1
|
Sengupta P, Dutta S, Chhikara BS. Genomes of extinct hominins and human reproductive evolution. EXCLI JOURNAL 2023; 22:392-394. [PMID: 37223081 PMCID: PMC10201015 DOI: 10.17179/excli2022-5991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| | - Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Tamil Nadu, India
| | - Bhupender S. Chhikara
- Medicinal Chemistry and Molecular Materials Lab, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Doust C, Fontanillas P, Eising E, Gordon SD, Wang Z, Alagöz G, Molz B, Pourcain BS, Francks C, Marioni RE, Zhao J, Paracchini S, Talcott JB, Monaco AP, Stein JF, Gruen JR, Olson RK, Willcutt EG, DeFries JC, Pennington BF, Smith SD, Wright MJ, Martin NG, Auton A, Bates TC, Fisher SE, Luciano M. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat Genet 2022; 54:1621-1629. [PMID: 36266505 PMCID: PMC9649434 DOI: 10.1038/s41588-022-01192-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 08/23/2022] [Indexed: 12/11/2022]
Abstract
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Collapse
Affiliation(s)
- Catherine Doust
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Scott D Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | | | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | | | - Joel B Talcott
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - John F Stein
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Jeffrey R Gruen
- Departments of Pediatrics and Genetics, Yale Medical School, New Haven, CT, USA
| | - Richard K Olson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Erik G Willcutt
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | | | - Shelley D Smith
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Timothy C Bates
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Chong SL, Tan JL, Ngeow YF. The resistomes of Mycobacteroides abscessus complex and their possible acquisition from horizontal gene transfer. BMC Genomics 2022; 23:715. [PMID: 36261788 PMCID: PMC9583574 DOI: 10.1186/s12864-022-08941-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Mycobacteroides abscessus complex (MABC), an emerging pathogen, causes human infections resistant to multiple antibiotics. In this study, the genome data of 1,581 MABC strains were downloaded from NCBI database for phylogenetic relatedness inference, resistance profile identification and the estimation of evolutionary pressure on resistance genes in silico. Results From genes associated with resistance to 28 antibiotic classes, 395 putative proteins (ARPs) were identified, based on the information in two antibiotic resistance databases (CARD and ARG-ANNOT). The ARPs most frequently identified in MABC were those associated with resistance to multiple antibiotic classes, beta-lactams and aminoglycosides. After excluding ARPs that had undergone recombination, two ARPs were predicted to be under diversifying selection and 202 under purifying selection. This wide occurrence of purifying selection suggested that the diversity of commonly shared ARPs in MABC have been reduced to achieve stability. The unequal distribution of ARPs in members of the MABC could be due to horizontal gene transfer or ARPs pseudogenization events. Most (81.5%) of the ARPs were observed in the accessory genome and 72.2% ARPs were highly homologous to proteins associated with mobile genetic elements such as plasmids, prophages and viruses. On the other hand, with TBLASTN search, only 18 of the ARPs were identified as pseudogenes. Conclusion Altogether, our results suggested an important role of horizontal gene transfer in shaping the resistome of MABC. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08941-7.
Collapse
Affiliation(s)
- Shay Lee Chong
- Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450, Melaka, Malaysia
| | - Joon Liang Tan
- Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450, Melaka, Malaysia.
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.,Center for Research On Communincable Diseases, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Harnish SM, Diedrichs VA, Bartlett CW. EARLY CONSIDERATIONS OF GENETICS IN APHASIA REHABILITATION: A NARRATIVE REVIEW. APHASIOLOGY 2022; 37:835-853. [PMID: 37346093 PMCID: PMC10281715 DOI: 10.1080/02687038.2022.2043234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/14/2022] [Indexed: 06/23/2023]
Abstract
Background Early investigations linking language and genetics were focused on the evolution of human communication in populations with developmental speech and language disorders. Recently, studies suggest that genes may also modulate recovery from post-stroke aphasia. Aims Our goal is to review current literature related to the influence of genetics on post-stroke recovery, and the implications for aphasia rehabilitation. We describe candidate genes implicated by empirical findings and address additional clinical considerations. Main Contribution We describe existing evidence and mechanisms supporting future investigations into how genetic factors may modulate aphasia recovery and propose that two candidate genes, brain derived neurotrophic factor (BDNF) and apolipoprotein E (APOE), may be important considerations for future research assessing response to aphasia treatment. Evidence suggests that BDNF is important for learning, memory, and neuroplasticity. APOE influences cognitive functioning and memory in older individuals and has also been implicated in neural repair. Moreover, recent data suggest an interaction between specific alleles of the BDNF and APOE genes in influencing episodic memory. Conclusions Genetic influences on recovery from aphasia have been largely unexplored in the literature despite evidence that genetic factors influence behaviour and recovery from brain injury. As researchers continue to explore prognostic factors that may influence response to aphasia treatment, it is time for genetic factors to be considered as a source of variability. As the field moves in the direction of personalized medicine, eventually allied health professionals may utilize genetic profiles to inform treatment decisions and education for patients and care partners.
