1
|
Fuentes-Quiroz A, Herrera H, Alvarado R, Rabert C, Arriagada C, Valadares RBDS. Functional differences of cultivable leaf-associated microorganisms in the native Andean tree Gevuina avellana Mol. (Proteaceae) exposed to atmospheric contamination. J Appl Microbiol 2024; 135:lxae041. [PMID: 38364303 DOI: 10.1093/jambio/lxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIMS This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.
Collapse
Affiliation(s)
- Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 01090, Temuco, Chile
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | | |
Collapse
|
2
|
Liu F, Ye F, Cheng C, Kang Z, Kou H, Sun J. Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle-fungus invasive complex. SCIENCE ADVANCES 2022; 8:eadd5051. [PMID: 36563163 PMCID: PMC9788770 DOI: 10.1126/sciadv.add5051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The red turpentine beetle (RTB) is one of the most destructive invasive pests in China and solely consumes pine phloem containing high amounts of d-pinitol. Previous studies reported that d-pinitol exhibits deterrent effects on insects. However, it remains unknown how insects overcome d-pinitol during their host plant adaptation. We found that d-pinitol had an antagonistic effect on RTB, which mainly relied on gallery microbes to degrade d-pinitol to enhance host adaptation with mutualistic Leptographium procerum and two symbiotic bacteria, Erwinia and Serratia, responsible for this degradation. Genomic, transcriptomic, and functional investigations revealed that all three microbes can metabolize d-pinitol via different branches of the inositol pathway. Our results collectively highlight the contributions of symbiotic microbes in RTB's adaptation to living on pine, thereby facilitating outbreaks of RTB in China. These findings further enrich our knowledge of symbiotic invasions and contribute to the further understanding of plant-insect interactions.
Collapse
Affiliation(s)
- Fanghua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chihang Cheng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, No. 759, East 2nd Road, Huzhou 313000, China
| | - Zhiwei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Sun
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Miyamoto H, Asano F, Ishizawa K, Suda W, Miyamoto H, Tsuji N, Matsuura M, Tsuboi A, Ishii C, Nakaguma T, Shindo C, Kato T, Kurotani A, Shima H, Moriya S, Hattori M, Kodama H, Ohno H, Kikuchi J. A potential network structure of symbiotic bacteria involved in carbon and nitrogen metabolism of wood-utilizing insect larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155520. [PMID: 35508250 DOI: 10.1016/j.scitotenv.2022.155520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Effective biological utilization of wood biomass is necessary worldwide. Since several insect larvae can use wood biomass as a nutrient source, studies on their digestive microbial structures are expected to reveal a novel rule underlying wood biomass processing. Here, structural inferences for inhabitant bacteria involved in carbon and nitrogen metabolism for beetle larvae, an insect model, were performed to explore the potential rules. Bacterial analysis of larval feces showed enrichment of the phyla Chroloflexi, Gemmatimonadetes, and Planctomycetes, and the genera Bradyrhizobium, Chonella, Corallococcus, Gemmata, Hyphomicrobium, Lutibacterium, Paenibacillus, and Rhodoplanes, as bacteria potential involved in plant growth promotion, nitrogen cycle modulation, and/or environmental protection. The fecal abundances of these bacteria were not necessarily positively correlated with their abundances in the habitat, indicating that they were selectively enriched in the feces of the larvae. Correlation and association analyses predicted that common fecal bacteria might affect carbon and nitrogen metabolism. Based on these hypotheses, structural equation modeling (SEM) statistically estimated that inhabitant bacterial groups involved in carbon and nitrogen metabolism were composed of the phylum Gemmatimonadetes and Planctomycetes, and the genera Bradyrhizobium, Corallococcus, Gemmata, and Paenibacillus, which were among the fecal-enriched bacteria. Nevertheless, the selected common bacteria, i.e., the phyla Acidobacteria, Armatimonadetes, and Bacteroidetes and the genera Candidatus Solibacter, Devosia, Fimbriimonas, Gemmatimonas Opitutus, Sphingobium, and Methanobacterium, were necessary to obtain good fit indices in the SEM. In addition, the composition of the bacterial groups differed depending upon metabolic targets, carbon and nitrogen, and their stable isotopes, δ13C and δ15N, respectively. Thus, the statistically derived causal structural models highlighted that the larval fecal-enriched bacteria and common symbiotic bacteria might selectively play a role in wood biomass carbon and nitrogen metabolism. This information could confer a new perspective that helps us use wood biomass more efficiently and might stimulate innovation in environmental industries in the future.
