1
|
Mygind KJ, Nikodemus D, Gnosa S, Kweder R, Albrechtsen NJW, Kveiborg M, Erler JT, Albrechtsen R. ADAM12-Generated Basigin Ectodomain Binds β1 Integrin and Enhances the Expression of Cancer-Related Extracellular Matrix Proteins. Int J Mol Sci 2024; 25:5871. [PMID: 38892056 PMCID: PMC11172339 DOI: 10.3390/ijms25115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds β1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and β1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFβ signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.
Collapse
Affiliation(s)
- Kasper J. Mygind
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Denise Nikodemus
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Sebastian Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Ramya Kweder
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | | | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| |
Collapse
|
2
|
Alexander KC, Ikonomidis JS, Akerman AW. New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning. J Clin Med 2024; 13:818. [PMID: 38337512 PMCID: PMC10856211 DOI: 10.3390/jcm13030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review article presents an appraisal of pioneering technologies poised to revolutionize the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted in an exhaustive survey of contemporary and historical research, delving into the realms of machine learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies, including Siemens' published field report and many peer-reviewed publications. At the core of our survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing insights gleaned from our prior research endeavors alongside contemporary studies gathered from the PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative prospect of translating fundamental research into practical diagnostic tools. This narrative not only illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and therapeutic management of aortic aneurysm disease.
Collapse
Affiliation(s)
| | | | - Adam W. Akerman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (J.S.I.)
| |
Collapse
|
3
|
Zhu X, Tang Z, Li W, Li X, Iwakiri Y, Liu F. S-nitrosylation of EMMPRIN influences the migration of HSCs and MMP activity in liver fibrosis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1640-1649. [PMID: 37700592 PMCID: PMC10577453 DOI: 10.3724/abbs.2023141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/28/2023] [Indexed: 09/14/2023] Open
Abstract
The mechanism of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of liver fibrosis has not been clarified. This study aims to investigate the role of EMMPRIN S-nitrosylation (SNO) in the regulation of hepatic stellate cell (HSC) migration and matrix metalloproteinase (MMP) activities in liver fibrosis. The results from the tissue microarrays and rat/mouse liver tissues suggest that EMMPRIN mRNA and protein levels in the fibrotic livers are lower than those in the corresponding normal control livers, but higher SNO level of EMMPRIN in fibrotic liver area was shown by immunohistochemistry, immunofluorescence staining, and biotin-switch assay conversely in vivo. Primary EMMPRIN comes from hepatocytes and liver sinus epithelial cells (LSECs) rather than quiescent HSCs. To mimic the uptake of extrinsic EMMPRIN, supernatants from mouse primary hepatocytes/293 cells transfected with EMMPRIN wild-type plasmids (WT) and EMMPRIN SNO site (cysteine 87) mutation plasmids (MUT) were collected and added to JS-1/LX2 cell medium. The MUT EMMPRIN diminishes SNO successfully, enhances the activities of MMP2 and MMP9, and subsequently increases HSC migration. In conclusion, SNO of EMMPRIN influences HSC migration and MMP activities in liver fibrosis. This finding may shed light on the possible regulatory mechanism of MMPs in ECM accumulation in liver fibrosis.
Collapse
Affiliation(s)
- Xinyan Zhu
- Department of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Zihui Tang
- Department of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Wei Li
- Department of GastroenterologyPinghu Second People’s HospitalJiaxing314201China
| | - Xiaojuan Li
- Department of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yasuko Iwakiri
- Section of Digestive DiseasesDepartment of Internal MedicineYale School of MedicineNew HavenCT06520USA
| | - Fei Liu
- Department of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
4
|
Cogliati B, Yashaswini CN, Wang S, Sia D, Friedman SL. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol 2023; 20:647-661. [PMID: 37550577 PMCID: PMC10671228 DOI: 10.1038/s41575-023-00821-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis is a substantial risk factor for the development and progression of liver cancer, which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Studies utilizing cell fate mapping and single-cell transcriptomics techniques have identified quiescent perisinusoidal hepatic stellate cells (HSCs) as the primary source of activated collagen-producing HSCs and liver cancer-associated fibroblasts (CAFs) in HCC and liver metastasis, complemented in iCCA by contributions from portal fibroblasts. At the same time, integrative computational analysis of single-cell, single-nucleus and spatial RNA sequencing data have revealed marked heterogeneity among HSCs and CAFs, with distinct subpopulations displaying unique gene expression signatures and functions. Some of these subpopulations have divergent roles in promoting or inhibiting liver fibrogenesis and carcinogenesis. In this Review, we discuss the dual roles of HSC subpopulations in liver fibrogenesis and their contribution to liver cancer promotion, progression and metastasis. We review the transcriptomic and functional similarities between HSC and CAF subpopulations, highlighting the pathways that either promote or prevent fibrosis and cancer, and the immunological landscape from which these pathways emerge. Insights from ongoing studies will yield novel strategies for developing biomarkers, assessing prognosis and generating new therapies for both HCC and iCCA prevention and treatment.
Collapse
Affiliation(s)
- Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Sia
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Vilen Z, Joeh E, Lee E, Huang ML. Surfaceome Profiling Identifies Basigin-Chaperoned Protein Clients. Chembiochem 2023; 24:e202300073. [PMID: 36973167 PMCID: PMC10424708 DOI: 10.1002/cbic.202300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
The surface proteome or "surfaceome" is a critical mediator of cellular biology, facilitating cell-to-cell interactions and communication with extracellular biomolecules. Constituents of the surfaceome can serve as biomarkers for changing cell states and as targets for pharmacological intervention. While some pathways of cell surface trafficking are well characterized to allow prediction of surface localization, some non-canonical trafficking mechanisms do not. Basigin (Bsg), a cell surface glycoprotein, has been shown to chaperone protein clients to the cell surface. However, understanding which proteins are served by Bsg is not always straightforward. To accelerate such identification, we applied a surfaceome proximity labeling method that is integrated with quantitative mass spectrometry-based proteomics to discern changes in the surfaceome of hepatic stellate cells that occur in response to the genetic loss of Bsg. Using this strategy, we observed that the loss of Bsg leads to corresponding reductions in the cell surface expression of monocarboxylate transporters MCT1 and MCT4. We also found that these relationships were unique to Bsg and not found in neuroplastin (Nptn), a related family member. These results establish the utility of the surfaceome proximity labeling method to determine clients of cell surface chaperone proteins.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Eugene Joeh
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Elizabeth Lee
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
6
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
7
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
8
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Liu M, Peng T, Hu L, Wang M, Guo D, Qi B, Ren G, Wang D, Li Y, Song L, Hu J, Li Y. N-glycosylation-mediated CD147 accumulation induces cardiac fibrosis in the diabetic heart through ALK5 activation. Int J Biol Sci 2023; 19:137-155. [PMID: 36594096 PMCID: PMC9760447 DOI: 10.7150/ijbs.77469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence has implicated the important role of fibrosis in diabetic cardiomyopathy (DCM), while the underlying mechanism remains unclear. Considering the distinct and overlapping roles of Cluster of Differentiation 147 (CD147) in the pathogenesis of fibrotic diseases, we aim to investigate the role of CD147 in the fibrosis of DCM and explore its underlying mechanism. AAV9-mediated cardiac-specific CD147 silencing attenuated cardiac fibrosis and cardiac function in diabetic mice. CD147 knockdown significantly inhibited high glucose (HG)-induced activation of CFs. Mechanistically, CD147 directly bound to type I transcription growth factor β (TGF-β) receptor I (ALK5), promoting ALK5 activation and endocytosis to induce SMAD2/3 phosphorylation and nuclear translocation. In addition, HG prevented the ubiquitin-proteasome-dependent degradation of CD147 by promoting GNT-V-mediated N-glycosylation. As a result, cardiac-specific CD147 overexpression in control mice mimicked diabetes-induced cardiac fibrosis, aggravating cardiac function. Importantly, CD147 was also upregulated in serum and myocardial specimens from patients with diabetes compared with non-diabetes, accompanied by echocardiographic indices of cardiac dysfunction and excessive collagen deposition. Our study provides the first evidence that CD147 acts as a pivotal factor to promote diabetic cardiac fibrosis, and may contribute to the development of future CD147-based therapeutic strategies for DCM.
