1
|
Di Lernia D, Finotti G, Tsakiris M, Riva G, Naber M. Remote photoplethysmography (rPPG) in the wild: Remote heart rate imaging via online webcams. Behav Res Methods 2024; 56:6904-6914. [PMID: 38632165 PMCID: PMC11362249 DOI: 10.3758/s13428-024-02398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Remote photoplethysmography (rPPG) is a low-cost technique to measure physiological parameters such as heart rate by analyzing videos of a person. There has been growing attention to this technique due to the increased possibilities and demand for running psychological experiments on online platforms. Technological advancements in commercially available cameras and video processing algorithms have led to significant progress in this field. However, despite these advancements, past research indicates that suboptimal video recording conditions can severely compromise the accuracy of rPPG. In this study, we aimed to develop an open-source rPPG methodology and test its performance on videos collected via an online platform, without control of the hardware of the participants and the contextual variables, such as illumination, distance, and motion. Across two experiments, we compared the results of the rPPG extraction methodology to a validated dataset used for rPPG testing. Furthermore, we then collected 231 online video recordings and compared the results of the rPPG extraction to finger pulse oximeter data acquired with a validated mobile heart rate application. Results indicated that the rPPG algorithm was highly accurate, showing a significant degree of convergence with both datasets thus providing an improved tool for recording and analyzing heart rate in online experiments.
Collapse
Affiliation(s)
- Daniele Di Lernia
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100, Milan, Italy.
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Via Magnasco, 2, 20149, Milan, Italy.
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100, Milan, Italy.
| | - Gianluca Finotti
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Manos Tsakiris
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
- Centre for the Politics of Feelings, School of Advanced Study, University of London, London, UK
| | - Giuseppe Riva
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100, Milan, Italy
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Via Magnasco, 2, 20149, Milan, Italy
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| |
Collapse
|
2
|
Silva H, Rezendes C. Revisiting the Venoarteriolar Reflex-Further Insights from Upper Limb Dependency in Healthy Subjects. BIOLOGY 2024; 13:715. [PMID: 39336142 PMCID: PMC11429146 DOI: 10.3390/biology13090715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
The venoarteriolar reflex (VAR) is described as a vasoconstriction occurring in response to an increase in venous transmural pressure. Its underlying mechanisms are still not clarified, particularly the neural pathway that supposedly evokes this reflex. In addition, recent studies have shown that the postural maneuvers that evoke VAR also produce a decrease in contralateral perfusion, which is also poorly understood. Our study aimed to explore the contralateral response to unilateral upper limb dependency and its underlying mechanisms. Fifteen young, healthy subjects (24.1 ± 5.8 y.o.) participated in this study after giving informed consent. While seated, subjects remained for 7 min with both arms at heart level (baseline), after which a random hand was placed 40 cm below the heart level for 5 min (dependency) before resuming the initial position for another 7 min (recovery). Skin perfusion was assessed bilaterally with photoplethysmography, and electrodermal activity (EDA) was assessed in the contralateral hand. During hand dependency, perfusion decreased significantly in both limbs, although it was more pronounced in the dependent limb, corroborating previous reports that unilateral limb dependency evokes a decrease in contralateral perfusion. Transient EDA peaks were detected in the first seconds of the dependency and recovery phases. These results support the participation of the sympathetic nervous system as a mechanism regulating contralateral perfusion during unilateral limb dependency. This sympathetic activation is probably attributed to the postural changes themselves and is likely not related to the VAR.
Collapse
Affiliation(s)
- Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Carlota Rezendes
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
Li K, Sun J. Understanding the physiological transmission mechanisms of photoplethysmography signals: a comprehensive review. Physiol Meas 2024; 45:08TR02. [PMID: 39106894 DOI: 10.1088/1361-6579/ad6be4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Objective. The widespread adoption of Photoplethysmography (PPG) as a non-invasive method for detecting blood volume variations and deriving vital physiological parameters reflecting health status has surged, primarily due to its accessibility, cost-effectiveness, and non-intrusive nature. This has led to extensive research around this technique in both daily life and clinical applications. Interestingly, despite the existence of contradictory explanations of the underlying mechanism of PPG signals across various applications, a systematic investigation into this crucial matter has not been conducted thus far. This gap in understanding hinders the full exploitation of PPG technology and undermines its accuracy and reliability in numerous applications.Approach. Building upon a comprehensive review of the fundamental principles and technological advancements in PPG, this paper initially attributes the origin of PPG signals to a combination of physical and physiological transmission processes. Furthermore, three distinct models outlining the concerned physiological transmission processes are synthesized, with each model undergoing critical examination based on theoretical underpinnings, empirical evidence, and constraints.Significance. The ultimate objective is to form a fundamental framework for a better understanding of physiological transmission processes in PPG signal generation and to facilitate the development of more reliable technologies for detecting physiological signals.
Collapse
Affiliation(s)
- Kai Li
- School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jiuai Sun
- School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, People's Republic of China
| |
Collapse
|
4
|
Machikhin A, Guryleva A, Chakraborty A, Khokhlov D, Selyukov A, Shuman L, Bukova V, Efremova E, Rudenko E, Burlakov A. Microscopic photoplethysmography-based evaluation of cardiotoxicity in whitefish larvae induced by acute exposure to cadmium and phenol. JOURNAL OF BIOPHOTONICS 2024:e202400111. [PMID: 39031962 DOI: 10.1002/jbio.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Toxic environmental pollutants pose a health risk for both humans and animals. Accumulation of industrial contaminants in freshwater fish may become a significant threat to biodiversity. Comprehensive monitoring of the impact of environmental stressors on fish functional systems is important and use of non-invasive tools that can detect the presence of these toxicants in vivo is desirable. The blood circulatory system, by virtue of its sensitivity to the external stimuli, could be an informative indicator of chemical exposure. In this study, microscopic photoplethysmography-based approach was used to investigate the cardiac activity in broad whitefish larvae (Coregonus nasus) under acute exposure to cadmium and phenol. We identified contamination-induced abnormalities in the rhythms of the ventricle and atrium. Our results allow introducing additional endpoints to evaluate the cardiac dysfunction in fish larvae and contribute to the non-invasive evaluation of the toxic effects of industrial pollutants on bioaccumulation and aquatic life.
Collapse
Affiliation(s)
- Alexander Machikhin
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Guryleva
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anirban Chakraborty
- Department of Molecular Genetics & Cancer, Nitte University Centre for Science Education & Research, Nitte (Deemed to be University), Mangalore, India
| | - Demid Khokhlov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | - Leonid Shuman
- Tyumen State University, Laboratory AquaBioSafe, Tyumen, Russia
| | - Valeriya Bukova
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | | | - Alexander Burlakov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Donaghy R, Shinskey J, Tsakiris M. Maternal interoceptive focus is associated with greater reported engagement in mother-infant stroking and rocking. PLoS One 2024; 19:e0302791. [PMID: 38900756 PMCID: PMC11189230 DOI: 10.1371/journal.pone.0302791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 06/22/2024] Open
Abstract
Parental caregiving during infancy is primarily aimed at the regulation of infants' physiological and emotional states. Recent models of embodied cognition propose that interoception, i.e., the perception of internal bodily states, may influence the quality and quantity of parent-infant caregiving. Yet, empirical investigations into this relationship remain scarce. Across two online studies of mothers with 6- to 18-month-old infants during Covid-19 lockdowns, we examined whether mothers' self-reported engagement in stroking and rocking their infant was related to self-reported interoceptive abilities. Additional measures included retrospective accounts of pregnancy and postnatal body satisfaction, and mothers' reports of their infant's understanding of vocabulary relating to body parts. In Study 1 (N = 151) and Study 2 (N = 111), mothers reported their engagement in caregiving behaviours and their tendency to focus on and regulate bodily states. In a subsample from Study 2 (N = 49), we also obtained an objective measure of cardiac interoceptive accuracy using an online heartbeat counting task. Across both studies, the tendency to focus on and regulate interoceptive states was associated with greater mother-infant stroking and rocking. Conversely, we found no evidence for a relationship between objective interoceptive accuracy and caregiving. The findings suggest that interoception may play a role in parental engagement in stroking and rocking, however, in-person dyadic studies are warranted to further investigate this relationship.
Collapse
Affiliation(s)
- Rosie Donaghy
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
| | - Jeanne Shinskey
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
| | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
- Centre for the Politics of Feelings, Senate House, School of Advanced Study, University of London, Egham, London, United Kingdom
| |
Collapse
|
6
|
Xing X, Hong J, Alastruey J, Long X, Liu H, Dong WF. Robust arterial compliance estimation with Katz's fractal dimension of photoplethysmography. Front Physiol 2024; 15:1398904. [PMID: 38915780 PMCID: PMC11194390 DOI: 10.3389/fphys.2024.1398904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Arterial compliance (AC) plays a crucial role in vascular aging and cardiovascular disease. The ability to continuously estimate aortic AC or its surrogate, pulse pressure (PP), through wearable devices is highly desirable, given its strong association with daily activities. While the single-site photoplethysmography (PPG)-derived arterial stiffness indices show reasonable correlations with AC, they are susceptible to noise interference, limiting their practical use. To overcome this challenge, our study introduces a noise-resistant indicator of AC: Katz's fractal dimension (KFD) of PPG signals. We showed that KFD integrated the signal complexity arising from compliance changes across a cardiac cycle and vascular structural complexity, thereby decreasing its dependence on individual characteristic points. To assess its capability in measuring AC, we conducted a comprehensive evaluation using both in silico studies with 4374 virtual human data and real-world measurements. In the virtual human studies, KFD demonstrated a strong correlation with AC (r = 0.75), which only experienced a slight decrease to 0.66 at a signal-to-noise ratio of 15dB, surpassing the best PPG-morphology-derived AC measure (r = 0.41) under the same noise condition. In addition, we observed that KFD's sensitivity to AC varied based on the individual's hemodynamic status, which may further enhance the accuracy of AC estimations. These in silico findings were supported by real-world measurements encompassing diverse health conditions. In conclusion, our study suggests that PPG-derived KFD has the potential to continuously and reliably monitor arterial compliance, enabling unobtrusive and wearable assessment of cardiovascular health.
