000 Nantes, France; (A.B.); (J.R.); (N.R.-C.)
| | - Michel Dion
- Microbiotes Hosts Antibiotics and Bacterial Resistances (MiHAR), Université de Nantes, F-44000 Nantes, France;
| | - Nathalie Ruvoën-Clouet
- CRCINA, INSERM, Université de Nantes, F-44000 Nantes, France; (A.B.); (J.R.); (N.R.-C.)
- Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation, F-44307 Nantes, France
| |
Collapse
|
12
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
13
|
Silva-Filho JC, Melo CGFD, Oliveira JLD. The influence of ABO blood groups on COVID-19 susceptibility and severity: A molecular hypothesis based on carbohydrate-carbohydrate interactions. Med Hypotheses 2020; 144:110155. [PMID: 33254482 PMCID: PMC7395945 DOI: 10.1016/j.mehy.2020.110155] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
The world is experiencing one of the most difficult moments in history with the COVID-19 pandemic, a disease caused by SARS-CoV-2, a new type of coronavirus. Virus infectivity is mediated by the binding of Spike transmembrane glycoprotein to specific protein receptors present on cell host surface. Spike is a homotrimer that emerges from the virion, each monomer containing two subunits named S1 and S2, which are related to cell recognition and membrane fusion, respectively. S1 is subdivided in domains S1A (or NTD) and S1B (or RBD), with experimental and in silico studies suggesting that the former binds to sialic acid-containing glycoproteins, such as CD147, whereas the latter binds to ACE2 receptor. Recent findings indicate that the ABO blood system modulates susceptibility and progression of infection, with type-A individuals being more susceptible to infection and/or manifestation of a severe condition. Seeking to understand the molecular mechanisms underlying this susceptibility, we carried out an extensive bibliographic survey on the subject. Based on this survey, we hypothesize that the correlation between the ABO blood system and susceptibility to SARS-CoV-2 infection can be presumably explained by the modulation of sialic acid-containing receptors distribution on host cell surface induced by ABO antigens through carbohydrate-carbohydrate interactions, which could maximize or minimize the virus Spike protein binding to the host cell. This model could explain previous sparse observations on the molecular mechanism of infection and can direct future research to better understand of COVID-19 pathophysiology.
Collapse
|
14
|
Schussler O, Lila N, Grau J, Ruel M, Lecarpentier Y, Carpentier A. Possible Link Between the ABO Blood Group of Bioprosthesis Recipients and Specific Types of Structural Degeneration. J Am Heart Assoc 2020; 9:e015909. [PMID: 32698708 PMCID: PMC7792238 DOI: 10.1161/jaha.119.015909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Pigs/bovines share common antigens with humans: α-Gal, present in all pigs/bovines close to the human B-antigen; and AH-histo-blood-group antigen, identical to human AH-antigen and present only in some animals. We investigate the possible impact of patients' ABO blood group on bioprosthesis structural valve degeneration (SVD) through calcification/pannus/tears/perforations for patients ≤60 years at implantation. Methods and Results This was a single-center study (Paris, France) that included all degenerative bioprostheses explanted between 1985 and 1998, mostly porcine bioprostheses (Carpentier-Edwards second/third porcine bioprostheses) and some bovine bioprostheses. For the period 1998 to 2014, only porcine bioprostheses with longevity ≥13 years were included (total follow-up ≥29 years). Except for blood groups, important predictive factors for SVD were prospectively collected (age at implantation/longevity/number/site/sex/SVD types) and analyzed using logistic regression. All variables were available for 500 explanted porcine bioprostheses. By multivariate analyses, the A group was associated with an increased risk of: tears (odds ratio[OR], 1.61; P=0.026); pannus (OR, 1.5; P=0.054), pannus with tears (OR, 1.73; P=0.037), and tendency for lower risk of: calcifications (OR, 0.63; P=0.087) or isolated calcification (OR, 0.67; P=0.17). A-antigen was associated with lower risk of perforations (OR 0.56; P=0.087). B-group patients had an increased risk of: perforations (OR, 1.73; P=0.043); having a pannus that was calcified (OR, 3.0, P=0.025). B-antigen was associated with a propensity for calcifications in general (OR, 1.34; P=0.25). Conclusions Patient's ABO blood group is associated with specific SVD types. We hypothesize that carbohydrate antigens, which may or may not be common to patient and animal bioprosthetic tissue, will determine a patient's specific immunoreactivity with respect to xenograft tissue and thus bioprosthesis outcome in terms of SVD.