Collapse
Affiliation(s)
- Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Min Wang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Gaotong Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Di Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yunqing Li
- Brigade 2, College of Basic Medicine, The Fourth Military Medical University, Xi'an, 710038, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,✉ Corresponding authors: Yan Li. Address: Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. E-mail: . Jianqiang Hu. Address: Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. E-mail:
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,✉ Corresponding authors: Yan Li. Address: Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. E-mail: . Jianqiang Hu. Address: Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. E-mail:
| |
Collapse
|
10
|
CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct Target Ther 2022; 7:382. [PMID: 36424379 PMCID: PMC9691700 DOI: 10.1038/s41392-022-01230-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/24/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
COVID-19 patients can develop clinical and histopathological features associated with fibrosis, but the pathogenesis of fibrosis remains poorly understood. CD147 has been identified as a universal receptor for SARS-CoV-2 and its variants, which could initiate COVID-19-related cytokine storm. Here, we systemically analyzed lung pathogenesis in SARS-CoV-2- and its delta variant-infected humanized CD147 transgenic mice. Histopathology and Transmission Electron Microscopy revealed inflammation, fibroblast expansion and pronounced fibrotic remodeling in SARS-CoV-2-infected lungs. Consistently, RNA-sequencing identified a set of fibrosis signature genes. Furthermore, we identified CD147 as a crucial regulator for fibroblast activation induced by SARS-CoV-2. We found conditional knockout of CD147 in fibroblast suppressed activation of fibroblasts, decreasing susceptibility to bleomycin-induced pulmonary fibrosis. Meplazumab, a CD147 antibody, was able to inhibit the accumulation of activated fibroblasts and the production of ECM proteins, thus alleviating the progression of pulmonary fibrosis caused by SARS-CoV-2. In conclusion, we demonstrated that CD147 contributed to SARS-CoV-2-triggered progressive pulmonary fibrosis and identified CD147 as a potential therapeutic target for treating patients with post-COVID-19 pulmonary fibrosis.
Collapse
|
11
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
12
|
Butera A, Quaranta MT, Crippa L, Spinello I, Saulle E, Di Carlo N, Campanile D, Boirivant M, Labbaye C. CD147 Targeting by AC-73 Induces Autophagy and Reduces Intestinal Fibrosis Associated with TNBS Chronic Colitis. J Crohns Colitis 2022; 16:1751-1761. [PMID: 35833587 PMCID: PMC9683082 DOI: 10.1093/ecco-jcc/jjac084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of inflammatory bowel diseases. Medical treatment of intestinal fibrosis is an unmet therapeutic need. CD147 overexpression can induce myofibroblast differentiation associated with extracellular matrix deposition, favouring the development of fibrosis. To understand whether CD147 may promote intestinal fibrosis, we analysed its expression and blocked its function by using its specific inhibitor AC-73 [3-{2-[([1,1'-biphenyl]-4-ylmethyl) amino]-1-hydroxyethyl} phenol] in the murine TNBS [trinitrobenzenesulfonic acid]-chronic colitis model associated with intestinal fibrosis. METHODS TNBS chronic colitis was induced by weekly intrarectal administration of escalating doses of TNBS. Ethanol-treated and untreated mice were used as controls. Separated groups of TNBS, ethanol-treated or untreated mice received AC-73 or vehicle administered intraperitoneally from day 21 to day 49. At day 49, mice were killed, and colons collected for histological analysis, protein and RNA extraction. CD147, α-SMA and activated TGF-β1 protein levels, CD147/ERK/STAT3 signalling pathway and autophagy were assessed by Western blot, collagen and inflammatory/fibrogenic cytokines mRNA tissue content by quantitative PCR. RESULTS In mice with chronic TNBS colitis, CD147 protein level increased during fibrosis development in colonic tissue, as compared to control mice. CD147 inhibition by AC-73 treatment reduced intestinal fibrosis, collagen and cytokine mRNA tissue content, without significant modulation of activated TGF-β1 protein tissue content. AC-73 inhibited CD147/ERK1/2 and STAT3 signalling pathway activation and induced autophagy. CONCLUSIONS CD147 is a potential new target for controlling intestinal fibrosis and its inhibitor, AC-73, might represent a potential new anti-fibrotic therapeutic option in IBD.
Collapse
Affiliation(s)
| | | | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Nazzareno Di Carlo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Doriana Campanile
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Boirivant
- Corresponding authors: Monica Boirivant, MD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902976; E-mail:
| | - Catherine Labbaye
- Catherine Labbaye, PhD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902418; E-mail:
| |
Collapse
|
13
|
Lu X, Li W, Wang H, Cao M, Jin Z. The role of the Smad2/3/4 signaling pathway in osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells. J Orthop Surg Res 2022; 17:338. [PMID: 35794618 PMCID: PMC9258226 DOI: 10.1186/s13018-022-03230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background ClC-3 chloride channels promote osteogenic differentiation. Transforming growth factor-β1 (TGF-β1) and its receptors are closely related to ClC-3 chloride channels, and canonical TGF-β1 signaling is largely mediated by Smad proteins. The current study aimed to explore the role of the Smad2/3/4 signaling pathway in the mechanism by which ClC-3 chloride channels regulate osteogenic differentiation in osteoblasts. Methods First, real-time PCR and western blotting were used to detect the expression of Smad and mitogen-activated protein kinase (MAPK) proteins in response to ClC-3 chloride channels. Second, immunocytochemistry, coimmunoprecipitation (Co-IP) and immunofluorescence analyses were conducted to assess formation of the Smad2/3/4 complex and its translocation to the nucleus. Finally, markers of osteogenic differentiation were determined by real-time PCR, western blotting, ALP assays and Alizarin Red S staining. Results ClC-3 chloride channels knockdown led to increased expression of Smad2/3 but no significant change in p38 or Erk1/2. Furthermore, ClC-3 chloride channels knockdown resulted in increases in the formation of the Smad2/3/4 complex and its translocation to the nucleus. In contrast, the inhibition of TGF-β1 receptors decreased the expression of Smad2, Smad3, p38, and Erk1/2 and the formation of the Smad2/3/4 complex. Finally, the expression of osteogenesis-related markers were decreased upon ClC-3 and Smad2/3/4 knockdown, but the degree to which these parameters were altered was decreased upon the knockdown of ClC-3 and Smad2/3/4 together compared to independent knockdown of ClC-3 or Smad2/3/4. Conclusions The Smad2/3 proteins respond to changes in ClC-3 chloride channels. The Smad2/3/4 signaling pathway inhibits osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells.
Collapse
|
14
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
15
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
16
|
Zhang L, Xu JY, Yuan L, Yin XB, Li YH, Qin LQ. Protective effects of epigallocatechin-3-o-gallate combined with organic selenium against transforming growth factor-beta 1-induced fibrosis in LX-2 cells. J Food Biochem 2022; 46:e14223. [PMID: 35586925 DOI: 10.1111/jfbc.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the protective effects and possible mechanism of epigallocatechin-3-o-gallate (EGCG) combined with organic selenium in transforming growth factor (TGF)-β1-activated LX-2 cells. After 12 h of starvation, LX-2 cells were treated with 10 ng/ml of recombinant TGF-β1 and different concentrations of EGCG, L-selenomethionine (L-SeMet), or L-selenomethylcysteine (L-SeMC) for 24 h. We found that 100 and 200 μM EGCG combined with 1 mM L-SeMet or L-SeMC showed a synergistic effect in decreasing the survival rate of activated LX-2 cells. In addition, the combination of 100 mM EGCG and 1 mM L-SeMet or L-SeMC promoted the apoptosis of activated LX-2 cells. Compared with the EGCG treatment group, the combination intervention group had significantly suppressed levels of hepatic stellate cell activation markers including alpha-smooth muscle actin, collagen type I alpha 1, collagen type III alpha 1, 5-hydroxytryptophan (5-HT), and 5-HT receptors 2A and 2B. Moreover, interleukin-10 levels were decreased, while TGF-β1 levels were increased after TGF-β1 activation in LX-2 culture medium, whereas the combin1ation intervention reversed this phenomenon. The combination treatment had a more pronounced effect than any single treatment at the same dose. These results demonstrated that the combination of EGCG and organic selenium synergistically improves the TGF-β1-induced fibrosis of LX-2 cells to some extent by promoting apoptosis and inhibiting cell activation. PRACTICAL APPLICATIONS: Here, we found that the effects of epigallocatechin-3-o-gallate (EGCG) + L-selenomethionine or L-selenomethylcysteine were more pronounced than those of EGCG alone. Future studies should investigate the protective effects of green tea and selenium-enriched green tea against hepatic fibrosis and explore the differences in their molecular mechanisms. The results of this study will be helpful for the development and utilization of selenium-enriched tea for food processing and health supplement production.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xue-Bin Yin
