1
|
Henrickson A, Gorbet GE, Savelyev A, Kim M, Hargreaves J, Schultz SK, Kothe U, Demeler B. Multi-wavelength analytical ultracentrifugation of biopolymer mixtures and interactions. Anal Biochem 2022; 652:114728. [PMID: 35609686 PMCID: PMC10276540 DOI: 10.1016/j.ab.2022.114728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recent development made possible by new analytical ultracentrifuge optical systems. MW-AUC extends the basic hydrodynamic information content of AUC and provides access to a wide range of new applications for biopolymer characterization, and is poised to become an essential analytical tool to study macromolecular interactions. It adds an orthogonal spectral dimension to the traditional hydrodynamic characterization by exploiting unique chromophores in analyte mixtures that may or may not interact. Here we illustrate the utility of MW-AUC for experimental investigations where the benefit of the added spectral dimension provides critical information that is not accessible, and impossible to resolve with traditional AUC methods. We demonstrate the improvements in resolution and information content obtained by this technique compared to traditional single- or dual-wavelength approaches, and discuss experimental design considerations and limitations of the method. We further address the advantages and disadvantages of the two MW optical systems available today, and the differences in data analysis strategies between the two systems.
Collapse
Affiliation(s)
- Amy Henrickson
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada
| | | | - Alexey Savelyev
- University of Montana, Dept. of Chemistry, Missoula, MT, USA
| | - Minji Kim
- Carnegie Mellon University, Dept. of Computer Science, Pittsburgh, PA, USA
| | | | - Sarah K Schultz
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada
| | - Ute Kothe
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada; University of Manitoba, Department of Chemistry, Winnipeg, Manitoba, Canada
| | - Borries Demeler
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada; AUC Solutions, LLC, Houston, TX, USA; University of Montana, Dept. of Chemistry, Missoula, MT, USA.
| |
Collapse
|
2
|
Ahmed FH, Caputo AT, French NG, Peat TS, Whitfield J, Warden AC, Newman J, Scott C. Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallogr D Struct Biol 2022; 78:599-612. [PMID: 35503208 PMCID: PMC9063845 DOI: 10.1107/s2059798322002625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Anthozoan chromoproteins are highly pigmented, diversely coloured and readily produced in recombinant expression systems. While they are a versatile and powerful building block in synthetic biology for applications such as biosensor development, they are not widely used in comparison to the related fluorescent proteins, partly due to a lack of structural characterization to aid protein engineering. Here, high-resolution X-ray crystal structures of four open-source chromoproteins, gfasPurple, amilCP, spisPink and eforRed, are presented. These proteins are dimers in solution, and mutation at the conserved dimer interface leads to loss of visible colour development in gfasPurple. The chromophores are trans and noncoplanar in gfasPurple, amilCP and spisPink, while that in eforRed is cis and noncoplanar, and also emits fluorescence. Like other characterized chromoproteins, gfasPurple, amilCP and eforRed contain an sp2-hybridized N-acylimine in the peptide bond preceding the chromophore, while spisPink is unusual and demonstrates a true sp3-hybridized trans-peptide bond at this position. It was found that point mutations at the chromophore-binding site in gfasPurple that substitute similar amino acids to those in amilCP and spisPink generate similar colours. These features and observations have implications for the utility of these chromoproteins in protein engineering and synthetic biology applications.
