1
|
Jeje TO, Bando H, Azad MTA, Fukuda Y, Oluwafemi IE, Kato K. Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri Linn.) in malaria infection. Parasitol Int 2023; 97:102789. [PMID: 37473798 DOI: 10.1016/j.parint.2023.102789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Plasmodium falciparum parasites are the primary cause of malaria across Africa. The problem of drug resistance to malaria is ever growing and novel therapeutic strategies need to be developed, particularly those targeting the parasite and also the host or host-pathogen interaction. Previous studies have shown that the development of cerebral malaria (CM) is related to dysregulation of the immune system in a murine malaria model of experimental cerebral malaria. It involves a complex interaction of events and interferon-gamma seems to be the unifying factor. Therefore, the antiplasmodial activity targeting the parasite and immunomodulatory strategies that reduce overall host inflammation, with IFN-γ in focus, could delay CM onset and prove beneficial in malaria infection therapy. Phyllanthus niruri is used to treat fever and other symptoms of malaria in Nigeria. Its modes of action as an anti-malarial remedy have not been exhaustively investigated. This study therefore examined the aqueous extract of P. niruri (PE) for its antiplasmodial activity in vitro using the Plasmodium falciparum HB3 strain. Furthermore, in vivo murine malaria model using the Plasmodium berghei ANKA strain was used to investigate its anti-malarial effects. We showed that PE has multiple anti-malarial effects, including anti-parasitic and host immunomodulatory activities. Co-culture of P. falciparum with PE and some of its phytoconstituents drastically reduced parasite number. PE also decreased parasitemia, and increased the survival of infected mice. We also observed that the integrity of the blood-brain barrier was maintained in the PE-treated mice. The results confirmed that PE showed moderate antiplasmodial activity. In vivo murine malaria model using P. berghei ANKA for experimental cerebral malaria revealed that PE suppressed parasite growth, and modulate the production of interferon-gamma. The findings demonstrate that PE affects malaria progression, targeting parasites and host cells.
Collapse
Affiliation(s)
- Temitope Olawale Jeje
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Nigeria; Department of Biochemistry, School of Science, Federal University of Technology, Akure, Nigeria
| | - Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Veterinary and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
2
|
Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol 2023; 255:111579. [PMID: 37385350 DOI: 10.1016/j.molbiopara.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1β, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.
Collapse
Affiliation(s)
- James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical of University of Kenya, P.O Box 52428-00200 Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6-60100 Embu, Kenya
| | - Peter Shikuku Kibet
- Department of Pathology, Hematology and Blood Transfusion thematic unit, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Geoffrey K Kinuthia
- Department of Science & Public Health, Daystar University, PO Box 44400-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School Health Sciences and Biomedical Sciences, Technical University of Kenya, P.O Box 52428-00200 Nairobi, Kenya
| |
Collapse
|
3
|
Eeka P, Phanithi PB. Lymphotoxin-α Orchestrate Hypoxia and Immune factors to Induce Experimental Cerebral Malaria: Inhibition Mitigates Pathogenesis, Neurodegeneration, and Increase Survival. J Mol Neurosci 2022; 72:2425-2439. [PMID: 36469197 DOI: 10.1007/s12031-022-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Knockdown studies have shown lymphotoxin-α (Lt-α) as a critical molecule for Experimental cerebral malaria (ECM) pathogenesis. We investigated the role of lymphotoxin-α in regulating active caspase-3 and calpain1. T cell infiltration into the brains, and subsequent neuronal cell death are the essential features of Plasmodium berghei ANKA(PbA)-induced ECM. Our results showed increased Lt-α levels during ECM. Treatment of naïve mice with serum from ECM mice and exogenous Lt-α was lethal. We inhibited Lt-α in vivo during PbA infection by injecting the mice with anti-Lt-α antibody. Inhibition of Lt-α mitigated neuronal cell death and increased mice's survival until 30-day post-infection (p.i.) compared to only 15 days survival of PbA control mice.