- Key Laboratory for Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Shu B, Zhang RZ, Zhou YX, He C, Yang X. METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-β1/Smad signaling pathway. Cell Death Dis 2022; 8:266. [PMID: 35585044 PMCID: PMC9117676 DOI: 10.1038/s41420-022-01036-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Hepatic fibrosis (HF) is caused by chronic hepatic injury and is characterized by hepatic stellate cells (HSCs) activation. Studies focusing on the function of exosomes derived from macrophages in HF progression are limited. This study aims to identify the roles of exosomal NEAT1 derived from macrophages on HF and the underlying mechanisms. Our studies showed that METTL3 targeted and enhanced NEAT1 expression in macrophages. Exosomal NEAT1 originating from LPS-treated macrophages promoted HSCs proliferation and migration, and induced the expression of fibrotic proteins including collagen I, α-SMA, and fibronectin. Macrophage exosomal NEAT1 contributed to HSCs activation by sponging miR-342. MiR-342 directly targeted Sp1 and suppressed its downstream TGF-β1/Smad signaling pathway, which eventually led to the inhibition of HSCs activation. Depletion of NEAT1 in the macrophage exosomes inhibited HF progression both in vitro and in vivo. Altogether, our study proved that silence of NEAT1 in the macrophage exosomes exerted protective roles against HF through the miR-342/Sp1/TGF-β1/Smad signaling pathway, suggesting a potential therapeutic target in HF treatment.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Rui-Zhi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Ying-Xia Zhou
- Department of Surgical Operation, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
18
|
Active demethylation upregulates CD147 expression promoting non-small cell lung cancer invasion and metastasis. Oncogene 2022; 41:1780-1794. [PMID: 35132181 PMCID: PMC8933279 DOI: 10.1038/s41388-022-02213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a fatal disease, and its metastatic process is poorly understood. Although aberrant methylation is involved in tumor progression, the mechanisms underlying dynamic DNA methylation remain to be elucidated. It is significant to study the molecular mechanism of NSCLC metastasis and identify new biomarkers for NSCLC early diagnosis. Here, we performed MeDIP-seq and hMeDIP-seq analyses to detect the genes regulated by dynamic DNA methylation. Comparison of the 5mC and 5hmC sites revealed that the CD147 gene underwent active demethylation in NSCLC tissues compared with normal tissues, and this demethylation upregulated CD147 expression. Significantly high levels of CD147 expression and low levels of promoter methylation were observed in NSCLC tissues. Then, we identified the CD147 promoter as a target of KLF6, MeCP2, and DNMT3A. Treatment of cells with TGF-β triggered active demethylation involving loss of KLF6/MeCP2/DNMT3A and recruitment of Sp1, Tet1, TDG, and SMAD2/3 transcription complexes. A dCas9-SunTag-DNMAT3A-sgCD147-targeted methylation system was constructed to reverse CD147 expression. The targeted methylation system downregulated CD147 expression and inhibited NSCLC proliferation and metastasis in vitro and in vivo. Accordingly, we used cfDNA to detect the levels of CD147 methylation in NSCLC tissues and found that the CD147 methylation levels exhibited an inverse relationship with tumor size, lymphatic metastasis, and TNM stage. In conclusion, this study clarified the mechanism of active demethylation of CD147 and suggested that the targeted methylation of CD147 could inhibit NSCLC invasion and metastasis, providing a highly promising therapeutic target for NSCLC.
Collapse
|
19
|
SMAD4 Feedback Activates the Canonical TGF-β Family Signaling Pathways. Int J Mol Sci 2021; 22:ijms221810024. [PMID: 34576190 PMCID: PMC8471547 DOI: 10.3390/ijms221810024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
TGF-β family signaling pathways, including TGF-β and BMP pathways, are widely involved in the regulation of health and diseases through downstream SMADs, which are also regulated by multiple validated mechanisms, such as genetic regulation, epigenetic regulation, and feedback regulation. However, it is still unclear whether R-SMADs or Co-SMAD can feedback regulate the TGF-β family signaling pathways in granulosa cells (GCs). In this study, we report a novel mechanism underlying the feedback regulation of TGF-β family signaling pathways, i.e., SMAD4, the only Co-SMAD, positive feedback activates the TGF-β family signaling pathways in GCs with a basal level of TGF-β ligands by interacting with the core promoters of its upstream receptors. Mechanistically, SMAD4 acts as a transcription factor, and feedback activates the transcription of its upstream receptors, including ACVR1B, BMPR2, and TGFBR2, of the canonical TGF-β signaling pathways by interacting with three coactivators (c-JUN, CREB1, and SP1), respectively. Notably, three different interaction modes between SMAD4 and coactivators were identified in SMAD4-mediated feedback regulation of upstream receptors through reciprocal ChIP assays. Our findings in the present study indicate for the first time that SMAD4 feedback activates the canonical TGF-β family signaling pathways in GCs, which improves and expands the regulatory mechanism, especially the feedback regulation modes of TGF-β family signaling pathways in ovarian GCs.
Collapse
|
20
|
Snail Upregulates Transcription of FN, LEF, COX2, and COL1A1 in Hepatocellular Carcinoma: A General Model Established for Snail to Transactivate Mesenchymal Genes. Cells 2021; 10:cells10092202. [PMID: 34571852 PMCID: PMC8467536 DOI: 10.3390/cells10092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Collapse
|
21
|
Yao J, Lin C, Jiang J, Zhang X, Li F, Liu T, Diao H. lncRNA-HEIM Facilitated Liver Fibrosis by Up-Regulating TGF- β Expression in Long-Term Outcome of Chronic Hepatitis B. Front Immunol 2021; 12:666370. [PMID: 34168644 PMCID: PMC8217658 DOI: 10.3389/fimmu.2021.666370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic liver fibrosis is an inevitable stage for the development of patients with chronic hepatitis B (CHB). However, anti-fibrotic therapies have been unsuccessful so far. The biological functions and molecular mechanisms of long non-coding RNAs (lncRNAs) in the host immune system during chronic hepatitis B virus (HBV) infection, especially in fibrosis, are still largely unknown. Method The total RNA of peripheral blood mononuclear cells (PBMCs) from asymptomatic carriers (ASCs) or CHB receiving at least 8 years of anti-viral treatments was analyzed using Arraystar microarray and validated via quantitative real-time PCR (qRT-PCR). Correlation analysis was conducted based on correlation coefficients, Clusterprofile, and RNA Interactome Database (RAID). The functions of lncRNA in monocytes were determined via loss-of-function RNAi or gain-of-function lentivirus assays. The expression levels of mRNAs or proteins were evaluated using qRT-PCR, western blotting assay, or enzyme linked immunosorbent assays (ELISA). Results A total of 1,042 mRNA transcripts (630 up-regulated and 412 down-regulated) were identified being differentially expressed between ASC and CHB patients. Through enrichment analysis we focused on the transforming growth factor beta (TGF-β) signaling pathway and validated their expression in a larger cohort. Moreover, we found that lncRNA ENST00000519726 (lncRNA-HEIM) was highly expressed in monocytes and further up-regulated upon HBV infection. LncRNA-HEIM played an important role in CHB patients with long-term antiviral treatments, and its elevated expression was remarkably correlated with the TGF-β signaling pathway, especially with the two members namely TGF-β and SMAD4. Furthermore, altering the endogenous lncRNA-HEIM level in monocytes significantly affected the production of TGF-β, as well as the fibrosis of hepatic stellate cells by affecting the expression of collagen I and α-smooth muscle actin (α-SMA). Conclusion These findings not only added knowledge to the understanding of the roles of which lncRNA-HEIM played in the activation of HSCs in CHB patients with long-term medication, but also provided a promising therapeutic target in the future treatment for liver fibrosis.
Collapse
Affiliation(s)
- Jian Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengxia Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxing Liu
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Silencing of CD147 inhibits hepatic stellate cells activation related to suppressing aerobic glycolysis via hedgehog signaling. Cytotechnology 2021; 73:233-242. [PMID: 33927478 DOI: 10.1007/s10616-021-00460-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) activation is a key step that promotes hepatic fibrosis. Emerging evidence suggests that aerobic glycolysis is one of its important metabolic characteristics. Our previous study has reported that CD147, a glycosylated transmembrane protein, contributes significantly to the activation of HSCs. However, whether and how it is involved in the aerobic glycolysis of HSCs activation is unknown. The objective of the present study was to validate the effect of CD147 in HSCs activation and the underlying molecular mechanism. Our results showed that the silencing of CD147 decreased the expression of α-smooth muscle-actin (α-SMA) and collagen I at both mRNA and protein levels. Furthermore, CD147 silencing decreased the glucose uptake, lactate production in HSCs, and repressed the lactate dehydrogenase (LDH) activity, the expression of hexokinase 2 (HK2), glucose transporter 1 (Glut1). The effect of galloflavin, a well-defined glycolysis inhibitor, was similar to CD147 siRNA. Mechanistically, CD147 silencing suppressed glycolysis-associated HSCs activation through inhibiting the hedgehog signaling. Moreover, the hedgehog signaling agonist SAG could rescue the above effect of CD147 silencing. In conclusion, CD147 silencing blockade of aerobic glycolysis via suppression of hedgehog signaling inhibited HSCs activation, suggesting CD147 as a novel therapeutic target for hepatic fibrosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00460-9.