Collapse
Affiliation(s)
- F. Hafna Ahmed
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| | | | - Nigel G. French
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Thomas S. Peat
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Jason Whitfield
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
- The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Andrew C. Warden
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| | - Janet Newman
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Colin Scott
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Li L, Hsu H, Verkhusha VV, Wang LV, Shcherbakova DM. Multiscale Photoacoustic Tomography of a Genetically Encoded Near-Infrared FRET Biosensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102474. [PMID: 34533889 PMCID: PMC8564460 DOI: 10.1002/advs.202102474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic tomography (PAT) with genetically encoded near-infrared probes enables visualization of specific cell populations in vivo at high resolution deeply in biological tissues. However, because of a lack of proper probes, PAT of cellular dynamics remains unexplored. Here, the authors report a near-infrared Forster resonance energy transfer (FRET) biosensor based on a miRFP670-iRFP720 pair of the near-infrared fluorescent proteins, which enables dynamic functional imaging of active biological processes in deep tissues. By photoacoustically detecting the changes in the optical absorption of the miRFP670 FRET-donor, they monitored cell apoptosis in deep tissue at high spatiotemporal resolution using PAT. Specifically, they detected apoptosis in single cells at a resolution of ≈3 µm in a mouse ear tumor, and in deep brain tumors (>3 mm beneath the scalp) of living mice at a spatial resolution of ≈150 µm with a 20 Hz frame rate. These results open the way for high-resolution photoacoustic imaging of dynamic biological processes in deep tissues using NIR biosensors and PAT.
Collapse
Affiliation(s)
- Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Hsun‐Chia Hsu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Vladislav V. Verkhusha
- Medicum, Faculty of MedicineUniversity of HelsinkiHelsinki00290Finland
- Department of Anatomy and Structural Biology and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNY10461USA
- Science Center for Genetics and Life SciencesSirius University of Science and TechnologySochi354340Russia
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Daria M. Shcherbakova
- Department of Anatomy and Structural Biology and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNY10461USA
| |
Collapse
|
4
|
Wu Y, Zeng F, Zhao Y, Wu S. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications. Chem Soc Rev 2021; 50:7924-7940. [PMID: 34114588 DOI: 10.1039/d1cs00358e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | | | | | | |
Collapse
|
5
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
6
|
Seeger M, Stiel AC, Ntziachristos V. In vitro optoacoustic flow cytometry with light scattering referencing. Sci Rep 2021; 11:2181. [PMID: 33500461 PMCID: PMC7838204 DOI: 10.1038/s41598-021-81584-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
Morphological and functional optoacoustic imaging is enhanced by dedicated transgene reporters, in analogy to fluorescence methods. The development of optoacoustic reporters using protein engineering and directed evolution would be accelerated by high-throughput in-flow screening for intracellular, genetically encoded, optoacoustic contrast. However, accurate characterization of such contrast is impeded because the optoacoustic signals depend on the cell's size and position in the flow chamber. We report herein an optoacoustic flow cytometer (OA-FCM) capable of precise measurement of intracellular optoacoustic signals of genetically-encoded chromoproteins in flow. The novel system records light-scattering as a reference for the detected optoacoustic signals in order to account for cell size and position, as well as excitation light flux in the focal volume, which we use to reference the detected optoacoustic signals to enhance the system's precision. The OA-FCM was calibrated using micrometer-sized particles to showcase the ability to assess in-flow objects in the size range of single-cells. We demonstrate the capabilities of our OA-FCM to identify sub-populations in a mixture of two E. coli stocks expressing different reporter-proteins with a precision of over 90%. High-throughput screening of optoacoustic labels could pave the way for identifying genetically encoded optoacoustic reporters by transferring working concepts of the fluorescence field such as directed evolution and activated cell sorting.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Vasilis Ntziachristos
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
7
|
Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:295-308. [PMID: 33398821 DOI: 10.1007/978-981-15-8763-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatiotemporal dynamics of cellular proteins, including protein-protein interactions and conformational changes, is essential for understanding cellular functions such as synaptic plasticity, cell motility, and cell division. One of the best ways to understand the mechanisms of signal transduction is to visualize protein activity with high spatiotemporal resolution in living cells within tissues. Optogenetic probes such as fluorescent proteins, in combination with Förster Resonance Energy Transfer (FRET) techniques, enable the measurement of protein-protein interactions and conformational changes in response to signaling events in living cells. Of the various FRET detection systems, two-photon fluorescence lifetime imaging microscopy (2pFLIM) is one of the methods best suited to monitoring FRET in subcellular compartments of living cells located deep within tissues, such as brain slices. This review will introduce the principle of 2pFLIM-FRET and the use of chromoproteins for imaging intracellular protein activities and protein-protein interactions. Also, we will discuss two examples of 2pFLIM-FRET application: imaging actin polymerization in synapses of hippocampal neurons in brain sections and detecting small GTPase Cdc42 activity in astrocytes.
