1
|
Saingam P, Li B, Nguyen Quoc B, Jain T, Bryan A, Winkler MKH. Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161467. [PMID: 36626989 PMCID: PMC9825140 DOI: 10.1016/j.scitotenv.2023.161467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology has proven to be a supportive tool to better comprehend the dynamics of the COVID-19 pandemic. As the disease moves into endemic stage, the surveillance at wastewater sub-catchments such as pump station and manholes is providing a novel mechanism to examine the reemergence and to take measures that can prevent the spread. However, there is still a lack of understanding when it comes to wastewater-based epidemiology implementation at the smaller intra-city level for better granularity in data, and dilution effect of rain precipitation at pump stations. For this study, grab samples were collected from six areas of Seattle between March-October 2021. These sampling sites comprised five manholes and one pump station with population ranging from 2580 to 39,502 per manhole/pump station. The wastewater samples were analyzed for SARS-CoV-2 RNA concentrations, and we also obtained the daily COVID-19 cases (from individual clinical testing) for each corresponding sewershed, which ranged from 1 to 12 and the daily incidence varied between 3 and 64 per 100,000 of population. Rain precipitation lowered viral RNA levels and sensitivity of viral detection but wastewater total ammonia (NH4+-N) and phosphate (PO43--P) were shown as potential chemical indicators to calibrate/level out the dilution effect. These chemicals showed the potential in improving the wastewater surveillance capacity of COVID-19.
Collapse
Affiliation(s)
- Prakit Saingam
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tanisha Jain
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andrew Bryan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Bracher GH, Carissimi E, Wolff DB, Glusczak AG, Graepin C. Performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49439-49456. [PMID: 35583758 DOI: 10.1007/s11356-022-20630-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Domestic wastewater is an important alternative source of water in the face of a growing discrepancy between water availability and demand. The use of techniques that enable the urban reuse of treated sewage is essential to make cities more sustainable and resilient to water scarcity. The main goal of this study was to evaluate the performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse. The study was performed using raw domestic wastewater samples. The electrocoagulation-flotation system was a cylindrical reactor with aluminum electrodes. The treatment conditions involved agitation at 262.5 rpm, electrical current of 1.65 A, electrolysis time of 25 min, an initial pH of 6, and inter-electrode distance of 1 cm. Overall, the electrocoagulation-flotation system was highly efficient for removal of apparent color (97.9%), chemical oxygen demand (82.9%), turbidity (95.8%), and orthophosphate phosphorous (> 98.2%). The electrocoagulation-flotation system had a consumption of electrical energy ranging from 9.5 to 13.3 kWh m-3, electrode mass from 294.7 to 557.0 g m-3, and hydrochloric acid from 4.3 to 6.6 L m-3. Sludge production in the system ranged from 1,125.7 to 1,835.7 g m-3. Treated wastewater had a satisfactory quality for several urban reuse activities. The electrocoagulation-flotation system showed potential to be used for domestic wastewater treatment for urban reuse purposes.
Collapse
Affiliation(s)
- Gustavo Holz Bracher
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, Camobi, RS, 97105‑900, Brazil.
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, Camobi, RS, 97105‑900, Brazil
| | - Delmira Beatriz Wolff
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, Camobi, RS, 97105‑900, Brazil
| | - Andressa Gabriela Glusczak
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, Camobi, RS, 97105‑900, Brazil
| | - Cristiane Graepin
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria, Camobi, RS, 97105‑900, Brazil
| |
Collapse
|
3
|
Bae Y, Crompton NM, Sharma N, Yuan Y, Catalano JG, Giammar DE. Impact of dissolved oxygen and pH on the removal of selenium from water by iron electrocoagulation. WATER RESEARCH 2022; 213:118159. [PMID: 35172259 DOI: 10.1016/j.watres.2022.118159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Removing dissolved selenium (i.e., selenate and selenite) from wastewater is a challenging issue for a range of industries. Iron electrocoagulation can produce Fe(II)-containing solids that can adsorb and chemically reduce dissolved Se. In a series of bench-scale experiments we investigated the effects of dissolved oxygen (fully oxic, partially oxic, and strictly anoxic) and pH (6 and 8) on the rate and extent of dissolved selenate and selenite removal by iron electrocoagulation. These studies combined measurements of the aqueous phase with the direct characterization of the resulting solids. Among the conditions studied the rate and extent of dissolved selenium (Se) removal were highest at pH 8 and strictly anoxic conditions. X-ray absorption spectroscopy demonstrated that in the absence of oxygen, Se was primarily transformed to elemental selenium (Se0) and selenide. Green rust that formed in the suspension during electrocoagulation played a key role as a reductant and sorbent of Se. At pH 6 dissolved oxygen did not affect the rates and extents of dissolved Se removal. Under all the conditions studied, dissolved Se removal was more effective with iron electrocoagulation than with the direct addition of pre-synthesized green rust or ferrous hydroxide. The most rapid and substantial dissolved Se removal was achieved by freshly-formed green rust and ferrous hydroxide, which are both Fe(II)-bearing solids. With an improved understanding of the products and mechanisms of the process, iron electrocoagulation can be optimized for removal of Se from wastewater.
