1
|
Ghasemzadeh Hasankolaei M, Evans NP, Elcombe CS, Lea RG, Sinclair KD, Padmanabhan V, Bellingham M. In-utero exposure to real-life environmental chemicals disrupts gene expression within the hypothalamo-pituitary-gonadal axis of prepubertal and adult rams. ENVIRONMENTAL RESEARCH 2025; 264:120303. [PMID: 39510237 DOI: 10.1016/j.envres.2024.120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Environmental chemicals (ECs) have been associated with a broad range of disorders and diseases. Daily exposure to various ECs in the environment, or real-life exposure, has raised significant public health concerns. Utilizing the biosolids-treated pasture (BTP) sheep model, this study demonstrates that in-utero exposure to a real-life EC mixture disrupts hypothalamo-pituitary-gonadal (HPG) axis gene expression and reproductive traits in prepubertal (8-week-old, 8w) and adult (11-month-old) male sheep. Ewes were maintained on either BTP or pastures fertilized with inorganic fertilizer [control (C)] from approximately one month prior to insemination until around parturition. Thereafter, all animals were kept under control conditions. Effects on reproductive parameters including testosterone concentrations and the expression of key genes in the HPG axis were evaluated in eight-week-old and adult male offspring from both C and biosolids-exposed (B) groups. Results showed that, at 8w, relative to C (n = 11), B males (n = 11) had lower body weight, and altered testicular expression of HSD3B1, LHR and HSD17B3, BMP4, ABP, P27kip and CELF1. Principal component analysis (PCA) identified two 8w B subgroups, based on hypothalamic expression of GnRH, ESR1, and AR, and pituitary expression of KISSR. The two subgroups also exhibited different serum testosterone concentrations. The largest biosolids effects were observed in the hypothalamus of adult rams with NKB, ESR1, KISS1, AR, DLK1 and GNRH1 mRNA expression differing between B (n = 10) and C (n = 11) rams. Testicular steroidogenic enzymes CYP11A1 and HSD3B1 mRNA expression also differed between exposure groups. PCA identified two adult B subgroups, with BS1 (n = 6) displaying hypothalamic effects and BS2 (n = 4) both hypothalamic and testicular effects. The subgroups also differed in circulating testosterone concentrations. These findings demonstrate that exposure to a real-life EC mixture may predispose some males to infertility, by disrupting key functional HPG markers before puberty with consequent downstream effects on steroid hormones and spermatogenesis.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh Hasankolaei
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
2
|
Mastrorocco A, Temerario L, Vurchio V, Cotecchia S, Martino NA, Dell'Aquila ME. In Vitro Toxicity of a DEHP and Cadmium Mixture on Sheep Cumulus-Oocyte Complexes. Int J Mol Sci 2024; 26:5. [PMID: 39795862 DOI: 10.3390/ijms26010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds. COCs recovered from slaughterhouses-derived sheep ovaries were in vitro exposed to 0.5 μM DEHP, 0.1 μM Cd, or DEHP/Cd mixture at the same concentrations during 24 h of in vitro maturation (IVM). After IVM, oocyte nuclear chromatin configuration was evaluated, and bioenergetic/oxidative parameters were assessed on expanded cumulus cells (CCs) and matured oocytes (chi-square test and one-way ANOVA; p < 0.05). Under examined conditions, oocyte nuclear maturation was never impaired. However, COC bioenergetics was affected with stronger effects for the mixture than single compounds. Indeed, the percentages of matured oocytes with healthy mitochondrial distribution patterns were reduced (p < 0.001 and p < 0.05 for mixture and single compounds, respectively). Oocyte mitochondrial membrane potential, intracellular ROS levels, and mitochondria/ROS co-localization were reduced, with the same significance level, in all contaminated conditions. CCs displayed increased ROS levels only upon mixture exposure (p < 0.001). In conclusion, in vitro exposure to the DEHP/Cd mixture affected COC quality in the sheep to a greater extent than separate compounds.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Valeria Vurchio
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Susanna Cotecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
3
|