Collapse
|
8
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Ogunlade O, Stowe C, Jathoul A, Kalber T, Lythgoe MF, Beard P, Pule M. In vivo photoacoustic imaging of a nonfluorescent E2 crimson genetic reporter in mammalian tissues. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-12. [PMID: 32314561 PMCID: PMC7167598 DOI: 10.1117/1.jbo.25.4.046004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Green-fluorescent protein (GFP)-like fluorescent proteins are used extensively as genetic reporters in fluorescence imaging due to their distinctive ability to form chromophores independent of external enzymes or cofactors. However, their use for photoacoustic (PA) imaging has not been demonstrated in mammalian tissues because they possess low PA signal generation efficiency in their native state. By engineering them to become nonfluorescent (NF), their PA generation efficiency was increased. This enabled the generation of in vivo contrast in mice, making it possible for GFP-like proteins to be used as PA genetic reporters in mammalian tissues. AIM The aim was to develop a darkened GFP-like protein reporter by modifying E2 crimson fluorescent protein (FP) in order to generate NF mutant proteins with high PA signal generation efficiency for in vivo imaging. APPROACH The absorbance, fluorescence, and PA amplitude spectra of purified protein solutions of the FP and engineered NF mutants were measured in order to identify the mutant with the highest PA signal generation efficiency. This mutant, referred to as NFA, and the native FP were then stably expressed in LS174T human colorectal tumor cells using a retroviral vector and tested for photostability under continuous pulsed illumination. To demonstrate the improvement in PA signal generation in vivo, cells expressing the FP and NFA mutant were injected subcutaneously in mice and imaged using a Fabry-Perot based PA scanner. RESULTS The NF mutants of E2 crimson exhibited fluorescence that was 2 orders of magnitude lower than the FP and a higher PA signal generation efficiency; the NFA-generated PA signal was approximately three times higher than the FP. Tumor cells expressing the NFA mutant provided sufficient image contrast to be visualized in vivo against a background of strong vascular contrast, whereas the FP-expressing cells did not generate visible contrast. CONCLUSION A GFP-like protein has been demonstrated as a genetic reporter for PA imaging in mammalian tissue for the first time. This was achieved by a mutation, which darkened the FP and increased the PA signal generation efficiency. The approach taken suggests that GFP-like proteins could be a promising addition to the current cohort of genetic reporters available for in vivo PA imaging.
Collapse
Affiliation(s)
- Olumide Ogunlade
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Cassandra Stowe
- University College London, UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
- University College London, UCL Cancer Institute, Research Department of Haematology, London, United Kingdom
| | - Amit Jathoul
- University College London, UCL Cancer Institute, Research Department of Haematology, London, United Kingdom
| | - Tammy Kalber
- University College London, UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Mark F Lythgoe
- University College London, UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Paul Beard
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Martin Pule
- University College London, UCL Cancer Institute, Research Department of Haematology, London, United Kingdom
| |
Collapse
|
10
|
Hofmann UAT, Fabritius A, Rebling J, Estrada H, Deán-Ben XL, Griesbeck O, Razansky D. High-Throughput Platform for Optoacoustic Probing of Genetically Encoded Calcium Ion Indicators. iScience 2019; 22:400-408. [PMID: 31812810 PMCID: PMC6911978 DOI: 10.1016/j.isci.2019.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Functional optoacoustic (OA) imaging assisted with genetically encoded calcium ion indicators (GECIs) holds promise for imaging large-scale neuronal activity at depths and spatiotemporal resolutions not attainable with existing optical microscopic techniques. However, currently available GECIs optimized for fluorescence (FL) imaging lack sufficient contrast for OA imaging and respond at wavelengths having limited penetration into the mammalian brain. Here we present an imaging platform capable of rapid assessment and cross-validation between OA and FL responses of sensor proteins expressed in Escherichia coli colonies. The screening system features optimized pulsed light excitation combined with ultrasensitive ultrasound detection to mitigate photobleaching while further allowing the dynamic characterization of calcium ion responses with millisecond precision. Targeted probing of up to six individual colonies per second in both calcium-loaded and calcium-unloaded states was possible with the system. The new platform greatly facilitates optimization of absorption-based labels, thus setting the stage for directed evolution of OA GECIs.