Collapse
Affiliation(s)
- Yeunook Bae
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Brauer Hall, Room 1023, St. Louis, MO 63130, United States; Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nyssa M Crompton
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States; Department of Chemistry, Joliet Junior College, Joliet, IL 60431, United States
| | - Neha Sharma
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Brauer Hall, Room 1023, St. Louis, MO 63130, United States
| | - Yihang Yuan
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Brauer Hall, Room 1023, St. Louis, MO 63130, United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Daniel E Giammar
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Brauer Hall, Room 1023, St. Louis, MO 63130, United States.
| |
Collapse
|
4
|
Potrich MC, Duarte EDSA, Sikora MDS, Costa da Rocha RD. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: comparison between iron and aluminum electrodes treatment. ENVIRONMENTAL TECHNOLOGY 2022; 43:751-765. [PMID: 32731790 DOI: 10.1080/09593330.2020.1804464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The poultry slaughterhouse wastewater has a high pollutant load, mainly organic matter, and nutrient content. The nitrogen and phosphorus discharge can cause eutrophication of the receiving water bodies. Electrocoagulation has been studied for several pollutants removal from different sources. The objective of this work was to evaluate the electrocoagulation process in the poultry slaughterhouse wastewater treatment using both iron and electrodes to remove total nitrogen and phosphorus. After the raw and polished wastewater characterisation, a 2³ Central Composite Rotatable Design was applied to evaluate the current density, initial pH, and electrocoagulation time influence on the nutrients removal and to find the optimum condition of nutrients removal. Once the optimum condition for nutrient removal was stablished, other physicochemical, microbiological, and ecotoxicological parameters, as well as the treatment cost, were investigated to determine which electrode material was the most efficient. For raw wastewater, applying the optimum treatment condition of 20 mA cm-2 current density, initial pH 6.2, and time of 20 min, the nitrogen and phosphorus removal presented similar for both electrode materials. Besides being cheaper ($ 4.13 m-3), iron electrode treatment presented better Chemical Oxygen Demand, oils and greases, solids, and ecotoxicity removal. For polished wastewater, the treatment with aluminum electrode was more efficient under the applied current density of 30 mA cm-2, initial pH 8 and time of 10 min, obtaining the lowest cost $ 3.89 m-3. In the iron electrode case, the final pH exceeds the limits established by local legislation requiring correction for release into water bodies.
Collapse
Affiliation(s)
- Mateus Cescon Potrich
- Chemistry Departament, Universidade Tecnológica Federal do Paraná, Pato Branco, Brazil
| | | | | | | |
Collapse
|
5
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
6
|
Bracher GH, Carissimi E, Wolff DB, Graepin C, Hubner AP. Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. ENVIRONMENTAL TECHNOLOGY 2021; 42:2669-2679. [PMID: 31875770 DOI: 10.1080/09593330.2019.1709905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The risks inherent to the inadequate domestic wastewater disposal, allied to the water growing demand, scarcity, and pollution problems, have highlighted the importance of adopting treatment techniques that not only target the sewage discharge, but also its reuse. For this reason, the objective of this study was to evaluate the best conditions of an electrocoagulation-flotation system for domestic wastewater treatment and urban reuse. To achieve this, an effects study followed by two rotatable central composite experimental designs 2² was performed, considering: agitation, electrical current, electrolysis time, inter-electrodes distance, and initial pH. The electrocoagulation-flotation system was composed of a cylindrical acrylic reactor with a working volume of 1 L, with two aluminium electrodes connected to a direct-current power supply. Results showed that electrical current and electrolysis time were the most influent operational parameters on domestic wastewater treatment in the electrocoagulation-flotation system. The initial pH adjustment was also important due the pH increase tendency observed in the results. The best conditions of agitation, inter-electrodes distance, electrolysis time, electrical current, and initial pH for domestic wastewater treatment and urban reuse were 262.5 rpm, 1 cm, 25 min, 1.65 A, and 6, respectively. Under these conditions, turbidity and colour removals higher than 98% and 92% were reached respectively, as well as residual turbidity lower than 6 NTU and final pH of 8 were achieved, following the Brazilian standards and guidelines for urban reuse. Thus, the electrocoagulation-flotation system studied was effective for domestic wastewater treatment and reuse for urban supply purposes.