Collapse
|
23
|
Lv JJ, Wang H, Cui HY, Liu ZK, Zhang RY, Lu M, Li C, Yong YL, Liu M, Zhang H, Zhang TJ, Zhang K, Li G, Nan G, Zhang C, Guo SP, Wang L, Chen ZN, Bian H. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol 2021; 8:609090. [PMID: 33490072 PMCID: PMC7820343 DOI: 10.3389/fcell.2020.609090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The persistence of macrophage-derived foam cells in the artery wall fuels atherosclerosis development. However, the mechanism of foam cell formation regulation remains elusive. We are committed to determining the role that CD147 might play in macrophage foam cell formation during atherosclerosis. In this study, we found that CD147 expression was primarily increased in mouse and human atherosclerotic lesions that were rich in macrophages and could be upregulated by ox-LDL. High-throughput compound screening indicated that ox-LDL-induced CD147 upregulation in macrophages was achieved through PI3K/Akt/mTOR signaling. Genetic deletion of macrophage CD147 protected against foam cell formation by impeding cholesterol uptake, probably through the scavenger receptor CD36. The opposite effect was observed in primary macrophages isolated from macrophage-specific CD147-overexpressing mice. Moreover, bioinformatics results indicated that CD147 suppression might exert an atheroprotective effect via various processes, such as cholesterol biosynthetic and metabolic processes, LDL and plasma lipoprotein clearance, and decreased platelet aggregation and collagen degradation. Our findings identify CD147 as a potential target for prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jian-Jun Lv
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hong-Yong Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ren-Yu Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Can Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Le Yong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Man Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian-Jiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.,School of Science, College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Gang Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.,Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Gang Nan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuang-Ping Guo
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Wang
- College of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Abstract
Galectin-3 is a glycan-binding protein (GBP) that binds β-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells and regulation of immune responses. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional (3D) arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, have significant advantages over static and artificial systems. Here we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live human hepatic stellate cells and peripheral blood mononuclear cells. Understanding the identity of the glycoproteins and defining the structures of the glycans will empower efforts to design and develop selective therapeutics to mitigate galectin-3-mediated biological events.
Collapse
|
25
|
Hu S, Bae M, Park YK, Lee JY. n-3 PUFAs inhibit TGFβ1-induced profibrogenic gene expression by ameliorating the repression of PPARγ in hepatic stellate cells. J Nutr Biochem 2020; 85:108452. [DOI: 10.1016/j.jnutbio.2020.108452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023]
|
26
|
Zhang T, Li H, Wang K, Xu B, Chen ZN, Bian H. Deficiency of CD147 Attenuated Non-alcoholic Steatohepatitis Progression in an NLRP3-Dependent Manner. Front Cell Dev Biol 2020; 8:784. [PMID: 32903542 PMCID: PMC7438480 DOI: 10.3389/fcell.2020.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) is a transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD147 overexpression has been reported to facilitate the development of hepatocellular carcinoma (HCC) and influence immunologic disorders. Although increased expression of CD147 was reported in non-alcoholic steatohepatitis (NASH), functions of CD147 in NASH have not been evaluated. Firstly, we confirmed that CD147 expression was increased in the liver tissues from methionine-choline-deficient (MCD) diet-induced NASH model mice and NASH patients. Mice with hepatocyte-specific CD147 deletion exhibited attenuated NASH phenotypes, including reduced steatosis, liver injury, hepatocyte apoptosis and inflammatory cytokines IL-1β/IL-18 secretion. Following the administration of the MCD diet, NLRP3 expression was increased gradually along with CD147 expression. Furthermore, CD147 deletion inhibited the NF-κB/NLRP3 signaling pathway in both MCD diet-induced mice and primary hepatocytes. Finally, CypA inhibitor TMN355 attenuated liver steatosis and injury and inhibited NF-κB/NLRP3 signaling pathway. Therefore, our results suggest that CD147 played a vital role in NASH pathogenesis by regulating the inflammatory response, and CypA/CD147 could be attractive therapeutic targets for NASH treatment.
Collapse
Affiliation(s)
- Tian Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
AGAP2: Modulating TGFβ1-Signaling in the Regulation of Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21041400. [PMID: 32092977 PMCID: PMC7073092 DOI: 10.3390/ijms21041400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-β1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-β1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGFβ1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis.
Collapse
|
28
|
Das D, Fayazzadeh E, Li X, Koirala N, Wadera A, Lang M, Zernic M, Panick C, Nesbitt P, McLennan G. Quiescent hepatic stellate cells induce toxicity and sensitivity to doxorubicin in cancer cells through a caspase-independent cell death pathway: Central role of apoptosis-inducing factor. J Cell Physiol 2020; 235:6167-6182. [PMID: 31975386 DOI: 10.1002/jcp.29545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide and in the United States as its incidence has increased substantially within the past two decades. HCC therapy remains a challenge, primarily due to underlying liver disorders such as cirrhosis that determines treatment approach and efficacy. Activated hepatic stellate cells (A-HSCs) are the key cell types involved in hepatic fibrosis/cirrhosis. A-HSCs are important constituents of HCC tumor microenvironment (TME) and support tumor growth, chemotherapy resistance, cancer cell migration, and escaping immune surveillance. This makes A-HSCs an important therapeutic target in hepatic fibrosis/cirrhosis as well as in HCC. Although many studies have reported the role of A-HSCs in cancer generation and investigated the therapeutic potential of A-HSCs reversion in cancer arrest, not much is known about inactivated or quiescent HSCs (Q-HSCs) in cancer growth or arrest. Here we report that Q-HSCs resist cancer cell growth by inducing cytotoxicity and enhancing chemotherapy sensitivity. We observed that the conditioned media from Q-HSCs (Q-HSCCM) induces cancer cell death through a caspase-independent mechanism that involves an increase in apoptosis-inducing factor expression, nuclear localization, DNA fragmentation, and cell death. We further observed that Q-HSCCM enhanced the efficiency of doxorubicin, as measured by cell viability assay. Exosomes present in the conditioned media were not involved in the mechanism, which suggests the role of other factors (proteins, metabolites, or microRNA) secreted by the cells. Identification and characterization of these factors are important in the development of effective HCC therapy.
Collapse
Affiliation(s)
- Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ehsan Fayazzadeh
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Section of Vascular and Interventional Radiology, Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nischal Koirala
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Akshay Wadera
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,School of Medicine, New York Medical College, Valhalla, New York
| | - Min Lang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian Zernic
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Catherine Panick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon
| | - Pete Nesbitt
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| | - Gordon McLennan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Section of Vascular and Interventional Radiology, Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients. Cells 2020; 9:cells9010154. [PMID: 31936351 PMCID: PMC7016677 DOI: 10.3390/cells9010154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Marfan syndrome (MFS) is a genetic disease, characterized by thoracic aortic aneurysm (TAA), which treatment is to date purely surgical. Understanding of novel molecular targets is mandatory to unveil effective pharmacological approaches. Cyclophilin A (CyPA) and its receptor EMMPRIN are associated with several cardiovascular diseases, including abdominal aortic aneurysm. Here, we envisioned the contribution of CyPA/EMMPRIN axis in MFS-related TAA. Methods: We obtained thoracic aortic samples from healthy controls (HC) and MFS patients’ aortas and then isolated vascular smooth muscle cells (VSMC) from the aortic wall. Results: our findings revealed that MFS aortic tissue samples isolated from the dilated zone of aorta showed higher expression levels of EMMPRIN vs. MFS non-dilated aorta and HC. Interestingly, angiotensin II significantly stimulated CyPA secretion in MFS-derived VSMC (MFS-VSMC). CyPA treatment on MFS-VSMC led to increased levels of EMMPRIN and other MFS-associated pro-fibrotic mediators, such as TGF-β1 and collagen I. These molecules were downregulated by in vitro treatment with CyPA inhibitor MM284. Our results suggest that CyPA/EMMPRIN axis is involved in MFS-related TAA development, since EMMPRIN is upregulated in the dilated zone of MFS patients’ TAA and the inhibition of its ligand, CyPA, downregulated EMMPRIN and MFS-related markers in MFS-VSMC. Conclusions: these insights suggest both a novel detrimental role for CyPA/EMMPRIN axis and its inhibition as a potential therapeutic strategy for MFS-related TAA treatment.