Collapse
Affiliation(s)
- Urs A T Hofmann
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Arne Fabritius
- Tools for Bio-Imaging, Max Planck Institute, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johannes Rebling
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Héctor Estrada
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - X Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max Planck Institute, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
11
|
Fuenzalida Werner JP, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC. Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chem Biol 2019; 14:1896-1903. [PMID: 31389680 DOI: 10.1021/acschembio.9b00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo- or optoacoustics (OA) imaging is increasingly being used as a non-invasive imaging method that can simultaneously reveal structure and function in deep tissue. However, the most frequent transgenic OA labels are current fluorescent proteins that are not optimized for OA imaging. Thus, they lack OA signal strength, and their absorption maxima are positioned at short wavelengths, thus giving small penetration depths and strong background signals. Here, we apply insights from our recent determination of the structure of the fluorescent phycobiliprotein smURFP to mutate a range of residues to promote the nonradiative decay pathway that generates the OA signal. We identified hydrophobic and aromatic substitutions within the chromophore-binding pocket that substantially increase the intensity of the OA signal and red-shift the absorption. Our results demonstrate the feasibility of structure-based mutagenesis to repurpose fluorescent probes for OA imaging, and they may provide structure-function insights for de novo engineering of transgenic OA probes.
Collapse
Affiliation(s)
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Klaus Richter
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
12
|
ShadowR: a novel chromoprotein with reduced non-specific binding and improved expression in living cells. Sci Rep 2019; 9:12072. [PMID: 31427680 PMCID: PMC6700193 DOI: 10.1038/s41598-019-48604-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Here we developed an orange light-absorbing chromoprotein named ShadowR as a novel acceptor for performing fluorescence lifetime imaging microscopy-based Förster resonance energy transfer (FLIM-FRET) measurement in living cells. ShadowR was generated by replacing hydrophobic amino acids located at the surface of the chromoprotein Ultramarine with hydrophilic amino acids in order to reduce non-specific interactions with cytosolic proteins. Similar to Ultramarine, ShadowR shows high absorption capacity and no fluorescence. However, it exhibits reduced non-specific binding to cytosolic proteins and is highly expressed in HeLa cells. Using tandem constructs and a LOVTRAP system, we showed that ShadowR can be used as a FRET acceptor in combination with donor mRuby2 or mScarlet in HeLa cells. Thus, ShadowR is a useful, novel FLIM-FRET acceptor.
Collapse
|
13
|
Roberts S, Strome A, Choi C, Andreou C, Kossatz S, Brand C, Williams T, Bradbury M, Kircher MF, Reshetnyak YK, Grimm J, Lewis JS, Reiner T. Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Sci Rep 2019; 9:8550. [PMID: 31189972 PMCID: PMC6561946 DOI: 10.1038/s41598-019-44873-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common type of malignant growth in women. Early detection of breast cancer, as well as the identification of possible metastatic spread poses a significant challenge because of the structural and genetic heterogeneity that occurs during the progression of the disease. Currently, mammographies, biopsies and MRI scans are the standard of care techniques used for breast cancer diagnosis, all of which have their individual shortfalls, especially when it comes to discriminating tumors and benign growths. With this in mind, we have developed a non-invasive optoacoustic imaging strategy that targets the acidic environment of breast cancer. A pH low insertion peptide (pHLIP) was conjugated to the dark quencher QC1, yielding a non-fluorescent sonophore with high extinction coefficient in the near infrared that increases signal as a function of increasing amounts of membrane insertion. In an orthotopic murine breast cancer model, pHLIP-targeted optoacoustic imaging allowed us to differentiate between healthy and breast cancer tissues with high signal/noise ratios. In vivo, the sonophore QC1-pHLIP could detect malignancies at higher contrast than its fluorescent analog ICG-pHLIP, which was developed for fluorescence-guided surgical applications. PHLIP-type optoacoustic imaging agents in clinical settings are attractive due to their ability to target breast cancer and a wide variety of other malignant growths for diagnostic purposes. Intuitively, these agents could also be used for visualization during surgery.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Arianna Strome
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Crystal Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Travis Williams
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA
| | - Michelle Bradbury
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Imaging, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.,Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, United States.