Collapse
Affiliation(s)
- Gustavo Holz Bracher
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Elvis Carissimi
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Delmira Beatriz Wolff
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cristiane Graepin
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andressa Paola Hubner
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. WATER 2020. [DOI: 10.3390/w13010027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The treatment of different types of wastewater by physicochemical or biological (non-microalgal) methods could often be either inefficient or energy-intensive. Microalgae are ubiquitous microscopic organisms, which thrive in water bodies that contain the necessary nutrients. Wastewaters are typically contaminated with nitrogen, phosphorus, and other trace elements, which microalgae require for their cell growth. In addition, most of the microalgae are photosynthetic in nature, and these organisms do not require an organic source for their proliferation, although some strains could utilize organics both in the presence and absence of light. Therefore, microalgal bioremediation could be integrated with existing treatment methods or adopted as the single biological method for efficiently treating wastewater. This review paper summarized the mechanisms of pollutants removal by microalgae, microalgal bioremediation potential of different types of wastewaters, the potential application of wastewater-grown microalgal biomass, existing challenges, and the future direction of microalgal application in wastewater treatment.
Collapse
|
8
|
Farkas K, Walker DI, Adriaenssens EM, McDonald JE, Hillary LS, Malham SK, Jones DL. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. WATER RESEARCH 2020; 181:115926. [PMID: 32417460 PMCID: PMC7211501 DOI: 10.1016/j.watres.2020.115926] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/13/2023]
Abstract
Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, DT4 8UB, UK
| | | | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Luke S Hillary
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
9
|
Inoue K, Asami T, Shibata T, Furumai H, Katayama H. Spatial and temporal profiles of enteric viruses in the coastal waters of Tokyo Bay during and after a series of rainfall events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138502. [PMID: 32335450 DOI: 10.1016/j.scitotenv.2020.138502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 05/09/2023]
Abstract
Recreational activities in coastal waters that are polluted by enteric viruses can result in gastroenteritis etc. In this study, the pollution profiles of enteric viruses were examined in the coastal area of Tokyo Bay, Japan, by collecting 57 water samples from three different depths (0.5 m, 3.0 m, and 5.0 m) during and after a series of heavy rainfall events. Vertically spatial and temporal changes in the concentrations of NoV genogroup I (GI) and genogroup II (GII), pepper mild mottle virus (PMMoV), and Aichi virus (AiV) were determined using quantitative reverse transcription-polymerase chain reaction, while those of the bacterial indicator, Escherichia coli, and F-specific RNA bacteriophages (FRNA phages) were monitored using culture methods. PMMoV was highly abundant (1.4 × 104-6.8 × 106 genome copies/L), whereas the concentrations of the other enteric viruses were relatively low (AiV, 1.3 × 102-2.9 × 104; GI, 2.9 × 10-5.6 × 103; GII, 2.5 × 10-1.2 × 104 genome copies/L). All of the viruses showed lower fluctuations in concentration than E. coli, which increased up to 460-fold after the rainfall event and then decreased over the subsequent two weeks. The maximum vertical difference in E. coli concentration was observed immediately after the rainfall. The E. coli reached the surface and then gradually spread down, whereas the virus concentrations exhibited few fluctuations due to the remaining effects of the previous combined sewer overflows. These findings indicate that viruses have a relatively long retention period over fecal indicator bacteria in this coastal area.
Collapse
Affiliation(s)
- Kentaro Inoue
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Asami
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Shibata
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Furumai
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan; Research Center for Water Environment Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Zangarini S, Pepè Sciarria T, Tambone F, Adani F. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5730-5743. [PMID: 31919818 DOI: 10.1007/s11356-019-07542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus is an essential element in the food production chain, even though it is a non-renewable and limited natural resource, which is going to run out soon. However, it is also a pollutant if massively introduced into soil and water ecosystems. This study focuses on the current alternative low-cost technologies for phosphorus recovery from livestock effluents. Recovering phosphorus from these wastewaters is considered a big challenge due to the high phosphorus concentration (between 478 and 1756 mg L-1) and solids content (> 2-6% of total solids). In particular, the methods discussed in this study are (i) magnesium-based crystallization (struvite synthesis), (ii) calcium-based crystallization, (iii) electrocoagulation and (iv) biochar production, which differ among them for some advantages and disadvantages. According to the data collected, struvite crystallization achieves the highest phosphorus removal (> 95%), even when combined with the use of seawater bittern (a by-product of sea salt processing) instead of magnesium chloride pure salt as the magnesium source. Moreover, the crystallizer technology used for struvite precipitation has already been tested in wastewater treatment plants, and data reported in this review showed the feasibility of this technology for use with high total solids (> 5%) livestock manure. Furthermore, economic and energetic analyses here reported show that struvite crystallization is the most practicable among the low-cost phosphorus recovery technologies for treating livestock effluents.