Collapse
Affiliation(s)
- Prabhakar Eeka
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.,Department of Biotechnology, GITAM Institute of Sciences, GITAM Deemed to Be University, Visakhapatnam, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
4
|
Shakib P, Kalani H, Ho J, Dolatshah M, Amiri S, Cheraghipour K. A Systematic Review on Curcumin and Anti-Plasmodium berghei Effects. Curr Drug Discov Technol 2022; 19:e150322202249. [PMID: 35293297 DOI: 10.2174/1570163819666220315140736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Turmeric (Curcuma longa L.) is a popular spice, containing curcumin that is responsible for its therapeutic effects. Curcumin with anti-inflammatory, antioxidant, anti-cancer, and antimicrobial activities has led to a lot of research focusing on it over the years. This systematic review aimed to evaluate researches on anti-Plasmodium berghei activity of curcumin and its derivatives. METHODS Our study was performed according to PRISMA guidelines and was recorded in the database of systematic review and preclinical meta-analysis of CAMARADESNC3Rs (SyRF). The search was performed in five databases, namely Scopus, PubMed, Web of Science, EMBASE, and Google Scholar from 2010 to 2020. The following keywords were searched: "Plasmodium berghei", "Medicinal Plants", "Curcumin", "Concentration", Animals kind", "Treatment Durations", "Routes of Administration" and "in vivo". RESULTS Of the 3,500 papers initially obtained, 14 articles were reliable and were thus scrutinized. Animal models were included in all studies. The most commonly used animal strain were Albino (43%) followed by C57BL/6 (22%). The other studies used various murine strains, including BALB/c (14%) and ICR (7%). Two (14%) studies did not mention the strain of animal model used. Curcumin alone or in combination with other compounds depending on the dose used, route of administration, and animal model showed a moderate to strong anti-Plasmodium berghei effect. CONCLUSION According to the studies, curcumin has anti-malarial effects on Plasmodium berghei and, however, its effect on human Plasmodium is unclear. Due to the side effects and drug resistance of current drugs in the treatment of human malaria, the use of new compounds with few or no side effects such as curcumin is recommended as an alternative or complementary treatment.
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jeffery Ho
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | | | - Sana Amiri
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Mukherjee S, Ray G, Saha B, Kar SK. Oral Therapy Using a Combination of Nanotized Antimalarials and Immunomodulatory Molecules Reduces Inflammation and Prevents Parasite Induced Pathology in the Brain and Spleen of P. berghei ANKA Infected C57BL/6 Mice. Front Immunol 2022; 12:819469. [PMID: 35095923 PMCID: PMC8793777 DOI: 10.3389/fimmu.2021.819469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
In malaria, anti-parasite immune response of the host may lead to dysregulated inflammation causing severe neuropathology arising from extensive damage to the Blood Brain Barrier (BBB). Use of anti-malarial drugs alone can control parasitemia and reduce inflammation but it cannot reduce pathology if chronic inflammation has already set in. In the present study, we have tested the efficacy of a new oral artemsinin based combination therapy (ACT) regimen using a combination of anti-malarial compounds like nanoartemisinin and nanoallylated-chalcone9 [{1-(4-Chlorophenyl)-3-[3-methoxy-4-(prop-2-en-1-yloxy) phenyl]-prop-2-en-1-one}]given together with anti-inflammatory-cum- anti-malarial compounds like nanoandrographolide and nanocurcumin to C57BL/6 mice infected with P. berghei ANKA. Untreated infected mice developed Experimental Cerebral Malaria (ECM) and died between 10 to 12 days after infection from severe BBB damage. We observed that oral treatments with nanoartemisinin or nano allylated chalcone 9 or nanoandrographolide alone, for 4 days after the onset of ECM, delayed the development of severe neurolopathology but could not prevent it. Nanocurcumin treatment for 4 days on the other hand, prevented damage to the BBB but the mice died because of hyperparasitemia. A single time oral administration of our ACT controlled blood parasitemia and prevented damage to the BBB, but recrudescence occurred due to persistence of parasites in the spleen. However the recrudescent parasites failed to induce ECM and BBB damage, leading to prolonged survival of the animals. A second time treatment at the start of recrudescence led to complete parasite clearance and survival of mice without pathology or parasitemia for 90 days. FACS analysis of spleen cells and gene expression profile in brain and spleen as well as quantitation of serum cytokine by ELISA showed that P. berghei ANKA infection in C57Bl/6 mice leads to a Th1-skewed immune response that result in severe inflammation and early death from ECM. Oral treatment with our ACT prevented a heightened pro-inflammatory response by modulating the Th1, Th2 and Treg immune responses and prevented ECM and death.
