1
|
Radivoievych A, Schnepel S, Prylutska S, Ritter U, Zolk O, Frohme M, Grebinyk A. From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C 60-Berberine Nanocomplex on Cancer Cells. Cancers (Basel) 2024; 16:3184. [PMID: 39335156 PMCID: PMC11430052 DOI: 10.3390/cancers16183184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The primary objective of this research targeted the biochemical effects of SDT on human cervix carcinoma (HeLa) and mouse Lewis lung carcinoma (LLC) cells grown in 2D monolayer and 3D spheroid cell culture. METHODS HeLa and LLC monolayers and spheroids were treated with a 20 µM C60-Ber for 24 h, followed by irradiation with 1 MHz, 1 W/cm2 US. To evaluate the efficacy of the proposed treatment on cancer cells, assessments of cell viability, caspase 3/7 activity, ATP levels, and ROS levels were conducted. RESULTS Our results revealed that US irradiation alone had negligible effects on LLC and HeLa cancer cells. However, both monolayers and spheroids irradiated with US in the presence of the C60-Ber exhibited a significant decrease in viability (32% and 37%) and ATP levels (42% and 64%), along with a notable increase in ROS levels (398% and 396%) and caspase 3/7 activity (437% and 246%), for HeLa monolayers and spheroids, respectively. Similar tendencies were observed with LLC cells. In addition, the anticancer effects of C60-Ber surpassed those of C60, Ber, or their mixture (C60 + Ber) in both cell lines. CONCLUSIONS The detected intensified ROS generation and ATP level drop point to mitochondria dysfunction, while increased caspase 3/7 activity points on the apoptotic pathway induction. The combination of 1 W/cm2 US with C60-Ber showcased a promising platform for synergistic sonodynamic chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Aleksandar Radivoievych
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| | - Sophia Schnepel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Svitlana Prylutska
- Department of Plants Physiology, Biochemistry and Bionergetics, National University of Life and Environmental Science of Ukraine, Heroyiv Oborony Str., 15, 03041 Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany
| | - Oliver Zolk
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Institute of Clinical Pharmacology, Brandenburg Medical School, Immanuel Klinik Rüdersdorf, 15562 Rüdersdorf, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
2
|
Chen C, Boché A, Wang Z, Lopez E, Peng J, Carreiras F, Schanne-Klein MC, Chen Y, Lambert A, Aimé C. The Balance Between Shear Flow and Extracellular Matrix in Ovarian Cancer-on-Chip. Adv Healthc Mater 2024; 13:e2400938. [PMID: 38829702 DOI: 10.1002/adhm.202400938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Ovarian cancer is the most lethal gynecologic cancer in developed countries. In the tumor microenvironment, the extracellular matrix (ECM) and flow shear stress are key players in directing ovarian cancer cells invasion. Artificial ECM models based only on ECM proteins are used to build an ovarian tumor-on-chip to decipher the crosstalk between ECM and shear stress on the migratory behavior and cellular heterogeneity of ovarian tumor cells. This work shows that in the shear stress regime of the peritoneal cavity, the ECM plays a major role in driving individual or collective ovarian tumor cells migration. In the presence of basement membrane proteins, migration is more collective than on type I collagen regardless of shear stress. With increasing shear stress, individual cell migration is enhanced; while, no significant impact on collective migration is measured. This highlights the central position that ECM and flow shear stress should hold in in vitro ovarian cancer models to deepen understanding of cellular responses and improve development of ovarian cancer therapeutic platforms. In this frame, adding flow provides significant improvement in biological relevance over the authors' previous work. Further steps for enhanced clinical relevance require not only multiple cell lines but also patient-derived cells and sera.
Collapse
Affiliation(s)
- Changchong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Alphonse Boché
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Zixu Wang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Elliot Lopez
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Juan Peng
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Groupe Matrice Extracellulaire et physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy, 95000, France
| | - Carole Aimé
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| |
Collapse
|
3
|
Inagaki NF, Oki Y, Ikeda S, Tulakarnwong S, Shinohara M, Inagaki FF, Ohta S, Kokudo N, Sakai Y, Ito T. Transplantation of pancreatic beta-cell spheroids in mice via non-swellable hydrogel microwells composed of poly(HEMA- co-GelMA). Biomater Sci 2024; 12:4354-4362. [PMID: 38967234 DOI: 10.1039/d4bm00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Pancreatic islet transplantation is an effective treatment for type I diabetes mellitus. However, many problems associated with pancreatic islet engraftment remain unresolved. In this study, we developed a hydrogel microwell device for islet implantation, fabricated by crosslinking gelatin-methacryloyl (GelMA) and 2-hydroxyethyl methacrylate (HEMA) in appropriate proportions. The fabricated hydrogel microwell device could be freeze-dried and restored by immersion in the culture medium at any time, allowing long-term storage and transport of the device for ready-to-use applications. In addition, due to its non-swelling properties, the shape of the wells of the device was maintained. Thus, the device allowed pancreatic β cell lines to form spheroids and increase insulin secretion. Intraperitoneal implantation of the β cell line-seeded GelMA/HEMA hydrogel microwell device reduced blood glucose levels in diabetic mice. In addition, they were easy to handle during transplantation and were removed from the transplant site without peritoneal adhesions or infiltration by inflammatory cells. These results suggest that the GelMA/HEMA hydrogel microwell device can go from spheroid and/or organoid fabrication to transplantation in a single step.
Collapse
Affiliation(s)
- Natsuko F Inagaki
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Yuichiro Oki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Shunsuke Ikeda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Sarun Tulakarnwong
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Fuyuki F Inagaki
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seiichi Ohta
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Wen K, Gorbushina AA, Schwibbert K, Bell J. Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow. ACS Biomater Sci Eng 2024; 10:4626-4634. [PMID: 38904279 PMCID: PMC11234330 DOI: 10.1021/acsbiomaterials.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements. Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level.