| |
Collapse
|
14
|
Abstract
Creative engineering of fluorescent proteins has yielded a variety of tools for visualization of biochemical events in vivo. In this issue of Cell Chemical Biology, To et al. (2016) describe a fluorogenic green fluorescent protein that is activated by caspase-3 activity and enables imaging of apoptosis in developing zebrafish embryos (To et al., 2016).
Collapse
Affiliation(s)
- Matthew D Wiens
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Xiaocen Lu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
15
|
Gujrati V, Prakash J, Malekzadeh-Najafabadi J, Stiel A, Klemm U, Mettenleiter G, Aichler M, Walch A, Ntziachristos V. Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat Commun 2019; 10:1114. [PMID: 30846699 PMCID: PMC6405847 DOI: 10.1038/s41467-019-09034-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/07/2019] [Indexed: 11/08/2022] Open
Abstract
Advances in genetic engineering have enabled the use of bacterial outer membrane vesicles (OMVs) to deliver vaccines, drugs and immunotherapy agents, as a strategy to circumvent biocompatibility and large-scale production issues associated with synthetic nanomaterials. We investigate bioengineered OMVs for contrast enhancement in optoacoustic (photoacoustic) imaging. We produce OMVs encapsulating biopolymer-melanin (OMVMel) using a bacterial strain expressing a tyrosinase transgene. Our results show that upon near-infrared light irradiation, OMVMel generates strong optoacoustic signals appropriate for imaging applications. In addition, we show that OMVMel builds up intense heat from the absorbed laser energy and mediates photothermal effects both in vitro and in vivo. Using multispectral optoacoustic tomography, we noninvasively monitor the spatio-temporal, tumour-associated OMVMel distribution in vivo. This work points to the use of bioengineered vesicles as potent alternatives to synthetic particles more commonly employed for optoacoustic imaging, with the potential to enable both image enhancement and photothermal applications.
Collapse
Affiliation(s)
- Vipul Gujrati
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jaya Prakash
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jaber Malekzadeh-Najafabadi
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Andre Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Gabriele Mettenleiter
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Munich, 81675, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
| |
Collapse
|
16
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
17
|
Chee RKW, Li Y, Zhang W, Campbell RE, Zemp RJ. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 30334395 DOI: 10.1117/1.jbo.23.10.106006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Photoacoustic (PA) imaging offers great promise for deep molecular imaging of optical reporters but has difficulties in imaging multiple molecular probes simultaneously in a strong blood background. Photoswitchable chromoproteins like BphP1 have recently allowed for sensitive PA detection by reducing high-blood background signals but lack multiplexing capabilities. We propose a method known as difference-spectra demixing for multiplexing multiple photoswitchable chromoproteins and introduce a second photoswitchable chromoprotein, sGPC2. sGPC2 has a far-red and orange state with peaks at 700 and 630 nm, respectively. It is roughly one-tenth the size of BphP1 and photoswitches four times as fast (2.4% per mJ / cm2). We simultaneously image Escherichia coli expressing sGPC2 and BphP1 injected in mice in vivo. Difference-spectra demixing obtained successful multiplexed images of photoswitchable molecular probes, resulting in a 21.6-fold increase in contrast-to-noise ratio in vivo over traditional PA imaging and an 8% to 40% reduction in erroneously demixed signals in comparison with traditional spectral demixing. PA imaging and characterization were conducted using a custom-built photoswitching PA imaging system.