Collapse
Affiliation(s)
- Stacy M Harnish
- Department of Speech and Hearing Science, The Ohio State University
| | | | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, College of Medicine, The Ohio State University
| |
Collapse
|
5
|
St George-Hyslop F, Kivisild T, Livesey FJ. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front Mol Neurosci 2022; 15:1017144. [PMID: 36340692 PMCID: PMC9630569 DOI: 10.3389/fnmol.2022.1017144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is associated with multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), and specific language impairment (SLI). Experimental work has shown that CNTNAP2 is important for neuronal development and synapse formation. There is also accumulating evidence for the differential use of CNTNAP2 in the human cerebral cortex compared with other primates. Here, we review the current literature on CNTNAP2, including what is known about its expression, disease associations, and molecular/cellular functions. We also review the evidence for its role in human brain evolution, such as the presence of eight human accelerated regions (HARs) within the introns of the gene. While progress has been made in understanding the function(s) of CNTNAP2, more work is needed to clarify the precise mechanisms through which CNTNAP2 acts. Such information will be crucial for developing effective treatments for CNTNAP2 patients. It may also shed light on the longstanding question of what makes us human.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
7
|
García-Pérez R, Esteller-Cucala P, Mas G, Lobón I, Di Carlo V, Riera M, Kuhlwilm M, Navarro A, Blancher A, Di Croce L, Gómez-Skarmeta JL, Juan D, Marquès-Bonet T. Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures. Nat Commun 2021; 12:3116. [PMID: 34035253 PMCID: PMC8149829 DOI: 10.1038/s41467-021-23397-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.
Collapse
Affiliation(s)
| | | | - Glòria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Lobón
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Valerio Di Carlo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Meritxell Riera
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antoine Blancher
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, Toulouse, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
López ME, Cádiz MI, Rondeau EB, Koop BF, Yáñez JM. Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome-wide information. Sci Rep 2021; 11:9685. [PMID: 33958603 PMCID: PMC8102513 DOI: 10.1038/s41598-021-86154-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Animal domestication and artificial selection give rise to gradual changes at the genomic level in populations. Subsequent footprints of selection, known as selection signatures or selective sweeps, have been traced in the genomes of many animal livestock species by exploiting variation in linkage disequilibrium patterns and/or reduction of genetic diversity. Domestication of most aquatic species is recent in comparison with land animals, and salmonids are one of the most important fish species in aquaculture. Coho salmon (Oncorhynchus kisutch), cultivated primarily in Chile, has been subjected to breeding programs to improve growth, disease resistance traits, and flesh color. This study aimed to identify selection signatures that may be involved in adaptation to culture conditions and traits of productive interest. To do so, individuals of two domestic populations cultured in Chile were genotyped with 200 thousand SNPs, and analyses were conducted using iHS, XP-EHH and CLR. Several signatures of selection on different chromosomal regions were detected across both populations. Some of the identified regions under selection contained genes such anapc2, alad, chp2 and myn, which have been previously associated with body weight in Atlantic salmon, or sec24d and robo1, which have been associated with resistance to Piscirickettsia salmonis in coho salmon. Findings in our study can contribute to an integrated genome-wide map of selection signatures, to help identify the genetic mechanisms of phenotypic diversity in coho salmon.
