1
|
Gregory KS, Cozier GE, Fienberg S, Chibale K, Sturrock ED, Acharya KR. Molecular basis of human angiotensin-1 converting enzyme inhibition by a series of diprolyl-derived compounds. FEBS J 2025; 292:1141-1158. [PMID: 39763019 PMCID: PMC11880972 DOI: 10.1111/febs.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 03/06/2025]
Abstract
Angiotensin-1-converting enzyme (ACE) is a zinc-dependent carboxypeptidase of therapeutic interest for the treatment of hypertension, inflammation and fibrosis. It consists of two homologous N and C catalytic domains, nACE and cACE, respectively. Unfortunately, the current clinically available ACE inhibitors produce undesirable side effects due to the nonselective inhibition of these domains. Through structure-based drug design, we previously identified a series of diprolyl-derived inhibitors (SG3, SG15, SG16, SG17 and SG18) in an attempt to specifically target nACE. Only one compound, SG16, possessed significant nACEselectivity. The previously determined 16-nACE crystal structure (nACE:SG16) suggested interactions with Tyr369 (Phe381 in cACE) are responsible for this selectivity. To better understand the molecular basis for the lack of selectivity in the remaining compounds, we have cocrystallised nACE in complex with SG3, SG15, SG17 and SG18 and cACE in complex with SG3, SG15, SG16 and SG18 and determined their structures at high resolution. Apart from the catalytic residues, these structures further highlight the importance of residues distal to the active site that may play an important role in the design of domain-selective inhibitors of ACE.
Collapse
Affiliation(s)
| | | | - Stephen Fienberg
- Holistic Drug Discovery and Development (H3D) CentreUniversity of Cape TownRondeboschSouth Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) CentreUniversity of Cape TownRondeboschSouth Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownObservatorySouth Africa
| | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
2
|
Acharya K, Gregory K, Sturrock E. Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors. Biosci Rep 2024; 44:BSR20240130. [PMID: 39046229 PMCID: PMC11300679 DOI: 10.1042/bsr20240130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024] Open
Abstract
Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa
| |
Collapse
|
3
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
4
|
Portes E Silva KR, Nogueira EM, Jesus Mendes ALD, Pena ALB, Simões E Silva AC. The potential role of renin angiotensin system in acute leukemia: a narrative review. Mol Biol Rep 2024; 51:775. [PMID: 38904729 DOI: 10.1007/s11033-024-09659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.
Collapse
Affiliation(s)
- Kacio Roger Portes E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Eugênia Maia Nogueira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - André Luiz de Jesus Mendes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Luisa Batista Pena
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, room #281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
5
|
Teixeira CSS, Biltes R, Villa C, Sousa SF, Costa J, Ferreira IMPLVO, Mafra I. Exploiting Locusta migratoria as a source of bioactive peptides with anti-fibrosis properties using an in silico approach. Food Funct 2024; 15:493-502. [PMID: 38099620 DOI: 10.1039/d3fo04246d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Edible insects have been proposed as an environmentally and economically sustainable source of protein, and are considered as an alternative food, especially to meat. The migratory locust, Locusta migratoria, is an edible species authorised by the European Union as a novel food. In addition to their nutritional value, edible insects are also sources of bioactive compounds. This study used an in silico approach to simulate the gastrointestinal digestion of selected L. migratoria proteins and posteriorly identify peptides capable of selectively inhibiting the N-subunit of the somatic angiotensin-I converting enzyme (sACE). The application of the molecular docking protocol enabled the identification of three peptides, namely TCDSL, IDCSR and EAEEGQF, which were predicted to act as potential selective inhibitors of the sACE N-domain and, therefore, possess bioactivity against cardiac and pulmonary fibrosis.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Rita Biltes