Collapse
Affiliation(s)
- Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan.
| | - Futo Asano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
| | | | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Naoko Tsuji
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Makiko Matsuura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Arisa Tsuboi
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Chitose Ishii
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Teruno Nakaguma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Shima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeharu Moriya
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
4
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
5
|
Ashraf HJ, Ramos Aguila LC, Akutse KS, Ilyas M, Abbasi A, Li X, Wang L. Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environ Microbiol 2022; 24:1638-1652. [PMID: 35229443 DOI: 10.1111/1462-2920.15948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Microbiome analysis in a host-parasitoid interaction network was conducted to compare the taxonomic composition of bacterial communities of Diaphornia citri, Tamarixia radiata, and Diaphorencyrtus aligarhensis. The comparative analysis revealed differences in the composition and diversity of the symbiont populations across the host and its associated parasitoids. Proteobacteria was the most dominant phylum, representing 67.80% of the total bacterial community, while Candidatus Profftella armature and Wolbachia were the dominant genera across the host and parasitoids. There were clear differences observed in alpha and beta diversity of microbiota through the host and its associated parasitoids. The function prediction of bacterial communities and Pearson correlation analysis showed that specific bacterial communities displayed positive correlations with the carbohydrate metabolism pathway. Furthermore, when symbiotic bacteria were eliminated using a broad-spectrum antibiotic, tetracycline hydrochloride, the parasitoids' median survival time and longevity were significantly reduced. We confirmed the physiological effects of symbiotic bacteria on the fitness of parasitoids and demonstrated the effect of antibiotics in decreasing the food intake and measurement of amino acids in the hemolymph. This study sheds light on basic information about the mutualism between parasitoids and bacteria, which may be a potential source for biocontrol strategies for citrus psyllid, especially D. citri. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Muhammad Ilyas
- Department of Management Science and Engineering, School of Business, Qingdao University, Qingdao, 266071, China
| | - Asim Abbasi
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
6
|
Yang C, Wu P, Yao X, Sheng Y, Zhang C, Lin P, Wang K. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Int J Mol Sci 2022; 23:536. [PMID: 35008957 PMCID: PMC8745097 DOI: 10.3390/ijms23010536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Camellia oleifera (Ca. oleifera) is a woody tree species cultivated for the production of edible oil from its seed. The growth and yield of tea-oil trees are severely affected by anthracnose (caused by Colletotrichum gloeosporioides). In this study, the transcriptomic and metabolomic analyses were performed to detect the key transcripts and metabolites associated with differences in the susceptibility between anthracnose-resistant (ChangLin150) and susceptible (ChangLin102) varieties of Ca. oleifera. In total, 5001 differentially expressed genes (DEGs) were obtained, of which 479 DEGs were common between the susceptible and resistant varieties and further analyzed. KEGG enrichment analysis showed that these DEGs were significantly enriched in tyrosine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and isoquinoline alkaloid biosynthesis pathways. Furthermore, 68 differentially accumulated metabolites (DAMs) were detected, including flavonoids, such as epicatechin, phenethyl caffeate and procyanidin B2. Comparison of the DEGs and DAMs revealed that epicatechin, procyanidin B2 and arachidonic acid (peroxide free) are potentially important. The expression patterns of genes involved in flavonoid biosynthesis were confirmed by qRT-PCR. These results suggested that flavonoid biosynthesis might play an important role in the fight against anthracnose. This study provides valuable molecular information about the response of Ca. oleifera to Co. gloeosporioides infection and will aid the selection of resistant varieties using marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Y.); (P.W.); (Y.S.); (C.Z.); (P.L.); (K.W.)