Collapse
Affiliation(s)
- Keqing Wen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16-18, Berlin 14195, Germany
| | - Anna A Gorbushina
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16-18, Berlin 14195, Germany
| | - Karin Schwibbert
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Jérémy Bell
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
5
|
Mehta V, Vilikkathala Sudhakaran S, Nellore V, Madduri S, Rath SN. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. J Nanobiotechnology 2024; 22:344. [PMID: 38890730 PMCID: PMC11186147 DOI: 10.1186/s12951-024-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Functional drug testing (FDT) with patient-derived tumor cells in microfluidic devices is gaining popularity. However, the majority of previously reported microfluidic devices for FDT were limited by at least one of these factors: lengthy fabrication procedures, absence of tumor progenitor cells, lack of clinical correlation, and mono-drug therapy testing. Furthermore, personalized microfluidic models based on spheroids derived from oral cancer patients remain to be thoroughly validated. Overcoming the limitations, we develop 3D printed mold-based, dynamic, and personalized oral stem-like spheroids-on-a-chip, featuring unique serpentine loops and flat-bottom microwells arrangement. RESULTS This unique arrangement enables the screening of seven combinations of three drugs on chemoresistive cancer stem-like cells. Oral cancer patients-derived stem-like spheroids (CD 44+) remains highly viable (> 90%) for 5 days. Treatment with a well-known oral cancer chemotherapy regimen (paclitaxel, 5 fluorouracil, and cisplatin) at clinically relevant dosages results in heterogeneous drug responses in spheroids. These spheroids are derived from three oral cancer patients, each diagnosed with either well-differentiated or moderately-differentiated squamous cell carcinoma. Oral spheroids exhibit dissimilar morphology, size, and oral tumor-relevant oxygen levels (< 5% O2). These features correlate with the drug responses and clinical diagnosis from each patient's histopathological report. CONCLUSIONS Overall, we demonstrate the influence of tumor differentiation status on treatment responses, which has been rarely carried out in the previous reports. To the best of our knowledge, this is the first report demonstrating extensive work on development of microfluidic based oral cancer spheroid model for personalized combinatorial drug screening. Furthermore, the obtained clinical correlation of drug screening data represents a significant advancement over previously reported personalized spheroid-based microfluidic devices. Finally, the maintenance of patient-derived spheroids with high viability under oral cancer relevant oxygen levels of less than 5% O2 is a more realistic representation of solid tumor microenvironment in our developed device.
Collapse
Affiliation(s)
- Viraj Mehta
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Sukanya Vilikkathala Sudhakaran
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Vijaykumar Nellore
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Srinivas Madduri
- Department of Surgery, University of Geneva, 1205, Geneva, Switzerland
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India.
| |
Collapse
|
6
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Alwahsh M, Al-Doridee A, Jasim S, Awwad O, Hergenröder R, Hamadneh L. Cytotoxic and molecular differences of anticancer agents on 2D and 3D cell culture. Mol Biol Rep 2024; 51:721. [PMID: 38829450 DOI: 10.1007/s11033-024-09669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 17138, Jordan.
| | - Amani Al-Doridee
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 17138, Jordan
| | - Suhair Jasim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 17138, Jordan
| | - Oriana Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Roland Hergenröder
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
8
|
Sittiju P, Wudtiwai B, Chongchai A, Hajitou A, Kongtawelert P, Pothacharoen P, Suwan K. Bacteriophage-based particles carrying the TNF-related apoptosis-inducing ligand (TRAIL) gene for targeted delivery in hepatocellular carcinoma. NANOSCALE 2024; 16:6603-6617. [PMID: 38470366 PMCID: PMC10977282 DOI: 10.1039/d3nr05660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvβ3 and αvβ5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvβ5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Aitthiphon Chongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Keittisak Suwan
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
9
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
10
|
Zhou M, Ma Y, Chiang CC, Rock EC, Butler SC, Anne R, Yatsenko S, Gong Y, Chen YC. Single-cell morphological and transcriptome analysis unveil inhibitors of polyploid giant breast cancer cells in vitro. Commun Biol 2023; 6:1301. [PMID: 38129519 PMCID: PMC10739852 DOI: 10.1038/s42003-023-05674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the stages of disease and therapeutic stress. Given the importance of PGCCs, it remains challenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we establish a single-cell morphological analysis pipeline with a high throughput and great precision to characterize dynamics of individual cells. In this manner, we screen a library to identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of single-cell morphological and molecular investigation reveals promising anti-PGCC strategies for breast cancer treatment and other malignancies.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Samuel Charles Butler
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Rajiv Anne
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Svetlana Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee Womens Research Institute, Pittsburgh, PA, USA
| | - Yinan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, USA.
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
11
|
Agüero EI, Belgorosky D, García-Silva JI, Booth R, Lerner B, Pérez MS, Eiján AM. Microdevices for cancer stem cell culture as a predictive chemotherapeutic response platform. J Mol Med (Berl) 2023; 101:1465-1475. [PMID: 37755493 DOI: 10.1007/s00109-023-02375-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.
Collapse
Affiliation(s)
- Eduardo Imanol Agüero
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Denise Belgorosky
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Israel García-Silva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ross Booth
- Roche Sequencing Solutions, Santa Clara, CA, 95050, USA
| | - Betiana Lerner
- Department of Electrical and Computer Engineering, Florida International University (FIU), Miami, FL, 33174, USA
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg im Breisgau, Germany
- Universidad Tecnológica Nacional (UTN), Centro IREN, B1706EAH, Buenos Aires, Argentina
- Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, C1063ACV, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maximiliano Sebastián Pérez
- Department of Electrical and Computer Engineering, Florida International University (FIU), Miami, FL, 33174, USA.