Collapse
Affiliation(s)
- M E López
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - M I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - E B Rondeau
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - B F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - J M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
9
|
Kozlenkov A, Vermunt MW, Apontes P, Li J, Hao K, Sherwood CC, Hof PR, Ely JJ, Wegner M, Mukamel EA, Creyghton MP, Koonin EV, Dracheva S. Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proc Natl Acad Sci U S A 2020; 117:28422-28432. [PMID: 33109720 PMCID: PMC7668098 DOI: 10.1073/pnas.2011884117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marit W Vermunt
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Pasha Apontes
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
| | - Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, Alamogordo, NM 88330
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Menno P Creyghton
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands;
- Department of Developmental Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Stella Dracheva
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468;
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
10
|
Nishiyama KV, Satta Y, Gojobori J. Do Genes Associated with Dyslexia of Chinese Characters Evolve Neutrally? Genes (Basel) 2020; 11:genes11060658. [PMID: 32560373 PMCID: PMC7349701 DOI: 10.3390/genes11060658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022] Open
Abstract
Dyslexia, or reading disability, is found to have a genetic basis, and several related genes have been reported. We investigated whether natural selection has acted on single nucleotide polymorphisms (SNPs) that were reported to be associated with risk/non-risk for the reading disability of Chinese characters. We applied recently developed 2D SFS-based statistics to SNP data of East Asian populations to examine whether there is any sign of selective sweep. While neutrality was not rejected for most SNPs, significant signs of selection were detected for two linkage disequilibrium (LD) regions containing the reported SNPs of GNPTAB and DCDC2. Furthermore, we searched for a selection target site among the SNPs in these LD regions, because a causal site is not necessarily a reported SNP but could instead be a tightly linked site. In both LD regions, we found candidate target sites, which may have an effect on expression regulation and have been selected, although which genes these SNPs affect remains unknown. Because most people were not engaged in reading until recently, it is unlikely that there has been selective pressure on reading ability itself. Consistent with this, our results suggest a possibility of genetic hitchhiking, whereby alleles of the reported SNPs may have increased in frequency together with the selected target, which could have functions for other genes and traits apart from reading ability.
Collapse
|
11
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
12
|
Abstract
Developmental language disorders (DLD) are prevalent and persistent among school-age children but are often underrecognized. This chapter discusses the ways in which the various components of communication are impacted by these disorders and outlines the differences in expression seen in different languages. Research on biological and psychologic roots of the syndrome is also reviewed. As yet, no single definitive cause has been identified; the disorders are likely to result from a constellation of genetic, biological, and cognitive weaknesses that are influenced by environmental experiences. Basic methods of assessment and differential diagnosis are presented and the principles guiding the development of intervention programs are discussed.
Collapse
Affiliation(s)
- Rhea Paul
- Department of Communication Disorders, College of Health Professions, Sacred Heart University, Fairfield, CT, United States.
| |
Collapse
|
13
|
Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J 2019. [PMID: 31044585 PMCID: PMC6509633 DOI: 10.3325/cmj.2019.60.141] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Perhaps due to different roles they have had in social groups during evolution, men and women differ in their verbal abilities. These differences are also (if not even more) present in children, both in the course of typical and pathological development. Beside the fact that girls have a well-documented advantage in early language development, almost all developmental disorders primarily affecting communication, speech, and language skills are more frequent in boys. The sex-related difference in the prevalence of these disorders is especially pronounced in autism spectrum disorder (1 girl for each 4-5 boys is affected). The aim of this review is to present the sex differences in typical communication and language development and in the prevalence of communication-related neurodevelopmental disorders. Also, a special focus is put on data from the field of neuroscience that might provide insight into the neurobiological mechanisms that can add to the understanding of this phenomenon. We argue that the functional organization of the female brain gives women an inherent advantage in the acquisition of communication and language system over men.
Collapse
Affiliation(s)
| | - Maja Cepanec
- Maja Cepanec, Faculty of Education and Rehabilitation Sciences, Borongajska cesta 83f, 10000 Zagreb, Croatia,
| |
Collapse
|
14
|
Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J 2019; 60:141-149. [PMID: 31044585 PMCID: PMC6509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 10/12/2023] Open
Abstract
Perhaps due to different roles they have had in social groups during evolution, men and women differ in their verbal abilities. These differences are also (if not even more) present in children, both in the course of typical and pathological development. Beside the fact that girls have a well-documented advantage in early language development, almost all developmental disorders primarily affecting communication, speech, and language skills are more frequent in boys. The sex-related difference in the prevalence of these disorders is especially pronounced in autism spectrum disorder (1 girl for each 4-5 boys is affected). The aim of this review is to present the sex differences in typical communication and language development and in the prevalence of communication-related neurodevelopmental disorders. Also, a special focus is put on data from the field of neuroscience that might provide insight into the neurobiological mechanisms that can add to the understanding of this phenomenon. We argue that the functional organization of the female brain gives women an inherent advantage in the acquisition of communication and language system over men.