Collapse
Affiliation(s)
- Xiaoman Xing
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jingyuan Hong
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Jordi Alastruey
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Haipeng Liu
- Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Wen-Fei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
7
|
Mamontov OV, Zaytsev VV, Kamshilin AA. Plethysmographic assessment of vasomotor response in patients with congestive heart failure before and after heart transplantation. BIOMEDICAL OPTICS EXPRESS 2024; 15:687-699. [PMID: 38404348 PMCID: PMC10890858 DOI: 10.1364/boe.511925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 02/27/2024]
Abstract
Sympathetic vasomotor response is the most important part of the autonomic regulation of circulation, which determines the quality of life. It is disrupted in a number of diseases, particularly in patients with congestive heart failure (CHF). However, experimental evaluation of reflex vasoconstriction is still a non-trivial task due to the limited set of available technologies. The aim of this study is to assess the dynamics of vasomotor response of forearm vessels due to both the deactivation of cardiopulmonary baroreceptors and cold stress using a newly designed imaging plethysmograph (IPG) and compare its performance with classical air plethysmograph (APG). In both vasoconstriction tests, vasomotor response was assessed as a change in the blood flow rate due to venous occlusion compared to that at rest. Both tests were carried out in 45 CHF patients both before and after heart transplantation, as well as in 11 age-matched healthy volunteers. Prior to transplantation, both APG and IPG showed a significant decrease in vasomotor response in CHF patients due to both tests as compared to the control group. After heart transplantation, an increase in vasomotor reactivity was revealed in both vasoconstriction tests. We have found that both plethysmographic techniques provide correlated assessment of changes in the vasomotor response. In addition, we have found that IPG is more resistant to artifacts than APG. The new IPG method has the advantage of measuring blood flow in a contactless manner, making it very promising for experimental evaluation of vasomotor response in clinical conditions.
Collapse
Affiliation(s)
- Oleg V. Mamontov
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
- Department of Departmental Therapy, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Valeriy V. Zaytsev
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Department of Circulation Physiology, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Alexei A. Kamshilin
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
8
|
Evdochim L, Chiriac E, Avram M, Dobrescu L, Dobrescu D, Stanciu S, Halichidis S. Red Blood Cells' Area Deformation as the Origin of the Photoplethysmography Signal. SENSORS (BASEL, SWITZERLAND) 2023; 23:9515. [PMID: 38067889 PMCID: PMC10708758 DOI: 10.3390/s23239515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
The origin of the photoplethysmography (PPG) signal is a debatable topic, despite plausible models being addressed. One concern revolves around the correlation between the mechanical waveform's pulsatile nature and the associated biomechanism. The interface between these domains requires a clear mathematical or physical model that can explain physiological behavior. Describing the correct origin of the recorded optical waveform not only benefits the development of the next generation of biosensors but also defines novel health markers. In this study, the assumption of a pulsatile nature is based on the mechanism of blood microcirculation. At this level, two interconnected phenomena occur: variation in blood flow velocity through the capillary network and red blood cell (RBC) shape deformation. The latter effect was qualitatively investigated in synthetic capillaries to assess the experimental data needed for PPG model development. Erythrocytes passed through 10 µm and 6 µm microchannel widths with imposed velocities between 50 µm/s and 2000 µm/s, according to real scenarios. As a result, the length and area deformation of RBCs followed a logarithmic law function of the achieved traveling speeds. Applying radiometric expertise on top, mechanical-optical insights are obtained regarding PPG's pulsatile nature. The mathematical equations derived from experimental data correlate microcirculation physiologic with waveform behavior at a high confidence level. The transfer function between the biomechanics and the optical signal is primarily influenced by the vasomotor state, capillary network orientation, concentration, and deformation performance of erythrocytes.
Collapse
Affiliation(s)
- Lucian Evdochim
- Department of Electronic Devices, Circuits, and Architectures, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.D.); (D.D.)
| | - Eugen Chiriac
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 077190 Voluntari, Romania; (E.C.); (M.A.)
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 077190 Voluntari, Romania; (E.C.); (M.A.)
| | - Lidia Dobrescu
- Department of Electronic Devices, Circuits, and Architectures, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.D.); (D.D.)
| | - Dragoș Dobrescu
- Department of Electronic Devices, Circuits, and Architectures, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.D.); (D.D.)
| | - Silviu Stanciu
- Laboratory of Cardiovascular Noninvasive Investigations, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Stela Halichidis
- Department of Clinical Medical Disciplines, Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania;
| |
Collapse
|
9
|
Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, Clifford GD, Clifton DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, Kyriacou PA, Laguna P, Lázaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol Meas 2023; 44:111001. [PMID: 37494945 PMCID: PMC10686289 DOI: 10.1088/1361-6579/acead2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Stephanie Baker
- College of Science and Engineering, James Cook University, Cairns, 4878 Queensland, Australia
| | - Joachim A Behar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guandong, People’s Republic of China
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harry J Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Cheng Ding
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27708-0187, United States of America
- Duke Clinical Research Institute, Durham, NC 27705-3976, United States of America
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8008, Switzerland
| | - Munia Ferdoushi
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Daniel Franklin
- Institute of Biomedical Engineering, Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, M5G 1M1, Canada
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Md Farhad Hassan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Jussi Hernesniemi
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Computer Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Nan Ji
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
| | - Yasser Khan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Spyridon Kontaxis
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Ilkka Korhonen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Chungkeun Lee
- Digital Health Devices Division, Medical Device Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Jeremy Levy
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Faculty of Electrical and Computer Engineering, Technion Institute of Technology, Haifa, 3200003, Israel
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Chengyu Liu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Jing Liu
- Analog Devices Inc, San Jose, CA 95124, United States of America
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Danilo P Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vaidotas Marozas
- Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Biomedical Engineering Institute, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meir Nitzan
- Department of Physics/Electro-Optic Engineering, Lev Academic Center, 91160 Jerusalem, Israel
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, 4200-465, Portugal
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | | | - Jessica C Ramella-Roman
- Department of Biomedical Engineering and Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33174, United States of America
| | - Harri Saarinen
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Md Mobashir Hasan Shandhi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Hangsik Shin
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Toshiyo Tamura
- Future Robotics Organization, Waseda University, Tokyo, 1698050, Japan
| | - Antti Vehkaoja
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- PulseOn Ltd, Espoo, 02150, Finland
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Yuan-Ting Zhang
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People’s Republic of China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
| | - Tingting Zhu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
10
|
Warnecke JM, Lasenby J, Deserno TM. Robust in-vehicle heartbeat detection using multimodal signal fusion. Sci Rep 2023; 13:20864. [PMID: 38012195 PMCID: PMC10682004 DOI: 10.1038/s41598-023-47484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
A medical check-up during driving enables the early detection of diseases. Heartbeat irregularities indicate possible cardiovascular diseases, which can be determined with continuous health monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue (RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: city, highway, and countryside. We combine early, signal-based late, and sensor-based late fusion with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the final heartbeats that we compare to the reference ECG. Based on the measured and the reference heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for in-vehicle heartbeat monitoring.
Collapse
Affiliation(s)
- Joana M Warnecke
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106, Brunswick, Germany.
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
| | - Joan Lasenby
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Thomas M Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106, Brunswick, Germany
| |
Collapse
|
11
|
Ryu J, Ryu H, Liang S, Hong S, Lian Y, Zheng Z. Spatial averaging method based on adaptive weight for imaging photoplethysmography. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:085003. [PMID: 37655213 PMCID: PMC10466051 DOI: 10.1117/1.jbo.28.8.085003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Significance Imaging photoplethysmography (iPPG) is a non-contact measuring technology for several physiological parameters reflecting personal health status without a special sensor. However, the pulse signal obtained using the iPPG usually is contaminated by various noises, and the intensity of the interesting pulse signal is relatively weak compared to the noises, emphasizing the necessity of obtaining high-quality pulse signals to measure physiological parameters correctly. Aim Various regions of the face harbor distinct pulse information. We propose a spatial averaging method based on adaptive weights, which can obtain high-quality pulse signals by applying different weights to facial sub-regions of interest (sub-ROIs; sROIs). Approach First, the facial ROI is divided into seven sROIs and the coarse heart rate (HR) is calculated from them. Next, the signal-to-noise ratio (SNR) of the raw signal obtained from each sROI is calculated using the coarse HR, and then a high-quality pulse signal is obtained by assigning positive or negative weights to each sROI based on the SNRs. Results We compare our method with others through the quality analysis of the obtained pulse signals using the self-collected database and the public database PURE. The comparison results show that the proposed method can provide a better pulse signal compared to other methods under various resolutions and states. Conclusions This proposed method can obtain the pulse signal with better quality, which is helpful to accurately measure physiological parameters, such as HR and HR variability.