Collapse
Affiliation(s)
- Ryan K W Chee
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| | - Yan Li
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | - Wei Zhang
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | | | - Roger J Zemp
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| |
Collapse
|
18
|
Roberts S, Andreou C, Choi C, Donabedian P, Jayaraman M, Pratt EC, Tang J, Pérez-Medina C, Jason de la Cruz M, Mulder WJM, Grimm J, Kircher M, Reiner T. Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chem Sci 2018; 9:5646-5657. [PMID: 30061998 PMCID: PMC6049522 DOI: 10.1039/c8sc01706a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Optoacoustic imaging offers the promise of high spatial resolution and, at the same time, penetration depths well beyond the conventional optical imaging technologies, advantages that would be favorable for a variety of clinical applications. However, similar to optical fluorescence imaging, exogenous contrast agents, known as sonophores, need to be developed for molecularly targeted optoacoustic imaging. Despite numerous optoacoustic contrast agents that have been reported, there is a need for more rational design of sonophores. Here, using a library screening approach, we systematically identified and evaluated twelve commercially available near-infrared (690-900 nm) and highly absorbing dyes for multi-spectral optoacoustic tomography (MSOT). In order to achieve more accurate spectral deconvolution and precise data quantification, we sought five practical mathematical methods, namely direct classical least squares based on UV-Vis (UV/Vis-DCLS) or optoacoustic (OA-DCLS) spectra, non-negative LS (NN-LS), independent component analysis (ICA) and principal component analysis (PCA). We found that OA-DCLS is the most suitable method, allowing easy implementation and sufficient accuracy for routine analysis. Here, we demonstrate for the first time that our biocompatible nanoemulsions (NEs), in combination with near-infrared and highly absorbing dyes, enable non-invasive in vivo MSOT detection of tumors. Specifically, we found that NE-IRDye QC1 offers excellent optoacoustic performance and detection compared to related near-infrared NEs. We demonstrate that when loaded with low fluorescent or dark quencher dyes, NEs represent a flexible and new class of exogenous sonophores suitable for non-invasive pre-clinical optoacoustic imaging.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Crystal Choi
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Madhumitha Jayaraman
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Edwin C Pratt
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
| | - Jun Tang
- Cancer Research Institute (CRI) , 29 Broadway , New York , NY 10006 , USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
| | - M Jason de la Cruz
- Structural Biology Program , Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , USA
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
- Department of Medical Biochemistry , Academic Medical Center , Amsterdam , The Netherlands
| | - Jan Grimm
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
- Pharmacology Program , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Moritz Kircher
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| |
Collapse
|
19
|
Liljeruhm J, Funk SK, Tietscher S, Edlund AD, Jamal S, Wistrand-Yuen P, Dyrhage K, Gynnå A, Ivermark K, Lövgren J, Törnblom V, Virtanen A, Lundin ER, Wistrand-Yuen E, Forster AC. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. J Biol Eng 2018; 12:8. [PMID: 29760772 PMCID: PMC5946454 DOI: 10.1186/s13036-018-0100-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/23/2018] [Indexed: 01/14/2023] Open
Abstract
Background Coral reefs are colored by eukaryotic chromoproteins (CPs) that are homologous to green fluorescent protein. CPs differ from fluorescent proteins (FPs) by intensely absorbing visible light to give strong colors in ambient light. This endows CPs with certain advantages over FPs, such as instrument-free detection uncomplicated by ultra-violet light damage or background fluorescence, efficient Förster resonance energy transfer (FRET) quenching, and photoacoustic imaging. Thus, CPs have found utility as genetic markers and in teaching, and are attractive for potential cell biosensor applications in the field. Most near-term applications of CPs require expression in a different domain of life: bacteria. However, it is unclear which of the eukaryotic CP genes might be suitable and how best to assay them. Results Here, taking advantage of codon optimization programs in 12 cases, we engineered 14 CP sequences (meffRed, eforRed, asPink, spisPink, scOrange, fwYellow, amilGFP, amajLime, cjBlue, meffBlue, aeBlue, amilCP, tsPurple and gfasPurple) into a palette of Escherichia coli BioBrick plasmids. BioBricks comply with synthetic biology’s most widely used, simplified, cloning standard. Differences in color intensities, maturation times and fitness costs of expression were compared under the same conditions, and visible readout of gene expression was quantitated. A surprisingly large variation in cellular fitness costs was found, resulting in loss of color in some overnight liquid cultures of certain high-copy-plasmid-borne CPs, and cautioning the use of multiple CPs as markers in competition assays. We solved these two problems by integrating pairs of these genes into the chromosome and by engineering versions of the same CP with very different colors. Conclusion Availability of 14 engineered CP genes compared in E. coli, together with chromosomal mutants suitable for competition assays, should simplify and expand CP study and applications. There was no single plasmid-borne CP that combined all of the most desirable features of intense color, fast maturation and low fitness cost, so this study should help direct future engineering efforts. Electronic supplementary material The online version of this article (10.1186/s13036-018-0100-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefine Liljeruhm