Collapse
Affiliation(s)
- Sitabja Mukherjee
- School of Biotechnology, KIIT deemed to be University, Bhubaneswar, India
| | - Gopesh Ray
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT deemed to be University, Bhubaneswar, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Santosh K. Kar
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT deemed to be University, Bhubaneswar, India,*Correspondence: Santosh K. Kar,
| |
Collapse
|
6
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:800-811. [DOI: 10.1093/jpp/rgac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
7
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
8
|
Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, Silva AA, Machado Rodrigues e Silva P, Roffê E, da Costa Santiago H, Tostes Gazzinelli R, Mineo JR, Silva NM, Lannes-Vieira J. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS One 2021; 16:e0258199. [PMID: 34610039 PMCID: PMC8491889 DOI: 10.1371/journal.pone.0258199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.
Collapse
Affiliation(s)
- Leda Castaño Barrios
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Da Silva Pinheiro
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Ester Roffê
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Tostes Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
10
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
11
|
Ataide BJDA, Kauffmann N, Mendes NDSF, Torres MLM, Dos Anjos LM, Passos ADCF, de Moraes SAS, Batista EDJO, Herculano AM, Oliveira KRHM. Melatonin Prevents Brain Damage and Neurocognitive Impairment Induced by Plasmodium Berghei ANKA Infection in Murine Model of Cerebral Malaria. Front Cell Infect Microbiol 2020; 10:541624. [PMID: 33102250 PMCID: PMC7554304 DOI: 10.3389/fcimb.2020.541624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Cerebral malaria is characterized by permanent cognitive impairments in Plasmodium-infected children. Antimalarial therapies show little effectiveness to avoid neurological deficits and brain tissue alterations elicited by severe malaria. Melatonin is a well-recognized endogenous hormone involved in the control of brain functions and maintenance of blood–brain barrier integrity. The current study has evaluated the effect of melatonin on the histological alterations, blood–brain barrier leakage, and neurocognitive impairments in mice developing cerebral malaria. Swiss mice infected with Plasmodium berghei ANKA strain was used as cerebral malaria model. Melatonin treatment (5 and 10 mg/kg) was performed for four consecutive days after the infection, and data have shown an increased survival rate in infected mice treated with melatonin. It was also observed that melatonin treatment blocked brain edema and prevented the breakdown of blood–brain barrier induced by the Plasmodium infection. Furthermore, hematoxylin and eosin staining revealed that melatonin mitigates the histological alterations in Plasmodium-infected animals. Melatonin was also able to prevent motor and cognitive impairments in infected mice. Taken together, these results show for the first time that melatonin treatment prevents histological brain damages and neurocognitive alterations induced by cerebral malaria.
Collapse
Affiliation(s)
| | - Nayara Kauffmann
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa, Belém, Brazil
| | | | - Marjorie Lujan Marques Torres
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa, Belém, Brazil.,Laboratory of Protozoology, Topical Medicine Nucleus, UFPa, Belém, Brazil
| | - Larissa Medeiros Dos Anjos
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa, Belém, Brazil.,Laboratory of Protozoology, Topical Medicine Nucleus, UFPa, Belém, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Golenser J, Salaymeh N, Higazi AA, Alyan M, Daif M, Dzikowski R, Domb AJ. Treatment of Experimental Cerebral Malaria by Slow Release of Artemisone From Injectable Pasty Formulation. Front Pharmacol 2020; 11:846. [PMID: 32595499 PMCID: PMC7303303 DOI: 10.3389/fphar.2020.00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria caused by Plasmodium falciparum causes numerous cases of morbidity with about 400,000 deaths yearly owing, mainly, to inflammation leading to cerebral malaria (CM). CM conventionally is treated by repetitive administration of anti-plasmodial drugs and supportive non-specific drugs, for about a week. A mouse model of CM caused by Plasmodium berghei ANKA, in which brain and systemic clinical pathologies occur followed by sudden death within about a week, was used to study the effect of artemisone, a relatively new artemisinin, within an injectable pasty polymer formulated for its controlled release. The parasites were exposed to the drug over several days at a non-toxic concentrations for the mice but high enough to affect the parasites. Artemisone was also tested in cultures of bacteria, cancer cells and P. falciparum to evaluate the specificity and suitability of these cells for examining the release of artemisone from its carrier. Cultures of P. falciparum were the most suitable. Artemisone released from subcutaneous injected poly(sebacic acid-ricinoleic acid) (PSARA) pasty polymer, reduced parasitemias in infected mice, prolonged survival and prevented death in most of the infected mice. Successful prophylactic treatment before infection proved that there was a slow release of the drug for about a week, which contrasts with the three hour half-life that occurs after injection of just the drug. Treatment with artemisone within the polymer, even at a late stage of the disease, helped to prevent or, at least, delay accompanying severe symptoms. In some cases, treatment prevented death of CM and the mice died later of anemia. Postponing the severe clinical symptoms is also beneficial in cases of human malaria, giving more time for an appropriate diagnosis and treatment before severe symptoms appear. The method presented here may also be useful for combination therapy of anti-plasmodial and immunomodulatory drugs.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | | | - Mohammed Alyan