| | | | | | | | | |
Collapse
|
7
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
8
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Saati-Santamaría Z, Rivas R, Kolařik M, García-Fraile P. A New Perspective of Pseudomonas-Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont. BIOLOGY 2021; 10:biology10020164. [PMID: 33669823 PMCID: PMC7922261 DOI: 10.3390/biology10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
| | - Miroslav Kolařik
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| |
Collapse
|
10
|
Chakraborty A, Modlinger R, Ashraf MZ, Synek J, Schlyter F, Roy A. Core Mycobiome and Their Ecological Relevance in the Gut of Five Ips Bark Beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 2020; 11:568853. [PMID: 33013799 PMCID: PMC7496905 DOI: 10.3389/fmicb.2020.568853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Bark beetles are destructive forest pests considering their remarkable contribution to forest depletion. Their association with fungi is useful against the challenges of survival on the noxious and nutritionally limited substrate, i.e., conifer tissues. Fungal symbionts help the beetles in nutrient acquisition and detoxification of toxic tree secondary metabolites. Although gut is the prime location for food digestion and detoxification, limited information is available on gut-mycobiome of bark beetles. The present study screened the gut-mycobiont from six bark beetles (five Ips and one non-Ips) from Scolytinae subfamily using high-throughput sequencing and explored their putative role in symbiosis with the host insect. Results revealed the predominance of four fungal classes- Sordariomycetes, Saccharomycetes, Eurothiomycetes, and Dothidomycetes in all bark beetles. Apart from these, Agaricomycetes, Leothiomycetes, Incertae sedis Basidiomycota, Tremellomycetes, Lecanoromycetes, and Microbotryomycetes were also documented in different beetles. Five Ips bark beetles share a consortium of core fungal communities in their gut tissues consisting of 47 operational taxonomic units (OTUs) belonging to 19 fungal genera. The majority of these core fungal genera belong to the phylum Ascomycota. LEfSe analysis revealed a set of species-specific fungal biomarkers in bark beetles. The present study identified the gut mycobiont assemblage in bark beetles and their putative ecological relevance. An enriched understanding of bark beetle-fungal symbiosis is not only filling the existing knowledge gap in the field but may also unleash an unforeseen potential for future bark beetle management.
Collapse
Affiliation(s)
- Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Roman Modlinger
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Muhammad Zubair Ashraf
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Jiří Synek
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Fredrik Schlyter
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia.,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
11
|
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME JOURNAL 2020; 14:2829-2842. [PMID: 32814865 PMCID: PMC7784882 DOI: 10.1038/s41396-020-00740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle–fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into d-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle–fungus complex. The nutrient consumption–compensation strategy mediated by tripartite beetle–fungus–bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.
Collapse
Affiliation(s)
- Fanghua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qingjie Cao
- College of Forestry, Hebei Agricultural University, 071000, Baoding, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
12
|
Soto-Robles LV, Torres-Banda V, Rivera-Orduña FN, Curiel-Quesada E, Hidalgo-Lara ME, Zúñiga G. An Overview of Genes From Cyberlindnera americana, a Symbiont Yeast Isolated From the Gut of the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae), Involved in the Detoxification Process Using Genome and Transcriptome Data. Front Microbiol 2019; 10:2180. [PMID: 31611850 PMCID: PMC6777644 DOI: 10.3389/fmicb.2019.02180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Bark beetles from Dendroctonus genus promote ecological succession and nutrient cycling in coniferous forests. However, they can trigger outbreaks leading to important economic losses in the forest industry. Conifers have evolved resistance mechanisms that can be toxic to insects but at the same time, bark beetles are capable of overcoming tree barriers and colonize these habitats. In this sense, symbiont yeasts present in the gut of bark beetles have been suggested to play a role in the detoxification process of tree defensive chemicals. In the present study, genes related to this process were identified and their response to a terpene highly toxic to bark beetles and their symbionts was analyzed in the Cyberlindnera americana yeast. The genome and transcriptome of C. americana (ChDrAdgY46) isolated from the gut of Dendroctonus rhizophagus were presented. Genome analysis identified 5752 protein-coding genes and diverse gene families associated with the detoxification process. The most abundant belonged to the Aldo-Keto Reductase Superfamily, ATP-binding cassette Superfamily, and the Major Facilitator Superfamily transporters. The transcriptome analysis of non-α-pinene stimulated and α-pinene stimulated yeasts showed a significant expression of genes belonging to these families. The activities demonstrated by the genes identified as Aryl-alcohol dehydrogenase and ABC transporter under (+)-α-pinene suggest that they are responsible, that C. americana is a dominant symbiont that resists high amounts of monoterpenes inside the gut of bark beetles.