Collapse
Affiliation(s)
| | - Maja Cepanec
- Maja Cepanec, Faculty of Education and Rehabilitation Sciences, Borongajska cesta 83f, 10000 Zagreb, Croatia,
| |
Collapse
|
15
|
Nair PS, Kuusi T, Ahvenainen M, Philips AK, Järvelä I. Music-performance regulates microRNAs in professional musicians. PeerJ 2019; 7:e6660. [PMID: 30956902 PMCID: PMC6442922 DOI: 10.7717/peerj.6660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Musical training and performance require precise integration of multisensory and motor centres of the human brain and can be regarded as an epigenetic modifier of brain functions. Numerous studies have identified structural and functional differences between the brains of musicians and non-musicians and superior cognitive functions in musicians. Recently, music-listening and performance has also been shown to affect the regulation of several genes, many of which were identified in songbird singing. MicroRNAs affect gene regulation and studying their expression may give new insights into the epigenetic effect of music. Here, we studied the effect of 2 hours of classical music-performance on the peripheral blood microRNA expressions in professional musicians with respect to a control activity without music for the same duration. As detecting transcriptomic changes in the functional human brain remains a challenge for geneticists, we used peripheral blood to study music-performance induced microRNA changes and interpreted the results in terms of potential effects on brain function, based on the current knowledge about the microRNA function in blood and brain. We identified significant (FDR <0.05) up-regulation of five microRNAs; hsa-miR-3909, hsa-miR-30d-5p, hsa-miR-92a-3p, hsa-miR-222-3p and hsa-miR-30a-5p; and down-regulation of two microRNAs; hsa-miR-6803-3p and hsa-miR-1249-3p. hsa-miR-222-3p and hsa-miR-92a-3p putatively target FOXP2, which was found down-regulated by microRNA regulation in songbird singing. miR-30d and miR-222 corroborate microRNA response observed in zebra finch song-listening/learning. miR-222 is induced by ERK cascade, which is important for memory formation, motor neuron functions and neuronal plasticity. miR-222 is also activated by FOSL1, an immediate early gene from the FOS family of transcriptional regulators which are activated by auditory-motor stimuli. miR-222 and miR-92 promote neurite outgrowth by negatively regulating the neuronal growth inhibitor, PTEN, and by activating CREB expression and phosphorylation. The up-regulation of microRNAs previously found to be regulators of auditory and nervous system functions (miR-30d, miR-92a and miR-222) is indicative of the sensory perception processes associated with music-performance. Akt signalling pathway which has roles in cell survival, cell differentiation, activation of CREB signalling and dopamine transmission was one of the functions regulated by the up-regulated microRNAs; in accordance with functions identified from songbird learning. The up-regulated microRNAs were also found to be regulators of apoptosis, suggesting repression of apoptotic mechanisms in connection with music-performance. Furthermore, comparative analyses of the target genes of differentially expressed microRNAs with that of the song-responsive microRNAs in songbirds suggest convergent regulatory mechanisms underlying auditory perception.
Collapse
Affiliation(s)
| | - Tuire Kuusi
- DocMus Doctoral School, Sibelius Academy, University of the Arts, Helsinki, Finland
| | - Minna Ahvenainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Anju K Philips
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
17
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
18
|
Wermke K, Quast A, Hesse V. From melody to words: The role of sex hormones in early language development. Horm Behav 2018; 104:206-215. [PMID: 29573996 DOI: 10.1016/j.yhbeh.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Human infants are the most proficient of the few vocal learner species. Sharing similar principles in terms of the generation and modification of complex sounds, cross-vocal learner comparisons are a suitable strategy when it comes to better understanding the evolution and mechanisms of auditory-vocal learning in human infants. This approach will also help us to understand sex differences in relation to vocal development towards language, the underlying brain mechanisms thereof and sex-specific hormonal effects. Although we are still far from being capable of discovering the "fast effects of steroids" in human infants, we have identified that peripheral hormones (blood serum) are important regulators of vocal behaviour towards language during a transitory hormone surge ("mini-puberty") that is comparable in its extent to puberty. This new area of research in human infants provides a promising opportunity to not only better understand early language acquisition from an ontogenetic and phylogenetic perspective, but to also identify reliable clinical risk-markers in infants for the development of later language disorders.