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg im Breisgau, Germany.
- Universidad Tecnológica Nacional (UTN), Centro IREN, B1706EAH, Buenos Aires, Argentina.
- Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, C1063ACV, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana María Eiján
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
12
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
13
|
Zhang J, Xue J, Luo N, Chen F, Chen B, Zhao Y. Microwell array chip-based single-cell analysis. LAB ON A CHIP 2023; 23:1066-1079. [PMID: 36625143 DOI: 10.1039/d2lc00667g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell profiling is key to uncover the cellular heterogeneity and drives deep understanding of cell fate. In recent years, microfluidics has become an ideal tool for single-cell profiling owing to its benefits of high throughput and automation. Among various microfluidic platforms, microwell has the advantages of simple operation and easy integration with in situ analysis ability, making it an ideal technique for single-cell studies. Herein, recent advances of single-cell analysis based on microwell array chips are summarized. We first introduce the design and preparation of different microwell chips. Then microwell-based cell capture and lysis strategies are discussed. We finally focus on advanced microwell-based analysis of single-cell proteins, nucleic acids, and metabolites. The challenges and opportunities for the development of microwell-based single-cell analysis are also presented.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Ningfeng Luo
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics and the College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| |
Collapse
|
14
|
Fu W, Sun M, Zhang J, Xuanyuan T, Liu X, Zhou Y, Liu W. Combinatorial Drug Screening Based on Massive 3D Tumor Cultures Using Micropatterned Array Chips. Anal Chem 2023; 95:2504-2512. [PMID: 36651128 DOI: 10.1021/acs.analchem.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.
Collapse
Affiliation(s)
- Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yujie Zhou
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
15
|
Sabetta S, Vecchiotti D, Clementi L, Di Vito Nolfi M, Zazzeroni F, Angelucci A. Comparative Analysis of Dasatinib Effect between 2D and 3D Tumor Cell Cultures. Pharmaceutics 2023; 15:pharmaceutics15020372. [PMID: 36839692 PMCID: PMC9967321 DOI: 10.3390/pharmaceutics15020372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Three-dimensional cell culture methods are able to confer new predictive relevance to in vitro tumor models. In particular, the 3D multicellular tumor spheroids model is considered to better resemble tumor complexity associated with drug resistance compared to the 2D monolayer model. Recent advances in 3D printing techniques and suitable biomaterials have offered new promises in developing 3D tissue cultures at increased reproducibility and with high-throughput characteristics. In our study, we compared the sensitivity to dasatinib treatment in two different cancer cell lines, prostate cancer cells DU145 and glioblastoma cells U87, cultured in the 3D spheroids model and in the 3D bioprinting model. DU145 and U87 cells were able to proliferate in 3D alginate/gelatin bioprinted structures for two weeks, forming spheroid aggregates. The treatment with dasatinib demonstrated that bioprinted cells were considerably more resistant to drug toxicity than corresponding cells cultured in monolayer, in a way that was comparable to behavior observed in the 3D spheroids model. Recovery and analysis of cells from 3D bioprinted structures led us to hypothesize that dasatinib resistance was dependent on a scarce penetrance of the drug, a phenomenon commonly reported also in spheroids. In conclusion, the 3D bioprinted model utilizing alginate/gelatin hydrogel was demonstrated to be a suitable model in drug screening when spheroid growth is required, offering advantages in feasibility, reproducibility, and scalability compared to the classical 3D spheroids model.
Collapse
|
16
|
Lopez E, Kamboj S, Chen C, Wang Z, Kellouche S, Leroy-Dudal J, Carreiras F, Lambert A, Aimé C. In Vitro Models of Ovarian Cancer: Bridging the Gap between Pathophysiology and Mechanistic Models. Biomolecules 2023; 13:biom13010103. [PMID: 36671488 PMCID: PMC9855568 DOI: 10.3390/biom13010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to be diagnosed at advanced stages. This implies that metastatic activity has advanced to the peritoneal cavity. It is associated with both genetic and phenotypic heterogeneity, which considerably increase the risks of relapse and reduce the survival rate. To understand ovarian cancer pathophysiology and strengthen the ability for drug screening, further development of relevant in vitro models that recapitulate the complexity of OC microenvironment and dynamics of OC cell population is required. In this line, the recent advances of tridimensional (3D) cell culture and microfluidics have allowed the development of highly innovative models that could bridge the gap between pathophysiology and mechanistic models for clinical research. This review first describes the pathophysiology of OC before detailing the engineering strategies developed to recapitulate those main biological features.
Collapse
Affiliation(s)
- Elliot Lopez
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sahil Kamboj
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Zixu Wang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, EA1391, Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, CEDEX, 95031 Neuville sur Oise, France
| | - Carole Aimé
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Correspondence:
| |
Collapse
|
17
|
Gu B, Wang B, Li X, Feng Z, Ma C, Gao L, Yu Y, Zhang J, Zheng P, Wang Y, Li H, Zhang T, Chen H. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front Immunol 2022; 13:1050421. [PMID: 36466825 PMCID: PMC9716470 DOI: 10.3389/fimmu.2022.1050421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE Although photodynamic therapy (PDT) has been proven effective in various tumors, it has not been widely used as a routine treatment for colorectal cancer (CRC), and the characteristics of changes in the tumor microenvironment (TME) after PDT have not been fully elucidated. This study evaluated the efficacy of PDT in patients with advanced CRC and the changes in systemic and local immune function after PDT. METHODS Patients with stage III-IV CRC diagnosed in our hospital from November 2020 to July 2021 were retrospectively analyzed to compare the survival outcomes among each group. Subsequently, short-term efficacy, systemic and local immune function changes, and adverse reactions were assessed in CRC patients treated with PDT. RESULTS A total of 52 CRC patients were enrolled in this retrospective study from November 2020 to July 2021, and the follow-up period ended in March 2022. The overall survival (OS) of the PDT group was significantly longer than that of the non-PDT group (p=0.006). The objective response rate (ORR) and disease control rate two months after PDT were 44.4% and 88.9%, respectively. Differentiation degree (p=0.020) and necrosis (p=0.039) are two crucial factors affecting the short-term efficacy of PDT. The systemic immune function of stage III patients after PDT decreased, whereas that of stage IV patients increased. Local infiltration of various immune cells such as CD3+ T cells, CD4+ T cells, CD8+ T cells, CD20+ B cells and macrophages in the tumor tissue were significantly increased. No severe adverse reactions associated with PDT were observed. CONCLUSION PDT is effective for CRC without significant side effects according to the available data. It alters the TME by recruiting immune cells into tumor tissues.