Collapse
Affiliation(s)
- L Viridiana Soto-Robles
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Verónica Torres-Banda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Gerardo Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
13
|
High-Resolution Profiling of Gut Bacterial Communities in an Invasive Beetle using PacBio SMRT Sequencing System. INSECTS 2019; 10:insects10080248. [PMID: 31416137 PMCID: PMC6722854 DOI: 10.3390/insects10080248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022]
Abstract
Dendroctonus valens, an invasive bark beetle, has caused severe damage to Chinese forests. Previous studies have highlighted the importance of the gut microbiota and its fundamental role in host fitness. Culture-dependent and culture-independent methods have been applied in analyzing beetles’ gut microbiota. The former method cannot present a whole picture of the community, and the latter mostly generates short read lengths that cannot be assigned to species. Here, the PacBio sequencing system was utilized to capture full-length 16S rRNA sequences in D. valens gut throughout its ontogeny. A total of eight phyla, 55 families, 102 genera, and 253 species were identified. Bacterial communities in colonized beetles have the greatest richness but the lowest evenness in all life stages, which is different from those in young larvae. Pseudomonas sp., Serratia liquefaciens possess high abundance throughout its ontogeny and may serve as members of the core bacteriome. A phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis predicted that gut microbiota in larvae are rich in genes involved in carbohydrate, energy metabolism. Gut microbiota in both larvae and colonized beetles are rich in xenobiotics and terpenoids biodegradation, which are decreased in dispersal beetles. Considering that the results are based mainly on the analysis of 16S rRNA sequencing and PICRUSt prediction, further confirmation is needed to improve the knowledge of the gut microbiota in D. valens and help to resolve taxonomic uncertainty at the species level.
Collapse
|
14
|
Gonzalez-Escobedo R, Briones-Roblero CI, López MF, Rivera-Orduña FN, Zúñiga G. Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae). MICROBIAL ECOLOGY 2019; 78:102-112. [PMID: 30349964 DOI: 10.1007/s00248-018-1274-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The death of trees is an ecological process that promotes regeneration, organic matter recycling, and the structure of communities. However, diverse biotic and abiotic factors can disturb this process. Dendroctonus bark beetles (Curculionidae: Scolytinae) are natural inhabitants of pine forests, some of which produce periodic outbreaks, killing thousands of trees in the process. These insects spend almost their entire life cycle under tree bark, where they reproduce and feed on phloem. Tunneling and feeding of the beetles result in the death of the tree and an alteration of the resident microbiota as well as the introduction of microbes that the beetles vector. To understand how microbial communities in subcortical tissues of pines change after they are colonized by the bark beetle Dendroctonus rhizophagus, we compare both the bacterial and fungal community structures in two colonization stages of Pinus arizonica (Arizona pine) employing Illumina MiSeq. Our findings showed significant differences in diversity and the dominance of bacterial community in the two colonization stages with Shannon (P = 0.004) and Simpson (P = 0.0006) indices, respectively, but not in species richness with Chao1 (P = 0.19). In contrast, fungal communities in both stages showed significant differences in species richness with Chao1 (P = 0.0003) and a diversity with Shannon index (P = 0.038), but not in the dominance with the Simpson index (P = 0.12). The β-diversity also showed significant changes in the structure of bacterial and fungal communities along the colonization stages, maintaining the dominant members in both cases. Our results suggest that microbial communities present in the Arizona pine at the tree early colonization stage by bark beetle change predictably over time.