Collapse
Affiliation(s)
- JongSong Ryu
- Northeast Normal University, School of Physics, Changchun, China
- University of Science, Faculty of Physics, Pyongyang, Democratic People’s Republic of Korea
| | - HyonSam Ryu
- State Academy of Sciences, Institute of Mechanical Engineering, Pyongyang, Democratic People’s Republic of Korea
| | - Shili Liang
- Northeast Normal University, School of Physics, Changchun, China
| | - SunChol Hong
- Academy of Ultramodern Science, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea
| | - Yueqi Lian
- Northeast Normal University, School of Physics, Changchun, China
| | - Zong Zheng
- Northeast Normal University, School of Physics, Changchun, China
| |
Collapse
|
12
|
Sokolov AY, Volynsky MA, Potapenko AV, Iurkova PM, Zaytsev VV, Nippolainen E, Kamshilin AA. Duality in response of intracranial vessels to nitroglycerin revealed in rats by imaging photoplethysmography. Sci Rep 2023; 13:11928. [PMID: 37488233 PMCID: PMC10366118 DOI: 10.1038/s41598-023-39171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Among numerous approaches to the study of migraine, the nitroglycerin (NTG) model occupies a prominent place, but there is relatively insufficient information about how NTG affects intracranial vessels. In this study we aim to assess the effects of NTG on blood-flow parameters in meningeal vessels measured by imaging photoplethysmography (iPPG) in animal experiments. An amplitude of the pulsatile component (APC) of iPPG waveform was assessed before and within 2.5 h after the NTG administration in saline (n = 13) or sumatriptan (n = 12) pretreatment anesthetized rats in conditions of a closed cranial window. In animals of both groups, NTG caused a steady decrease in blood pressure. In 7 rats of the saline group, NTG resulted in progressive increase in APC, whereas decrease in APC was observed in other 6 rats. In all animals in the sumatriptan group, NTG administration was accompanied exclusively by an increase in APC. Diametrically opposite changes in APC due to NTG indicate a dual effect of this drug on meningeal vasomotor activity. Sumatriptan acts as a synergist of the NTG vasodilating action. The results we obtained contribute to understanding the interaction of vasoactive drugs in the study of the headache pathophysiology and methods of its therapy.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A Volynsky
- School of Physics and Engineering, ITMO University, Saint Petersburg, Russia
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Anastasiia V Potapenko
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Biochemistry, Medical Genetic Center, Saint Petersburg, Russia
| | - Polina M Iurkova
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
- Faculty of General Therapy, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Valeriy V Zaytsev
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ervin Nippolainen
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alexei A Kamshilin
- Laboratory of Functional Materials and Systems for Photonics, Institute of Automation and Control Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
13
|
Tiwari A, Gray G, Bondi P, Mahnam A, Falk TH. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features. SENSORS (BASEL, SWITZERLAND) 2023; 23:5606. [PMID: 37420772 DOI: 10.3390/s23125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Photoplethysmography (PPG) is used to measure blood volume changes in the microvascular bed of tissue. Information about these changes along time can be used for estimation of various physiological parameters, such as heart rate variability, arterial stiffness, and blood pressure, to name a few. As a result, PPG has become a popular biological modality and is widely used in wearable health devices. However, accurate measurement of various physiological parameters requires good-quality PPG signals. Therefore, various signal quality indexes (SQIs) for PPG signals have been proposed. These metrics have usually been based on statistical, frequency, and/or template analyses. The modulation spectrogram representation, however, captures the second-order periodicities of a signal and has been shown to provide useful quality cues for electrocardiograms and speech signals. In this work, we propose a new PPG quality metric based on properties of the modulation spectrum. The proposed metric is tested using data collected from subjects while they performed various activity tasks contaminating the PPG signals. Experiments on this multi-wavelength PPG dataset show the combination of proposed and benchmark measures significantly outperforming several benchmark SQIs with improvements of 21.3% BACC (balanced accuracy) for green, 21.6% BACC for red, and 19.0% BACC for infrared wavelengths, respectively, for PPG quality detection tasks. The proposed metrics also generalize for cross-wavelength PPG quality detection tasks.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada
- Myant Inc., Toronto, ON M9W 5Z9, Canada
| | | | | | | | - Tiago H Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada
| |
Collapse
|
14
|
Fleischhauer V, Bruhn J, Rasche S, Zaunseder S. Photoplethysmography upon cold stress-impact of measurement site and acquisition mode. Front Physiol 2023; 14:1127624. [PMID: 37324389 PMCID: PMC10267461 DOI: 10.3389/fphys.2023.1127624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Photoplethysmography (PPG) allows various statements about the physiological state. It supports multiple recording setups, i.e., application to various body sites and different acquisition modes, rendering the technique a versatile tool for various situations. Owing to anatomical, physiological and metrological factors, PPG signals differ with the actual setup. Research on such differences can deepen the understanding of prevailing physiological mechanisms and path the way towards improved or novel methods for PPG analysis. The presented work systematically investigates the impact of the cold pressor test (CPT), i.e., a painful stimulus, on the morphology of PPG signals considering different recording setups. Our investigation compares contact PPG recorded at the finger, contact PPG recorded at the earlobe and imaging PPG (iPPG), i.e., non-contact PPG, recorded at the face. The study bases on own experimental data from 39 healthy volunteers. We derived for each recording setup four common morphological PPG features from three intervals around CPT. For the same intervals, we derived blood pressure and heart rate as reference. To assess differences between the intervals, we used repeated measures ANOVA together with paired t-tests for each feature and we calculated Hedges' g to quantify effect sizes. Our analyses show a distinct impact of CPT. As expected, blood pressure shows a highly significant and persistent increase. Independently of the recording setup, all PPG features show significant changes upon CPT as well. However, there are marked differences between recording setups. Effect sizes generally differ with the finger PPG showing the strongest response. Moreover, one feature (pulse width at half amplitude) shows an inverse behavior in finger PPG and head PPG (earlobe PPG and iPPG). In addition, iPPG features behave partially different from contact PPG features as they tend to return to baseline values while contact PPG features remain altered. Our findings underline the importance of recording setup and physiological as well as metrological differences that relate to the setups. The actual setup must be considered in order to properly interpret features and use PPG. The existence of differences between recording setups and a deepened knowledge on such differences might open up novel diagnostic methods in the future.
Collapse
Affiliation(s)
- Vincent Fleischhauer
- Laboratory for Advanced Measurements and Biomedical Data Analysis, Faculty of Information Technology, FH Dortmund, Dortmund, Germany
| | - Jan Bruhn
- Laboratory for Advanced Measurements and Biomedical Data Analysis, Faculty of Information Technology, FH Dortmund, Dortmund, Germany
| | - Stefan Rasche
- Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sebastian Zaunseder
- Laboratory for Advanced Measurements and Biomedical Data Analysis, Faculty of Information Technology, FH Dortmund, Dortmund, Germany
- Professorship for Diagnostic Sensing, Faculty of Applied Computer Science, University Augsburg, Augsburg, Germany
| |
Collapse
|
15
|
Boiko A, Martínez Madrid N, Seepold R. Contactless Technologies, Sensors, and Systems for Cardiac and Respiratory Measurement during Sleep: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115038. [PMID: 37299762 DOI: 10.3390/s23115038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis-polysomnography (PSG)-is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research.
Collapse
Affiliation(s)
- Andrei Boiko
- Ubiquitous Computing Laboratory, Department of Computer Science, HTWG Konstanz-University of Applied Sciences, Alfred-Wachtel-Str. 8, 78462 Konstanz, Germany
| | - Natividad Martínez Madrid
- Internet of Things Laboratory, School of Informatics, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Ralf Seepold
- Ubiquitous Computing Laboratory, Department of Computer Science, HTWG Konstanz-University of Applied Sciences, Alfred-Wachtel-Str. 8, 78462 Konstanz, Germany
| |
Collapse
|
16
|
Rovas G, Bikia V, Stergiopulos N. Quantification of the Phenomena Affecting Reflective Arterial Photoplethysmography. Bioengineering (Basel) 2023; 10:bioengineering10040460. [PMID: 37106647 PMCID: PMC10136360 DOI: 10.3390/bioengineering10040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Photoplethysmography (PPG) is a widely emerging method to assess vascular health in humans. The origins of the signal of reflective PPG on peripheral arteries have not been thoroughly investigated. We aimed to identify and quantify the optical and biomechanical processes that influence the reflective PPG signal. We developed a theoretical model to describe the dependence of reflected light on the pressure, flow rate, and the hemorheological properties of erythrocytes. To verify the theory, we designed a silicone model of a human radial artery, inserted it in a mock circulatory circuit filled with porcine blood, and imposed static and pulsatile flow conditions. We found a positive, linear relationship between the pressure and the PPG and a negative, non-linear relationship, of comparable magnitude, between the flow and the PPG. Additionally, we quantified the effects of the erythrocyte disorientation and aggregation. The theoretical model based on pressure and flow rate yielded more accurate predictions, compared to the model using pressure alone. Our results indicate that the PPG waveform is not a suitable surrogate for intraluminal pressure and that flow rate significantly affects PPG. Further validation of the proposed methodology in vivo could enable the non-invasive estimation of arterial pressure from PPG and increase the accuracy of health-monitoring devices.
Collapse
Affiliation(s)
- Georgios Rovas
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Vasiliki Bikia
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Dominguez CT, Martinelli MB, Bachmann L, Cardoso GC. Arterial pulsation modulates the optical attenuation coefficient of skin. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:C87-C92. [PMID: 37132976 DOI: 10.1364/josaa.482939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoplethysmographic (PPG) signals arise from the modulation of light reflectivity on the skin due to changes of physiological origin. Imaging plethysmography (iPPG) is a video-based PPG method that can remotely monitor vital signs in a non-invasive manner. iPPG signals result from skin reflectivity modulation. The origin of such reflectivity modulation is still a subject of debate. Here, we have used optical coherence tomography (OCT) imaging to find whether iPPG signals may result from skin optical properties being directly or indirectly modulated by arterial transmural pressure propagation. The light intensity across the tissue was modeled through a simple exponential decay (Beer-Lambert law) to analyze in vivo the modulation of the optical attenuation coefficient of the skin by arterial pulsation. The OCT transversal images were acquired from a forearm of three subjects in a pilot study. The results show that the optical attenuation coefficient of skin changes at the same frequency as the arterial pulsation due to transmural pressure propagation (local ballistographic effect), but we cannot discard the contribution of global ballistographic effects.
Collapse
|
18
|
Schraven SP, Kossack B, Strüder D, Jung M, Skopnik L, Gross J, Hilsmann A, Eisert P, Mlynski R, Wisotzky EL. Continuous intraoperative perfusion monitoring of free microvascular anastomosed fasciocutaneous flaps using remote photoplethysmography. Sci Rep 2023; 13:1532. [PMID: 36707664 PMCID: PMC9883527 DOI: 10.1038/s41598-023-28277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Flap loss through limited perfusion remains a major complication in reconstructive surgery. Continuous monitoring of perfusion will facilitate early detection of insufficient perfusion. Remote or imaging photoplethysmography (rPPG/iPPG) as a non-contact, non-ionizing, and non-invasive monitoring technique provides objective and reproducible information on physiological parameters. The aim of this study is to establish rPPG for intra- and postoperative monitoring of flap perfusion in patients undergoing reconstruction with free fasciocutaneous flaps (FFCF). We developed a monitoring algorithm for flap perfusion, which was evaluated in 15 patients. For 14 patients, ischemia of the FFCF in the forearm and successful reperfusion of the implanted FFCF was quantified based on the local signal. One FFCF showed no perfusion after reperfusion and devitalized in the course. Intraoperative monitoring of perfusion with rPPG provides objective and reproducible results. Therefore, rPPG is a promising technology for standard flap perfusion monitoring on low costs without the need for additional monitoring devices.
Collapse
Affiliation(s)
- Sebastian P Schraven
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany.
| | - Benjamin Kossack
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany.