Collapse
Affiliation(s)
- Olivier Schussler
- Deparments of Cardiovascular Surgery and Cardiovascular Research Laboratory Geneva University Hospitals and Faculty of Medicine Geneva Switzerland.,Service de Chirurgie Thoracique Hôpitaux Universitaire de StrasbourgParis University Paris France
| | - Nermine Lila
- Biosurgical Research Lab (Carpentier Foundation) APHPGeorges PompidouEuropean Georges Pompidou Hospital Paris France
| | - Juan Grau
- Department of Epidemiology Ottawa Heart InstituteUniversity of Ottawa Ontario Canada
| | - Marc Ruel
- Department of Epidemiology Ottawa Heart InstituteUniversity of Ottawa Ontario Canada
| | - Yves Lecarpentier
- Centre de Recherche Clinique Grand Hôpital de l'Est Francilien (GHEF) Meaux France
| | - Alain Carpentier
- Biosurgical Research Lab (Carpentier Foundation) APHPGeorges PompidouEuropean Georges Pompidou Hospital Paris France.,Division of Cardiac Surgery and Research Laboratory European HospitalEuropean Georges Pompidou Hospital Paris France
| |
Collapse
|
15
|
Nath AP, Ritchie SC, Grinberg NF, Tang HHF, Huang QQ, Teo SM, Ahola-Olli AV, Würtz P, Havulinna AS, Santalahti K, Pitkänen N, Lehtimäki T, Kähönen M, Lyytikäinen LP, Raitoharju E, Seppälä I, Sarin AP, Ripatti S, Palotie A, Perola M, Viikari JS, Jalkanen S, Maksimow M, Salmi M, Wallace C, Raitakari OT, Salomaa V, Abraham G, Kettunen J, Inouye M. Multivariate Genome-wide Association Analysis of a Cytokine Network Reveals Variants with Widespread Immune, Haematological, and Cardiometabolic Pleiotropy. Am J Hum Genet 2019; 105:1076-1090. [PMID: 31679650 DOI: 10.1016/j.ajhg.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines. Using three population-based cohorts (n = 9,263), we performed multivariate genome-wide association studies (GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition, conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels, on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes.
Collapse
Affiliation(s)
- Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
| | - Nastasiya F Grinberg
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Howard Ho-Fung Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Qin Qin Huang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Clinical Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu Mei Teo
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
| | - Ari V Ahola-Olli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland
| | - Peter Würtz
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki 00014, Finland; Nightingale Health Ltd., Helsinki 00300, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; National Institute of Health and Welfare, Helsinki 00271, Finland
| | - Kristiina Santalahti
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; National Institute of Health and Welfare, Helsinki 00271, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Markus Perola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; National Institute of Health and Welfare, Helsinki 00271, Finland
| | - Jorma S Viikari
- Department of Medicine, University of Turku, Turku 20520, Finland; Division of Medicine, Turku University Hospital, Turku 20520, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Mikael Maksimow
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Marko Salmi
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, United Kingdom; MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, United Kingdom
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland; The Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Veikko Salomaa
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland
| | - Gad Abraham
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Department of Clinical Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Johannes Kettunen
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku 20520, Finland; Computational Medicine, Centre for Life Course Health Research, University of Oulu, Oulu 90014, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; Biocenter Oulu, University of Oulu, Oulu 90014, Finland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom; Department of Clinical Pathology, University of Melbourne, Parkville, Victoria 3010, Australia; The Alan Turing Institute, London, United Kingdom.
| |
Collapse
|
16
|
ABO blood group A transferase and its codon 69 substitution enzymes synthesize FORS1 antigen of FORS blood group system. Sci Rep 2019; 9:9717. [PMID: 31273262 PMCID: PMC6609624 DOI: 10.1038/s41598-019-46029-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022] Open
Abstract
Human histo-blood group A transferase (AT) catalyzes the biosynthesis of oligosaccharide A antigen important in blood transfusion and cell/tissue/organ transplantation. This enzyme may synthesize Forssman antigen (FORS1) of the FORS blood group system when exon 3 or 4 of the AT mRNA is deleted and/or the LeuGlyGly tripeptide at codons 266–268 of AT is replaced by GlyGlyAla. The Met69Ser/Thr substitutions also confer weak Forssman glycolipid synthase (FS) activity. In this study, we prepared the human AT derivative constructs containing any of the 20 amino acids at codon 69 with and without the GlyGlyAla substitution, transfected DNA to newly generated COS1(B3GALNT1 + A4GALT) cells expressing an enhanced level of globoside (Gb4), the FS acceptor substrate, and immunologically examined the FORS1 expression. Our results showed that all those substitution constructs at codon 69 exhibited FS activity. The combination with GlyGlyAla significantly increased the activity. The conserved methionine residue in the ABO, but not GBGT1, gene-encoded proteins may implicate its contribution to the separation of these genes in genetic evolution. Surprisingly, with increased Gb4 availability, the original human AT with the methionine residue at codon 69 was also demonstrated to synthesize FORS1, providing another molecular mechanism of FORS1 appearance in cancer of ordinary FORS1-negative individuals.