Collapse
|
30
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
31
|
Dewidar B, Meyer C, Dooley S, Meindl-Beinker N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019; 8:cells8111419. [PMID: 31718044 PMCID: PMC6912224 DOI: 10.3390/cells8111419] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-β is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-β has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-β and its upstream and downstream regulatory mechanisms will help to design better TGF-β based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-β signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-β on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-β. Finally, we discuss new approaches to target the TGF-β pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.
Collapse
Affiliation(s)
- Bedair Dewidar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527 Tanta, Egypt
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.D.); (C.M.); (S.D.)
- Correspondence: ; Tel.: +49-621-383-4983; Fax: +49-621-383-1467
| |
Collapse
|
32
|
Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis. Cells 2019; 8:cells8111356. [PMID: 31671675 PMCID: PMC6929087 DOI: 10.3390/cells8111356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-β1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.
Collapse
|
33
|
Chen Z, Wan L, Jin X, Wang W, Li D. Transforming growth factor-β signaling confers hepatic stellate cells progenitor features after partial hepatectomy. J Cell Physiol 2019; 235:2655-2667. [PMID: 31584200 DOI: 10.1002/jcp.29169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/26/2019] [Indexed: 12/29/2022]
Abstract
Liver regeneration involves not only hepatocyte replication but progenitor aggregation and scarring. Partial hepatectomy (PH), an established model for liver regeneration, reactivates transforming growth factor-β (TGF-β) signaling. Hepatic stellate cells (HSCs) are primarily responding cells for TGF-β and resident in stem cell niche. In the current study, PH mice were treated with SB-431542, an inhibitor of TGF-β Type I receptor, aiming to address the role of TGF-β signaling on the fate determination of HSCs during liver regeneration. After PH, control mice exhibited HSCs activation, progenitor cells accumulation, and a fraction of HSCs acquired the phenotype of hepatocyte or cholangiocyte. Blocking TGF-β signaling delayed proliferation, impaired progenitor response, and scarring repair. In SB-431542 group, merely no HSCs were found coexpressed progenitor makers, such as SOX9 and AFP. Inhibition of TGF-β pathway disturbed the epithelial-mesenchymal transitions and diminished the nuclear accumulation of β-catenin as well as the expression of cytochrome P450 2E1 in HSC during liver regeneration. We identify a key role of TGF-β signaling on promoting HSC transition, which subsequently becomes progenitor for generating liver epithelial cells after PH. This process might interact with an acknowledged stem cell function signaling, Wnt/β-catenin.
Collapse
Affiliation(s)
- Zixin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dewei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Li H, Zhang T, Wang K, Lu M, Guo Y, Zhang Y, Chen ZN, Bian H. MFGE8 protects against CCl 4 -induced liver injury by reducing apoptosis and promoting proliferation of hepatocytes. J Cell Physiol 2019; 234:16463-16474. [PMID: 30767216 DOI: 10.1002/jcp.28314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Milk fat globule-EGF factor 8 (MFGE8) has been reported to play various roles in acute injury and inflammation response. However, the role of MFGE8 in liver injury is poorly investigated. The present research was designed to clarify the expression and function of MFGE8 in carbon tetrachloride (CCl4 )-induced liver injury. Using serum cytokine arrays, we selected a promising cytokine MFGE8 as the candidate in the process of hepatitis-fibrosis-hepatocellular carcinoma (HCC) progression, based on the elevated expression in both hepatic fibrosis and HCC models. We validated the increased expression of MFGE8 in liver tissues and serum samples of acute and chronic CCl4 -induced mice. Immunohistochemistry staining of mouse liver tissues indicated that elevated MFGE8 expression was mainly derived from the injured hepatocytes. In addition, MFGE8 expression in the supernatant of primary hepatocytes was accumulated with prolongation of culture time, and CCl4 treatment further increased the expression of MFGE8. Moreover, a strong correlation between serum MFGE8 expression and liver transaminase activities suggested that MFGE8 may be a novel candidate in liver injury. Intriguingly, mice pretreated with MFGE8 were protected from CCl4 -induced liver injury through antiapoptosis role in the early stage and proproliferation role in the late stage. MFGE8 reduced apoptosis by inhibiting the activation of IRE1α/ASK1/JNK pathway and promoted proliferation by phosphorylation of ERK and AKT. Moreover, serum MFGE8 expression was increased in hepatitis patients while decreased in liver cirrhosis patients. All the results suggest MFGE8 as a novel marker and promising therapeutic agent of liver injury.
Collapse
Affiliation(s)
- Hao Li
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,Department of Laboratory Medicine and Pathology, The People's Liberation Army 926 Central Hospital, Kaiyuan, Yunnan, China
| | - Ke Wang
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Zhang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
TGF-β1 signaling activates hepatic stellate cells through Notch pathway. Cytotechnology 2019; 71:881-891. [PMID: 31372876 DOI: 10.1007/s10616-019-00329-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatic stellate cells (HSCs), as the most important stromal cells in the liver microenvironment, play crucial roles in hepatic fibrosis, hepatocellular carcinoma, liver regeneration and fetal liver development after transdifferentiating into myofibroblasts (MFs). Transforming growth factor β1 (TGF-β1), as an important polyergic cytokine, is involved in HSCs activation process. However, the specific mechanisms of HSCs transdifferentiation process are not clearly demonstrated. Here we added exogenous recombinant TGF-β1 protein and transforming growth factor β receptor 1 (TGF-βR1) inhibitor SB431542 into mouse HSCs to detect the detailed impact of TGF-β1 signaling on HSCs activation. TGF-β1 signaling significantly increased phosphorylated (P)-Smad2/3 level and promoted Smad2/3 translocation from the cytoplasm to the nucleus, which also caused transdifferentiation of HSCs into MFs. Importantly, TGF-β1 signaling also resulted in high expression of Notch pathway markers Notch1, Jagged1, Hes1 in HSCs. In contrast, expression of those above markers in mouse HSCs were obviously decreased after hampering TGF-β1 signaling via TGF-βR1 inhibitor SB431542. To further examine the effect of Notch pathway on HSCs activation process, TGF-β1-stimulated HSCs and control HSCs were treated with or without LY450139, a specific inhibitor of Notch pathway. LY450139 evidently decreased the expression of Notch1 and MFs marker α-smooth muscle actin (α-SMA) expression in HSCs. These above results may provide a novel insight that TGF-β1 signaling controls HSCs activation process through regulating the expression of Notch pathway markers.
Collapse
|
36
|
Rurali E, Perrucci GL, Gaetano R, Pini A, Moschetta D, Gentilini D, Nigro P, Pompilio G. Soluble EMMPRIN levels discriminate aortic ectasia in Marfan syndrome patients. Am J Cancer Res 2019; 9:2224-2234. [PMID: 31149040 PMCID: PMC6531292 DOI: 10.7150/thno.30714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022] Open
Abstract
Marfan syndrome (MFS) is a rare genetic disease characterized by a matrix metalloproteases (MMPs) dysregulation that leads to extracellular matrix degradation. Consequently, MFS patients are prone to develop progressive thoracic aortic enlargement and detrimental aneurysm. Since MMPs are activated by the extracellular MMP inducer (EMMPRIN) protein, we determined whether its plasmatic soluble form (sEMMPRIN) may be considered a marker of thoracic aortic ectasia (AE). Methods: We compared plasma sEMMPRIN levels of 42 adult Caucasian MFS patients not previously subjected to aortic surgery with those of matched healthy controls (HC) by ELISA. In the MFS cohort we prospectively evaluated the relationship between plasma sEMMPRIN levels and the main MFS-related manifestations. Results: MFS patients had lower plasma sEMMPRIN levels (mean±SD: 2071±637 pg/ml) than HC (2441±642 pg/ml, p=0.009). Amongst all considered MFS-related clinical features, we found that only aortic root dilatation associated with circulating sEMMPRIN levels. Specifically, plasma sEMMPRIN levels negatively correlated with aortic Z-score (r=-0.431, p=0.004), and were significantly lower in patients with AE (Z-score≥2, 1788±510 pg/ml) compared to those without AE (Z-score<2, 2355±634 pg/ml; p=0.003). ROC curve analysis revealed that plasma sEMMPRIN levels discriminated patients with AE (AUC [95%CI]: 0.763 [0.610-0.916], p=0.003) with 85.7% sensitivity, 76.2% specificity, and 81% accuracy. We defined plasma sEMMPRIN levels ≤2246 pg/ml as the best threshold discriminating the presence of AE in MFS patients with an odds ratio [95%CI] of 19.2 [3.947-93.389] (p<0.001). Conclusions: MFS patients are characterized by lower sEMMPRIN levels than HC. Notably, plasma sEMMPRIN levels are strongly associated with thoracic AE.