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Maximillian Jung
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Lotte Skopnik
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Justus Gross
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Anna Hilsmann
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany
| | - Peter Eisert
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany
- Visual Computing, Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Robert Mlynski
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany
| | - Eric L Wisotzky
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Doberaner Straße 137-139, 18057, Rostock, Germany.
- Vision and Imaging Technologies, Fraunhofer Heinrich Hertz Institute HHI, Einsteinufer 37, 10587, Berlin, Germany.
- Visual Computing, Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
19
|
Volkov IY, Sagaidachnyi AA, Fomin AV. Photoplethysmographic Imaging of Hemodynamics and Two-Dimensional Oximetry. OPTICS AND SPECTROSCOPY 2022; 130:452-469. [PMID: 36466081 PMCID: PMC9708136 DOI: 10.1134/s0030400x22080057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 06/17/2023]
Abstract
The review of recent papers devoted to actively developing methods of photoplethysmographic imaging (the PPGI) of blood volume pulsations in vessels and non-contact two-dimensional oximetry on the surface of a human body has been carried out. The physical fundamentals and technical aspects of the PPGI and oximetry have been considered. The manifold of the physiological parameters available for the analysis by the PPGI method has been shown. The prospects of the PPGI technology have been discussed. The possibilities of non-contact determination of blood oxygen saturation SpO2 (pulse saturation O2) have been described. The relevance of remote determination of the level of oxygenation in connection with the spread of a new coronavirus infection SARS-CoV-2 (COVID-19) has been emphasized. Most of the works under consideration cover the period 2010-2021.
Collapse
Affiliation(s)
| | | | - A. V. Fomin
- Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
20
|
Jin J, Lu JQ, Chen C, Zhou R, Hu XH. Photoplethysmographic imaging and analysis of pulsatile pressure wave in palmar artery at 10 wavelengths. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:116004. [PMID: 36358007 PMCID: PMC9647835 DOI: 10.1117/1.jbo.27.11.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE As a noncontact method, imaging photoplethysmography (iPPG) may provide a powerful tool to measure pulsatile pressure wave (PPW) in superficial arteries and extract biomarkers for monitoring of artery wall stiffness. AIM We intend to develop a approach for extraction of the very weak cardiac component from iPPG data by identifying locations of strong PPW signals with optimized illumination wavelength and determining pulse wave velocity (PWV). APPROACH Monochromatic in vivo iPPG datasets have been acquired from left hands to investigate various algorithms for retrieval of PPW signals, distribution maps and waveforms, and their dependence on arterial location and wavelength. RESULTS A robust algorithm of pixelated independent component analysis (pICA) has been developed and combined with spatiotemporal filtering to retrieve PPW signals. Spatial distributions of PPW signals have been mapped in 10 wavelength bands from 445 to 940 nm and waveforms were analyzed at multiple locations near the palmar artery tree. At the wavelength of 850 nm selected for timing analysis, we determined PWV values from 12 healthy volunteers in a range of 0.5 to 5.8 m/s across the hand region from wrist to midpalm and fingertip. CONCLUSIONS These results demonstrate the potentials of the iPPG method based on pICA algorithm for translation into a monitoring tool to characterize wall stiffness of superficial artery by rapid and noncontact measurement of PWV and other biomarkers within 10 s.
Collapse
Affiliation(s)
- Jiahong Jin
- East Carolina University, Department of Physics, Greenville, North Carolina, United States
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, China
- Hunan Institute of Science and Technology, School of Physics and Electronic Science, Yueyang, China
| | - Jun Q. Lu
- East Carolina University, Department of Physics, Greenville, North Carolina, United States
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, China
| | - Cheng Chen
- East Carolina University, Department of Physics, Greenville, North Carolina, United States
| | - Ruihai Zhou
- University of North Carolina, Division of Cardiology, Department of Medicine, Chapel Hill, North Carolina, United States
| | - Xin-Hua Hu
- East Carolina University, Department of Physics, Greenville, North Carolina, United States
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, China
| |
Collapse
|
21
|
Knight S, Lipoth J, Namvari M, Gu C, Hedayati Ch. M, Syed-Abdul S, Spiteri RJ. The Accuracy of Wearable Photoplethysmography Sensors for Telehealth Monitoring: A Scoping Review. Telemed J E Health 2022. [DOI: 10.1089/tmj.2022.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sheida Knight
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica Lipoth
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mina Namvari
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Carol Gu
- Center for Bio-Integrated Electronics at Northwestern University, Evanston, Illinois, USA
| | | | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Raymond J. Spiteri
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Sarkar M, Assaad M. Noninvasive Non-Contact SpO 2 Monitoring Using an Integrated Polarization-Sensing CMOS Imaging Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:7796. [PMID: 36298147 PMCID: PMC9608125 DOI: 10.3390/s22207796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In the diagnosis and primary health care of an individual, estimation of the pulse rate and blood oxygen saturation (SpO2) is critical. The pulse rate and SpO2 are determined by methods including photoplethysmography (iPPG), light spectroscopy, and pulse oximetry. These devices need to be compact, non-contact, and noninvasive for real-time health monitoring. Reflection-based iPPG is becoming popular as it allows non-contact estimation of the heart rate and SpO2. Most iPPG methods capture temporal data and form complex computations, and thus real-time measurements and spatial visualization are difficult. METHOD In this research work, reflective mode polarized imaging-based iPPG is proposed. For polarization imaging, a custom image sensor with wire grid polarizers on each pixel is designed. Each pixel has a wire grid of varying transmission axes, allowing phase detection of the incoming light. The phase information of the backscattered light from the fingertips of 12 healthy volunteers was recorded in both the resting as well as the excited states. These data were then processed using MATLAB 2021b software. RESULTS The phase information provides quantitative information on the reflection from the superficial and deep layers of skin. The ratio of deep to superficial layer backscattered phase information is shown to be directly correlated and linearly increasing with an increase in the SpO2 and heart rate. CONCLUSIONS The phase-based measurements help to monitor the changes in the resting and excited state heart rate and SpO2 in real time. Furthermore, the use of the ratio of phase information helps to make the measurements independent of the individual skin traits and thus increases the accuracy of the measurements. The proposed iPPG works in ambient light, relaxing the instrumentation requirement and helping the system to be compact and portable.
Collapse
Affiliation(s)
- Mukul Sarkar
- Electrical Engineering Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Maher Assaad
- Department of Electrical and Computer Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
23
|
Botina-Monsalve D, Benezeth Y, Miteran J. Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network. Biomed Eng Online 2022; 21:69. [PMID: 36123747 PMCID: PMC9487135 DOI: 10.1186/s12938-022-01037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background Remote photoplethysmography (rPPG) is a technique developed to estimate heart rate using standard video cameras and ambient light. Due to the multiple sources of noise that deteriorate the quality of the signal, conventional filters such as the bandpass and wavelet-based filters are commonly used. However, after using conventional filters, some alterations remain, but interestingly an experienced eye can easily identify them. Results We studied a long short-term memory (LSTM) network in the rPPG filtering task to identify these alterations using many-to-one and many-to-many approaches. We used three public databases in intra-dataset and cross-dataset scenarios, along with different protocols to analyze the performance of the method. We demonstrate how the network can be easily trained with a set of 90 signals totaling around 45 min. On the other hand, we show the stability of the LSTM performance with six state-of-the-art rPPG methods. Conclusions This study demonstrates the superiority of the LSTM-based filter experimentally compared with conventional filters in an intra-dataset scenario. For example, we obtain on the VIPL database an MAE of 3.9 bpm, whereas conventional filtering improves performance on the same dataset from 10.3 bpm to 7.7 bpm. The cross-dataset approach presents a dependence in the network related to the average signal-to-noise ratio on the rPPG signals, where the closest signal-to-noise ratio values in the training and testing set the better. Moreover, it was demonstrated that a relatively small amount of data are sufficient to successfully train the network and outperform the results obtained by classical filters. More precisely, we have shown that about 45 min of rPPG signal could be sufficient to train an effective LSTM deep-filter. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-022-01037-z.
Collapse
Affiliation(s)
| | | | - Johel Miteran
- Univ. Bourgogne Franche-Comté, ImViA EA7535, Dijon, France
| |
Collapse
|
24
|
Kamshilin AA, Zaytsev VV, Belaventseva AV, Podolyan NP, Volynsky MA, Sakovskaia AV, Romashko RV, Mamontov OV. Novel Method to Assess Endothelial Function via Monitoring of Perfusion Response to Local Heating by Imaging Photoplethysmography. SENSORS (BASEL, SWITZERLAND) 2022; 22:5727. [PMID: 35957284 PMCID: PMC9370951 DOI: 10.3390/s22155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Endothelial dysfunction is one of the most important markers of the risk of cardiovascular complications. This study is aimed to demonstrate the feasibility of imaging photoplethysmography to assess microcirculation response to local heating in order to develop a novel technology for assessing endothelial function. As a measure of vasodilation, we used the relative dynamics of the pulsatile component of the photoplethysmographic waveform, which was assessed in a large area of the outer surface of the middle third of the subject's forearm. The perfusion response was evaluated in six healthy volunteers during a test with local skin heating up to 40-42 °C and subsequent relaxation. The proposed method is featured by accurate control of the parameters affecting the microcirculation during the prolonged study. It was found that in response to local hyperthermia, a multiple increase in the pulsation component, which has a biphasic character, was observed. The amplitude of the first phase of the perfusion reaction depends on both the initial skin temperature and the difference between the basal and heating temperatures. The proposed method allows the assessment of a reproducible perfusion increase in response to hyperthermia developed due to humoral factors associated with the endothelium, thus allowing detection of its dysfunction.