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Saskia K Funk
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Tietscher
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anders D Edlund
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,2iGEM Uppsala, Uppsala University, Uppsala, Sweden
| | - Sabri Jamal
- 2iGEM Uppsala, Uppsala University, Uppsala, Sweden
| | | | - Karl Dyrhage
- 2iGEM Uppsala, Uppsala University, Uppsala, Sweden
| | - Arvid Gynnå
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,2iGEM Uppsala, Uppsala University, Uppsala, Sweden
| | | | - Jessica Lövgren
- 3Biology Education Centre at Uppsala University, Uppsala, Sweden
| | - Viktor Törnblom
- 3Biology Education Centre at Uppsala University, Uppsala, Sweden
| | - Anders Virtanen
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Erik R Lundin
- 2iGEM Uppsala, Uppsala University, Uppsala, Sweden.,4Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Wistrand-Yuen
- 4Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anthony C Forster
- 1Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,5Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Liu J, Cai X, Pan HC, Bandla A, Chuan CK, Wang S, Thakor N, Liao LD, Liu B. Molecular Engineering of Photoacoustic Performance by Chalcogenide Variation in Conjugated Polymer Nanoparticles for Brain Vascular Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703732. [PMID: 29411945 DOI: 10.1002/smll.201703732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Indexed: 05/13/2023]
Abstract
As conjugated polymer nanoparticles (CPNs) have attracted growing interest as photoacoustic (PA) imaging contrast agents, revelation of the relationship between the molecular structure of conjugated polymers and PA property is highly in demand. Here, three donor-acceptor-structured conjugated polymer analogs are designed, where only a single heteroatom of acceptor units changes from oxygen to sulfur to selenium, allowing for systematic investigation of the molecular structure-PA property relationship. The absorption and PA spectra of these CPNs can be facilely tuned by changing the heteroatoms of the acceptor units. Moreover, the absorption coefficient, and in turn the PA signal intensity, decreases when the heteroatom changes from oxygen to sulfur to selenium. As these CPNs exhibit weak fluorescence and similar photothermal conversion efficiency (≈70%), their PA intensities are approximately proportional to their absorption coefficients. The in vivo brain vasculature imaging in this study also demonstrates this trend. This study provides a simple but efficient strategy to manipulate the PA properties of CPNs through changing the heteroatom at key positions.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411
| | - Han-Chi Pan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County, 35053, Taiwan
| | - Aishwarya Bandla
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456
| | - Chan Kim Chuan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456
| | - Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411
| | - Nitish Thakor
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County, 35053, Taiwan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411
| |
Collapse
|
21
|
ShadowY: a dark yellow fluorescent protein for FLIM-based FRET measurement. Sci Rep 2017; 7:6791. [PMID: 28754922 PMCID: PMC5533704 DOI: 10.1038/s41598-017-07002-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurement (FLIM-FRET) is one of the powerful methods for imaging of intracellular protein activities such as protein–protein interactions and conformational changes. Here, using saturation mutagenesis, we developed a dark yellow fluorescent protein named ShadowY that can serve as an acceptor for FLIM-FRET. ShadowY is spectrally similar to the previously reported dark YFP but has a much smaller quantum yield, greater extinction coefficient, and superior folding property. When ShadowY was paired with mEGFP or a Clover mutant (CloverT153M/F223R) and applied to a single-molecule FRET sensor to monitor a light-dependent conformational change of the light-oxygen-voltage domain 2 (LOV2) in HeLa cells, we observed a large FRET signal change with low cell-to-cell variability, allowing for precise measurement of individual cell responses. In addition, an application of ShadowY to a separate-type Ras FRET sensor revealed an EGF-dependent large FRET signal increase. Thus, ShadowY in combination with mEGFP or CloverT153M/F223R is a promising FLIM-FRET acceptor.