Collapse
Affiliation(s)
- Roman Gonzalez-Escobedo
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Carlos I Briones-Roblero
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico.
| |
Collapse
|
15
|
Ali H, Muhammad A, Sanda NB, Huang Y, Hou Y. Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Octodonta nipae (Coleoptera: Chrysomelidae). Front Microbiol 2019; 10:466. [PMID: 30930872 PMCID: PMC6424052 DOI: 10.3389/fmicb.2019.00466] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Bacterial symbionts of insects affect a wide array of host traits including fitness and immunity. Octodonta nipae (Maulik), commonly known as hispid leaf beetle is a destructive palm pest around the world. Understanding the dynamics of microbiota is essential to unravel the complex interplay between O. nipae and its bacterial symbionts. In this study, bacterial 16S rRNA V3-V4 region was targeted to decipher the diversity and dynamics of bacterial symbionts across different life stages [eggs, larvae, pupae, and adult (male and female)] and reproductive organs (ovaries and testis) of O. nipae. Clustering analysis at ≥97% similarity threshold produced 3,959 operational taxonomic units (OTUs) that belonged to nine different phyla. Proteobacteria, Actinobacteria, and Firmicutes represented the bulk of taxa that underwent notable changes during metamorphosis. Enterobacteriaceae and Dermabacteraceae were the most abundant families in immature stages (eggs, larvae, and pupae), while Anaplasmataceae family was dominated in adults (male and female) and reproductive organs (ovaries and testis). The genus Serratia and Lactococcus were most abundant in eggs, whereas Pantoea and Brachybacterium represented the bulk of larvae and pupae microbiota. Interestingly the genus Wolbachia found positive to all tested samples and was recorded extremely high (>64%) in the adults and reproductive organs. The bacteria varied across the developmental stages and responsible for various metabolic activities. Selection choice exerted by the insect host as a result of its age or developmental stage could be the main reason to ascertain the shift in the bacteria populations. Maternally inherited Wolbachia was found to be an obligate endosymbiont infecting all tested life stages, body parts, and tissues. These outcomes foster our understanding of the intricate associations between bacteria and O. nipae and will incorporate in devising novel pest control strategies against this palm pest.
Collapse
Affiliation(s)
- Habib Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nafiu Bala Sanda
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Zhou F, Wu X, Xu L, Guo S, Chen G, Zhang X. Repressed Beauveria bassiana infections in Delia antiqua due to associated microbiota. PEST MANAGEMENT SCIENCE 2019; 75:170-179. [PMID: 29797399 DOI: 10.1002/ps.5084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers to entomopathogen-dependent pest biocontrol. Using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. RESULTS The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria frequently isolated from larvae, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium and Stenotrophomonas maltophilia, suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. CONCLUSION Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Letian Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
17
|
The alcohol dehydrogenase with a broad range of substrate specificity regulates vitality and reproduction of the plant-parasitic nematode Bursaphelenchus xylophilus. Parasitology 2018; 146:497-505. [PMID: 30318023 DOI: 10.1017/s0031182018001695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pine wilt disease, which is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has caused huge damage to pine forests around the world. In this study, we analysed the PWN transcriptome to investigate the expression of genes related to the associated bacterial species Pseudomonas fluorescens and found that the gene adh-1 encoding alcohol dehydrogenase (ADH) was upregulated. The open reading frame of adh-1, which encoded a protein of 352 amino acid residues, was cloned from B. xylophilus. Recombinant ADH with a relative molecular weight of 39 kDa, was present mainly in inclusion bodies and was overexpressed in Escherichia coli BL21 (DE3) and purified after refolding. The biochemical assay revealed that recombinant ADH could catalyse the dehydrogen reaction of eight tested alcohols including ethanol in the presence of NAD+. Quantitative real-time RT-PCR analysis indicated that ethanol upregulated adh-1 expression in PWN. Results of RNA interference and inhibition of ADH treatment indicated that downregulating expression of adh-1 or inhibition of ADH could reduce ethanol tolerance and the vitality and reproduction ability of B. xylophilus, suggesting that adh-1 is involved in pathogenicity of PWN.