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Mahran Daif
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Abraham J. Domb
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| |
Collapse
|
13
|
Maurizio PL, Fuseini H, Tegha G, Hosseinipour M, De Paris K. Signatures of divergent anti-malarial treatment responses in peripheral blood from adults and young children in Malawi. Malar J 2019; 18:205. [PMID: 31234875 PMCID: PMC6591936 DOI: 10.1186/s12936-019-2842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Heterogeneity in the immune response to parasite infection is mediated in part by differences in host genetics, gender, and age group. In infants and young children, ongoing immunological maturation often results in increased susceptibility to infection and variable responses to drug treatment, increasing the risk of complications. Even though significant age-associated effects on host cytokine responses to Plasmodium falciparum infection have been identified, age-associated effects on uncomplicated malaria infection and anti-malarial treatment remain poorly understood. METHODS In samples of whole blood from a cohort of naturally infected malaria-positive individuals with non-severe falciparum malaria in Malawi (n = 63 total; 34 infants and young children < 2 years old, 29 adults > 18 years old), blood cytokine levels and monocyte and dendritic cell frequencies were assessed at two timepoints: acute infection, and 4 weeks post anti-malarial treatment. The effects of age group, gender, and timepoint were modeled, and the role of these factors on infection and treatment outcomes was evaluated. RESULTS Regardless of treatment timepoint, in this population age was significantly associated with overall blood haemoglobin, which was higher in adults, and plasma nitric oxide metabolites, IL-10, and TNF levels, which were higher in young children. There was a significant effect of age on the haemoglobin treatment response, whereby after treatment, levels increased in young children and decreased in adults. Furthermore, there were significant age-associated effects on treatment response for overall parasite load, IFN-γ, and IL-12(p40), and these effects were gender-dependent. Significant age effects on the overall levels and treatment response of myeloid dendritic cell frequencies were observed. In addition, within each age group, results showed continuous age effects on gametocyte levels (Pfs16), TNF, and nitric oxide metabolites. CONCLUSIONS In a clinical study of young children and adults experiencing natural falciparum malaria infection and receiving anti-malarial treatment, age-associated signatures of infection and treatment responses in peripheral blood were identified. This study describes host markers that may indicate, and potentially contribute to, differential post-treatment outcomes for malaria in young children versus adults.
Collapse
Affiliation(s)
- Paul L Maurizio
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hubaida Fuseini
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| | - Gerald Tegha
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
| | - Mina Hosseinipour
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
14
|
Burrack KS, Huggins MA, Taras E, Dougherty P, Henzler CM, Yang R, Alter S, Jeng EK, Wong HC, Felices M, Cichocki F, Miller JS, Hart GT, Johnson AJ, Jameson SC, Hamilton SE. Interleukin-15 Complex Treatment Protects Mice from Cerebral Malaria by Inducing Interleukin-10-Producing Natural Killer Cells. Immunity 2018; 48:760-772.e4. [PMID: 29625893 DOI: 10.1016/j.immuni.2018.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 11/27/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.
Collapse
Affiliation(s)
- Kristina S Burrack
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Matthew A Huggins
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily Taras
- Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Philip Dougherty
- Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Christine M Henzler
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55414, USA
| | - Rendong Yang
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55414, USA
| | - Sarah Alter
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Emily K Jeng
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Hing C Wong
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Martin Felices
- Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Geoffrey T Hart
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Sara E Hamilton
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA.