Collapse
Affiliation(s)
- Alexei A. Kamshilin
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Valeriy V. Zaytsev
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Anzhelika V. Belaventseva
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Natalia P. Podolyan
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Maxim A. Volynsky
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Anastasiia V. Sakovskaia
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Institute of Therapy and Instrumental Diagnostics, Pacific State Medical University, Vladivostok 690002, Russia
| | - Roman V. Romashko
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Oleg V. Mamontov
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
25
|
Kashchenko VA, Zaytsev VV, Ratnikov VA, Kamshilin AA. Intraoperative visualization and quantitative assessment of tissue perfusion by imaging photoplethysmography: comparison with ICG fluorescence angiography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3954-3966. [PMID: 35991934 PMCID: PMC9352280 DOI: 10.1364/boe.462694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Intraoperative monitoring of tissue perfusion is of great importance for optimizing surgery and reducing postoperative complications. To date, there is no standard procedure for assessing blood circulation in routine clinical practice. Over the past decade, indocyanine green (ICG) fluorescence angiography is most commonly used for intraoperative perfusion evaluation. Imaging photoplethysmography (iPPG) potentially enables contactless assessment of the blood supply to organs. However, no strong evidence of this potential has been provided so far. Here we report results of a comparative assessment of tissue perfusion obtained using custom-made iPPG and commercial ICG-fluorescence systems during eight different gastrointestinal surgeries. Both systems allow mapping the blood-supply distribution over organs. It was demonstrated for the first time that the quantitative assessment of blood perfusion by iPPG is in good agreement with that obtained by ICG-fluorescence imaging in all surgical cases under study. iPPG can become an objective quantitative monitoring system for tissue perfusion in the operating room due to its simplicity, low cost and no need for any agent injections.
Collapse
Affiliation(s)
- Victor A. Kashchenko
- First Surgical Department, North-Western District Scientific and Clinical Center named after L.G. Sokolov of the Federal Medical and Biological Agency, 4 Kultury Pr., St. Petersburg 194291, Russia
- Department of Faculty Surgery, Saint Petersburg State University, 8A 21st Vasilyevskogo Ostrova Line, Saint-Petersburg 199106, Russia
| | - Valeriy V. Zaytsev
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of the Far-Eastern Branch of the Russian Academy of Sciences, 5 Radio str., Vladivostok 690041, Russia
| | - Vyacheslav A. Ratnikov
- Department of Radiology, North-Western District Scientific and Clinical Center named after L.G. Sokolov of the Federal Medical and Biological Agency, 4 Kultury Pr., St. Petersburg 194291, Russia
- Institute of Advanced Medical Technologies, Saint Petersburg State University, 8A 21st Vasilyevskogo Ostrova Line, Saint-Petersburg 199106, Russia
| | - Alexei A. Kamshilin
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control Processes of the Far-Eastern Branch of the Russian Academy of Sciences, 5 Radio str., Vladivostok 690041, Russia
| |
Collapse
|
26
|
Thomas KN, Gibbons TD, Campbell HA, Cotter JD, van Rij AM. Pulsatile flow in venous perforators of the lower limb. Am J Physiol Regul Integr Comp Physiol 2022; 323:R59-R67. [PMID: 35503236 DOI: 10.1152/ajpregu.00013.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Teaching traditionally asserts that the arterial pressure pulse is dampened across the capillary bed to the extent that pulsatility is non-existent in the venous circulation of the lower limbs. Herein, we present evidence of transmission of arterial pulsations across the capillary network into perforator veins in the lower limbs of healthy, heat-stressed humans. Perforator veins are connections from the superficial veins that drain into the deep veins. When assessed using ultrasound at rest, they infrequently demonstrate flow and a pulsatile flow waveform is not described. We investigated perforator vein pulsatility in ten young, healthy volunteers who underwent passive heating by +2 ºC deep body temperature via a hot-water-perfused suit, and five who also underwent active heating by +2 ºC via low-intensity cycling while wearing the hot-water-perfused suit. At +0.5 ºC increments in temperature, blood velocity in an ankle perforator vein was measured using duplex ultrasound. In all perforators with heating, sustained flow was demonstrated, with a pulsatile waveform that was synchronous with the cardiac cycle. The maximum velocity was 29 ± 14 cm/s with passive heating and approximately half with active heating (P=0.04). The small veins of the skin at the ankle also demonstrated increased perfusion with pulsatility, seen with low-velocity microvascular imaging technology. We consider explanations for this pulsatility and conclude that it is propagated from the arterial inflow through the skin microcirculation as a result of increased dilatation and flow volume, and that this a normal response to increased skin blood flow.
Collapse
Affiliation(s)
- Kate N Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Travis D Gibbons
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Holly A Campbell
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Andre Marie van Rij
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
A new principle of pulse detection based on terahertz wave plethysmography. Sci Rep 2022; 12:6347. [PMID: 35428772 PMCID: PMC9012849 DOI: 10.1038/s41598-022-09801-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study presents findings in the terahertz (THz) frequency spectrum for non-contact cardiac sensing applications. Cardiac pulse information is simultaneously extracted using THz waves based on the established principles in electronics and optics. The first fundamental principle is micro-Doppler motion effect. This motion based method, primarily using coherent phase information from the radar receiver, has been widely exploited in microwave frequency bands and has recently found popularity in millimeter waves (mmWave) for breathe rate and heart rate detection. The second fundamental principle is reflectance based optical measurement using infrared or visible light. The variation in the light reflection is proportional to the volumetric change of the heart, often referred as photoplethysmography (PPG). Herein, we introduce the concept of terahertz-wave-plethysmography (TPG), which detects blood volume changes in the upper dermis tissue layer by measuring the reflectance of THz waves, similar to the existing remote PPG (rPPG) principle. The TPG principle is justified by scientific deduction, electromagnetic wave simulations and carefully designed experimental demonstrations. Additionally, pulse measurements from various peripheral body parts of interest (BOI), palm, inner elbow, temple, fingertip and forehead, are demonstrated using a wideband THz sensing system developed by the Terahertz Electronics Lab at Arizona State University, Tempe. Among the BOIs under test, it is found that the measurements from forehead BOI gives the best accuracy with mean heart rate (HR) estimation error 1.51 beats per minute (BPM) and standard deviation 1.08 BPM. The results validate the feasibility of TPG for direct pulse monitoring. A comparative study on pulse sensitivity is conducted between TPG and rPPG. The results indicate that the TPG contains more pulsatile information from the forehead BOI than that in the rPPG signals in regular office lighting condition and thus generate better heart rate estimation statistic in the form of empirical cumulative distribution function of HR estimation error. Last but not least, TPG penetrability test for covered skin is demonstrated using two types of garment materials commonly used in daily life.
Collapse
|
28
|
Borik S, Lyra S, Perlitz V, Keller M, Leonhardt S, Blazek V. On the spatial phase distribution of cutaneous low-frequency perfusion oscillations. Sci Rep 2022; 12:5997. [PMID: 35397640 PMCID: PMC8994784 DOI: 10.1038/s41598-022-09762-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Distributed cutaneous tissue blood volume oscillations contain information on autonomic nervous system (ANS) regulation of cardiorespiratory activity as well as dominating thermoregulation. ANS associated with low-frequency oscillations can be quantified in terms of frequencies, amplitudes, and phase shifts. The relative order between these faculties may be disturbed by conditions colloquially termed ‘stress’. Photoplethysmography imaging, an optical non-invasive diagnostic technique provides information on cutaneous tissue perfusion in the temporal and spatial domains. Using the cold pressure test (CPT) in thirteen healthy volunteers as a well-studied experimental intervention, we present a method for evaluating phase shifts in low- and intermediate frequency bands in forehead cutaneous perfusion mapping. Phase shift changes were analysed in low- and intermediate frequency ranges from 0.05 Hz to 0.18 Hz. We observed that time waveforms increasingly desynchronised in various areas of the scanned area throughout measurements. An increase of IM band phase desynchronization observed throughout measurements was comparable in experimental and control group, suggesting a time effect possibly due to overshooting the optimal relaxation duration. CPT triggered an increase in the number of points phase-shifted to the reference that was specific to the low frequency range for phase-shift thresholds defined as π/4, 3π/8, and π/2 rad, respectively. Phase shifts in forehead blood oscillations may infer changes of vascular tone due to activity of various neural systems. We present an innovative method for the phase shift analysis of cutaneous tissue perfusion that appears promising to assess ANS change processes related to physical or psychological stress. More comprehensive studies are needed to further investigate the reliability and physiological significance of findings.
Collapse
Affiliation(s)
- Stefan Borik
- Department of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia.
| | - Simon Lyra
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Steffen Leonhardt
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Vladimir Blazek
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,The Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
29
|
Burton T, Saiko G, Douplik A. Towards Development of Specular Reflection Vascular Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:2830. [PMID: 35458815 PMCID: PMC9032810 DOI: 10.3390/s22082830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Specular reflection from tissue is typically considered as undesirable, and managed through device design. However, we believe that specular reflection is an untapped light-tissue interaction, which can be used for imaging subcutaneous blood flow. To illustrate the concept of subcutaneous blood flow visualization using specular reflection from the skin, we have developed a ray tracing for the neck and identified conditions under which useful data can be collected. Based on our model, we have developed a prototype Specular Reflection Vascular Imaging (SRVI) device and demonstrated its feasibility by imaging major neck vessels in a case study. The system consists of a video camera that captures a video from a target area illuminated by a rectangular LED source. We extracted the SRVI signal from 5 × 5 pixels areas (local SRVI signal). The correlations of local SRVIs to the SRVI extracted from all pixels in the target area do not appear to be randomly distributed, but rather form cohesive sub-regions with distinct boundaries. The obtained waveforms were compared with the ECG signal. Based on the time delays with respect to the ECG signal, as well as the waveforms themselves, the sub-regions can be attributed to the jugular vein and carotid artery. The proposed method, SRVI, has the potential to contribute to extraction of the diagnostic information that the jugular venous pulse can provide.
Collapse
Affiliation(s)
- Timothy Burton
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Gennadi Saiko
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Alexandre Douplik
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
- iBest, Keenan Research Centre of the LKS Knowledge Institute, St. Michael Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
30
|
Xu G, Dong L, Yuan J, Zhao Y, Liu M, Hui M, Zhao Y, Kong L. Rational selection of RGB channels for disease classification based on IPPG technology. BIOMEDICAL OPTICS EXPRESS 2022; 13:1820-1833. [PMID: 35519270 PMCID: PMC9045892 DOI: 10.1364/boe.451736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The green channel is usually selected as the optimal channel for vital signs monitoring in image photoplethysmography (IPPG) technology. However, some controversies arising from the different penetrability of skin tissue in visible light remain unresolved, i.e., making the optical and physiological information carried by the IPPG signals of the RGB channels inconsistent. This study clarifies that the optimal channels for different diseases are different when IPPG technology is used for disease classification. We further verified this conclusion in the classification model of heart disease and diabetes mellitus based on the random forest classification algorithm. The experimental results indicate that the green channel has a considerably excellent performance in classifying heart disease patients and the healthy with an average Accuracy value of 88.43% and an average F1score value of 93.72%. The optimal channel for classifying diabetes mellitus patients and the healthy is the red channel with an average Accuracy value of 82.12% and the average F1score value of 89.31%. Due to the limited penetration depth of the blue channel into the skin tissue, the blue channel is not as effective as the green and red channels as a disease classification channel. This investigation is of great significance to the development of IPPG technology and its application in disease classification.