Collapse
|
18
|
Kuo PH, Chung YCE. Moody microbiome: Challenges and chances. J Formos Med Assoc 2018; 118 Suppl 1:S42-S54. [PMID: 30262220 DOI: 10.1016/j.jfma.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Growing evidence link gut microbiome to the development and maturation of the central nervous system, which are regulated by microbiota potentially through stress response, neurotransmitter, neuroimmune, and endocrine pathways. The dysfunction of such microbiota-gut-brain axis is implicated in neuropsychiatric disorders, depression, and other stress-related conditions. Using affective disorders as our primary outcomes, we inspect the current evidence of microbiota studies mainly in human clinical samples. Additionally, to restore microbiome equilibrium in bacteria diversity and abundance might represent a novel strategy to prevent or treat mood symptoms. We reviewed findings from clinical trials regarding efficacy of probiotics supplement with or without antidepressant treatment, and adjuvant antimicrobiotics treatment. In microbiota studies, the considerations of host-microbiota interaction and bacteria-bacteria interaction are discussed. In conclusion, the roles of microbiota in depression and mania state are not fully elucidated. One of the challenges is to find reliable targets for functional analyses and experiments. Notwithstanding some inconsistencies and methodological limitations across studies, results from recent clinical trials support for the beneficial effects of probiotics on alleviating depressive symptoms and increasing well-beings. Moreover, modifying the composition of gut microbiota via antibiotics can be a viable adjuvant treatment option for individuals with depressive symptoms.
Collapse
Affiliation(s)
- Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chu Ella Chung
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Gut Bacterial Communities of Dendroctonus valens and D. mexicanus (Curculionidae: Scolytinae): A Metagenomic Analysis across Different Geographical Locations in Mexico. Int J Mol Sci 2018; 19:ijms19092578. [PMID: 30200218 PMCID: PMC6164411 DOI: 10.3390/ijms19092578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the β-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.
Collapse
|
20
|
Xu D, Xu L, Zhou F, Wang B, Wang S, Lu M, Sun J. Gut Bacterial Communities of Dendroctonus valens and Monoterpenes and Carbohydrates of Pinus tabuliformis at Different Attack Densities to Host Pines. Front Microbiol 2018; 9:1251. [PMID: 29963021 PMCID: PMC6011813 DOI: 10.3389/fmicb.2018.01251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023] Open
Abstract
Insects harbor a community of gut bacteria, ranging from pathogenic to obligate mutualistic organisms. Both biotic and abiotic factors can influence species composition and structure of the insect gut bacterial communities. Dendroctonus valens is a destructive forest pest in China. To overcome host pine defenses, beetles mass-attack the pine to a threshold density that can exhaust pine defenses. The intensity of pine chemical defenses and carbohydrate concentrations of pines can be influenced by beetle attack, both of which are known factors that modify beetle's gut microbiota. However, little is known to what extent variation exists in the beetle's gut communities, and host monoterpenes and carbohydrates at different attack densities. In this study, the gut bacterial microbiota of D. valens at low and high attack densities were analyzed, and monoterpenes and carbohydrates in host pine phloem were assayed in parallel. The results showed that no significant changes of gut bacterial communities of the beetles and concentrations of D-glucose, D-pinitol, and D-fructose in pine phloem were found between low and high attack densities. The concentrations of α-pinene, β-pinene, limonene at high attack densities were significantly higher than those at low attack densities. Our results suggested that different attack densities of D. valens influence monoterpenes concentration of host pines' phloem but have no significant impact on gut bacterial community structures of D. valens and carbohydrate concentration of host trees' phloem in early attack phase. Similar gut bacterial community structures of D. valens between low and high attack densities might be due to the quick adaptation of gut microbiota to high monoterpenes concentrations.