Bellingham M, Evans N. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Biosolids and male reproduction. Reproduction 2024; 168:e240119. [PMID: 38847770 PMCID: PMC11286255 DOI: 10.1530/rep-24-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Over the past 50 years, there has been a concerning decline in male reproductive health and an increase in male infertility which is now recognised as a major health concern globally. While male infertility can be linked to some genetic and lifestyle factors, these do not fully explain the rate of declining male reproductive health. Increasing evidence from human and animal studies suggests that exposure to chemicals found ubiquitously in the environment may in part play a role. Many studies on chemical exposure, however, have assessed the effects of exposure to individual environmental chemicals (ECs), usually at levels not relevant to everyday human exposure. There is a need for study models which reflect the 'real-life' nature of EC exposure. One such model is the biosolids-treated pasture (BTP) sheep model which utilises biosolids application to agricultural land to examine the effects of exposure to low-level mixtures of chemicals. Biosolids are the by-product of the treatment of wastewater from industrial and domestic sources and so their composition is reflective of the ECs to which humans are exposed. Over the last 20 years, the BTP sheep model has published multiple effects on offspring physiology including consistent effects on the male reproductive system in fetal, neonatal, juvenile, and adult offspring. This review focuses on the evidence from these studies which strongly suggests that low-level EC exposure during gestation can alter several components of the male reproductive system and highlights the BTP model as a more relevant model to study real-life EC exposure effects.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
El Fouikar S, Van Acker N, Héliès V, Frenois FX, Giton F, Gayrard V, Dauwe Y, Mselli-Lakhal L, Rousseau-Ralliard D, Fournier N, Léandri R, Gatimel N. Folliculogenesis and steroidogenesis alterations after chronic exposure to a human-relevant mixture of environmental toxicants spare the ovarian reserve in the rabbit model. J Ovarian Res 2024; 17:134. [PMID: 38943138 PMCID: PMC11214233 DOI: 10.1186/s13048-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Virginie Héliès
- GenPhySE (Génétique Physiologie et Système d'Elevage), INRAE, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Frank Giton
- Pôle Biologie-Pathologie Henri Mondor, AP-HP, Inserm IMRB U955, Créteil, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Dauwe
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laila Mselli-Lakhal
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, Jouy-en-Josas, 78350, BREED, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Natalie Fournier
- Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur l'efflux du cholestérol, Lip(Sys) Université Paris Saclay, UFR de Pharmacie, Orsay, EA, 7357, 91400, France
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Nicolas Gatimel
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité et Environnement) UMR1203 Inserm, Universités Toulouse et Montpellier, CHU Toulouse, Toulouse, France
| |
Collapse
|
5
|
Chavatte-Palmer P, Couturier-Tarrade A, Rousseau-Ralliard D. Intra-uterine programming of future fertility. Reprod Domest Anim 2024; 59:e14475. [PMID: 37942852 DOI: 10.1111/rda.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
The developmental origins of health and disease (DOHaD) shows that a relationship exists between parental environment at large, foeto-placental development and the risk for the offspring to develop non-transmittable disease(s) in adulthood. This concept has been validated in both humans and livestock. In mammals, after fertilization and time spent free in the maternal reproductive tract, the embryo develops a placenta that, in close relationship with maternal endometrium, is the organ responsible for exchanges between dam and foetus. Any modification of the maternal environment can lead to adaptive mechanisms affecting placental morphology, blood flow, foetal-maternal exchanges (transporters) and/or endocrine function, ultimately modifying placental efficiency. Among deleterious environments, undernutrition, protein restriction, overnutrition, micronutrient deficiencies and food contaminants can be outlined. When placental adaptive capacities become insufficient, foetal growth and organ formation is no longer optimal, including foetal gonadal formation and maturation, which can affect subsequent offspring fertility. Since epigenetic mechanisms have been shown to be key to foetal programming, epigenetic modifications of the gametes may also occur, leading to inter-generational effects. After briefly describing normal gonadal development in domestic species and inter-species differences, this review highlights the current knowledge on intra-uterine programming of offspring fertility with a focus on domestic animals and underlines the importance to assess transgenerational effects on offspring fertility at a time when new breeding systems are developed to face the current climate changes.