Collapse
Affiliation(s)
- Sara Zangarini
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy.
| | - Fulvia Tambone
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| |
Collapse
|
11
|
Gyawali P, Croucher D, Ahmed W, Devane M, Hewitt J. Evaluation of pepper mild mottle virus as an indicator of human faecal pollution in shellfish and growing waters. WATER RESEARCH 2019; 154:370-376. [PMID: 30822597 DOI: 10.1016/j.watres.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Bivalve molluscan shellfish grown in areas impacted by human faecal pollution are at risk of being contaminated with multiple enteric viruses. To minimise the public health risks associated with shellfish consumption, determining the presence of faecal contamination in shellfish and their growing waters is crucial. In this study, we evaluated the use of pepper mild mottle virus (PMMoV) as an indicator of human faecal contamination in oysters, mussels, cockles and shellfish growing waters in New Zealand. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR) the presence, and where applicable, the concentration of PMMoV was determined in faeces from 11 different animal species, influent (untreated) wastewater, shellfish and shellfish growing waters. Non-human faecal samples (from seagull, Canada goose, black swan and dog) were RT-qPCR positive for PMMoV. The faecal source specificity of PMMoV was 0.83 (maximum value of 1) when 'detected but not quantifiable' (DNQ) values were used. However, when 'lower limit of quantification' (LLOQ) values were used, the specificity increased to 0.92. The PMMoV concentration in influent wastewater (n = 10) ranged from 6.3 to 7.7 log10 genome copies (GC)/L with a mean (±standard deviation) of 7.1 ± 0.5 log10 GC/L. The overall occurrence of PMMoV in shellfish and shellfish growing waters from four different areas was 46/51 (90%) and 29/52 (56%), respectively. Of the cockles collected from an area known to be impacted by effluent wastewater, 14/14 (100%) contained PMMoV concentrations above the LLOQ. In contrast, only 13/37 (35%) shellfish and 6/52 (11.5%) growing water samples collected from three areas with low anthropogenic impact contained PMMoV concentrations above the LLOQ. The high concentration of PMMoV in influent wastewater indicates that PMMoV may be a promising indicator of human faecal contamination. The presence of PMMoV in shellfish and growing waters with a low anthropogenic impact may be of avian origin, and this needs to be considered if using PMMoV for monitoring shellfish and shellfish growing water quality in New Zealand.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand.
| | - Dawn Croucher
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, 4102, Australia
| | - Megan Devane
- Institute of Environmental Science and Research Ltd (ESR), Christchurch, 8041, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua, 5240, New Zealand
| |
Collapse
|
12
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|
13
|
Kato R, Asami T, Utagawa E, Furumai H, Katayama H. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan. WATER RESEARCH 2018; 132:61-70. [PMID: 29306700 DOI: 10.1016/j.watres.2017.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/13/2017] [Accepted: 12/23/2017] [Indexed: 05/12/2023]
Abstract
To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water.
Collapse
Affiliation(s)
- Ryuichi Kato
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Asami
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Etsuko Utagawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam - Japan University, Luu Huu Phuoc Str., My Dinh I Ward, Nam Tu Liem Dist., Hanoi, Viet Nam.
| |
Collapse
|
14
|
Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. RESOURCE-EFFICIENT TECHNOLOGIES 2016. [DOI: 10.1016/j.reffit.2016.09.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Removal of trace metal contaminants from potable water by electrocoagulation. Sci Rep 2016; 6:28478. [PMID: 27324564 PMCID: PMC4914840 DOI: 10.1038/srep28478] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
Collapse
|
16
|
Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure. WATER 2016. [DOI: 10.3390/w8060248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Removal of Six Estrogenic Endocrine-Disrupting Compounds (EDCs) from Municipal Wastewater Using Aluminum Electrocoagulation. WATER 2016. [DOI: 10.3390/w8040128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|