Collapse
|
22
|
Brunker J, Yao J, Laufer J, Bohndiek SE. Photoacoustic imaging using genetically encoded reporters: a review. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:2645343. [PMID: 28717818 DOI: 10.1117/1.jbo.22.7.070901] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/12/2017] [Indexed: 05/19/2023]
Abstract
Genetically encoded contrast in photoacoustic imaging (PAI) is complementary to the intrinsic contrast provided by endogenous absorbing chromophores such as hemoglobin. The use of reporter genes expressing absorbing proteins opens the possibility of visualizing dynamic cellular and molecular processes. This is an enticing prospect but brings with it challenges and limitations associated with generating and detecting different types of reporters. The purpose of this review is to compare existing PAI reporters and signal detection strategies, thereby offering a practical guide, particularly for the nonbiologist, to choosing the most appropriate reporter for maximum sensitivity in the biological and technological system of interest.
Collapse
Affiliation(s)
- Joanna Brunker
- University of Cambridge, Cancer Research UK Cambridge Institute and Department of Physics, Cambridge, United Kingdom
| | - Junjie Yao
- Duke University, Photoacoustic Imaging Lab, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Jan Laufer
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Halle (Saale), Germany
| | - Sarah E Bohndiek
- University of Cambridge, Cancer Research UK Cambridge Institute and Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
23
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
24
|
Gujrati V, Mishra A, Ntziachristos V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem Commun (Camb) 2017; 53:4653-4672. [DOI: 10.1039/c6cc09421j] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we discuss recent progress in emerging optoacoustic probes, their mechanisms, applications and challenges for biological imaging using MSOT.
Collapse
Affiliation(s)
- Vipul Gujrati
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
- Chair for Biological Imaging
| | - Anurag Mishra
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München
- Neuherberg 85764
- Germany
- Chair for Biological Imaging
| |
Collapse
|
25
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
26
|
Liu C, Gong X, Lin R, Liu F, Chen J, Wang Z, Song L, Chu J. Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging. Am J Cancer Res 2016; 6:2414-2430. [PMID: 27877244 PMCID: PMC5118604 DOI: 10.7150/thno.15878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
Abstract
Photoacoustic (PA) imaging is a rapidly emerging biomedical imaging modality that is capable of visualizing cellular and molecular functions with high detection sensitivity and spatial resolution in deep tissue. Great efforts and progress have been made on the development of various PA imaging technologies with improved resolution and sensitivity over the past two decades. Various PA probes with high contrast have also been extensively developed, with many important biomedical applications. In comparison with chemical dyes and nanoparticles, genetically encoded probes offer easier labeling of defined cells within tissues or proteins of interest within a cell, have higher stability in vivo, and eliminate the need for delivery of exogenous substances. Genetically encoded probes have thus attracted increasing attention from researchers in engineering and biomedicine. In this review, we aim to provide an overview of the existing PA imaging technologies and genetically encoded PA probes, and describe further improvements in PA imaging techniques and the near-infrared photochromic protein BphP1, the most sensitive genetically encoded probe thus far, as well as the potential biomedical applications of BphP1-based PA imaging in vivo.
Collapse
|