Collapse
Affiliation(s)
- Kathleen Wermke
- Center for Prespeech Development & Developmental Disorders, Department of Orthodontics University Hospital of Würzburg, 97070 Würzburg, Germany.
| | - Anja Quast
- Center for Prespeech Development & Developmental Disorders, Department of Orthodontics University Hospital of Würzburg, 97070 Würzburg, Germany; Department of Orthodontics, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Volker Hesse
- Institute for Experimental Paediatric Endocrinology, Charité-University-Medicine Berlin, 13533 Berlin, Germany
| |
Collapse
|
19
|
Staes N, Bradley BJ, Hopkins WD, Sherwood CC. Genetic signatures of socio-communicative abilities in primates. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
|
21
|
|
22
|
Abstract
In this article, we attempt to integrate recent advances in our understanding of the relations between culture and genes into an emerging field—cultural genomics—and discuss its promises and theoretical and methodological challenges. We first provide a brief review of previous conceptualizations about the relations between culture and genes and then argue that recent advances in molecular evolution research has allowed us to reframe the discussion away from parallel genetic and cultural evolution to focus on the interactions between the two. After outlining the key issues involved in cultural genomics (unit of analysis, timescale, mechanisms, and direction of influence), we provide examples of research for the different levels of interactions between culture and genes. We then discuss ideological, theoretical, and methodological challenges in cultural genomics and propose tentative solutions.
Collapse
|
23
|
Abstract
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Grosshaderner Str. 2, D-82152 Martinsried, Germany.
| |
Collapse
|
24
|
Abstract
The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.
Collapse
|
25
|
Lei H, Yan Z, Sun X, Zhang Y, Wang J, Ma C, Xu Q, Wang R, Jarvis ED, Sun Z. Axon guidance pathways served as common targets for human speech/language evolution and related disorders. BRAIN AND LANGUAGE 2017; 174:1-8. [PMID: 28692932 DOI: 10.1016/j.bandl.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders.
Collapse
Affiliation(s)
- Huimeng Lei
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| | - Zhangming Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohong Sun
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Yue Zhang
- Department of Children Healthcare, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianhong Wang
- Department of Children Healthcare, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Caihong Ma
- Reproductive Medicine Center of Peking University Third Hospital, Beijing, 100191, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Hengkuan Telegenomics Co., Ltd., 36/F, 5 Meiyuan Rd., Tianjin 300384, China
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA
| | - Zhirong Sun
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
27
|
Mozzi A, Guerini FR, Forni D, Costa AS, Nemni R, Baglio F, Cabinio M, Riva S, Pontremoli C, Clerici M, Sironi M, Cagliani R. REST, a master regulator of neurogenesis, evolved under strong positive selection in humans and in non human primates. Sci Rep 2017; 7:9530. [PMID: 28842657 PMCID: PMC5573535 DOI: 10.1038/s41598-017-10245-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/07/2017] [Indexed: 12/03/2022] Open
Abstract
The transcriptional repressor REST regulates many neuronal genes by binding RE1 motifs. About one third of human RE1s are recently evolved and specific to primates. As changes in the activity of a transcription factor reverberate on its downstream targets, we assessed whether REST displays fast evolutionary rates in primates. We show that REST was targeted by very strong positive selection during primate evolution. Positive selection was also evident in the human lineage, with six selected sites located in a region that surrounds a VNTR in exon 4. Analysis of expression data indicated that REST brain expression peaks during aging in humans but not in other primates. Because a REST coding variant (rs3796529) was previously associated with protection from hippocampal atrophy in elderly subjects with mild cognitive impairment (MCI), we analyzed a cohort of Alzheimer disease (AD) continuum patients. Genotyping of two coding variants (rs3796529 and rs2227902) located in the region surrounding the VNTR indicated a role for rs2227902 in modulation of hippocampal volume loss, indirectly confirming a role for REST in neuroprotection. Experimental studies will be instrumental to determine the functional effect of positively selected sites in REST and the role of REST variants in neuropreservation/neurodegeneration.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | | | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | | | | | | | - Monia Cabinio
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy.,Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.