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bo Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shanshan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Cao Q, Wickham JD, Chen L, Ahmad F, Lu M, Sun J. Effect of Oxygen on Verbenone Conversion From cis-Verbenol by Gut Facultative Anaerobes of Dendroctonus valens. Front Microbiol 2018; 9:464. [PMID: 29615996 PMCID: PMC5864928 DOI: 10.3389/fmicb.2018.00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Since its introduction from North America, Dendroctonus valens LeConte has become a destructive forest pest in China. Although gut aerobic bacteria have been investigated and some are implicated in beetle pheromone production, little is known about the abundance and significance of facultative anaerobic bacteria in beetle gut, especially with regards to effects of oxygen on their role in pheromone production. In this study, we isolated and identified gut bacteria of D. valens adults in an anaerobic environment, and further compared their ability to convert cis-verbenol into verbenone (a multi-functional pheromone of D. valens) under different O2 concentrations. Pantoea conspicua, Enterobacter xiangfangensis, Staphylococcus warneri were the most frequently isolated species among the total of 10 species identified from beetle gut in anaerobic conditions. Among all isolated species, nine were capable of cis-verbenol to verbenone conversion, and the conversion efficiency increased with increased oxygen concentration. This O2-mediated conversion of cis-verbenol to verbenone suggests that gut facultative anaerobes of D. valens might play an important role in the frass, where there is higher exposure to oxygen, hence the higher verbenone production. This claim is further supported by distinctly differential oxygen concentrations between gut and frass of D. valens females.
Collapse
Affiliation(s)
- Qingjie Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Zhou F, Xu L, Wang S, Wang B, Lou Q, Lu M, Sun J. Bacterial volatile ammonia regulates the consumption sequence of d-pinitol and d-glucose in a fungus associated with an invasive bark beetle. THE ISME JOURNAL 2017; 11:2809-2820. [PMID: 28800134 PMCID: PMC5702737 DOI: 10.1038/ismej.2017.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Interactions among microbial symbionts have multiple roles in the maintenance of insect-microbe symbiosis. However, signals mediating microbial interactions have been scarcely studied. In the classical model system of bark beetles and fungal associates, fungi increase the fitness of insects. However, not all interactions are mutualistic, some of these fungal symbionts compete for sugars with beetle larvae. How this antagonistic effect is alleviated is unknown, and recent research suggests potential roles of bacterial symbionts. Red turpentine beetle (RTB), Dendroctonus valens LeConte, is an invasive pest in China, and it leads to wide spread, catastrophic mortality to Chinese pines. In the symbiotic system formed by RTB, fungi and bacteria, volatiles from predominant bacteria regulate the consumption sequence of carbon sources d-pinitol and d-glucose in the fungal symbiont Leptographium procerum, and appear to alleviate the antagonistic effect from the fungus against RTB larvae. However, active components of these volatiles are unknown. We detected 67 volatiles by Gas Chromatography-Mass Spectrometer (GC-MS). Seven of them were identified as candidate chemicals mediating bacteria-fungus interactions, among which ammonia made L. procerum consume its secondary carbon source D-pinitol instead of its preferred carbohydrate D-glucose. In conclusion, ammonia regulated the consumption sequence of these two carbon sources in the fungal symbiont.