Collapse
Affiliation(s)
- Baohong Gu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zedong Feng
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Chenhui Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lei Gao
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Zheng
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Haiyuan Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hao Chen
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
19
|
Liu L, Liu H, Huang X, Liu X, Zheng C. A High-Throughput and Uniform Amplification Method for Cell Spheroids. MICROMACHINES 2022; 13:1645. [PMID: 36296003 PMCID: PMC9607487 DOI: 10.3390/mi13101645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cell culture is an important life science technology. Compared with the traditional two-dimensional cell culture, three-dimensional cell culture can simulate the natural environment and structure specificity of cell growth in vivo. As such, it has become a research hotspot. The existing three-dimensional cell culture techniques include the hanging drop method, spinner flask method, etc., making it difficult to ensure uniform morphology of the obtained cell spheroids while performing high-throughput. Here, we report a method for amplifying cell spheroids with the advantages of quickly enlarging the culture scale and obtaining cell spheroids with uniform morphology and a survival rate of over 95%. Technically, it is easy to operate and convenient to change substances. These results indicate that this method has the potential to become a promising approach for cell-cell, cell-stroma, cell-organ mutual interaction research, tissue engineering, and anti-cancer drug screening.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Haixia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Department of Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
20
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093191. [PMID: 35590879 DOI: 10.1039/d2sd00004k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
21
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H. Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:3191. [PMID: 35590879 PMCID: PMC9104470 DOI: 10.3390/s22093191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
22
|
Markova L, Novohradsky V, Kasparkova J, Ruiz J, Brabec V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem Biol Interact 2022; 360:109955. [PMID: 35447138 DOI: 10.1016/j.cbi.2022.109955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
In this work, the mechanism underlying the anticancer activity of a photoactivatable Ir(III) compound of the type [Ir(CˆN)2(dppz)][PF6] where CˆN = 1-methyl-2-(2'-thienyl)benzimidazole (complex 1) was investigated. Complex 1 photoactivated by visible light shows potent activity against highly aggressive and poorly treatable Rhabdomyosarcoma (RD) cells, the most frequent soft tissue sarcomas of children. This remarkable activity of 1 was observed not only in RD cells cultured in 2D monolayers but, more importantly, also in 3D spheroids, which resemble in many aspects solid tumors and serve as a promising model to mimic the in vivo situation. Importantly, photoactivated 1 kills not only differentiated RD cells but also even more effectively cancer stem cells (CSCs) of RD. One of the factors responsible for the activity of irradiated 1 in RD CSCs is its ability to produce ROS in these cells more effectively than in differentiated RD cells. Moreover, photoactivated 1 caused in RD differentiated cells and CSCs a significant decrease of mitochondrial membrane potential and promotes opening mitochondrial permeability transition pores in these cells, a mechanism that has never been demonstrated for any other metal-based anticancer complex. The results of this work give evidence that 1 has a potential for further evaluation using in vivo models as a promising chemotherapeutic agent for photodynamic therapy of hardly treatable human Rhabdomyosarcoma, particularly for its activity in both stem and differentiated cancer cells.
Collapse
Affiliation(s)
- Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Jose Ruiz
- Departamento de Quimica Inorganica, Universidad de Murcia and Institute for Bio- Health Research of Murcia (IMIB-Arrixaca), E-30071, Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic.
| |
Collapse
|
23
|
Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform Tumor Spheroids on Surface-Optimized Microfluidic Biochips for Reproducible Drug Screening and Personalized Medicine. MICROMACHINES 2022; 13:587. [PMID: 35457892 PMCID: PMC9028696 DOI: 10.3390/mi13040587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023]
Abstract
Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Michael H Weber
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, School of Engineering, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- NSERC-Industry Chair, CREPEC, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H Rosenzweig
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
24
|
Chen C, He Y, Lopez E, Carreiras F, Yamada A, Schanne-Klein MC, Lambert A, Chen Y, Aimé C. High-throughput tuning of ovarian cancer spheroids for on-chip invasion assays. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
26
|
Adeshakin FO, Adeshakin AO, Liu Z, Cheng J, Zhang P, Yan D, Zhang G, Wan X. Targeting Oxidative Phosphorylation-Proteasome Activity in Extracellular Detached Cells Promotes Anoikis and Inhibits Metastasis. Life (Basel) 2021; 12:life12010042. [PMID: 35054435 PMCID: PMC8779336 DOI: 10.3390/life12010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Metastasis arises owing to tumor cells’ capacity to evade pro-apoptotic signals. Anoikis—the apoptosis of detached cells (from the extracellular matrix (ECM)) is often circumvented by metastatic cells as a result of biochemical and molecular transformations. These facilitate cells’ ability to survive, invade and reattach to secondary sites. Here, we identified deregulated glucose metabolism, oxidative phosphorylation, and proteasome in anchorage-independent cells compared to adherent cells. Metformin an anti-diabetic drug that reduces blood glucose (also known to inhibit mitochondrial Complex I), and proteasome inhibitors were employed to target these changes. Metformin or proteasome inhibitors alone increased misfolded protein accumulation, sensitized tumor cells to anoikis, and impaired pulmonary metastasis in the B16F10 melanoma model. Mechanistically, metformin reduced cellular ATP production, activated AMPK to foster pro-apoptotic unfolded protein response (UPR) through enhanced expression of CHOP in ECM detached cells. Furthermore, AMPK inhibition reduced misfolded protein accumulation, thus highlight relevance of AMPK activation in facilitating metformin-induced stress and UPR cell death. Our findings provide insights into the molecular biology of anoikis resistance and identified metformin and proteasome inhibitors as potential therapeutic options for tumor metastasis.