Collapse
|
17
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
18
|
Poulsen NA, Robinson RC, Barile D, Larsen LB, Buitenhuis B. A genome-wide association study reveals specific transferases as candidate loci for bovine milk oligosaccharides synthesis. BMC Genomics 2019; 20:404. [PMID: 31117955 PMCID: PMC6532250 DOI: 10.1186/s12864-019-5786-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (OS) play a key role in brain and gut microbiota development of the neonate, but the underlying biosynthetic steps of OS in the mammary gland are still largely unknown. As bovine milk contains OS with somewhat similar structures and functionalities there is increased interest in further understanding the genetic basis underlying the OS content of milk for eventual extraction and generation of value-added ingredients for infant formulas and nutraceuticals. The present study is the first to report on genetic parameter estimation as well as on a genome wide association study (GWAS) from the largest bovine milk OS dataset analyzed to date. RESULTS In total 15 different bovine milk OS were monitored. Heritabilities ranged from 0 to 0.68 in Danish Holstein and from 0 to 0.92 in Danish Jersey. The GWAS identified in total 1770 SNPs (FDR < 0.10) for five different OS in Danish Holstein and 6913 SNPs (FDR < 0.10) for 11 OS in Danish Jersey. In Danish Holstein, a major overlapping QTL was identified on BTA1 for LNH and LNT explaining 24% of the variation in these OS. The most significant SNPs were associated with B3GNT5, a gene encoding a glycosyltransferase involved in glycan synthesis. In Danish Jersey, a very strong QTL was detected for the OS with composition 2 Hex 1 HexNAc (isomer 1) on BTA11. The most significant SNP had -log10(P-value) of 52.88 (BOVINEHD1100030300) and was assigned to ABO, a gene encoding ABO blood group glycosyltransferases. This SNP has been reported to be a missense mutation and explains 56% of the OS variation. Other candidate genes of interest identified for milk OS were ALG3, B3GALNT2, LOC520336, PIGV, MAN1C1, ST6GALNAC6, GLT6D1, GALNT14, GALNT17, COLGALT2, LFNG and SIGLEC. CONCLUSION To our knowledge, this is the first study documenting a solid breeding potential for bovine milk OS and a strong indication of specific candidate genes related to OS synthesis underlying this genetic influence. This new information has the potential to guide breeding strategies to achieve production of milk with higher diversity and concentration of OS and ultimately facilitate large-scale extraction of bovine milk OS.
Collapse
Affiliation(s)
- Nina A. Poulsen
- Department of Food Science, Aarhus University, Blichers Allé 20, P. O. Box 50, DK-8830 Tjele, Denmark
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
- Foods for Health Institute, University of California, Davis, One Shields Ave., Davis, CA 95616 USA
| | - Lotte B. Larsen
- Department of Food Science, Aarhus University, Blichers Allé 20, P. O. Box 50, DK-8830 Tjele, Denmark
| | - Bart Buitenhuis
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P. O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
19
|
Nakashima F, Brandão de Mattos CC, Ferreira AIC, Spergiorin LCJF, Meira-Strejevitch CS, Oliani AH, Vaz-Oliani DCM, Pereira-Chioccola VL, de Mattos LC. FUT3 and FUT2 genotyping and glycoconjugate profile Lewis b as a protective factor to Toxoplasma gondii infection. Acta Trop 2019; 193:92-98. [PMID: 30831115 DOI: 10.1016/j.actatropica.2019.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 11/23/2022]
Abstract
The interaction between the ABO, FUT2 and FUT3 genes results in the synthesis of different glycoconjugates profiles expressed in gastrointestinal tract. Moreover, the protozoan Toxoplasma gondii, which causes toxoplasmosis, utilizes this organ as an infection route. We analyzed the frequencies of the different glycoconjugate profiles which were determined by phenotyping ABO and genotyping the status secretor (FUT2; substitution G428A) and Lewis (FUT3; substitution T202C and C314T) histo-blood systems, assessed by PCR-RFLP and PCR-SSP, respectively. A total of 244 pregnant women (G1: Seropositive; G2: Seronegative) for IgG T. gondii antibodies were enrolled. IgG anti-T. gondii antibodies were determined by ELISA. G1 was composed of 158 (64.8%) sample and G2 by 86 (36.2%). The glycoconjugate profile was accessed in 151 seropositive and 85 seronegative samples by the combination of ABO and Lewis phenotyping as well as FUT2 and FUT3 genotyping. In G1, 36 (22.8%) presented the glycoconjugate profile ALeb, 5 (3.3%) A, 13 (8.6) BLeb, 1 (0.6%) B, 41 (27.1%) Leb, 13(8.6%) H, 38(25.2%) Lea and 4 (2.6%) Lec. G2 was composed of 13 (15.3%) of ALeb, 15 (17.6%) BLeb, 1 (1.2%) B, 42 (49,4%) Leb and 14 (16.5) Lea. H and Lec glycoconjugate profiles were not found in G2. The frequencies of the glycoconjugates profiles Leb (p = 0.001) and H (p = 0.005) were significantly different compared between G1 and G2. The glycoconjugate profile H inferred from the ABO phenotyping and FUT3 and FUT2 genotyping is associated with infection by T. gondii in pregnant women and the Leb profile appears to protect the infection by this parasite.