| |
Collapse
|
15
|
Co-nanoencapsulation of antimalarial drugs increases their in vitro efficacy against Plasmodium falciparum and decreases their toxicity to Caenorhabditis elegans. Eur J Pharm Sci 2018; 118:1-12. [PMID: 29550283 DOI: 10.1016/j.ejps.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 02/03/2023]
Abstract
Drugs used for the treatment and prevention of malaria have resistance-related problems, making them ineffective for monotherapy. If properly associated, many of these antimalarial drugs may find their way back to the treatment regimen. Among the therapeutic arsenal, quinine (QN) is a second-line treatment for uncomplicated malaria but has side effects that limit its use. Curcumin (CR) is a natural compound with anti-plasmodial activities and low bioavailability. In this context, the aim of this work was to develop and characterize co-encapsulated QN + CR-loaded polysorbate-coated polymeric nanocapsules (NC-QC) to evaluate their activity on Plasmodium falciparum and the safety of the nanoformulations for Caenorhabditis elegans. NC-QC displayed a diameter of approximately 200 nm, a negative zeta potential and a slightly basic pH. The drugs are homogeneously distributed in the NCs in the amorphous form. Co-encapsulated NCs exhibited a significant reduction in P. falciparum parasitemia, better than QN/CR. The worms exposed to NC-QC showed higher survival and longevity and no decrease in their reproductive capacity compared to free and associated drugs. It was possible to prove that the NCs were absorbed orally by the worms using fluorescence microscopy. Co-encapsulation of QN and CR was effective against P. falciparum, minimizing the toxic effects caused by chronic exposure of the free drugs in C. elegans.
Collapse
|
16
|
Gomes GS, Maciel TR, Piegas EM, Michels LR, Colomé LM, Freddo RJ, Ávila DSD, Gundel A, Haas SE. Optimization of Curcuma Oil/Quinine-Loaded Nanocapsules for Malaria Treatment. AAPS PharmSciTech 2018; 19:551-564. [PMID: 28875471 DOI: 10.1208/s12249-017-0854-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/30/2017] [Indexed: 11/30/2022] Open
Abstract
Quinine, a treatment used in chloroquine-resistant falciparum malaria, was loaded into poly(ɛ-caprolactone) or Eudragit® RS100 nanocapsules using Curcuma oil as the oil-based core. Until now, the effect of cationic nanocapsules on malaria has not been reported. A 24 factorial design was adopted using, as independent variables, the concentration of Curcuma oil, presence of quinine, type of polymer, and aqueous surfactant. Diameter, zeta potential, and pH were the responses studied. The formulations were also evaluated for drug content, encapsulation efficiency, photostability, and antimalarial activity against Plasmodium berghei-infected mice. The type of polymer influenced all of the responses studied. Quinine-loaded Eudragit® RS100 (F13) and PCL nanocapsules (F9), both with polysorbate 80 coating, showed nanometric particle size, positive zeta potential, neutral pH, high drug content, and quinine photoprotection ability; thus, these nanocapsules were selected for in vivo tests. Both formulations showed lower levels of parasitemia from the beginning of the experiment (5.78 ± 3.60 and 4.76 ± 3.46% for F9 and F13, respectively) and highest survival mean time (15.3 ± 2.0 and 14.9 ± 5.6 days for F9 and F13, respectively). F9 and F13 showed significant survival curve compared to saline, thus demonstrating that nanoencapsulation improved bioefficacy of QN and co-encapsulated curcuminoids, regardless of the surface charge.
Collapse
|
17
|
Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Kain KC, Bassat Q. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J 2018; 17:47. [PMID: 29361945 PMCID: PMC5781278 DOI: 10.1186/s12936-018-2195-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent efforts and successes in reducing the malaria burden globally, this infection still accounts for an estimated 212 million clinical cases, 2 million severe malaria cases, and approximately 429,000 deaths annually. Even with the routine use of effective anti-malarial drugs, the case fatality rate for severe malaria remains unacceptably high, with cerebral malaria being one of the most life-threatening complications. Up to one-third of cerebral malaria survivors are left with long-term cognitive and neurological deficits. From a population point of view, the decrease of malaria transmission may jeopardize the development of naturally acquired immunity against the infection, leading to fewer total cases, but potentially an increase in severe cases. The pathophysiology of severe and cerebral malaria is not completely understood, but both parasite and host determinants contribute to its onset and outcomes. Adjunctive therapy, based on modulating the host response to infection, could help to improve the outcomes achieved with specific anti-malarial therapy. RESULTS AND CONCLUSIONS In the last decades, several interventions targeting different pathways have been tested. However, none of these strategies have demonstrated clear beneficial effects, and some have shown deleterious outcomes. This review aims to summarize evidence from clinical trials testing different adjunctive therapy for severe and cerebral malaria in humans. It also highlights some preclinical studies which have evaluated novel strategies and other candidate therapeutics that may be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Rosauro Varo