Collapse
Affiliation(s)
- Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhao Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
| | - Jian Cheng
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
| | - Pengchao Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- Correspondence: (G.Z.); (X.W.)
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (F.O.A.); (A.O.A.); (Z.L.); (J.C.); (P.Z.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (G.Z.); (X.W.)
| |
Collapse
|
27
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
28
|
Mu J, Gao S, Yang J, Wu F, Zhou H. Fundamental and Clinical Applications of Materials Based on Cancer-Associated Fibroblasts in Cancers. Int J Mol Sci 2021; 22:11671. [PMID: 34769102 PMCID: PMC8583912 DOI: 10.3390/ijms222111671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stromal cells play a role in promoting tumor relapse and therapeutic resistance. Therefore, the current treatment paradigms for cancers are usually insufficient to eradicate cancer cells, and anti-cancer therapeutic strategies targeting stromal cells have been developed. Cancer-associated fibroblasts (CAFs) are perpetually activated fibroblasts in the tumor stroma. CAFs are the most abundant and highly heterogeneous stromal cells, and they are critically involved in cancer occurrence and progression. These effects are due to their various roles in the remodeling of the extracellular matrix, maintenance of cancer stemness, modulation of tumor metabolism, and promotion of therapy resistance. Recently, biomaterials and nanomaterials based on CAFs have been increasingly developed to perform gene or protein expression analysis, three-dimensional (3D) co-cultivation, and targeted drug delivery in cancer treatment. In this review, we systematically summarize the current research to fully understand the relevant materials and their functional diversity in CAFs, and we highlight the potential clinical applications of CAFs-oriented biomaterials and nanomaterials in anti-cancer therapy.
Collapse
Affiliation(s)
- Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| |
Collapse
|
29
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
30
|
Collins T, Pyne E, Christensen M, Iles A, Pamme N, Pires IM. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. BIOMICROFLUIDICS 2021; 15:044103. [PMID: 34504636 PMCID: PMC8403013 DOI: 10.1063/5.0061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.
Collapse
Affiliation(s)
- Thomas Collins
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Emily Pyne
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Martin Christensen
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Alexander Iles
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Nicole Pamme
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Isabel M. Pires
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
31
|
Liu X, Lin H, Song J, Zhang T, Wang X, Huang X, Zheng C. A Novel SimpleDrop Chip for 3D Spheroid Formation and Anti-Cancer Drug Assay. MICROMACHINES 2021; 12:681. [PMID: 34200752 PMCID: PMC8230402 DOI: 10.3390/mi12060681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Cell culture is important for the rapid screening of anti-cancer drug candidates, attracting intense interest. Traditional 2D cell culture has been widely utilized in cancer biological research. However, 3D cellular spheroids are able to recapitulate the in vivo microenvironment of tissues or tumors. Thus far, several 3D cell culture methods have been developed, for instance, the hanging drop method, spinner flasks and micropatterned plates. Nevertheless, these methods have been reported to have some disadvantages, for example, medium replacement is inconvenient or causes cellular damage. Here, we report on an easy-to-operate and useful micro-hole culture chip (SimpleDrop) for 3D cellular spheroid formation and culture and drug analysis, which has advantages over the traditional method in terms of its ease of operation, lack of shear force and environmentally friendliness. On this chip, we observed the formation of a 3D spheroid clearly. Three drugs (paclitaxel, cisplatin and methotrexate) were tested by both cell viability assay and drug-induced apoptotic assay. The results show that the three drugs present a similar conclusion: cell viability decreased over time and concentration. Moreover, the apoptotic experiment showed a similar trend to the live/dead cell assay, in that the fraction of the apoptotic and necrotic cells correlated with the concentration and time. All these results prove that our SimpleDrop method is a useful and easy method for the formation of 3D cellular spheroids, which shows its potential for both cell-cell interaction research, tissue engineering and anticancer drug screening.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China;
| | - Huichao Lin
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (J.S.); (T.Z.)
| | - Jiaao Song
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (J.S.); (T.Z.)
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (J.S.); (T.Z.)
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China;
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (J.S.); (T.Z.)