Collapse
Affiliation(s)
- Ge Xu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Dong
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| | - Jing Yuan
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuejin Zhao
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| | - Ming Liu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| | - Mei Hui
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuebin Zhao
- Taiyuan Central Hospital, Taiyuan, 030009, China
| | - Lingqin Kong
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| |
Collapse
|
31
|
Fine I, Kaminsky A. Scattering-driven PPG signal model. BIOMEDICAL OPTICS EXPRESS 2022; 13:2286-2298. [PMID: 35519273 PMCID: PMC9045914 DOI: 10.1364/boe.451620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This article discusses the origin of PPG signals. Two plausible hypotheses are analyzed: the volumetric hypothesis and a model wherein the PPG is driven by the RBC aggregation process. To verify the model predictions, the PPG signals at the fingertip were measured. External pressure was applied to the fingertip, presumably reducing the blood flow. The results expressed in terms of gamma, used in pulse-oximetry, agree with the aggregation model. In addition, the oscillometric signal and the PPG signal amplitude were simultaneously measured in the fingertip. All of the experimental results favor the proposed aggregation mechanism as responsible the PPG signal.
Collapse
|
32
|
Guo C, Jiang Z, He H, Liao Y, Zhang D. Wrist pulse signal acquisition and analysis for disease diagnosis: A review. Comput Biol Med 2022; 143:105312. [PMID: 35203039 DOI: 10.1016/j.compbiomed.2022.105312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
Pulse diagnosis (PD) plays an indispensable role in healthcare in China, India, Korea, and other Orient countries. It requires considerable training and experience to master. The results of pulse diagnosis rely heavily on the practitioner's subjective analysis, which means that the results from different physicians may be inconsistent. To overcome these drawbacks, computational pulse diagnosis (CPD) is used with advanced sensing techniques and analytical methods. Focusing on the main processes of CPD, this paper provides a systematic review of the latest advances in pulse signal acquisition, signal preprocessing, feature extraction, and signal recognition. The most relevant principles and applications are presented along with current progress. Extensive comparisons and analyses are conducted to evaluate the merits of different methods employed in CPD. While much progress has been made, a lack of datasets and benchmarks has limited the development of CPD. To address this gap and facilitate further research, we present a benchmark to evaluate different methods. We conclude with observations of the status and prospects of CPD.
Collapse
Affiliation(s)
- Chaoxun Guo
- The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, Guangdong, China; Shenzhen Research Institute of Big Data, Shenzhen, 518172, Guangdong, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, Guangdong, China.
| | - Zhixing Jiang
- The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, Guangdong, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, Guangdong, China.
| | - Haoze He
- New York University, New York, 10012, New York, United States
| | - Yining Liao
- The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, Guangdong, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, Guangdong, China
| | - David Zhang
- The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, Guangdong, China; Shenzhen Research Institute of Big Data, Shenzhen, 518172, Guangdong, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
33
|
Almarshad MA, Islam MS, Al-Ahmadi S, BaHammam AS. Diagnostic Features and Potential Applications of PPG Signal in Healthcare: A Systematic Review. Healthcare (Basel) 2022; 10:547. [PMID: 35327025 PMCID: PMC8950880 DOI: 10.3390/healthcare10030547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Recent research indicates that Photoplethysmography (PPG) signals carry more information than oxygen saturation level (SpO2) and can be utilized for affordable, fast, and noninvasive healthcare applications. All these encourage the researchers to estimate its feasibility as an alternative to many expansive, time-wasting, and invasive methods. This systematic review discusses the current literature on diagnostic features of PPG signal and their applications that might present a potential venue to be adapted into many health and fitness aspects of human life. The research methodology is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines 2020. To this aim, papers from 1981 to date are reviewed and categorized in terms of the healthcare application domain. Along with consolidated research areas, recent topics that are growing in popularity are also discovered. We also highlight the potential impact of using PPG signals on an individual's quality of life and public health. The state-of-the-art studies suggest that in the years to come PPG wearables will become pervasive in many fields of medical practices, and the main domains include cardiology, respiratory, neurology, and fitness. Main operation challenges, including performance and robustness obstacles, are identified.
Collapse
Affiliation(s)
- Malak Abdullah Almarshad
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
- Computer Science Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Md Saiful Islam
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Saad Al-Ahmadi
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.S.I.); (S.A.-A.)
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia;
| |
Collapse
|
34
|
Leppänen T, Kainulainen S, Korkalainen H, Sillanmäki S, Kulkas A, Töyräs J, Nikkonen S. Pulse Oximetry: The Working Principle, Signal Formation, and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:205-218. [PMID: 36217086 DOI: 10.1007/978-3-031-06413-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulse oximeters are routinely used in various medical-grade and consumer-grade applications. They can be used to estimate, for example, blood oxygen saturation, autonomic nervous system activity and cardiac function, blood pressure, sleep quality, and recovery through the recording of photoplethysmography signal. Medical-grade devices often record red and infra-red light-based photoplethysmography signals while smartwatches and other consumer-grade devices usually rely on a green light. At its simplest, a pulse oximeter can consist of one or two photodiodes and a photodetector attached, for example, a fingertip or earlobe. These sensors are used to record light absorption in a medium as a function of time. This time-varying absorption information is used to form a photoplethysmography signal. In this chapter, we discuss the working principles of pulse oximeters and the formation of the photoplethysmography signal. We will further discuss the advantages and disadvantages of pulse oximeters, which kind of applications exist in the medical field, and how pulse oximeters are utilized in daily health monitoring.
Collapse
Affiliation(s)
- Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Samu Kainulainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Henri Korkalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Saara Sillanmäki
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Kulkas
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neurophysiology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
35
|
Wang W, Weiss S, den Brinker AC, Wuelbern JH, Tormo AGI, Pappous I, Senegas J. Fundamentals of Camera-PPG based Magnetic Resonance Imaging. IEEE J Biomed Health Inform 2021; 26:4378-4389. [PMID: 34928810 DOI: 10.1109/jbhi.2021.3136603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Magnetic Resonance Imaging (MRI), cardiac triggering that synchronizes data acquisition with cardiac contractions is an essential technique for acquiring high-quality images. Triggering is typically based on the Electrocardiogram (ECG) signal (e.g. R-peak). Since ECG acquisition involves extra workflow steps like electrode placement and ECG signals are usually disturbed by magnetic fields in high Magnetic Resonance (MR) systems, we explored camera-based photoplethysmography (PPG) as an alternative. We used the in-bore camera of a clinical MR system to investigate the feasibility and challenges of camera-based cardiac triggering. Data from ECG, finger oximeter and camera were synchronously collected. We found that that camera-PPG provides a higher availability of signal (and trigger) measurement, and the PPG signals measured from the forehead show considerably less delay w.r.t. the coupled ECG R-peak than the finger PPG signals in terms of trigger detection. The insights obtained in this study provide a basis for an envisioned system design phase.
Collapse
|
36
|
Choi C, Hwang J, Lee J, Ko BH, Kim YH, Choo H. A Tactile-Pattern-Integrated Sensing Window for More Consistent Photoplethysmography (PPG) Measurements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6810-6813. [PMID: 34892671 DOI: 10.1109/embc46164.2021.9630993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have demonstrated a tactile-pattern-integrated sensing window for more consistent photoplethysmogram (PPG) measurements. The pattern is composed of two tiny bumps that measure 500μm in diameter and 300μm in height and allow users to position their finger pulps more consistently on the sensing window over different measurement occasions, simply by following their tactile sensation. We experimentally compared the tactile pattern window to a flat window (without any bumps) for 5 test subjects and found that the sensing window with the tactile pattern significantly helped users obtain more consistent PPG signals than the flat window (p < 0.01).The use of PPG sensors in mobile phones and wearable watches have been limited to the measurements of heart rates and blood oxygen saturation in spite of widely-spread efforts to expand their applications. This is due to the fluctuations observed between measurements which largely originate from inconsistent placement of fingers on the sensing windows. The integrated tactile pattern could provide consistent and accurate measurements and lead to more successful commercialization of diverse PPG-based mobile healthcare services.
Collapse
|
37
|
Wang W, Vosters L, den Brinker AC. Modified Camera Setups for Day-and-Night Pulse-rate Monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1744-1748. [PMID: 34891624 DOI: 10.1109/embc46164.2021.9630497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Camera systems have been studied as a means for ubiquitous remote photoplethysmography. It was first considered for daytime applications using ambient light. However, main applications for continuous monitoring are in dark or low-light conditions (e.g. sleep monitoring) and, more recently, suitable light sources and simple camera adaptations have been considered for infrared-based solutions. This paper explores suitable camera configurations for pulse-rate monitoring during both day and night (24/7). Various configurations differing in the recorded spectral range are defined, i.e. straight-forward adaptations of a standard RGB camera by choosing proper optical filters. These systems have been studied in a benchmark involving day and night monitoring with various degrees of motion disturbances. The results indicate that, for the 24/7 monitoring, it is best to deploy the full spectral band of an RGB camera, and this can be done without compromising the monitoring performance at night.