Collapse
|
37
|
Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2019; 303:1584-1589. [DOI: 10.1002/ar.24089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Damien Guindolet
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| | - Eric E. Gabison
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| |
Collapse
|
38
|
Shata MTM, Abdel-Hameed EA, Rouster SD, Yu L, Liang M, Song E, Esser MT, Shire N, Sherman KE. HBV and HIV/HBV Infected Patients Have Distinct Immune Exhaustion and Apoptotic Serum Biomarker Profiles. Pathog Immun 2019; 4:39-65. [PMID: 30815625 PMCID: PMC6388707 DOI: 10.20411/pai.v4i1.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Hepatitis B virus (HBV) infection is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide. Due to their shared routes of transmission, approximately 10% of HIV-infected patients worldwide are chronically coinfected with HBV. Additionally, liver disease has become a major cause of morbidity and mortality in HBV/HIV coinfected patients due to prolonged survival with the success of antiretroviral therapy. The relationship between immune exhaustion markers (PD-1/PD-L1) and apoptotic markers such as Fas/FasL, TGFβ1, TNF-α, and Th1/Th2 cytokines are not clearly delineated in HBV/HIV coinfection. Methods: Levels of soluble Fas/FasL, TGFβ1, TNF-α, and sPD-1/sPD-L1 as well as Th1 and Th2 cytokines were evaluated in the sera of HBV-monoinfected (n = 30) and HBV/HIV-coinfected (n = 15) patients and compared to levels in healthy controls (n = 20). Results: HBV-monoinfected patients had significantly lower levels of the anti-inflammatory cytokine IL-4 (P < 0.05) and higher levels of apoptotic markers sFas, sFasL, and TGFβ-1 (P < 0.001) compared to healthy controls. Coinfection with HIV was associated with higher levels of sFas, TNF-α, and sPD-L1 (P < 0.005), and higher levels of the pro-inflammatory cytokines IL-6, IL-8, and IL-12p70 (P < 0.05) compared to healthy controls. Patients with HBV infection had a unique biomarker clustering profile comprised of IFN-γ, IL12p70, IL-10, IL-6, and TNF-α that was distinct from the profile of the healthy controls, and the unique HIV/HBV profile comprised GM-CSF, IL-4, IL-2, IFN-γ, IL12p70, IL-7, IL-10, and IL-1β. In HBV monoinfection a significant correlation between sFasL and PD1(r = 0.46, P = < 0.05) and between sFas and PDL1 (r = 0.48, P = <0.01) was observed. Conclusion: HBV-infected and HBV/HIV-coinfected patients have unique apoptosis and inflammatory biomarker profiles that distinguish them from each other and healthy controls. The utilization of those unique biomarker profiles for monitoring disease progression or identifying individuals who may benefit from novel immunotherapies such as anti-PD-L1 or anti-PD-1 checkpoint inhibitors appears promising and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Susan D Rouster
- Internal medicine; University of Cincinnati; Cincinnati, Ohio
| | - Li Yu
- MedImmune; Gaithersburg, Maryland
| | - Meina Liang
- MedImmune; 121 Oyster Point Boulevard; South San Francisco, California
| | - Esther Song
- MedImmune; 121 Oyster Point Boulevard; South San Francisco, California
| | | | | | | |
Collapse
|
39
|
Uchio R, Murosaki S, Ichikawa H. Hot water extract of turmeric ( Curcuma longa) prevents non-alcoholic steatohepatitis in mice by inhibiting hepatic oxidative stress and inflammation. J Nutr Sci 2018; 7:e36. [PMID: 30627433 PMCID: PMC6313422 DOI: 10.1017/jns.2018.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Curcuma longa, also known as turmeric, has long been used as a medicinal herb with various biological effects. A hot water extract of C. longa (WEC) has been reported to show antioxidant and anti-inflammatory activity, but its effect on hepatic inflammation is poorly understood. In the present study, to investigate the effect of WEC on non-alcoholic steatohepatitis, C57BL/6J mice were fed a low-methionine, choline-deficient diet with 0·175 % WEC (WEC group) or without WEC (control group) for 6 or 12 weeks. Although hepatic steatosis was similar in the WEC group and the control group, WEC suppressed the elevation of plasma aspartate aminotransferase and alanine aminotransferase, which are markers of hepatocellular damage. Compared with the control group, the WEC group had higher hepatic levels of reduced glutathione and superoxide dismutase, as well as a lower hepatic level of thiobarbituric acid-reactive substances. WEC also reduced hepatic expression of mRNA for inflammatory factors, including TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, F4/80 and CC motif chemokine receptor 2. Histological examination revealed that WEC suppressed hepatic recruitment of F4/80+ monocytes/macrophages and inhibited hepatic fibrosis. Furthermore, WEC inhibited hepatic expression of mRNA for molecules related to fibrosis, such as transforming growth factor-β, α-smooth muscle actin, type I collagen (α1-chain) and tissue inhibitor of matrix metalloproteinase-1. These findings suggest that dietary intake of WEC prevents the progression of non-alcoholic steatohepatitis by alleviating hepatic oxidative stress and inflammation.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CCR2, CC motif chemokine receptor 2
- COL1A1, α1-chain of type I collagen
- Fibrosis
- GSH, reduced glutathione
- GSSG, oxidised glutathione
- HSC, hepatic stellate cells
- Inflammation
- KC, Kupffer cells
- LMCD, low-methionine, choline-deficient
- MCP-1, monocyte chemoattractant protein-1
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic steatohepatitis
- Oxidative stress
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid-reactive substances
- TGF-β, transforming growth factor-β
- TIMP-1, tissue inhibitor of metalloproteinases-1
- Turmeric (Curcuma longa)
- VCAM-1, vascular cell adhesion molecule-1
- WEC, hot water extract of Curcuma longa
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Ryusei Uchio
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto 610-0321, Japan
| | - Shinji Murosaki
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto 610-0321, Japan
| |
Collapse
|
40
|
Antifibrotic Effect of Marine Ovothiol in an In Vivo Model of Liver Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5045734. [PMID: 30647809 PMCID: PMC6311726 DOI: 10.1155/2018/5045734] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a complex process caused by chronic hepatic injury, which leads to an excessive increase in extracellular matrix protein accumulation and fibrogenesis. Several natural products, including sulfur-containing compounds, have been investigated for their antifibrotic effects; however, the molecular mechanisms underpinning their action are partially still obscure. In this study, we have investigated for the first time the effect of ovothiol A, π-methyl-5-thiohistidine, isolated from sea urchin eggs on an in vivo murine model of liver fibrosis. Mice were intraperitoneally injected with carbon tetrachloride (CCl4) to induce liver fibrosis and treated with ovothiol A at the dose of 50 mg/kg 3 times a week for 2 months. Treatment with ovothiol A caused a significant reduction of collagen fibers as observed by histopathological changes and serum parameters compared to mice treated with control solution. This antifibrotic effect was associated to the decrease of fibrogenic markers involved in liver fibrosis progression, such as the transforming growth factor (TGF-β), the α-smooth muscle actin (α-SMA), and the tissue metalloproteinases inhibitor (TIMP-1). Finally, we provided evidence that the attenuation of liver fibrosis by ovothiol A treatment can be regulated by the expression and activity of the membrane-bound γ-glutamyl-transpeptidase (GGT), which is a key player in maintaining intracellular redox homoeostasis. Overall, these findings indicate that ovothiol A has significant antifibrotic properties and can be considered as a new marine drug or dietary supplement in potential therapeutic strategies for the treatment of liver fibrosis.
Collapse
|
41
|
Uschner FE, Schueller F, Nikolova I, Klein S, Schierwagen R, Magdaleno F, Gröschl S, Loosen S, Ritz T, Roderburg C, Vucur M, Kristiansen G, Lammers T, Luedde T, Trebicka J. The multikinase inhibitor regorafenib decreases angiogenesis and improves portal hypertension. Oncotarget 2018; 9:36220-36237. [PMID: 30546838 PMCID: PMC6281422 DOI: 10.18632/oncotarget.26333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background and Aims Angiogenesis is critically involved in the development of liver fibrosis, portal hypertension (PHT) and hepatocellular carcinoma (HCC). Regorafenib is a novel second-line therapy for HCC, but might also be beneficial in fibrosis and PHT even in absence of HCC. This study investigated the effects of regorafenib in experimental models without HCC. Methods Fibrosis (in vivo and in vitro), inflammation, liver damage (aminotransferases), angiogenesis (matrigel implantation) and in vivo systemic and portal hemodynamics were assessed in different mouse and rat models (bile duct ligation, CCl4, partial portal vein ligation) after acute and chronic treatment with regorafenib. Results Long-term treatment with regorafenib improved portal hypertension most likely due to blunted angiogenesis, without affecting fibrosis progression or regression. Interestingly, acute administration of regorafenib also ameliorated portal hemodynamics. Although regorafenib treatment led to hepatotoxic side effects in long-term treated fibrotic animals, in partial portal vein ligated rats, no liver toxicity due to regorafenib was observed. Discussion Regorafenib might be especially suitable as therapy in patients with PHT and preserved liver function.