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China;
| |
Collapse
|
32
|
Kang SM, Kim D, Lee JH, Takayama S, Park JY. Engineered Microsystems for Spheroid and Organoid Studies. Adv Healthc Mater 2021; 10:e2001284. [PMID: 33185040 PMCID: PMC7855453 DOI: 10.1002/adhm.202001284] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Indexed: 01/09/2023]
Abstract
3D in vitro model systems such as spheroids and organoids provide an opportunity to extend the physiological understanding using recapitulated tissues that mimic physiological characteristics of in vivo microenvironments. Unlike 2D systems, 3D in vitro systems can bridge the gap between inadequate 2D cultures and the in vivo environments, providing novel insights on complex physiological mechanisms at various scales of organization, ranging from the cellular, tissue-, to organ-levels. To satisfy the ever-increasing need for highly complex and sophisticated systems, many 3D in vitro models with advanced microengineering techniques have been developed to answer diverse physiological questions. This review summarizes recent advances in engineered microsystems for the development of 3D in vitro model systems. The relationship between the underlying physics behind the microengineering techniques, and their ability to recapitulate distinct 3D cellular structures and functions of diverse types of tissues and organs are highlighted and discussed in detail. A number of 3D in vitro models and their engineering principles are also introduced. Finally, current limitations are summarized, and perspectives for future directions in guiding the development of 3D in vitro model systems using microengineering techniques are provided.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Chungnam, 31066, Republic of Korea
| | - Daehan Kim
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joong Yull Park
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
33
|
Patra B, Lateef MA, Brodeur MN, Fleury H, Carmona E, Péant B, Provencher D, Mes-Masson AM, Gervais T. Carboplatin sensitivity in epithelial ovarian cancer cell lines: The impact of model systems. PLoS One 2021; 15:e0244549. [PMID: 33382759 PMCID: PMC7774933 DOI: 10.1371/journal.pone.0244549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America, underscoring the need for the development of new therapeutic strategies for the management of this disease. Although many drugs are pre-clinically tested every year, only a few are selected to be evaluated in clinical trials, and only a small number of these are successfully incorporated into standard care. Inaccuracies with the initial in vitro drug testing may be responsible for some of these failures. Drug testing is often performed using 2D monolayer cultures or 3D spheroid models. Here, we investigate the impact that these different in vitro models have on the carboplatin response of four EOC cell lines, and in particular how different 3D models (polydimethylsiloxane-based microfluidic chips and ultra low attachment plates) influence drug sensitivity within the same cell line. Our results show that carboplatin responses were observed in both the 3D spheroid models tested using apoptosis/cell death markers by flow cytometry. Contrary to previously reported observations, these were not associated with a significant decrease in spheroid size. For the majority of the EOC cell lines (3 out of 4) a similar carboplatin response was observed when comparing both spheroid methods. Interestingly, two cell lines classified as resistant to carboplatin in 2D cultures became sensitive in the 3D models, and one sensitive cell line in 2D culture showed resistance in 3D spheroids. Our results highlight the challenges of choosing the appropriate pre-clinical models for drug testing.
Collapse
Affiliation(s)
- Bishnubrata Patra
- Department of Engineering Physics and Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Muhammad Abdul Lateef
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Melica Nourmoussavi Brodeur
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Hubert Fleury
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montréal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- * E-mail: (TG); (AMMM)
| | - Thomas Gervais
- Department of Engineering Physics and Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- * E-mail: (TG); (AMMM)
| |
Collapse
|
34
|
Fu J, Li XB, Wang LX, Lv XH, Lu Z, Wang F, Xia Q, Yu L, Li CM. One-Step Dip-Coating-Fabricated Core-Shell Silk Fibroin Rice Paper Fibrous Scaffolds for 3D Tumor Spheroid Formation. ACS APPLIED BIO MATERIALS 2020; 3:7462-7471. [PMID: 35019488 DOI: 10.1021/acsabm.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioscaffolds are important substrates for supporting three-dimensional (3D) cell cultures. Silk fibroin (SF) is an attractive biomaterial in tissue engineering because of its good biocompatibility and mechanical properties. Electrospinning is one of the most often used approaches to fabricate SF fibrous scaffolds; yet, this technique still faces many challenges, such as low yield, residual organic solvents, limited extensibility of fibers, and a lack of spatial control over pore size. To circumvent these limitations, a core-shell SF on rice paper (SF@RP) fibrous scaffold was fabricated using a mild one-step dip-coating method. The cellulose fiber matrix of RP is the physical basis of the 3D scaffold, whereas the SF coating on the cellulose fiber controls the adhesion/spreading of the cells. The results indicated that by tuning the secondary structure of SF on the surface of a SF@RP scaffold, the cell behavior on SF@RP could be tuned. Tumor spheroids can be formed on SF@RP scaffolds with a dominant random secondary structure, in contrast to cells adhering and spreading on SF@RP scaffolds with a higher ratio of β-sheet secondary structures. Direct culturing of breast cancer MDA-MB-231 and MCF-7, lung cancer A549, prostate cancer DU145, and liver cancer HepG2 cells could spontaneously lead to corresponding tumor spheroids on SF@RP. In addition, the physiological characteristics of HepG2 tumor spheroids were investigated, and the results showed that compared with HepG2 monolayer cells, CYP3A4, CYP1A1, and albumin gene expression levels in HepG2 cell spheres formed on SF@RP scaffolds were significantly higher. Moreover, these spheroids showed higher drug resistance. In summary, these SF@RP scaffolds prepared by the dip-coating method are biocompatible substrates for cell culture, especially for tumor cell spheroid formation.
Collapse
Affiliation(s)
- Jingjing Fu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Bai Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Lin Xiang Wang
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Hui Lv
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Institute of Advanced Cross-field Science, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
35
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
36
|
Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Sci Rep 2020; 10:15915. [PMID: 32985610 PMCID: PMC7522244 DOI: 10.1038/s41598-020-72952-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) spheroidal cell cultures are now recognised as better models of cancers as compared to traditional cell cultures. However, established 3D cell culturing protocols and techniques are time-consuming, manually laborious and often expensive due to the excessive consumption of reagents. Microfluidics allows for traditional laboratory-based biological experiments to be scaled down into miniature custom fabricated devices, where cost-effective experiments can be performed through the manipulation and flow of small volumes of fluid. In this study, we characterise a 3D cell culturing microfluidic device fabricated from a 3D printed master. HT29 cells were seeded into the device and 3D spheroids were generated and cultured through the perfusion of cell media. Spheroids were treated with 5-Fluorouracil for five days through continuous perfusion and cell viability was analysed on-chip at different time points using fluorescence microscopy and Lactate dehydrogenase (LDH) assay on the supernatant. Increasing cell death was observed in the HT29 spheroids over the five-day period. The 3D cell culturing microfluidic device described in this study, permits on-chip anti-cancer treatment and viability analysis, and forms the basis of an effective platform for the high-throughput screening of anti-cancer drugs in 3D tumour spheroids.