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Teixeira CSS, Villa C, Sousa SF, Costa J, Ferreira IMPLVO, Mafra I. An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis. Food Res Int 2023; 169:112847. [PMID: 37254421 DOI: 10.1016/j.foodres.2023.112847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Entomophagy is a sustainable alternative source of proteins for human nutrition. Acheta domesticus is one of the three insect species that complies with the European Union Regulation on novel foods, but to date, there are no reports on their potential bioactive peptides. In this study, an in silico approach was applied to simulate the gastrointestinal (GI) digestion of six A. domesticus proteins and identify new peptides with potential anti-hypertensive and/or anti-diabetic properties, resulting from their capability to inhibit the somatic Angiotensin-I converting enzyme (sACE) and/or dipeptidyl peptidase 4 (DPP-4), respectively. A molecular docking protocol was applied to evaluate the binding interactions between the 43 peptides ranked with high probability of being bioactive and three drug targets: DPP-4 and two catalytic domains (N- and C-) of sACE. Five peptides (AVQPCF, CAIAW, IIIGW, DATW and QIVW) showed high docking scores for both enzymes, suggesting their potential to inhibit the DPP-4 and both catalytic domains of sACE, thus possessing multifunctional bioactive properties. Two peptides (PIVCF and DVW) showed higher docking scores for the N-domain of sACE, indicating a potential action as selective inhibitors and consequently with anti-cardiac and pulmonary fibrosis bioactivities. This is the first study identifying peptides originated from the simulated GI digestion of A. domesticus with potential activities against hypertension, diabetes, cardiac and pulmonary fibrosis.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
8
|
Impact of Gastrointestinal Digestion Simulation on the Formation of Angiotensin-I-Converting Enzyme Inhibitory (ACE-I) Peptides from Germinated Lamtoro Gung Flour. Foods 2022; 11:foods11233769. [PMID: 36496578 PMCID: PMC9737618 DOI: 10.3390/foods11233769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The germination of lamtoro gung has been shown to increase the angiotensin-I-converting enzyme inhibitory (ACE-I) activity in previous studies. The 48 h germinated flour had the highest ACE-I activity. Administration of the gastrointestinal digestion (GID) simulation with commercial enzymes was expected to increase the ACE-I activity. However, the GID simulation to increase ACE-I in the germinated lamtoro gung flour has not been found. Therefore, this study aimed to evaluate the GID simulation of ACE-I peptides in sprouted lamtoro gung flour. This study also identified and characterised the peptide with the ACE-I activity. The GID simulation was performed using commercial pepsin (pH 2) and pancreatin (pH 7.5). Both simulations occurred at 37 °C for 240 min. The degree of hydrolysis, peptide concentration, and ACE-I activity was analysed. Samples with the highest ACE-I activity were then fractionated and identified, to determine the peptide responsible for the ACE-I activity. The 180 min GID simulation in the test sample showed the highest ACE-I activity (89.70%). This result was supported by an increased degree of hydrolysis (DH) and peptide concentrations throughout the GID simulation. The <1 kDa peptide fraction had the highest inhibitory activity and had the most elevated peptide portion (54.69%). Peptide sequences containing crucial amino acids were found in the <1 kDa peptide fraction. PRPPKPP, PPPPPGARAP, and PFPPSNPPP had proline in the C and N terminal residues. The peptides obtained also had other biological activities, such as a DPP IV inhibitor, an alpha-glucosidase inhibitor, and antioxidative activity. Based on the toxicity prediction, those peptides are non-toxic and safe to consume.
Collapse
|
9
|
Cozier GE, Newby EC, Schwager SLU, Isaac RE, Sturrock ED, Acharya KR. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat. FEBS J 2022; 289:6659-6671. [PMID: 35653492 PMCID: PMC9796954 DOI: 10.1111/febs.16543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.