Collapse
|
38
|
Lee H, Cho A, Whang M. Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG. SENSORS 2021; 21:s21206764. [PMID: 34695976 PMCID: PMC8538239 DOI: 10.3390/s21206764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Remote sensing of vital signs has been developed to improve the measurement environment by using a camera without a skin-contact sensor. The camera-based method is based on two concepts, namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures the color variation of the face generated by reflectance of blood, whereas the motion-based method, remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat. The main challenge of remote sensing is overcoming the noise of illumination variance and motion artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method for RGB colors or motions of multiple facial points to overcome the noise. However, they have still been limited in their real-world applications. This study hypothesized that BSS-based combining of colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus, this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS methods such as ensemble averaging (EA), principal component analysis (PCA), and independent component analysis (ICA). The proposed method was verified by comparing it with previous RPPG and RBCG from three datasets according to illumination variance and motion artifacts. The three main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG improved the remote sensing with the benefits of each measurement; (2) the proposed method was demonstrated by comparing it with previous methods; and (3) the proposed method was tested in various measurement conditions for more practical applications.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Emotion Engineering, Sangmyung University, Seoul 03016, Korea; (H.L.); (A.C.)
| | - Ayoung Cho
- Department of Emotion Engineering, Sangmyung University, Seoul 03016, Korea; (H.L.); (A.C.)
| | - Mincheol Whang
- Department of Intelligence Informatics Engineering, Sangmyung University, Seoul 03016, Korea
- Correspondence: ; Tel.: +82-2-2287-5293
| |
Collapse
|
39
|
Shandhi MMH, Goldsack JC, Ryan K, Bennion A, Kotla AV, Feng A, Jiang Y, Wang WK, Hurst T, Patena J, Carini S, Chung J, Dunn J. Recent Academic Research on Clinically Relevant Digital Measures: Systematic Review. J Med Internet Res 2021; 23:e29875. [PMID: 34524089 PMCID: PMC8482196 DOI: 10.2196/29875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023] Open
Abstract
Background Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products, academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly characterized. Objective We performed a systematic review to characterize the nature of academic research on digital clinical measures and to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research. Methods We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles reporting US-led academic research on digital clinical measures between January 2019 and February 2021. We screened each publication against specific inclusion and exclusion criteria. We then identified and categorized research studies based on the types of academic research, sensors used, and funding sources. Finally, we compared and contrasted the funding support for these specific subareas of research and sensor types. Results The search retrieved 4240 articles of interest. Following the screening, 295 articles remained for data extraction and categorization. The top five research subareas included operations research (research analysis; n=225, 76%), analytical validation (n=173, 59%), usability and utility (data visualization; n=123, 42%), verification (n=93, 32%), and clinical validation (n=83, 28%). The three most underrepresented areas of research into digital clinical measures were ethics (n=0, 0%), security (n=1, 0.5%), and data rights and governance (n=1, 0.5%). Movement and activity trackers were the most commonly studied sensor type, and physiological (mechanical) sensors were the least frequently studied. We found that government agencies are providing the most funding for research on digital clinical measures (n=192, 65%), followed by independent foundations (n=109, 37%) and industries (n=56, 19%), with the remaining 12% (n=36) of these studies completely unfunded. Conclusions Specific subareas of academic research related to digital clinical measures are not keeping pace with the rapid expansion and adoption of digital sensing products. An integrated and coordinated effort is required across academia, academic partners, and academic funders to establish the field of digital clinical measures as an evidence-based field worthy of our trust.
Collapse
Affiliation(s)
| | | | - Kyle Ryan
- Big Ideas Lab, Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Alexandra Bennion
- Big Ideas Lab, Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Aditya V Kotla
- Big Ideas Lab, Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Alina Feng
- Big Ideas Lab, Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Yihang Jiang
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Tina Hurst
- Activinsights Ltd, Cambridgeshire, United Kingdom
| | - John Patena
- Brown-Lifespan Center for Digital Health, Brown University, Providence, RI, United States
| | - Simona Carini
- Division of General Internal Medicine, University of California, San Francisco, CA, United States
| | - Jeanne Chung
- Digital Medicine Society, Boston, MA, United States
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| |
Collapse
|
40
|
Schrumpf F, Frenzel P, Aust C, Osterhoff G, Fuchs M. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2021; 21:6022. [PMID: 34577227 PMCID: PMC8472879 DOI: 10.3390/s21186022] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly.
Collapse
Affiliation(s)
- Fabian Schrumpf
- Laboratory for Biosignal Processing, Leipzig University of Applied Sciences, 04317 Leipzig, Germany
| | - Patrick Frenzel
- Laboratory for Biosignal Processing, Leipzig University of Applied Sciences, 04317 Leipzig, Germany
| | - Christoph Aust
- Department of Orthopaedics, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopaedics, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Mirco Fuchs
- Laboratory for Biosignal Processing, Leipzig University of Applied Sciences, 04317 Leipzig, Germany
| |
Collapse
|
41
|
Effectiveness of consumer-grade contactless vital signs monitors: a systematic review and meta-analysis. J Clin Monit Comput 2021; 36:41-54. [PMID: 34240262 PMCID: PMC8266631 DOI: 10.1007/s10877-021-00734-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022]
Abstract
The objective of this systematic review and meta-analysis was to analyze the effectiveness of contactless vital sign monitors that utilize a consumer-friendly camera versus medical grade instruments. A multiple database search was conducted from inception to September 2020. Inclusion criteria were as follows: studies that used a consumer-grade camera (smartphone/webcam) to examine contactless vital signs in adults; evaluated the non-contact device against a reference medical device; and used the participants’ face for measurement. Twenty-six studies were included in the review of which 16 were included in Pearson’s correlation and 14 studies were included in the Bland–Altman meta-analysis. Twenty-two studies measured heart rate (HR) (92%), three measured blood pressure (BP) (12%), and respiratory rate (RR) (12%). No study examined blood oxygen saturation (SpO2). Most studies had a small sample size (≤ 30 participants) and were performed in a laboratory setting. Our meta-analysis found that consumer-grade contactless vital sign monitors were accurate in comparison to a medical device in measuring HR. Current contactless monitors have limitations such as motion, poor lighting, and lack of automatic face tracking. Currently available consumer-friendly contactless monitors measure HR accurately compared to standard medical devices. More studies are needed to assess the accuracy of contactless BP and RR monitors. Implementation of contactless vital sign monitors for clinical use will require validation in a larger population, in a clinical setting, and expanded to encompass other vital signs including BP, RR, and SpO2.
Collapse
|
42
|
Matsumoto K, Okada T. Imagining How Lines Were Drawn: The Appreciation of Calligraphy and the Facilitative Factor Based on the Viewer's Rating and Heart Rate. Front Hum Neurosci 2021; 15:654610. [PMID: 34276322 PMCID: PMC8279771 DOI: 10.3389/fnhum.2021.654610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
For this study, we examined how recognizing the writing process of calligraphy influences the cognitive and affective processes related to appreciating it, with the aim of contributing to both graphonomics and the psychology of aesthetics. To this end, we conducted two Web-based experiments in which some participants were instructed to view calligraphy by tracing it with their eyes (the tracing method), while others were told to feel free to think and imagine whatever they wanted. Study 1 (N = 103) revealed that the tracing method elicits stronger admiration, inspiration, and empathy in viewers. Study 2 (N = 87) showed that the tracing method decreases the average heart rate of those who do not frequently engage in calligraphy appreciation as they gaze at calligraphy for a minute-and-a-half (during the second half of the stimulus duration); this suggests that the tracing method could keep viewers from becoming bored while looking at calligraphy. In sum, the tracing method has positive effects on viewing calligraphy. From a broader perspective, the results imply that how in detail viewers recognize the process of creating an artwork will be a key determinant of art appreciation. In addition, our findings demonstrate how we can measure cardiac activities using the emerging technology of the photoplethysmogram (PPG).
Collapse
Affiliation(s)
- Kazuki Matsumoto
- Department of Educational Psychology, The University of Tokyo, Tokyo, Japan
| | - Takeshi Okada
- Department of Educational Psychology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Luo J, Yan Z, Guo S, Chen W. Recent Advances in Atherosclerotic Disease Screening Using Pervasive Healthcare. IEEE Rev Biomed Eng 2021; 15:293-308. [PMID: 34003754 DOI: 10.1109/rbme.2021.3081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis screening helps the medical model transform from therapeutic medicine to preventive medicine by assessing degree of atherosclerosis prior to the occurrence of fatal vascular events. Pervasive screening emphasizes atherosclerotic monitoring with easy access, quick process, and advanced computing. In this work, we introduced five cutting-edge pervasive technologies including imaging photoplethysmography (iPPG), laser Doppler, radio frequency (RF), thermal imaging (TI), optical fiber sensing and piezoelectric sensor. IPPG measures physiological parameters by using video images that record the subtle skin color changes consistent with cardiac-synchronous blood volume changes in subcutaneous arteries and capillaries. Laser Doppler obtained the information on blood flow by analyzing the spectral components of backscattered light from the illuminated tissues surface. RF is based on Doppler shift caused by the periodic movement of the chest wall induced by respiration and heartbeat. TI measures vital signs by detecting electromagnetic radiation emitted by blood flow. The working principle of optical fiber sensor is to detect the change of light properties caused by the interaction between the measured physiological parameter and the entering light. Piezoelectric sensors are based on the piezoelectric effect of dielectrics. All these pervasive technologies are noninvasive, mobile, and can detect physiological parameters related to atherosclerosis screening.
Collapse
|
44
|
Lapitan D, Rogatkin D. Optical incoherent technique for noninvasive assessment of blood flow in tissues: Theoretical model and experimental study. JOURNAL OF BIOPHOTONICS 2021; 14:e202000459. [PMID: 33512074 DOI: 10.1002/jbio.202000459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Laser noninvasive methods for assessment of a tissue blood flow (BF), for example, the Laser Doppler Flowmetry (LDF), are well-known today. However, in such methods, low-frequency fluctuations (LFFs) in the registered optical signal caused by blood volume changes inside a tissue have not been studied in details until now. The aim of this study is to investigate the LFFs formation and to justify the LFFs-based diagnostic technique for cutaneous BF assessment. LFFs are theoretically described and experimentally shown in the input LDF signal inside the frequency range 0 to 10 Hz. They are substantiated as the basis of the new diagnostic method, in which BF is defined as the magnitude of blood volume changes in a tissue per unit time. The hand-made prototype of the promising diagnostic tool with light emitted diodes is used to validate the technique in experiments in vivo on 16 healthy volunteers in comparison with the LDF method. Experimental results show a good similarity of the recorded BF for both coherent and incoherent method. The proposed technique makes it possible the creation of inexpensive diagnostic equipment for assessment of cutaneous BF without using lasers and coherent light, completely and functionally comparable to LDF devices.