Collapse
|
37
|
Kwon S, Lee D, Gopal S, Ku A, Moon H, Dordick JS. Three‐dimensional in vitro cell culture devices using patient‐derived cells for high‐throughput screening of drug combinations. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seok‐Joon Kwon
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Dongwoo Lee
- Departments of Biomedical Engineering Konyang University Daejeon Korea
| | - Sneha Gopal
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Ashlyn Ku
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Hosang Moon
- MBD (Medical & Bio Decision) Co., Ltd. Suwon‐si Korea
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
38
|
Li Z, Guo X, Sun L, Xu J, Liu W, Li T, Wang J. A simple microsphere‐based mold to rapidly fabricate microwell arrays for multisize 3D tumor culture. Biotechnol Bioeng 2020; 117:1092-1100. [DOI: 10.1002/bit.27257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zixiu Li
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| | - Xiaofang Guo
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| | - Lili Sun
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| | - Juan Xu
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan P. R. China
| | - Tianbao Li
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi P. R. China
| |
Collapse
|
39
|
Investigation of uniform sized multicellular spheroids raised by microwell arrays after the combined treatment of electric field and anti-cancer drug. Biomed Microdevices 2019; 21:94. [DOI: 10.1007/s10544-019-0442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Zhang Z, Chen L, Wang Y, Zhang T, Chen YC, Yoon E. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Anal Chem 2019; 91:14093-14100. [DOI: 10.1021/acs.analchem.9b03896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Lili Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yimin Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Tiantian Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, United States
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
41
|
Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication 2019; 11:045013. [DOI: 10.1088/1758-5090/ab30b4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Ravi M, Sneka MK, Joshipura A. The culture conditions and outputs from breast cancer cell line in vitro experiments. Exp Cell Res 2019; 383:111548. [PMID: 31398351 DOI: 10.1016/j.yexcr.2019.111548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
One of the major cancer types that have gained significant importance globally is the breast cancer due to its socio-economic impact. Breast cancer research is an area of considerable importance and several types of material are available for research applications. These include cancer cell lines which can be utilized in several ways. Cell lines are convenient to use and recently about 84 human breast cancer cell lines were classified by molecular sub-typing. These cells lines come under five major molecular subtypes namely the luminal A and B, HER-2+, triple- A and B subtypes. These cell lines have been well characterized and were utilized for understanding various aspects of breast cancers. Also, apart from providing an understanding of the molecular mechanisms associated with breast cancers, these cell lines have contributed significantly to areas such as drug testing. We present in this review the features of these cell lines, the studies conducted using them and the outcome of such studies. Also, the details about the culture conditions and study outcomes of the cell lines grown in 3-dimensional (3D) systems are presented.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - M Kaviya Sneka
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Aastha Joshipura
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
43
|
Huang CH, Lei KF, Tsang NM. Apoptosis and cell cycle arrest of hepatocellular carcinoma spheroids treated by an alternating electric field. Biotechnol Prog 2019; 35:e2787. [DOI: 10.1002/btpr.2787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chun-Hao Huang
- Program in Biomedical Engineering; College of Engineering, Chang Gung University; Taoyuan Taiwan
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University; Taoyuan Taiwan
- Department of Radiation Oncology; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology; Chang Gung Memorial Hospital; Linkou Taiwan
- Department of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
| |
Collapse
|
44
|
Khot MI, Levenstein M, Kapur N, Jayne D. A Review on the Recent Advancement in “Tumour Spheroids-on-a-Chip”. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_23_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Dobos A, Steiger W, Theiner D, Gruber P, Lunzer M, Van Hoorick J, Van Vlierberghe S, Ovsianikov A. Screening of two-photon activated photodynamic therapy sensitizers using a 3D osteosarcoma model. Analyst 2019; 144:3056-3063. [DOI: 10.1039/c9an00068b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An in vitro screening platform for high-throughput profiling and comparison of two-photon photodynamic therapy sensitizers was established.
Collapse
Affiliation(s)
- Agnes Dobos
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
- Austrian Cluster for Tissue Regeneration
| | - Wolfgang Steiger
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
- Austrian Cluster for Tissue Regeneration
| | - Dominik Theiner
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
| | - Peter Gruber
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
- Austrian Cluster for Tissue Regeneration
| | - Markus Lunzer
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
- Austrian Cluster for Tissue Regeneration
| | - Jasper Van Hoorick
- Ghent University
- Polymer Chemistry and Biomaterials Group
- Centre of Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Sandra Van Vlierberghe
- Ghent University
- Polymer Chemistry and Biomaterials Group
- Centre of Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Aleksandr Ovsianikov
- TU Wien
- Institute of Materials Science and Technology
- 1060 Vienna
- Austria
- Austrian Cluster for Tissue Regeneration
| |
Collapse
|
46
|
A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules 2018; 23:molecules23123355. [PMID: 30567363 PMCID: PMC6321514 DOI: 10.3390/molecules23123355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D) cell culture is considered more clinically relevant in mimicking the structural and physiological conditions of tumors in vivo compared to two-dimensional cell cultures. In recent years, high-throughput screening (HTS) in 3D cell arrays has been extensively used for drug discovery because of its usability and applicability. Herein, we developed a microfluidic spheroid culture device (μFSCD) with a concentration gradient generator (CGG) that enabled cells to form spheroids and grow in the presence of cancer drug gradients. The device is composed of concave microwells with several serpentine micro-channels which generate a concentration gradient. Once the colon cancer cells (HCT116) formed a single spheroid (approximately 120 μm in diameter) in each microwell, spheroids were perfused in the presence of the cancer drug gradient irinotecan for three days. The number of spheroids, roundness, and cell viability, were inversely proportional to the drug concentration. These results suggest that the μFSCD with a CGG has the potential to become an HTS platform for screening the efficacy of cancer drugs.