Collapse
Affiliation(s)
| | - Emma C. Newby
- Department of Biology and BiochemistryUniversity of BathUK
| | - Sylva L. U. Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
10
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|
11
|
Lubbe L, Sewell BT, Woodward JD, Sturrock ED. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J 2022; 41:e110550. [PMID: 35818993 PMCID: PMC9379546 DOI: 10.15252/embj.2021110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I‐converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current understanding of sACE structure, dynamics, function, and inhibition has been limited because truncated, minimally glycosylated forms of sACE are typically used for X‐ray crystallography and molecular dynamics simulations. Here, we report the first cryo‐EM structures of full‐length, glycosylated, soluble sACE (sACES1211). Both monomeric and dimeric forms of the highly flexible apo enzyme were reconstructed from a single dataset. The N‐ and C‐terminal domains of monomeric sACES1211 were resolved at 3.7 and 4.1 Å, respectively, while the interacting N‐terminal domains responsible for dimer formation were resolved at 3.8 Å. Mechanisms are proposed for intradomain hinging, cooperativity, and homodimerization. Furthermore, the observation that both domains were in the open conformation has implications for the design of sACE modulators.
Collapse
Affiliation(s)
- Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bryan Trevor Sewell
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Jeremy D Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
13
|
ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020; 134:2851-2871. [PMID: 33146371 PMCID: PMC7642307 DOI: 10.1042/cs20200899] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin converting enzyme (ACE) is well-known for its role in blood pressure regulation via the renin–angiotensin aldosterone system (RAAS) but also functions in fertility, immunity, haematopoiesis and diseases such as obesity, fibrosis and Alzheimer’s dementia. Like ACE, the human homologue ACE2 is also involved in blood pressure regulation and cleaves a range of substrates involved in different physiological processes. Importantly, it is the functional receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 responsible for the 2020, coronavirus infectious disease 2019 (COVID-19) pandemic. Understanding the interaction between SARS-CoV-2 and ACE2 is crucial for the design of therapies to combat this disease. This review provides a comparative analysis of methodologies and findings to describe how structural biology techniques like X-ray crystallography and cryo-electron microscopy have enabled remarkable discoveries into the structure–function relationship of ACE and ACE2. This, in turn, has enabled the development of ACE inhibitors for the treatment of cardiovascular disease and candidate therapies for the treatment of COVID-19. However, despite these advances the function of ACE homologues in non-human organisms is not yet fully understood. ACE homologues have been discovered in the tissues, body fluids and venom of species from diverse lineages and are known to have important functions in fertility, envenoming and insect–host defence mechanisms. We, therefore, further highlight the need for structural insight into insect and venom ACE homologues for the potential development of novel anti-venoms and insecticides.
Collapse
|
14
|
Qiu Y, Wang Z, Zhang X, Huang P, Zhang W, Zhang K, Wang S, He L, Guo Y, Xiang A, Zhang C, Hao Q, Li M, Li W, Zhang Y. A long-acting isomer of Ac-SDKP attenuates pulmonary fibrosis through SRPK1-mediated PI3K/AKT and Smad2 pathway inhibition. IUBMB Life 2020; 72:2611-2626. [PMID: 33135306 DOI: 10.1002/iub.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease with a poor prognosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a critical negative regulator of fibrosis development. However, it's extremely short half-life greatly limits its applications. Previously, we reported an Ac-SDKP analog peptide in which Asp and Lys residues were replaced with D-amino acids (Ac-SDD KD P). Ac-SDD KD P exhibits better resistance to angiotensin-1-converting enzyme (ACE)-mediated degradation and a longer half-life than Ac-SDKP in rat and human sera. The objective of this study was to explore the potential application of Ac-SDD KD P for the treatment of IPF and to clarify the underlying mechanisms. We found that Ac-SDD KD P exerted similar antifibrotic effects as Ac-SDKP on human fetal lung fibroblast-1 (HFL-1) proliferation, α-smooth muscle actin (α-SMA), collagen I and collagen III expression, and Smad-2 phosphorylation in vitro. In vivo, Ac-SDD KD P exhibited significantly greater protective effects against bleomycin-induced pulmonary fibrosis than Ac-SDKP in mice. α-SMA, CD45, collagen I and collagen III expression, and Smad-2 phosphorylation were significantly decreased in the lungs of Ac-SDD KD P-treated but not Ac-SDKP-treated mice. Furthermore, a pull-down experiment was used to screen for molecules that interact with Ac-SDKP. Co-immunoprecipitation (Co-IP) and computer-based molecular docking experiments demonstrated an interaction between Ac-SDKP or Ac-SDD KD P (Ac-SDKP/Ac-SDD KD P) and serine/arginine-rich protein-specific kinase 1 (SRPK1) that caused inhibition SRPK1-mediated phosphatidylinositol-3 kinase/ serine/threonine kinase (PIK3/AKT) signaling pathway activation and Smad2 phosphorylation and thereby attenuated lung fibrosis. Our data suggest that long-acting Ac-SDD KD P may potentially be an effective drug for the treatment of pulmonary fibrosis. The interacting molecule and antifibrotic mechanism of Ac-SDKP/Ac-SDD KD P were also identified, providing an experimental and theoretical foundation for the clinical application of the drug.