Collapse
Affiliation(s)
- Frank Erhard Uschner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Florian Schueller
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Ivelina Nikolova
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Institute of Cellular Medicine, Fibrosis Research Group, Newcastle upon Tyne, United Kingdom.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | | | | | - Stefanie Gröschl
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sven Loosen
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Thomas Ritz
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | | | - Michael Vucur
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | | | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University of Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, University of Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona, Spain.,Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
42
|
Maricic I, Marrero I, Eguchi A, Nakamura R, Johnson CD, Dasgupta S, Hernandez CD, Nguyen PS, Swafford AD, Knight R, Feldstein AE, Loomba R, Kumar V. Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3017-3035. [PMID: 30322964 PMCID: PMC6219905 DOI: 10.4049/jimmunol.1800614] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Innate immune mechanisms play an important role in inflammatory chronic liver diseases. In this study, we investigated the role of type I or invariant NKT (iNKT) cell subsets in the progression of nonalcoholic steatohepatitis (NASH). We used α-galactosylceramide/CD1d tetramers and clonotypic mAb together with intracytoplasmic cytokine staining to analyze iNKT cells in choline-deficient l-amino acid-defined (CDAA)-induced murine NASH model and in human PBMCs, respectively. Cytokine secretion of hepatic iNKT cells in CDAA-fed C57BL/6 mice altered from predominantly IL-17+ to IFN-γ+ and IL-4+ during NASH progression along with the downmodulation of TCR and NK1.1 expression. Importantly, steatosis, steatohepatitis, and fibrosis were dependent upon the presence of iNKT cells. Hepatic stellate cell activation and infiltration of neutrophils, Kupffer cells, and CD8+ T cells as well as expression of key proinflammatory and fibrogenic genes were significantly blunted in Jα18-/- mice and in C57BL/6 mice treated with an iNKT-inhibitory RAR-γ agonist. Gut microbial diversity was significantly impacted in Jα18-/- and in CDAA diet-fed mice. An increased frequency of CXCR3+IFN-γ+T-bet+ and IL-17A+ iNKT cells was found in PBMC from NASH patients in comparison with nonalcoholic fatty liver patients or healthy controls. Consistent with their in vivo activation, iNKT cells from NASH patients remained hyporesponsive to ex-vivo stimulation with α-galactosylceramide. Accumulation of plasmacytoid dendritic cells in both mice and NASH patients suggest their role in activation of iNKT cells. In summary, our findings indicate that the differential activation of iNKT cells play a key role in mediating diet-induced hepatic steatosis and fibrosis in mice and its potential involvement in NASH progression in humans.
Collapse
Affiliation(s)
- Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Idania Marrero
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Akiko Eguchi
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Ryota Nakamura
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Carolyn D Hernandez
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Phirum Sam Nguyen
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093; and
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Nonalcoholic Fatty Liver Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Nonalcoholic Fatty Liver Disease Research Center, University of California San Diego, La Jolla, CA 92093
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Nonalcoholic Fatty Liver Disease Research Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
43
|
Yu EM, Ma LL, Ji H, Li ZF, Wang GJ, Xie J, Yu DG, Kaneko G, Tian JJ, Zhang K, Gong WB. Smad4-dependent regulation of type I collagen expression in the muscle of grass carp fed with faba bean. Gene 2018; 685:32-41. [PMID: 30393189 DOI: 10.1016/j.gene.2018.10.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Smad4 is the key regulator in the transforming growth factor β1 (TGF-β1)/Smads signal pathway, and is also the crux of the regulation of type I collagen expression in mammals. In fish, however, the relationship between Smad4 and type I collagen is still unknown. Given the widely accepted importance of type I collagen in fish muscle hardness, we seek to explore this issue by analyzing the expressions of the TGF-β1/Smads pathway molecules and type I collagen in the muscle of crisp grass carp fed with faba bean, which shows increased muscle hardness. The study found that (1) in the process of feeding the grass carp with faba bean, the mRNA and protein expressions of TGF-β1, Smad2 and Smad4 all increased along with the increase of type I collagen expression (Col1α1 and Col1α2); (2) one day after the injection of Smad4 over-expression vector, both mRNA and protein expressions of Col1α1 and Col1α2 significantly increased, reaching the maximum on the 2nd and 5th day, respectively; (3) one day after the injection of Smad4 RNAi interference vector, the mRNA and protein expressions of Col1α1 and Col1α2 decreased, reaching the minimum on the 5th day. These results revealed that Smad4 is the major regulator of type I collagen in the muscle of grass carp fed with faba bean. This study would provide an important mechanistic basis for nutritional regulation of type I collagen in the muscle of fish.
Collapse
Affiliation(s)
- Er-Meng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Ling-Ling Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhi-Fei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Guang-Jun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China.
| | - De-Guang Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Gen Kaneko
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA.
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Wang-Bao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| |
Collapse
|
44
|
Li H, Li Q, Zhang X, Zheng X, Zhang Q, Hao Z. Thymosin β4 suppresses CCl4
-induced murine hepatic fibrosis by down-regulating transforming growth factor β receptor-II. J Gene Med 2018; 20:e3043. [PMID: 29972714 DOI: 10.1002/jgm.3043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Xueting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Qiannan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an; Shaanxi Province China
| |
Collapse
|
45
|
Jin X, Aimaiti Y, Chen Z, Wang W, Li D. Hepatic stellate cells promote angiogenesis via the TGF-β1-Jagged1/VEGFA axis. Exp Cell Res 2018; 373:34-43. [PMID: 30075174 DOI: 10.1016/j.yexcr.2018.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022]
Abstract
Hepatic stellate cells (HSCs) are activated by transforming growth factor (TGF)-β1 and function as mesenchymal cells in liver regeneration. Activated HSCs also have proangiogenic ability in vivo. In this study, knockin of the TGF-β1 gene caused mHSCs to transform into myofibroblasts (MFs) highly expressing Jagged1 and vascular endothelial growth factor A (VEGFA). These MFs promoted formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs) in vitro, which was much reduced after blocking TGF-β1 signaling. Transplantation of TGF-β1-knockin mHSCs was followed by efficient engraftment into livers and accompanied by increased vascular organization and expression of Jagged1 and VEGFA compared with controls. Less hepatic angiogenesis and lower Jagged1 and VEGFA expression, was found in livers engrafted with TGF-β-R1-knockdown mHSCs. Increased vascularization improved liver function. The findings showed that mHSCs were regulated by TGF-β1 signaling to express Jagged1 and VEGFA, which were associated with hepatic angiogenesis, a novel mechanism of mHSC promotion of new vascular structures.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yasen Aimaiti
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zixin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dewei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
46
|
Prestigiacomo V, Suter-Dick L. Nrf2 protects stellate cells from Smad-dependent cell activation. PLoS One 2018; 13:e0201044. [PMID: 30028880 PMCID: PMC6054401 DOI: 10.1371/journal.pone.0201044] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic stellate cells (HSC) orchestrate the deposition of extracellular matrix (ECM) and are the primary effector of liver fibrosis. Several factors, including TGF-β1, PDGF and oxidative stress, have been shown to trigger HSC activation. However, the involvement of cellular defence mechanisms, such as the activation of antioxidant response by Nrf2/Keap1 in the modulation of HSC activation is not known. The aim of this work was to elucidate the role of Nrf2 pathway in HSC trans-differentiation involved in the development of fibrosis. To this end, we repressed Nrf2 and Keap1 expression in HSC with specific siRNAs. We then assessed activation markers, as well as proliferation and migration, in both primary and immortalised human HSCs exposed to Smad inhibitors (SB-431542 hydrate and SB-525334), TGF-β1 and/or PDGF. Our results indicate that knocking down Nrf2 induces HSC activation, as shown by an increase in αSMA-positive cells and by gene expression induction of ECM components (collagens and fibronectin). HSC with reduced Nrf2-levels also showed an increase in migration and a decrease in proliferation. We could also demonstrate that the activation of Nrf2-deficient HSC involves the TGF-β1/Smad pathway, as the activation was successfully inhibited with the two tested Smad inhibitors. Moreover, TGF-β1 elicited a stronger induction of HSC activation markers in Nrf2 deficient cells than in wild type cells. Thus, our data suggest that Nrf2 limits HSCs activation, through the inhibition of the TGF-β1/Smad pathway in HSCs.