Collapse
|
47
|
Spontaneous formation of tumor spheroid on a hydrophilic filter paper for cancer stem cell enrichment. Colloids Surf B Biointerfaces 2018; 174:426-434. [PMID: 30481703 DOI: 10.1016/j.colsurfb.2018.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/30/2023]
Abstract
Emerging evidence has demonstrated that cancer stem cells (CSCs) play critical roles in tumor invasion, metastasis and recurrence. The specific targeting capability on CSCs is of high importance for the development of effective anti-tumor therapeutics. However, isolation, enrichment and cultivation of these special and rare groups of tumor cells for in vitro analyses is a nontrivial job and requires particular culture medium and environmental control. Herein, we established a low-cost and efficient method for CSC enrichment by culturing prostate cancer cells on a hydrophilic filter paper. We found that tumor spheroids could form spontaneously on a pristine filter paper solely with regular cell culture medium. The paper-grown cells had elevated expression of putative CSC markers, indicating increased stemness of the cancer cells. Moreover, increased resistance of the chemotherapeutic drug doxorubicin was observed on the formed CSC spheroids compared to regular culture. The properties of the filter paper were characterized to investigate the underlying mechanism behind the promoted tumor spheroid formation. The obtained results suggested that the excellent hydrophilicity of the cellulose fibers retarded the hydrophobic interaction-mediated cell anchoring on the cellulose fibers, while the limited space/niche between fibers promoted the aggregation of cells. In addition, biocompatible paper-based materials are able to realize convenient assembly of tissue-like structures for developing in vitro disease models or organs-on-paper applications. Therefore, hydrophilic filter papers could be a low-cost material for construction of various assay platforms for isolating and enriching CSCs, screening anti-tumor drugs, and constructing tumor models in vitro.
Collapse
|
48
|
Multicellular Human Gastric-Cancer Spheroids Mimic the Glycosylation Phenotype of Gastric Carcinomas. Molecules 2018; 23:molecules23112815. [PMID: 30380716 PMCID: PMC6278543 DOI: 10.3390/molecules23112815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
Cellular glycosylation plays a pivotal role in several molecular mechanisms controlling cell–cell recognition, communication, and adhesion. Thus, aberrant glycosylation has a major impact on the acquisition of malignant features in the tumor progression of patients. To mimic these in vivo features, an innovative high-throughput 3D spheroid culture methodology has been developed for gastric cancer cells. The assessment of cancer cell spheroids’ physical characteristics, such as size, morphology and solidity, as well as the impact of glycosylation inhibitors on spheroid formation was performed applying automated image analysis. A detailed evaluation of key glycans and glycoproteins displayed by the gastric cancer spheroids and their counterpart cells cultured under conventional 2D conditions was performed. Our results show that, by applying 3D cell culture approaches, the model cell lines represented the differentiation features observed in the original tumors and the cellular glycocalix underwent striking changes, displaying increased expression of cancer-associated glycan antigens and mucin MUC1, ultimately better simulating the glycosylation phenotype of the gastric tumor.
Collapse
|
49
|
Zhang Z, Chen YC, Urs S, Chen L, Simeone DM, Yoon E. Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703617. [PMID: 30239130 DOI: 10.1002/smll.201703617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/12/2018] [Indexed: 05/15/2023]
Abstract
Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor effective treatments for each individual patient. Drug combinations have been widely accepted in cancer treatment for better therapeutic efficacy as compared to a single compound. However, experimental complexity and cost grow exponentially with more target compounds under investigation. The primary challenge remains to efficiently perform a large-scale drug combination screening using a small number of patient primary samples for testing. Here, a scalable, easy-to-use, high-throughput drug combination screening scheme is reported, which has the potential of screening all possible pairwise drug combinations for arbitrary number of drugs with multiple logarithmic mixing ratios. A "Christmas tree mixer" structure is introduced to generate a logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration range for screening. A three-layer structure design and special inlets arrangement facilitate simple drug loading process. As a proof of concept, an 8-drug combination chip is implemented, which is capable of screening 172 different treatment conditions over 1032 3D cancer spheroids on a single chip. Using both cancer cell lines and patient-derived cancer cells, effective drug combination screening is demonstrated for precision medicine.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Sumithra Urs
- University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Lili Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Diane M Simeone
- University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
50
|
Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell Dev Biol Anim 2018; 54:629-639. [PMID: 30136034 DOI: 10.1007/s11626-018-0288-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common cancer of the sympathetic nervous system in children. Here, the influences of curcumin on survival, apoptosis, migration, and its combined effects with doxorubicin were investigated in SH-SY5Y cells by cell survival assay, flow cytometry, migration assays, and RT-PCR. Curcumin inhibited SH-SY5Y cell growth and induced apoptosis in dose- and time-dependent manners. This apoptotic induction relied on the upregulation of p53 and p21. Moreover, the treatment of curcumin for 24 h significantly suppressed cell migration, together with the downregulation of matrix metalloproteinase-2 (MMP-2) and upregulation of tissue inhibitor of metalloproteinases-1 (TIMP-1). The combination of curcumin augmented the anticancer activity of doxorubicin and significantly induced apoptosis. Pretreatment with curcumin increased the fraction of doxorubicin-induced apoptotic cells from 21.76 ± 0.50 to 57.74 ± 2.68%. Co-treatment with doxorubicin plus curcumin further inhibited 3D tumor migration. Altogether, the results suggest that curcumin suppresses growth and migration of SH-SY5Y cells and enhances the anticancer activity of doxorubicin. The addition of curcumin to therapeutic regimens may be promising for the treatment of neuroblastomas if a number of problems related to its in vivo bioavailability can be resolved. Graphical abstract ᅟ.
Collapse
|