Collapse
Affiliation(s)
- Yueyuan Qiu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xutao Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ping Huang
- The Brigade of Undergraduates, The Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Wang J, Qian Y, Gao X, Mao N, Geng Y, Lin G, Zhang G, Li H, Yang F, Xu H. Synthesis and Identification of a Novel Peptide, Ac-SDK (Biotin) Proline, That Can Elicit Anti-Fibrosis Effects in Rats Suffering from Silicosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4315-4326. [PMID: 33116418 PMCID: PMC7585281 DOI: 10.2147/dddt.s262716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Background N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a short peptide with an anti-silicosis effect. However, the short biological half-life and low plasma concentration of Ac-SDKP hamper discovery of specific targets in organisms and reduce the anti-silicosis effect. A novel peptide, Ac-SDK (biotin) proline, termed “Ac-B”, with anti-fibrotic properties was synthesized. Methods Ac-B was detected quantitatively by high-performance liquid chromatography. Phagocytosis of Ac-B by the alveolar epithelial cell line A549 was investigated by confocal laser scanning microscopy and flow cytometry. To further elucidate the cellular-uptake mechanism of Ac-B, chemical inhibitors of specific uptake pathways were used. After stimulation with transforming growth factor-β1, the effects of Ac-B on expression of the myofibroblast marker vimentin and accumulation of collagen type I in A549 cells were analyzed by Western blotting. Sirius Red staining and immunohistochemical analyses of the effect of Ac-B on expression of α-smooth muscle actin (SMA) in a rat model of silicosis were undertaken. Results Ac-B had good traceability during the uptake, entry, and distribution in cells. Ac-B treatment prevented an increase in α-SMA expression in vivo and in vitro and was superior to that of Ac-SDKP. Caveolae-mediated uptake of Ac-B by A549 cells led to achieving anti-epithelial–mesenchymal transformation (EMT) effects. Conclusion Ac-B had an anti-fibrotic effect and could be a promising agent for the fibrosis observed in silicosis in the future.
Collapse
Affiliation(s)
- Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, People's Republic of China.,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Ye Qian
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Xuemin Gao
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Na Mao
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Yucong Geng
- Department of Pathology, Haigang Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People's Republic of China
| | - Gaojie Lin
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Guibin Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Han Li
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fang Yang
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Hong Xu
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| |
Collapse
|
16
|
Gao X, Xu H, Zhang B, Tao T, Liu Y, Xu D, Cai W, Wei Z, Li S, Zhang H, Mao N, Zhang G, Li D, Jin F, Li S, Zhang L, Liu H, Hao X, Yang F. Interaction of N-acetyl-seryl-aspartyl-lysyl-proline with the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis attenuates pulmonary fibrosis in silicotic rats. Exp Physiol 2019; 104:1562-1574. [PMID: 31290182 DOI: 10.1113/ep087515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of the antifibrotic peptide acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) on the angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas axis during the occurrence and progression of silicosis? What is the main finding and its importance? Ac-SDKP inhibited lung fibrosis in rats exposed to silica by activation of the ACE2-angiotensin-(1-7)-Mas axis. Angiotensin-(1-7) potentially promotes Ac-SDKP by increasing the level of meprin α, the major synthetase of Ac-SDKP. Thus, the interaction Ac-SDKP and angiotesin-(1-7) in silicosis could provide a new therapeutic strategy. ABSTRACT The central role of angiotensin-converting enzyme (ACE) in the occurrence and progression of silicosis has been established. The antifibrotic peptide acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) can be degraded by ACE. The ACE2-angiotensin-(1-7)-Mas axis is protective and acts to counterbalance the detrimental effects of ACE-angiotensin II (Ang II)-Ang II type 1 receptor and exerts antifibrotic effects. Here, we demonstrate an interaction between Ac-SDKP and Ang-(1-7) in the inhibition of collagen deposition and myofibroblast differentiation in rats exposed to silica. Treatment with Ac-SDKP increased the level of ACE2-Ang-(1-7)-Mas in rats or in cultured fibroblasts and decreased the levels of collagen type I and α-smooth muscle actin. Furthermore, exogenous Ang-(1-7) had similar antifibrotic effects and increased the level of meprin α, a major Ac-SDKP synthetase, both in vivo and in vitro. Compared with non-silicotic patients exposed to silica, the level of serum ACE was increased in patients with silicosis phase III; the levels of Ang II and Ang-(1-7) were high in patients with silicosis phase II; and the level of Ac-SDKP was high in the silicosis phase III group. These data imply that Ac-SDKP and Ang-(1-7) have an interactive effect as regulatory peptides of the renin-angiotensin system and exert antifibrotic effects.
Collapse
Affiliation(s)
- Xuemin Gao
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hong Xu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Bonan Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tao Tao
- Foreign Languages College, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yalou Liu
- Foreign Languages College, North China University of Science and Technology, Tangshan, Hebei, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhongqiu Wei
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shifeng Li
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hui Zhang
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Na Mao
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Guizhen Zhang
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Dan Li
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fuyu Jin
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lijuan Zhang
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Heliang Liu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaohui Hao
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fang Yang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Lubbe L, Sturrock ED. Interacting cogs in the machinery of the renin angiotensin system. Biophys Rev 2019; 11:583-589. [PMID: 31177382 PMCID: PMC6682192 DOI: 10.1007/s12551-019-00555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Somatic angiotensin converting enzyme (sACE) is well-known for its role in blood pressure regulation and consequently, ACE inhibitors are widely prescribed for the treatment of hypertension. More than 60 years after the discovery of sACE, however, the molecular details of its substrate hydrolysis and inhibition are still poorly understood. Isothermal titration calorimetry, molecular dynamics simulations and fine epitope mapping suggest that substrate or inhibitor binding triggers a hinging motion between the two subdomains of each domain. Ligand binding to one domain further induces a conformational change in sACE to negatively affect the second domain's function and can also cause dimerization between sACE molecules. This has been linked to an increase in sACE expression via intracellular signalling. Inhibitor-induced dimerization could thus decrease the efficacy of hypertension treatment. At present, the only structural information available for sACE are crystal structures of the truncated domains in the closed conformation due to the presence of ligands. These structures do not provide any information regarding the open active site conformation prior to ligand binding, the relative orientation of the two domains in full-length sACE, or the dimerization interface. To guarantee effective therapeutic intervention, further research is required to investigate the hinging, negative cooperativity and dimerization of sACE. This review describes our current understanding of these interactions and proposes how recent advances in cryo-electron microscopy could enable structural elucidation of their mechanisms.