Collapse
Affiliation(s)
- Fabiana Nakashima
- Biology Department, Bioscience, Languages and Exact Sciences Institute of the Universidade Estadual Paulista "Júlio de Mesquita Filho" (IBILCE/UNESP), São José do Rio Preto, São Paulo, Brazil; Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| | - Ana Iara Costa Ferreira
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Lígia Cosentino Junqueira Franco Spergiorin
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| | | | - Antonio Hélio Oliani
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Denise Cristina Mós Vaz-Oliani
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | | | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| |
Collapse
|
20
|
Schussler O, Lila N, Perneger T, Mootoosamy P, Grau J, Francois A, Smadja DM, Lecarpentier Y, Ruel M, Carpentier A. Recipients with blood group A associated with longer survival rates in cardiac valvular bioprostheses. EBioMedicine 2019; 42:54-63. [PMID: 30878598 PMCID: PMC6491382 DOI: 10.1016/j.ebiom.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pigs/bovines share with humans some of the antigens present on cardiac valves. Two such antigens are: the major xenogenic Ag, “Gal” present in all pig/bovine very close to human B-antigen of ABO-blood-group system; the minor Ag, pig histo-blood-group AH-antigen identical to human AH-antigen and present by some animals. We hypothesize that these antigens may modify the immunogenicity of the bioprosthesis and also its longevity. ABO distribution may vary between patients with low (<6 years) and high (≥15 years) bioprostheses longevity. Methods Single-centre registry study (Paris, France) including all degenerative porcine bioprostheses (mostly Carpentier-Edwards 2nd/3rd generation heart valves) explanted between 1985 and 1998 and some bovine bioprostheses. For period 1998–2014, all porcine bioprostheses with longevity ≥13 years (follow-up ≥29 years). Important predictive factors for bioprosthesis longevity: number, site of implantation, age were collected. Blood group and other variables were entered into an ordinal logistic regression analysis model predicting valve longevity, categorized as low (<6 years), medium (6–14.9 years), and high (≥15 years). Findings Longevity and ABO-blood group were obtained for 483 explanted porcine bioprostheses. Mean longevity was 10.2 ± 3.9 years [0–28] and significantly higher for A-patients than others (P = 0.009). Using multivariate analysis, group A was a strong predictive factor of longevity (OR 2.09; P < 0.001). For the 64 explanted bovine bioprosthesis with low/medium longevity, the association, with A-group was even more significant. Interpretation Patients of A-group but not B have a higher longevity of their bioprostheses. Future graft-host phenotyping and matching may give rise to a new generation of long-lasting bioprosthesis for implantation in humans, especially for the younger population. Fund None.
Collapse
Affiliation(s)
- O Schussler
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - N Lila
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France
| | - T Perneger
- Department of Clinical Epidemiology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Mootoosamy
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - J Grau
- Division of Cardiac Surgery and Research Laboratory, Department of Epidemiology, Ottawa Heart Institute, University of Ottawa Heart, Ottawa, Ontario, Canada
| | - A Francois
- Etablissement Français du Sang (EFS), Ile de France, Immuno-hematology Laboratory, Georges Pompidou Hospital, Paris, France
| | - D M Smadja
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, Paris Descartes University, Sorbonne Paris Cite, Inserm UMR-S1140, Paris, France
| | - Y Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - M Ruel
- Division of Cardiac Surgery and Research Laboratory, Department of Epidemiology, Ottawa Heart Institute, University of Ottawa Heart, Ottawa, Ontario, Canada
| | - A Carpentier
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France; AP-HP, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France
| |
Collapse
|
21
|
Cid E, Yamamoto M, Yamamoto F. Amino acid substitutions at sugar-recognizing codons confer ABO blood group system-related α1,3 Gal(NAc) transferases with differential enzymatic activity. Sci Rep 2019; 9:846. [PMID: 30696937 PMCID: PMC6351642 DOI: 10.1038/s41598-018-37515-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Functional paralogous ABO, GBGT1, A3GALT2, and GGTA1 genes encode blood group A and B transferases (AT and BT), Forssman glycolipid synthase (FS), isoglobotriaosylceramide synthase (iGb3S), and α1,3-galactosyltransferase (GT), respectively. These glycosyltransferases transfer N-acetyl-d-galactosamine (GalNAc) or d-galactose forming an α1,3-glycosidic linkage. However, their acceptor substrates are diverse. Previously, we demonstrated that the amino acids at codons 266 and 268 of human AT/BT are crucial to their distinct sugar specificities, elucidating the molecular genetic basis of the ABO glycosylation polymorphism of clinical importance in transfusion and transplantation medicine. We also prepared in vitro mutagenized ATs/BTs having any of 20 possible amino acids at those codons, and showed that those codons determine the transferase activity and sugar specificity. We have expanded structural analysis to include evolutionarily related α1,3-Gal(NAc) transferases. Eukaryotic expression constructs were prepared of AT, FS, iGb3S, and GT, possessing selected tripeptides of AT-specific AlaGlyGly or LeuGlyGly, BT-specific MetGlyAla, FS-specific GlyGlyAla, or iGb3S and GT-specific HisAlaAla, at the codons corresponding to 266–268 of human AT/BT. DNA transfection was performed using appropriate recipient cells existing and newly created, and the appearance of cell surface oligosaccharide antigens was immunologically examined. The results have shown that several tripeptides other than the originals also bestowed transferase activity. However, the repertoire of functional amino acids varied among those transferases, suggesting that structures around those codons differentially affected the interactions between donor nucleotide-sugar and acceptor substrates. It was concluded that different tripeptide sequences at the substrate-binding pocket have contributed to the generation of α1,3-Gal(NAc) transferases with diversified specificities.