Collapse
Affiliation(s)
- Vincenzo Prestigiacomo
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Basel, Switzerland
- * E-mail:
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| |
Collapse
|
47
|
Wang W, Xiong H, Hu Z, Zhao R, Hu Y, Chen W, Han Y, Yang L, Hu X, Wang C, Mao T, Xia K, Su T. Experimental study on TGF-β1-mediated CD147 expression in oral submucous fibrosis. Oral Dis 2018; 24:993-1000. [PMID: 29457855 DOI: 10.1111/odi.12845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Although previous evidence indicates that CD147 is closely involved in the progression of organ fibrosis and various signaling pathways have been proven to regulate its expression, the role of CD147 in oral submucous fibrosis (OSF) remains largely unknown. METHODS In this study, we investigated the expression of CD147 and transforming growth factor β1 (TGF-β1) in human samples of an OSF tissue array by immunohistopathology. Pearson's correlation analysis was conducted to explore the correlation between CD147 and TGF-β1. Immunofluorescence and Western blotting were used to investigate to levels of CD147 in Human Oral Keratinocytes (HOKs) followed by TGF-β1 or LY2157299, an inhibitor of TGF-β1 receptor and arecoline stimulation. RESULTS We found that CD147 was highly expressed in both HOKs and the fibrotic oral mucosa and that this expression was correlated with TGF-β1 expression. Additionally, CD147 levels were significantly associated with the fibrosis stage. The TGF-β1 signaling pathway was found to be mainly responsible for CD147 up-regulation after arecoline treatment whereas inhibition of TGF-β1 down-regulated CD147 expression. CONCLUSION Our findings suggest arecoline promotes CD147 expression via the TGF-β1 signaling pathway in HOKs, whereas overexpression of CD147 may promote OSF progression.
Collapse
Affiliation(s)
- W Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - H Xiong
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Z Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - R Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Y Hu
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - W Chen
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Y Han
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - L Yang
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - X Hu
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - C Wang
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - T Mao
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - K Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - T Su
- Centre of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Saad El-Din S, Fouad H, Rashed LA, Mahfouz S, Hussein RE. Impact of Mesenchymal Stem Cells and Vitamin D on Transforming Growth Factor Beta Signaling Pathway in Hepatocellular Carcinoma in Rats. Asian Pac J Cancer Prev 2018; 19:905-912. [PMID: 29693337 PMCID: PMC6031804 DOI: 10.22034/apjcp.2018.19.4.905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Transforming growth factor-beta (TGF-β) signaling is recognized as being critical for carcinogenesis. Vitamin D has proved to exert numerous tumor suppressive effects. Effects of bone marrow derived mesenchymal stem cells (BM-MSCs) on tumor progression are still controversial. The present study was conducted to evaluate the effects of BM-MSCs and vitamin D on TGF-β signaling in an experimental hepatocellular carcinoma (HCC) model in rats. Materials and Methods: The study was conducted on fifty female white albino rats divided equally into 5 groups: controls, HCC induced by diethyl-nitrosamine (DENA) and carbon tetrachloride (CCl4), HCC plus MSCs, HCC plus vitamin D and HCC plus both MSCs and vitamin D. The following parameters were assessed in rat liver tissues: TGF-β and Smad2 protein levels by ELISA and western blotting, respectively, gene expression of Smad3, Smad7, Snail, HNF4α and MMP-2 and histopathological lesions. Serum levels of alpha fetoprotein (AFP), ALT and albumin were also assessed. Results: TGF-β protein levels and gene expression of its downstream effectors (Smad3 and Snail), in addition to Smad2 protein levels were significantly higher in the HCC group than in the control group. On the other hand, they were significantly down-regulated in all treated groups with most significant amelioration with both MSCs and vitamin D. Also, the serum levels of AFP were significantly increased in the untreated HCC group, and this was again reversed in all treated groups. Histopathological examination of liver tissue revealed that administration of MSCs or vitamin D into HCC rat group improved the histopathological picture with residual tumor pathology, while administration of both MSCs and vitamin D showed better restoration of liver parenchyma. These data suggest that the TGF-β signaling pathway could be used as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Shimaa Saad El-Din
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
49
|
Shi WP, Ju D, Li H, Yuan L, Cui J, Luo D, Chen ZN, Bian H. CD147 Promotes CXCL1 Expression and Modulates Liver Fibrogenesis. Int J Mol Sci 2018; 19:ijms19041145. [PMID: 29642635 PMCID: PMC5979418 DOI: 10.3390/ijms19041145] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/18/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) release pro-inflammatory and pro-fibrogenic factors. CXC chemokine-ligand-1 (CXCL1) is expressed on HSCs. We previously found that the CD147 is overexpressed in activated HSCs. In this study, we showed an important role of CD147 in promoting liver fibrosis by activating HSCs and upregulating expression of chemokines. Specifically, we found that CD147 specific deletion in HSCs mice alleviated CCl4-induced liver fibrosis and inhibited HSCs activation. Overexpression of CD147 upregulated the secretion of CXCL1. Meanwhile, CXCL1 promoted HSCs activation through autocrine. Treating with PI3K/AKT inhibitor could effectively suppress CD147-induced CXCL1 expression. Taken together, these findings suggest that CD147 regulates CXCL1 release in HSCs by PI3K/AKT signaling. Inhibition of CD147 attenuates CCl4-induced liver fibrosis and inflammation. Therefore, administration of targeting CD147 could be a promising therapeutic strategy in liver fibrosis.
Collapse
Affiliation(s)
- Wen-Pu Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Di Ju
- Department of Physiology, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Hao Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Yuan
- Clinical Laboratory, No. 457 Hospital of PLA, Wuhan 430000, China.
| | - Jian Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Dan Luo
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
50
|
Hujie G, Zhou SH, Zhang H, Qu J, Xiong XW, Hujie O, Liao CG, Yang SE. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int 2018; 18:10. [PMID: 29375271 PMCID: PMC5773153 DOI: 10.1186/s12935-018-0508-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background Our previous work showed that miR-10b was overexpressed in hepatocellular carcinoma (HCC) and promoted HCC cell migration and invasion. Epithelial–mesenchymal transition (EMT) is involved in HCC metastasis. So, we suspected that miR-10b might participate in the HCC EMT. Methods We performed morphological analysis and immunofluorescence to observe the roles of miR-10b in HCC EMT. The expression of KLF11 and EMT markers were detected by real-time RT-PCR and western blot. The regulation roles of miR-10b on KLF11 and KLF4 were determined by luciferase reporter assay. The chromatin immunoprecipitation revealed the binding relationship between KLF4 and KLF11. Results We found that overexpression of miR-10b could promote HCC EMT. miR-10b could upregulated KLF11 expression. The upregulation of KLF11 reduced the downstream molecular Smad7 expression, which upregulated the Smad3 expression to promote EMT development. Furthermore, the induction role of miR-10b in HCC EMT could be blocked by KLF11 siRNA. But our results showed that there was no direct regulation of miR-10b in KLF11 expression. Specifically, miR-10b could bind to the 3′UTR of KLF4 and inhibit KLF4 expression. KLF4 could directly bind to KLF11 promoter and downregulate KLF11 transcription. Conclusion Our results reveal that miR-10b downregulates KLF4, the inhibitory transcriptional factor of KLF11, which induces Smads signaling activity to promote HCC EMT. Our study presents the regulation mechanism of miR-10b in EMT through the KLF4/KLF11/Smads pathway for the first time and implicates miR-10b as a potential target for HCC therapies.
Collapse
Affiliation(s)
- Gulibaha Hujie
- 1Department of Medical Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000 People's Republic of China.,Department of Gerontology, General Hospital of Xinjiang Military Command of PLA, Urumqi, 830000 People's Republic of China
| | - Sheng-Hua Zhou
- Department of Gerontology, General Hospital of Xinjiang Military Command of PLA, Urumqi, 830000 People's Republic of China
| | - Hua Zhang
- Department of Oncology, Korla Hospital, Second Divisions of Xinjiang Production and Construction Corps, Korla, 841000 People's Republic of China
| | - Jie Qu
- Department of Gerontology, General Hospital of Xinjiang Military Command of PLA, Urumqi, 830000 People's Republic of China
| | - Xiao-Wei Xiong
- Department of Gerontology, General Hospital of Xinjiang Military Command of PLA, Urumqi, 830000 People's Republic of China
| | - Outikuer Hujie
- 4Xinjiang Medical University, Urumqi, 830000 People's Republic of China
| | - Cheng-Gong Liao
- Department of Oncology, General Hospital of Xinjiang Military Command of PLA, Urumqi, 830000 People's Republic of China
| | - Shun-E Yang
- 1Department of Medical Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000 People's Republic of China
| |
Collapse
|