Collapse
Affiliation(s)
- Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
18
|
Polakovičová M, Jampílek J. Advances in Structural Biology of ACE and Development of Domain Selective ACE-inhibitors. Med Chem 2019; 15:574-587. [PMID: 31084594 DOI: 10.2174/1573406415666190514081132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/19/2019] [Accepted: 04/28/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The Angiotensin-I converting enzyme (ACE) is one of the most important components of the renin-angiotensin-aldosterone system controlling blood pressure and renal functions. Inhibitors of ACE are first line therapeutics used in the treatment of hypertension and related cardiovascular diseases. Somatic ACE consists of two homologous catalytic domains, the C- and N-domains. Recent findings have shown that although both domains are highly homologous in structure, they may have different physiological functions. The C-domain is primarily involved in the control of blood pressure, in contrast to the N-domain that is engaged in the regulation of hematopoietic stem cell proliferation. The currently available ACE inhibitors have some adverse effects that can be attributed to the non-selective inhibition of both domains. In addition, specific Ndomain inhibitors have emerged as potential antifibrotic drugs. Therefore, ACE is still an important drug target for the development of novel domain-selective drugs not only for the cardiovascular system but also for other systems. OBJECTIVE Detailed structural information about interactions in the protein-ligand complex is crucial for rational drug design. This review highlights the structural information available from crystallographic data which is essential for the development of domain selective inhibitors of ACE. METHODS Over eighty crystal complexes of ACE are placed into the Protein Database. An overview of X-ray ACE complexes with various inhibitors in C- and N-domains and an analysis of their binding mode have given mechanistic explanation of the structural determinants of selective ligand binding. In addition, ACE domain selective inhibitors with dual modes of action in complexes with ACE are also discussed. CONCLUSION Selectivity of ACE inhibitors for the N- and C-domain is controlled by subtle differences in the amino-acids forming the active site. Reported studies of crystal complexes of inhibitors in the C- and N-domains revealed that most selective inhibitors interact with non-conserved amino-acids between domains and have distinct interactions with the residues in the S2 and S2' subsites of the ACE catalytic site. Moreover, unusual binding of the second molecule of inhibitors in the binding cavity opens new possibilities of exploiting more distant regions of the catalytic center in structure-based design of novel drugs.
Collapse
Affiliation(s)
- Mája Polakovičová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-83232 Bratislava, Slovakia
| | - Josef Jampílek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic.,Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, SK-84215 Bratislava, Slovakia
| |
Collapse
|
19
|
Zhang X, Zhou J, Zhu Y, He L, Pang Z, Wang Z, Xu C, Zhang C, Hao Q, Li W, Zhang W, Zhang Y, Li M. d-amino acid modification protects N-Acetyl-seryl-aspartyl-lysyl-proline from physiological hydroxylation and increases its antifibrotic effects on hepatic fibrosis. IUBMB Life 2019; 71:1302-1312. [PMID: 30900390 DOI: 10.1002/iub.2037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 01/29/2023]
Abstract
N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a critical negative regulator of fibrosis development in the liver. However, its extremely short half-life in vivo greatly compromises its potential applications. Here, we report an Ac-SDKP analog peptide with d-amino acid replacement (Ac-SDD KD P). The stability of Ac-SDD KD P and its prevention of liver fibrosis were investigated in vitro and in vivo. The stabilities of Ac-SDKP and Ac-SDD KD P exposed to angiotensin-1-converting enzyme (ACE) and their half-lives in rats and human sera were determined by high-performance liquid chromatography. The inhibitory effects of Ac-SDKP and Ac-SDD KD P on the proliferation and activation of hepatic stellate cells (HSC-T6) were evaluated using the Cell Counting Kit-8, Western blotting, reverse transcription quantitative polymerase chain reaction, and immunofluorescence assays. Finally, the protective effects of Ac-SDKP and Ac-SDD KD P on carbon tetrachloride (CCl4 )-induced liver fibrosis in rats were compared. d-Amino acid replacement significantly enhanced the stability of the peptide to ACE and prolonged the half-life of Ac-SDKP in rats and human sera. The Ac-SDKP-mediated inhibition of HSC-T6 cell proliferation was well preserved, and Ac-SDD KD P exerted inhibitory effects comparable to Ac-SDKP on α-smooth muscle actin (α-SMA), collagen I and III expression, and phosphorylated-Smad-2 expression. After intraperitoneal (i.p.) administration, Ac-SDD KD P exhibited significantly greater protection than Ac-SDKP against CCl4 -induced liver fibrosis in rats. The serum alanine aminotransferase, aspartate aminotransferase, albumin, and total protein levels of the Ac-SDD KD P-treated rats were significantly lower than those of the Ac-SDKP-treated rats. α-SMA, CD45, and collagen I and III expression, as well as Smad-2 phosphorylation were significantly attenuated in the livers of the Ac-SDD KD P-treated rats compared to those of the Ac-SDKP-treated rats. Furthermore, we showed that the Ac-SDD KD P concentration in the rat liver increased to a physiological level of 60 min after i.p. administration, although i.p. administration of Ac-SDKP failed to enhance the peptide concentration in the rat liver. Our findings indicate that d-amino acid replacement is a simple and effective method to enhance the stability of Ac-SDKP. Ac-SDD KD P represents potential application of Ac-SDKP in fibrosis treatment and provides a new potential treatment strategy for liver fibrosis. © 2019 IUBMB Life, 71(9):1302-1312, 2019.