Collapse
Affiliation(s)
- Denis Lapitan
- Laboratory of Medical and Physics Research, Moscow Regional Research and Clinical Institute ("MONIKI") named after M.F. Vladimirsky, Moscow, Russian Federation
| | - Dmitry Rogatkin
- Laboratory of Medical and Physics Research, Moscow Regional Research and Clinical Institute ("MONIKI") named after M.F. Vladimirsky, Moscow, Russian Federation
| |
Collapse
|
45
|
Allan D, Chockalingam N, Naemi R. Validation of a non-invasive imaging photoplethysmography device to assess plantar skin perfusion, a comparison with laser speckle contrast analysis. J Med Eng Technol 2021; 45:170-176. [PMID: 33750251 DOI: 10.1080/03091902.2021.1891309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Assessing skin perfusion is an established and reliable method to study impaired lower limb blood flow. Laser Speckle Contrast Analysis (LASCA) has been identified as the current gold standard to measure skin perfusion. Imaging photoplethysmography (iPPG) is a new low-cost imaging technique to assess perfusion. However, it is unclear how results obtained from this technique compare against that of LASCA at plantar skin. Therefore, the aim of this study was to investigate the association between the skin perfusion at the plantar surface of the foot using iPPG and LASCA. Perfusion at six plantar locations (Hallux, 1st 3rd 5th metatarsal heads, midfoot, heel) was simultaneously measured using LASCA and iPPG in 20 healthy participants. Skin thickness and skin temperature were also collected at the same plantar locations. Spearman's rank tests showed significant associations with medium strength between the perfusion values measured with LASCA and iPPG for most tested sites. No improvement in the relationship between iPPG and LASCA data was observed when controlling for either skin thickness or skin temperature. Skin perfusion values obtained using iPPG were found to be significantly associated with the corresponding values obtained using the gold standard LASCA device. Additionally, the measurement of perfusion using iPPG is shown to be robust.
Collapse
Affiliation(s)
- David Allan
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| | - Nachiappan Chockalingam
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| | - Roozbeh Naemi
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
46
|
Ryu J, Hong S, Liang S, Pak S, Chen Q, Yan S. A measurement of illumination variation-resistant noncontact heart rate based on the combination of singular spectrum analysis and sub-band method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105824. [PMID: 33168271 DOI: 10.1016/j.cmpb.2020.105824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The imaging photoplethysmography method is a non-contact and non-invasive measurement method that usually uses surrounding illumination as an illuminant, which can be easily influenced by the surrounding illumination variations. Thus, it has a practical value to develop an efficient method of heart rate measurement that can remove the interference of illumination variations robustly. METHOD We propose a novel framework of heart rate measurement that is robust to illumination variations by combining singular spectrum analysis and sub-band method. At first, we extract the blood volume pulse signal by applying the modified sub-band method to the raw facial RGB trace signals. Then the spectra for the interference of illumination variations are extracted from the raw signal obtained from facial regions of interest by using singular spectrum analysis. Finally, we estimate the more robust heart rate through comparison analysis between the spectra of the extracted blood volume pulse signal and the illumination variations. RESULTS We compared our method with several state-of-the-art methods through the analysis using the self-collected data and the UBFC-RPPG database. Bland-Altman plots and Pearson correlation coefficients pointed out that the proposed method could measure the heart rate more accurately than the state-of-the-art methods. For the self-collected data and the UBFC-RPPG database, Bland-Altman plots showed that proposed method caused better agreement with 95% limits from -4 bpm to 10 bpm and from -2 bpm to 4 bpm respectively than the other state-of-the-art methods. It also revealed that the highly linear relation was held between the estimated heart rate and ground truth with the correlation coefficients of 0.89 and 0.99, respectively. CONCLUSION By extracting illumination variation directly from the facial region of interest rather than from the background region of interest, the proposed method demonstrates that it can overcome the drawbacks of the previous methods due to the illumination variation difference between the background and facial regions of interest. It can be found that the proposed method has a relatively good robustness regardless of whether illumination variation exists or not.
Collapse
Affiliation(s)
- JongSong Ryu
- School of Physics, Northeast Normal University, Changchun 130022, China; Faculty of Physics, University of Science, Pyongyang, Democratic People's Republic of Korea.
| | - SunChol Hong
- Academy of Ultramodern Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea.
| | - Shili Liang
- School of Physics, Northeast Normal University, Changchun 130022, China.
| | - SinIl Pak
- Faculty of Communications, Kim Chaek University of Technology, Pyongyang, Democratic People's Republic of Korea.
| | - Qingyue Chen
- School of Physics, Northeast Normal University, Changchun 130022, China
| | - Shifeng Yan
- School of Physics, Northeast Normal University, Changchun 130022, China
| |
Collapse
|
47
|
Marcinkevics Z, Aglinska A, Rubins U, Grabovskis A. Remote Photoplethysmography for Evaluation of Cutaneous Sensory Nerve Fiber Function. SENSORS 2021; 21:s21041272. [PMID: 33670087 PMCID: PMC7916836 DOI: 10.3390/s21041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
Abstract
About 2% of the world’s population suffers from small nerve fiber dysfunction, neuropathy, which can result in severe pain. This condition is caused by damage to the small nerve fibers and its assessment is challenging, due to the lack of simple and objective diagnostic techniques. The present study aimed to develop a contactless photoplethysmography system using simple instrumentation, for objective and non-invasive assessment of small cutaneous sensory nerve fiber function. The approach is based on the use of contactless photoplethysmography for the characterization of skin flowmotions and topical heating evoked vasomotor responses. The feasibility of the technique was evaluated on volunteers (n = 14) using skin topical anesthesia, which is able to produce temporary alterations of cutaneous nerve fibers function. In the treated skin region in comparison to intact skin: neurogenic and endothelial component of flowmotions decreased by ~61% and 41%, the local heating evoked flare area decreased by ~44%, vasomotor response trend peak and nadir were substantially reduced. The results indicate for the potential of the remote photoplethysmography in the assessment of the cutaneous nerve fiber function. It is believed that in the future this technique could be used in the clinics as an affordable alternative to laser Doppler imaging technique.
Collapse
Affiliation(s)
- Zbignevs Marcinkevics
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Jelgavas St.1, LV-1004 Riga, Latvia
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
- Correspondence:
| | - Alise Aglinska
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| | - Uldis Rubins
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| | - Andris Grabovskis
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| |
Collapse
|
48
|
Sugita N, Matsuzaki T, Yoshizawa M, Ichiji K, Yamaki S, Homma N. Comparison of Visible and Infrared Video Plethysmography Captured from Different Regions of the Human Face. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4187-4190. [PMID: 33018920 DOI: 10.1109/embc44109.2020.9176138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, video plethysmography (VPG) - a heart rate estimation technique using a video camera - has gained significant attention. Most studies of VPG have used a visible RGB camera; only a limited number of studies investigating near-infrared light (wavelength 750-2500 nm), which can be used even in a dark environment, have been performed. The purpose of this study was to investigate the differences between VPG data collected using visible light (VPGVIS) or near-infrared light (VPGNIR) from four facial areas (forehead, right cheek, left cheek, and nose). An experiment was conducted to obtain both VPGVIS and VPGNIR simultaneously by alternately irradiating the face with NIR and VIS lights. Experimental results showed that the root mean squared error of heart rate estimated using VPGNIR was 1 bpm higher than that of VPGVIS. However, contrary to our expectations, the power of the heartbeat-related component included in VPGNIR was not reduced despite the absorbance of hemoglobin in the NIR light range being 1/100 of that in the VIS light range. This result supports the hypothesis that a main factor in the generation of VPG waves was change in the optical properties caused by blood vessels compressing the subcutaneous tissue and the venous bed. Additionally, the accuracy of the heart rate estimation using VPG tended to be high when the nose was set as the ROI. This result was likely associated with the anatomical structure of the nose.
Collapse
|
49
|
Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers. Sci Rep 2020; 10:16464. [PMID: 33020579 PMCID: PMC7536393 DOI: 10.1038/s41598-020-73531-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023] Open
Abstract
Remote imaging photoplethysmography (iPPG) senses the cardiac pulse in outer skin layers and is responsive to mean arterial pressure and pulse pressure in critically ill patients. Whether iPPG is sufficiently sensitive to monitor cutaneous perfusion is not known. This study aimed at determining the response of iPPG to changes in cutaneous perfusion measured by Laser speckle imaging (LSI). Thirty-seven volunteers were engaged in a cognitive test known to evoke autonomic nervous activity and a Heat test. Simultaneous measurements of iPPG and LSI were taken at baseline and during cutaneous perfusion challenges. A perfusion index (PI) was calculated to assess iPPG signal strength. The response of iPPG to the challenges and its relation to LSI were determined. PI of iPPG significantly increased in response to autonomic nervous stimuli and to the Heat test by 5.8% (p = 0.005) and 11.1% (p < 0.001), respectively. PI was associated with LSI measures of cutaneous perfusion throughout experiments (p < 0.001). iPPG responses to study task correlated with those of LSI (r = 0.62, p < 0.001) and were comparable among subjects. iPPG is sensitive to autonomic nervous activity in volunteers and is closely associated with cutaneous perfusion.
Collapse
|
50
|
Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intraoperative evaluation of blood perfusion in the brain cortex is an important but hitherto unresolved problem. Our aim was to demonstrate the feasibility of cerebral microcirculation assessment during open brain surgery by using camera-based photoplethysmography (cbPPG) synchronized with an electrocardiograph. Cortical blood flow was monitored in five patients with different diagnoses. Two cases (tumor resection and extra-intracranial bypass grafting) are presented in detail. Blood-flow parameters were visualized after processing cortex images recorded under green-light illumination before and after surgical intervention. In all cases, blood flow was successfully visualized in >95% of open brain. Distributions of blood pulsation amplitude, a parameter related to cortical blood perfusion; pulse arrival time; and blood-pressure-pulse shape were calculated with high spatial resolution (in every pixel). Changes in cerebral blood supply caused by surgical intervention were clearly revealed. We have shown that the temporal spread of pulse arrival time and the spatiotemporal variability of pulse shape are very sensitive markers of brain circulatory disturbances. The green-light cbPPG system offers a new approach to objective assessment of blood-flow changes in the brain during surgical intervention. The proposed system allows for contactless monitoring of cortex blood flow in real time with high resolution, thus providing useful information for surgery optimization and minimization of brain tissue damage.
Collapse
|