Collapse
Affiliation(s)
- Emili Cid
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain.,Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain
| | - Miyako Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain
| | - Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain. .,Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Camí de les Escoles, Badalona, Barcelona, 08916, Spain.
| |
Collapse
|
22
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
23
|
Blood group ABO gene-encoded A transferase catalyzes the biosynthesis of FORS1 antigen of FORS system upon Met69Thr/Ser substitution. Blood Adv 2018; 2:1371-1381. [PMID: 29898878 DOI: 10.1182/bloodadvances.2018017293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023] Open
Abstract
Blood group A/B glycosyltransferases (AT/BTs) and Forssman glycolipid synthase (FS) are encoded by the evolutionarily related ABO (A/B alleles) and GBGT1 genes, respectively. AT/BT and FS catalyze the biosynthesis of A/B and Forssman (FORS1) oligosaccharide antigens that are responsible for the distinct blood group systems of ABO and FORS. Using genetic engineering, DNA transfection, and immunocytochemistry and immunocytometry, we have previously shown that the eukaryotic expression construct encoding human AT, whose LeuGlyGly tripeptide at codons 266 to 268 was replaced with FS-specific GlyGlyAla tripeptide, induced weak appearance of FORS1 antigen. Recently, we have shown that the human AT complementary DNA constructs deleting exons 3 or 4, but not exons 2 or 5, induced moderate expression of FORS1 antigen. The constructs containing both the GlyGlyAla substitution and the exon 3 or 4 deletion exhibited an increased FS activity. Here, we report another molecular mechanism in which an amino acid substitution at codon 69 from methionine to threonine or serine (Met69Thr/Ser) also modified enzymatic specificity and permitted FORS1 biosynthesis. Considering that codon 69 is the first amino acid of exon 5 and that the cointroduction of Met69Thr and GlyGlyAla substitutions also enhanced FS activity, the methionine substitutions may affect enzyme structure in a mode similar to the exon 3 or 4 deletion but distinct from the GlyGlyAla substitution.
Collapse
|
24
|
Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. mBio 2018; 9:mBio.00869-18. [PMID: 29789360 PMCID: PMC5964351 DOI: 10.1128/mbio.00869-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Collapse
|
25
|
Arend P. Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann N Y Acad Sci 2018; 1425:5-18. [PMID: 29754430 PMCID: PMC7676429 DOI: 10.1111/nyas.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
The human ABO(H) blood group phenotypes arise from the evolutionarily oldest genetic system found in primate populations. While the blood group antigen A is considered the ancestral primordial structure, under the selective pressure of life‐threatening diseases blood group O(H) came to dominate as the most frequently occurring blood group worldwide. Non‐O(H) phenotypes demonstrate impaired formation of adaptive and innate immunoglobulin specificities due to clonal selection and phenotype formation in plasma proteins. Compared with individuals with blood group O(H), blood group A individuals not only have a significantly higher risk of developing certain types of cancer but also exhibit high susceptibility to malaria tropica or infection by Plasmodium falciparum. The phenotype‐determining blood group A glycotransferase(s), which affect the levels of anti‐A/Tn cross‐reactive immunoglobulins in phenotypic glycosidic accommodation, might also mediate adhesion and entry of the parasite to host cells via trans‐species O‐GalNAc glycosylation of abundantly expressed serine residues that arise throughout the parasite's life cycle, while excluding the possibility of antibody formation against the resulting hybrid Tn antigen. In contrast, human blood group O(H), lacking this enzyme, is indicated to confer a survival advantage regarding the overall risk of developing cancer, and individuals with this blood group rarely develop life‐threatening infections involving evolutionarily selective malaria strains.