Collapse
Affiliation(s)
- Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Key Laboratory for Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Jinan, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hubei University, Wuhan, China
| | - Shanshan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Bo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Qiaozhe Lou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Muhammad A, Fang Y, Hou Y, Shi Z. The Gut Entomotype of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and Their Effect on Host Nutrition Metabolism. Front Microbiol 2017; 8:2291. [PMID: 29209298 PMCID: PMC5702300 DOI: 10.3389/fmicb.2017.02291] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
For invasive insects, the potential roles of gut microbiota in exploiting new food resources and spreading remain elusive. Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is an invasive destructive pest which feeds on nutrient-poor tender tissues and has caused extensive mortality of palm trees. The microbes associated with insects can improve their nutrition assimilation. However, experimental evidence on the interactions between RPW and its gut microbiota is still absent. The aim of this study is to determine the dynamics changes and the bacterial entomotype in the RPW gut and its potential physiological roles. Here, we confirmed RPW harbors a complex gut microbiota mainly constituted by bacteria in the families Enterobacteriaceae, Lactobacillaceae, Entomoplasmataceae, and Streptococcaceae. RPW gut microbiota exhibited a highly stable microbial community with low variance in abundance across different life stages and host plants. Furthermore, the abundance of Enterobacteriaceae was markedly increased but that of Acetobacteraceae was reduced significantly after administration of antibiotics. Although no significant effects were found on the body weight gain of RPW larvae, these alterations dramatically decreased the concentration of hemolymph protein and glucose while that of hemolymph triglyceride increased. In the gut of wild-caught RPW larvae, seven bacterial species in the genera Klebsiella, Serratia, Enterobacter, and Citrobacter were shown to have an ability to degrade cellulose. Together, RPW accommodate a stable gut microbiota which can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Ya Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
24
|
Volatiles produced by bacteria alleviate antagonistic effects of one associated fungus on Dendroctonus valens larvae. SCIENCE CHINA-LIFE SCIENCES 2017; 60:924-926. [PMID: 28755292 DOI: 10.1007/s11427-017-9073-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
|
25
|
Cheng C, Xu L, Xu D, Lou Q, Lu M, Sun J. Does cryptic microbiota mitigate pine resistance to an invasive beetle-fungus complex? Implications for invasion potential. Sci Rep 2016; 6:33110. [PMID: 27621032 PMCID: PMC5020614 DOI: 10.1038/srep33110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Microbial symbionts are known to assist exotic pests in their colonization of new host plants. However, there has been little evidence linking symbiotic invasion success to mechanisms for mitigation of native plant resistance. The red turpentine beetle (RTB) was introduced with a fungus, Leptographium procerum, to China from the United States and became a destructively invasive symbiotic complex in natural Pinus tabuliformis forests. Here, we report that three Chinese-resident fungi, newly acquired by RTB in China, induce high levels of a phenolic defensive chemical, naringenin, in pines. This invasive beetle-fungus complex is suppressed by elevated levels of naringenin. However, cryptic microbiotas in RTB galleries strongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas. These results demonstrate that cryptic microbiota mitigates native host plant phenolic resistance to an invasive symbiotic complex, suggesting a putative mechanism for reduced biotic resistance to symbiotic invasion.
Collapse
Affiliation(s)
- Chihang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
| | - Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaozhe Lou
- Technical Center, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
26
|
Cytochrome P450 complement (CYPome) of Candida oregonensis, a gut-associated yeast of bark beetle, Dendroctonus rhizophagus. Fungal Biol 2016; 120:1077-89. [PMID: 27567714 DOI: 10.1016/j.funbio.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023]
Abstract
Bark beetles (Curculionidae: Scolytinae) and associated microorganisms must overcome a complex tree's defence system, which includes toxic monoterpenes, to successfully complete their life cycle. A number of studies have suggested these microorganisms could have ecological roles related with the nutrition, detoxification, and semiochemical production. In particular, in filamentous fungi symbionts, cytochrome P450 (CYP) have been involved with terpenoid detoxification and biotransformation processes. Candida oregonensis has been isolated from the gut, ovaries, and frass of different bark beetle species, and it is a dominant species in the Dendroctonus rhizophagus gut. In this study, we identify, characterise, and infer the phylogenetic relationships of C. oregonensis CYP genes. The results indicate that the cytochrome P450 complement (CYPome) is composed of nine genes (CYP51F1, CYP61A1, CYP56D1, CYP52A59, CYP52A60, CYP52A61, CYP52A62, CYP5217A8, and CYP5217B1), which might participate in primary metabolic reactions such as sterol biosynthesis, biodegradation of xenobiotic, and resistance to environmental stress. The prediction of the cellular location suggests that these CYPs to be anchored to the plasma membrane, membranes of the endoplasmic reticulum, mitochondria, and peroxisomes. These findings lay the foundation for future studies about the functional role of P450s, not only for yeasts, but also for the insects with which they interact.
Collapse
|