Collapse
Affiliation(s)
- Xutao Zhang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Jiming Zhou
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China.,Department of Cardiology, 988 Central Hospital of People's Liberation Army, Zhengzhou, China
| | - Yichao Zhu
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China.,The Brigade of Undergraduates, The Fourth Military Medical University, Xi'an, China
| | - Lei He
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Zhijun Pang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Zhaowei Wang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Chuanyang Xu
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Cun Zhang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Qiang Hao
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Weina Li
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Wei Zhang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Yingqi Zhang
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| | - Meng Li
- Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xian, China
| |
Collapse
|
20
|
The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol Res 2018; 134:268-279. [DOI: 10.1016/j.phrs.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
|
21
|
Zhang Y, Yang F, Liu Y, Peng HB, Geng YC, Li SF, Xu H, Zhu LY, Yang XH, Brann D. Influence of the interaction between Ac‑SDKP and Ang II on the pathogenesis and development of silicotic fibrosis. Mol Med Rep 2018; 17:7467-7476. [PMID: 29620193 PMCID: PMC5983938 DOI: 10.3892/mmr.2018.8824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide that is released from thymosin β4 by prolyl oligopeptides. It is hydrolyzed by the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE). The aim of the present study was to investigate the alterations in Ac-SDKP and the ACE/angiotensin II (Ang II)/angiotensin II type 1 (AT1) receptor axis and its impact on the pathogenesis and development of silicotic fibrosis. For in vivo studies, a HOPE MED 8050 exposure control apparatus was used to establish different stages of silicosis in a rat model treated with Ac-SDKP. For in vitro studies, cultured primary lung fibroblasts were induced to differentiate into myofibroblasts by Ang II, and were pretreated with Ac-SDKP and valsartan. The results of the present study revealed that, during silicosis development, ACE/Ang II/AT1 expression in local lung tissues increased, whereas that of Ac-SDKP decreased. Ac-SDKP and the ACE/AT1/Ang II axis were inversely altered in the development of silicotic fibrosis. Ac-SDKP treatment had an anti-fibrotic effect in vivo. Compared with the silicosis group, the expression of α-smooth muscle actin (α-SMA), Collagen (Col) I, Fibronectin (Fn) and AT1 were significantly downregulated, whereas matrix metalloproteinase-1 (MMP-1) expression and the MMP-1/tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio was increased in the Ac-SDKP treatment group. In vitro, pre-treatment with Ac-SDKP or valsartan attenuated the expression of α-SMA, Col I, Fn and AT1 in Ang II-induced fibroblasts. In addition, MMP-1 expression and the MMP-1/TIMP-1 ratio were significantly higher in Ac-SDKP and valsartan pre-treatment groups compared with the Ang II group. In conclusion, the results of the present study suggest that an imbalance between Ac-SDKP and ACE/Ang II/AT1 molecules promotes the development of silicosis and that Ac-SDKP protects against silicotic fibrosis by inhibiting Ang II-induced myofibroblast differentiation and extracellular matrix production.
Collapse
Affiliation(s)
- Yi Zhang
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Fang Yang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yan Liu
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hai-Bing Peng
- Ji Tang College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yu-Cong Geng
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Shi-Feng Li
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Li-Yan Zhu
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiu-Hong Yang
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|