Collapse
Affiliation(s)
- Peter Arend
- Department of Medicine, Philipps University Marburg, Marburg/Lahn, Germany. Gastroenterology Research Laboratory, College of Medicine, University of Iowa, Iowa City, Iowa. Research Laboratories, Chemie Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
26
|
Liu J, Zhang S, Liu M, Wang Q, Shen H, Zhang Y. Distribution of ABO/Rh blood groups and their association with hepatitis B virus infection in 3.8 million Chinese adults: A population-based cross-sectional study. J Viral Hepat 2018; 25:401-411. [PMID: 29193618 DOI: 10.1111/jvh.12829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
ABO and Rh blood groups play a vital role in blood transfusion safety and clinical practice and are thought to be linked with disease susceptibility. The results from previous studies that focused on the association between blood groups and HBV infection remain controversial. China has the world's largest burden of HBV infection. We assessed the distribution of ABO/Rh blood groups in Chinese adults and examined the association between these groups and HBV infection. We did a nationwide cross-sectional study using data from a physical check-up programme from 31 provinces examined between 2010 and 2012. ELISA was used to test for HBsAg in serologic samples. Multivariable logistic regression was used to estimate aOR of the association between ABO and Rh blood groups and HBV infection. Among 3 827 125 participants, the proportion of participants with blood group A was highest (30.54%), followed by O (30.37%), B (29.42%) and AB (9.66%). A total of 38 907 (1.02%) were Rh-D negative. The prevalence of HBsAg in blood groups O, A, B and AB were 6.34%, 5.55%, 5.18% and 5.06%, respectively. HBsAg prevalence was 5.65% in Rh-D-positive and 3.96% in Rh-D-negative participants. After controlling for other potential risk factors, multivariate models showed that participants with blood group O (adjusted OR = 1.22, 95% CI: 1.20-1.25) were at higher risk of HBV infection compared with group AB. Rh-D-positive participants (adjusted OR = 1.44, 95% CI: 1.37-1.52) were at higher risk of HBV infection than Rh-D-negative participants. The associations between ABO/Rh blood groups and HBV infection were similar in subgroup analysis. The proportions of O, A, B and AB blood groups were approximately 3:3:3:1, and nearly 1 in 100 people was Rh-D negative among Chinese adults. Blood group O and Rh-D positivity were both associated with increased HBV infection. The risk of HBV infection and blood safety should be taken into consideration in clinical practice, especially when transfusing those with blood group O. Awareness and prevention of HBV infection is of particular importance for individuals with blood group O.
Collapse
Affiliation(s)
- J Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - S Zhang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the PRC, Beijing, China
| | - M Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Q Wang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the PRC, Beijing, China
| | - H Shen
- Department of Maternal and Child Health, National Health and Family Planning Commission of the PRC, Beijing, China
| | - Y Zhang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the PRC, Beijing, China
| |
Collapse
|
27
|
ABO blood group A transferases catalyze the biosynthesis of FORS blood group FORS1 antigen upon deletion of exon 3 or 4. Blood Adv 2017; 1:2756-2766. [PMID: 29296927 DOI: 10.1182/bloodadvances.2017009795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Evolutionarily related ABO and GBGT1 genes encode, respectively, A and B glycosyltransferases (AT and BT) and Forssman glycolipid synthase (FS), which catalyze the biosynthesis of A and B, and Forssman (FORS1) oligosaccharide antigens responsible for the ABO and FORS blood group systems. Humans are a Forssman antigen-negative species; however, rare individuals with Apae phenotype express FORS1 on their red blood cells. We previously demonstrated that the replacement of the LeuGlyGly tripeptide sequence at codons 266 to 268 of human AT with GBGT1-encoded FS-specific GlyGlyAla enabled the enzyme to produce FORS1 antigen, although the FS activity was weak. We searched for additional molecular mechanisms that might allow human AT to express FORS1. A variety of derivative expression constructs of human AT were prepared. DNA was transfected into COS1 (B3GALNT1) cells, and cell-surface expression of FORS1 was immunologically monitored. To our surprise, the deletion of exon 3 or 4, but not of exon 2 or 5, of human AT transcripts bestowed moderate FS activity, indicating that the A allele is inherently capable of producing a protein with FS activity. Because RNA splicing is frequently altered in cancer, this mechanism may explain, at least partially, the appearance of FORS1 in human cancer. Furthermore, strong FS activity was attained, in addition to AT and BT activities, by cointroducing 1 of those deletions and the GlyGlyAla substitution, possibly by the synergistic effects of altered intra-Golgi localization/conformation by the former and modified enzyme specificity by the latter.
Collapse
|
28
|
Sano R, Fukuda H, Takahashi Y, Takahashi K, Kubo R, Kobayashi M, Fujihara J, Takeshita H, Kominato Y. Sequence analysis of ABO and its homologues is valid for species identification. Transfus Med 2017; 27:428-436. [PMID: 28850748 DOI: 10.1111/tme.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND ABO and its paralogues, such as A3GALT2 and GGTA1, encoding α1,3-Gal(NAc) transferases, belong to the glycosyltransferase 6 (GT6) gene family. We have developed an alternative method for the identification of species based on sequence variations within the GT6 gene family, which is applicable to degraded DNA. METHODS/MATERIALS DNA samples prepared from control mammalian species, together with an unknown sample, were polymerase chain reaction (PCR)-amplified using one universal primer pair targeting the sequences in the last coding exons of the GT6 gene family, yielding 141-bp products derived from those multiple loci. After cloning, sequence determination and Basic Local Alignment Search Tool analysis, phylogenetic trees were constructed. RESULTS Comparison of the sequences obtained with those references showed good concordance with each of the starting species of mammals. This system was able to identify 'mouse' or 'rodent' as the origin of the unknown sample. CONCLUSION For the identification of species, genotyping of ABO and its homologues would be applicable for the analysis of degraded DNA samples. Although the method employed in this study is likely valid for mammals, it would not be suitable for birds, fish and reptiles. It may be possible to improve the present method for use with other species by employing an alternative universal primer set.