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
| | - Lola Madrid
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
18
|
Dende C, Meena J, Nagarajan P, Nagaraj VA, Panda AK, Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci Rep 2017; 7:10062. [PMID: 28855623 PMCID: PMC5577147 DOI: 10.1038/s41598-017-10672-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Curcumin has many pharmacological activities despite its poor bioavailability and in vivo stability. Here, we show that a nanoformulated curcumin (PLGA-curcumin) has better therapeutic index than native curcumin in preventing the onset of neurological symptoms and delaying the death of mice in experimental cerebral malaria. Oral PLGA-curcumin was at least as effective as native curcumin at a 15-fold lower concentration in preventing the breakdown of blood-brain barrier and inhibition of brain mRNAs for inflammatory cytokines, chemokine receptor CXCR3 and its ligand CXCL10, with an increase in the anti-inflammatory cytokine IL-10. This was also reflected in serum cytokine and chemokine levels. At equivalent concentrations, a single oral dose of PLGA-curcumin was more effective in inhibiting serum IFNγ levels and enhancing IL-10 levels than native curcumin. Even at low concentrations, PLGA-curcumin was superior to native curcumin in inhibiting the sequestration of parasitized-RBCs and CD8+ T cells in the brain. A single oral dose of 5 mg PLGA-curcumin containing 350 μg of curcumin resulted in 3–4 fold higher concentration and prolonged presence of curcumin in the brain than that obtained with 5 mg of native curcumin, indicating better bioavailability of PLGA-curcumin. PLGA-curcumin has potential as an adjunct drug to treat human cerebral malaria.
Collapse
Affiliation(s)
- Chaitanya Dende
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Jairam Meena
- National Institute of Immunology, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
19
|
Keita Alassane S, Nicolau-Travers ML, Menard S, Andreoletti O, Cambus JP, Gaudre N, Wlodarczyk M, Blanchard N, Berry A, Abbes S, Colongo D, Faye B, Augereau JM, Lacroux C, Iriart X, Benoit-Vical F. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria. PLoS One 2017; 12:e0181300. [PMID: 28742109 PMCID: PMC5524346 DOI: 10.1371/journal.pone.0181300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.
Collapse
Affiliation(s)
- Sokhna Keita Alassane
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Marie-Laure Nicolau-Travers
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sandie Menard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Jean-Pierre Cambus
- Laboratoire Hématologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Noémie Gaudre
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Myriam Wlodarczyk
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Nicolas Blanchard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Sarah Abbes
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | | | - Babacar Faye
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Jean-Michel Augereau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Xavier Iriart
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| |
Collapse
|
20
|
Potential cerebral malaria therapy: intramuscular arteether and vitamin D co-administration. Parasitology 2016; 143:1557-68. [DOI: 10.1017/s0031182016001207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYCerebral malaria (CM) shows lethality rate of 15–25% despite effective antimalarial chemotherapy. The effective adjunct treatment to counteract the CM pathogenesis is urgently required. In murine CM model, most interventions studied till date are administered before the onset of CM symptoms, which belittle its translational value to human. We studied intramuscular arteether–vitamin D (ART–VD) combination treatment for CM outcome improvement after the onset of neurological symptoms. The intramuscular dose of 50 µg kg−1 VD for 3 days combined with a loading dose of 25 mg kg−1α/β arteether followed by 12·5 mg kg−1 dose for two consecutive days led to significant improvement in survival (73% in combination group vs 29 and 0% in arteether and VD monotherapy, respectively) and clinical recovery. The treatment in all the groups partially restored the blood–brain barrier integrity and reduced the level of serum proinflammatory cytokines tumour necrosis factor-α and interferon-γ. The brain transcripts of inflammatory chemokines viz. CXCL10, CXCL9, CCL4 and CCL5 and T cell migration in the brain microvasculature were significantly diminished in all the treatment groups. ART–VD treatment significantly reduced intercellular cell adhesion molecule-1 expression. Taken together, our findings show that coordinated actions of ART–VD improve the outcome of experimental CM.
Collapse
|
21
|
Padmanaban G, Rangarajan PN. Curcumin as an Adjunct Drug for Infectious Diseases. Trends Pharmacol Sci 2015; 37:1-3. [PMID: 26521094 DOI: 10.1016/j.tips.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
Curcumin, by virtue of its ability to function as an immunomodulator, has the potential to serve as an adjunct drug to treat infectious diseases and provide long-term protection. The current need is to establish clinical trials with curcumin as an adjunct drug against specific infectious diseases.
Collapse
Affiliation(s)
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|