| |
Collapse
|
28
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
29
|
Mendoza E, Scharff C. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Front Mol Neurosci 2017; 10:112. [PMID: 28507505 PMCID: PMC5410569 DOI: 10.3389/fnmol.2017.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP21 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität BerlinBerlin, Germany
| | - Constance Scharff
- Institut für Verhaltensbiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
30
|
Shriberg LD, Strand EA, Fourakis M, Jakielski KJ, Hall SD, Karlsson HB, Mabie HL, McSweeny JL, Tilkens CM, Wilson DL. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay: III. Theoretical Coherence of the Pause Marker with Speech Processing Deficits in Childhood Apraxia of Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:S1135-S1152. [PMID: 28384751 PMCID: PMC5548088 DOI: 10.1044/2016_jslhr-s-15-0298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 04/12/2016] [Accepted: 08/21/2016] [Indexed: 05/04/2023]
Abstract
Purpose Previous articles in this supplement described rationale for and development of the pause marker (PM), a diagnostic marker of childhood apraxia of speech (CAS), and studies supporting its validity and reliability. The present article assesses the theoretical coherence of the PM with speech processing deficits in CAS. Method PM and other scores were obtained for 264 participants in 6 groups: CAS in idiopathic, neurogenetic, and complex neurodevelopmental disorders; adult-onset apraxia of speech (AAS) consequent to stroke and primary progressive apraxia of speech; and idiopathic speech delay. Results Participants with CAS and AAS had significantly lower scores than typically speaking reference participants and speech delay controls on measures posited to assess representational and transcoding processes. Representational deficits differed between CAS and AAS groups, with support for both underspecified linguistic representations and memory/access deficits in CAS, but for only the latter in AAS. CAS-AAS similarities in the age-sex standardized percentages of occurrence of the most frequent type of inappropriate pauses (abrupt) and significant differences in the standardized occurrence of appropriate pauses were consistent with speech processing findings. Conclusions Results support the hypotheses of core representational and transcoding speech processing deficits in CAS and theoretical coherence of the PM's pause-speech elements with these deficits.
Collapse
Affiliation(s)
| | | | | | - Kathy J. Jakielski
- Department of Communication Sciences and Disorders, Augustana College, Rock Island, IL
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Araki T, Hirata M, Yanagisawa T, Sugata H, Onishi M, Watanabe Y, Ogata S, Honda C, Hayakawa K, Yorifuji S. Language-related cerebral oscillatory changes are influenced equally by genetic and environmental factors. Neuroimage 2016; 142:241-247. [PMID: 27241483 DOI: 10.1016/j.neuroimage.2016.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Twin studies have suggested that there are genetic influences on inter-individual variation in terms of verbal abilities, and candidate genes have been identified by genome-wide association studies. However, the brain activities under genetic influence during linguistic processing remain unclear. In this study, we investigated neuromagnetic activities during a language task in a group of 28 monozygotic (MZ) and 12 dizygotic (DZ) adult twin pairs. We examined the spatio-temporal distribution of the event-related desynchronizations (ERDs) in the low gamma band (25-50Hz) using beamformer analyses and time-frequency analyses. Heritability was evaluated by comparing the respective MZ and DZ correlations. The genetic and environmental contributions were then estimated by structural equation modeling (SEM). We found that the peaks of the low gamma ERDs were localized to the left frontal area. The power of low gamma ERDs in this area exhibited higher similarity between MZ twins than that between DZ twins. SEM estimated the genetic contribution as approximately 50%. In addition, these powers were negatively correlated with the behavioral verbal scores. These results improve our understanding of how genetic and environmental factors influence cerebral activities during linguistic processes.
Collapse
Affiliation(s)
- Toshihiko Araki
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Medical Technology, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Masayuki Hirata
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takufumi Yanagisawa
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisato Sugata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Faculty of Welfare and Health Science, Oita University, Dannoharu, Oita, Japan
| | - Mai Onishi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soshiro Ogata
- Department of Health Promotion Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Chika Honda
- Center for Twin Research, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | - Kazuo Hayakawa
- Mie Prefectural College of Nursing, Tsu, Mie 514-0116, Japan
| | - Shiro Yorifuji
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|