Collapse
Affiliation(s)
- R Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - H Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Y Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - K Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - R Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - M Kobayashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - J Fujihara
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - H Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | - Y Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
29
|
Yamamoto F. Evolutionary divergence of the ABO and GBGT1 genes specifying the ABO and FORS blood group systems through chromosomal rearrangements. Sci Rep 2017; 7:9375. [PMID: 28839219 PMCID: PMC5571153 DOI: 10.1038/s41598-017-09765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 11/12/2022] Open
Abstract
Human alleles at the ABO and GBGT1 genetic loci specify glycosylation polymorphism of ABO and FORS blood group systems, respectively, and their allelic basis has been elucidated. These genes are also present in other species, but presence/absence, as well as functionality/non-functionality are species-dependent. Molecular mechanisms and forces that created this species divergence were unknown. Utilizing genomic information available from GenBank and Ensembl databases, gene order maps were constructed of a chromosomal region surrounding the ABO and GBGT1 genes from a variety of vertebrate species. Both similarities and differences were observed in their chromosomal organization. Interestingly, the ABO and GBGT1 genes were found located at the boundaries of chromosomal fragments that seem to have been inverted/translocated during species evolution. Genetic alterations, such as deletions and duplications, are prevalent at the ends of rearranged chromosomal fragments, which may partially explain the species-dependent divergence of those clinically important glycosyltransferase genes.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Barcelona, Spain. .,Programa de Medicina Predictiva i Personalitzada del Càncer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain.
| |
Collapse
|
30
|
Majoros WH, Campbell MS, Holt C, DeNardo EK, Ware D, Allen AS, Yandell M, Reddy TE. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE. Bioinformatics 2017; 33:1437-1446. [PMID: 28011790 DOI: 10.1093/bioinformatics/btw799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/13/2016] [Indexed: 11/12/2022] Open
Abstract
Motivation The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. Contact myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information Supplementary information is available at Bioinformatics online.
Collapse
Affiliation(s)
- William H Majoros
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | | | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA
| | - Erin K DeNardo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, USA
| | - Andrew S Allen
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Timothy E Reddy
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
31
|
Zu B, You G, Fu Q, Wang J. Association between ABO Blood Group and Risk of Congenital Heart Disease: A 6-year large cohort study. Sci Rep 2017; 7:42804. [PMID: 28211529 PMCID: PMC5314383 DOI: 10.1038/srep42804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022] Open
Abstract
ABO blood group, except its direct clinical implications for transfusion and organ transplantation, is generally accepted as an effect factor for coronary heart disease, but the associations between ABO blood group and congenital heart disease (CHD) are not coherent by previous reports. In this study, we evaluated the the potential relationship between ABO blood group and CHD risk. In 39,042 consecutive inpatients (19,795 CHD VS 19,247 controls), we used multivariable logistic regression to evaluate the roles of ABO blood group, gender, and RH for CHD. The associations between ABO blood group and CHD subgroups, were further evaluated using stratification analysis, adjusted by gender. A blood group demonstrated decreased risk for isolated CHD (OR 0.82; 95% CI, 0.78–0.87) in individuals with A blood group in the overall cohort analysis, and the finding was consistently replicated in independent subgroup analysis. ABO blood group may have a role for CHD, and this novel finding provides ABO blood group as a possible marker for CHD, but more studies need to be done.
Collapse
Affiliation(s)
- Bailing Zu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoling You
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Igartua C, Davenport ER, Gilad Y, Nicolae DL, Pinto J, Ober C. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. MICROBIOME 2017; 5:16. [PMID: 28143570 PMCID: PMC5286564 DOI: 10.1186/s40168-016-0227-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/25/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND The degree to which host genetic variation can modulate microbial communities in humans remains an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population of European decent. RESULTS We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r 2 < 0.5) selected from among all common variants discovered in genome sequences in this population. We identified 37 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10-8; q = 0.002), a long non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10-7; q = 0.032). CONCLUSIONS Our findings provide evidence of host genetic influences on upper airway microbial composition in humans and implicate mucosal immunity genes in this relationship.
Collapse
Affiliation(s)
- Catherine Igartua
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Emily R Davenport
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Jayant Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
33
|
Yamamoto M, Cid E, Yamamoto F. Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases. Sci Rep 2017; 7:41632. [PMID: 28134301 PMCID: PMC5278553 DOI: 10.1038/srep41632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Abstract
A and B alleles at the ABO genetic locus specify A and B glycosyltransferases that catalyze the biosynthesis of A and B oligosaccharide antigens, respectively, of blood group ABO system which is important in transfusion and transplantation medicine. GBGT1 gene encodes Forssman glycolipid synthase (FS), another glycosyltransferase that produces Forssman antigen (FORS1). Humans are considered to be Forssman antigen-negative species without functional FS. However, rare individuals exhibiting Apae phenotype carry a dominant active GBGT1 gene and express Forssman antigen on RBCs. Accordingly, FORS system was recognized as the 31st blood group system. Mouse ABO gene encodes a cis-AB transferase capable of producing both A and B antigens. This murine enzyme contains the same GlyGlyAla tripeptide sequence as FSs at the position important for the determination of sugar specificity. We, therefore, transfected the expression construct into appropriate recipient cells and examined whether mouse cis-AB transferase may also exhibit FS activity. The result was positive, confirming the crosstalk between the ABO and FORS systems. Further experiments have revealed that the introduction of this tripeptide sequence to human A transferase conferred some, although weak, FS activity, suggesting that it is also involved in the recognition/binding of acceptor substrates, in addition to donor nucleotide-sugars.
Collapse
Affiliation(s)
- Miyako Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Emili Cid
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Fumiichiro Yamamoto
- Laboratory of Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Barcelona, Spain
- Programa de Medicina Predictiva i Personalitzada del Càncer (PMPPC), Institut d′Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| |
Collapse
|
34
|
Dotz V, Wuhrer M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta Gen Subj 2016; 1860:1596-607. [PMID: 26748235 PMCID: PMC7117023 DOI: 10.1016/j.bbagen.2015.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Viktoria Dotz
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Bucardo F, González F, Reyes Y, Blandón P, Saif L, Nordgren J. Seroprevalence in Household Raised Pigs Indicate High Exposure to GII Noroviruses in Rural Nicaragua. Zoonoses Public Health 2016; 63:600-607. [PMID: 27174203 DOI: 10.1111/zph.12269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 01/02/2023]
Abstract
Information about porcine norovirus (PoNoV), genetically similar to human NoV (HuNoV), is limited from rural areas where household-raised pigs are heavily exposed to faecal material which could facilitate transmission. Histo-blood group antigens (HBGAs) are known susceptibility factors to NoV in humans and in a germfree piglet model but their role in susceptibility in the porcine population remains unknown. This study reports: (i) the seroprevalence and antibody titres to human norovirus (NoV) VLPs in household raised pigs; (ii) the distribution of HBGAs in relation to NoV IgG antibody titres and further characterization by blocking of GII.4 VLP binding to pig gastric mucins (PGM). The majority of pigs were seropositive to all three VLPs tested (58-70%) with seropositivity and cross-reactivity increasing significantly with age. However, pig sera could not block the binding of NoV GII.4 VLPs (Dijon) to PGM suggesting no previous infection with this genotype. The majority of the pigs were H-positive (84%), a susceptibility factor for human infections. IgG antibody titres were however higher in H-negative (GMT = 247) as compared with H-positive (GMT = 57) pigs, but after age stratification, this difference in antibody titres was only observed in pigs ≤1 month of age. In conclusion, serological data show that the porcine population of Nicaragua is highly exposed to NoV infections, and the association to HBGAs warrants further investigation.
Collapse
Affiliation(s)
- F Bucardo
- Department of Microbiology, National Autonomous University of León (UNAN-León), León, Nicaragua
| | - F González
- Department of Microbiology, National Autonomous University of León (UNAN-León), León, Nicaragua
| | - Y Reyes
- Department of Microbiology, National Autonomous University of León (UNAN-León), León, Nicaragua
| | - P Blandón
- Department of Microbiology, National Autonomous University of León (UNAN-León), León, Nicaragua
| | - L Saif
- Food Animal Health Research Program OARDC/The Ohio State University, Wooster, OH, USA
| | - J Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
36
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
37
|
Springer SA, Gagneux P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J Proteomics 2015; 135:90-100. [PMID: 26626628 DOI: 10.1016/j.jprot.2015.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/11/2023]
Abstract
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution.
Collapse
Affiliation(s)
- Stevan A Springer
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92039, USA.
| | - Pascal Gagneux
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|
38
|
Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 2015; 9:21. [PMID: 26337052 PMCID: PMC4559023 DOI: 10.1186/s40246-015-0043-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.
Collapse
Affiliation(s)
- Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Catarina Serrano
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
39
|
Franchini M, Bonfanti C. Evolutionary aspects of ABO blood group in humans. Clin Chim Acta 2015; 444:66-71. [PMID: 25689219 DOI: 10.1016/j.cca.2015.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
The antigens of the ABO blood group system (A, B and H determinants) are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases. In this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging. In particular, focus will be placed on studies evaluating the ABO phenotype in centenarians, the best human model of longevity.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | - Carlo Bonfanti
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy
| |
Collapse
|