Collapse
Affiliation(s)
- Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
6
|
Akbarinejad V, Cushman RA. Developmental programming of reproduction in the female animal. Anim Reprod Sci 2024; 263:107456. [PMID: 38503204 DOI: 10.1016/j.anireprosci.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Successful reproduction is a cornerstone in food animal industry in order to sustain food production for human. Therefore, various methods focusing on genetics and postnatal environment have been identified and applied to improve fertility in livestock. Yet there is evidence indicating that environmental factors during prenatal and/or neonatal life can also impact the function of reproductive system and fertility in the animals during adulthood, which is called the developmental programming of reproduction. The current review summarizes data associated with the developmental origins of reproduction in the female animals. In this regard, this review focuses on the effect of plane of nutrition, maternal body condition, hypoxia, litter size, maternal age, parity, level of milk production and milk components, lactocrine signaling, stress, thermal stress, exposure to androgens, endocrine disrupting chemicals, mycotoxins and pollutants, affliction with infection and inflammation, and maternal gut microbiota during prenatal and neonatal periods on the neuroendocrine system, puberty, health of reproductive organs and fertility in the female offspring. It is noteworthy that these prenatal and neonatal factors do not always exert their effects on the reproductive performance of the female by compromising the development of organs directly related to reproductive function such as hypothalamus, pituitary, ovary, oviduct and uterus. Since they can impair the development of non-reproductive organs and systems modulating reproductive function as well (e.g., metabolic system and level of milk yield in dairy animals). Furthermore, when these factors affect the epigenetics of the offspring, their adverse effects will not be limited to one generation and can transfer transgenerationally. Hence, pinpointing the factors influencing developmental programming of reproduction and considering them in management of livestock operations could be a potential strategy to help improve fertility in food animals.
Collapse
Affiliation(s)
- Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Robert A Cushman
- USDA, Agricultural Research Service, US. Meat Animal Research Center, Clay Center, NE 68933-0166, United States
| |
Collapse
|
7
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Stefansdottir A, Marečková M, Matkovic M, Allen CM, Spears N. In vitro exposure to benzo[a]pyrene damages the developing mouse ovary. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0071. [PMID: 39225137 PMCID: PMC10160542 DOI: 10.1530/raf-22-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 09/04/2024] Open
Abstract
Females are born with a finite number of oocytes, collectively termed the ovarian reserve, established within the developing fetal ovary. Consequently, maternal exposure to reproductive toxicants can have harmful effects on the future fertility of her unborn female fetus. The chemical benzo[a]pyrene (B[a]P) is a prominent component of cigarette smoke. Despite it being a known ovotoxicant, around 8% of women in Europe smoke during pregnancy. The purpose of this research was to examine the effect of B[a]P on the developing ovary, using the mouse as a model and with experiments carried out in vitro. B[a]P-exposure to the fetal ovary prior to follicle formation reduced the number of germ cells and subsequently, the number of healthy primordial follicles, by up to 76%; however, while proliferation of germ cells was not affected, the germ cells contained higher levels of DNA double-strand breaks. Exposure to B[a]P also affected the proportion of oocytes progressing through prophase I of meiosis. B[a]P exposure to neonatal mouse ovaries, after follicle formation, resulted in an 85% reduction in the number of healthy follicles, with a corresponding increase in apoptotic cell death and reduction in somatic cell proliferation. Although there was a trend towards a higher level of oxidative stress in B[a]P-exposed ovaries, this was not statistically significant; likewise, the antioxidant melatonin failed to protect against the B[a]P-induced ovarian damage. Together, the results here demonstrate that B[a]P-exposure damages the developing ovary, both before and shortly after follicle formation, an effect that could lead to a subsequent decrease in fertility.
Collapse
Affiliation(s)
| | | | | | | | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Cai S, Quan S, Yang G, Zeng X, Wang X, Ye C, Li H, Wang G, Zeng X, Qiao S. DDIT3 regulates key enzymes in the methionine cycle and flux during embryonic development. J Nutr Biochem 2023; 111:109176. [PMID: 36220527 DOI: 10.1016/j.jnutbio.2022.109176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
One-carbon metabolism is a key metabolic network that integrates nutritional signals with embryonic development. However, the response of one-carbon metabolism to methionine status and the regulatory mechanisms are poorly understood. Herein, we found that methionine supplementation during pregnancy significantly increased fetal number and average fetal weight. In addition, methionine modulated one-carbon metabolism primarily through 2 metabolic enzymes, cystathionine β-synthase (CBS) and methionine adenosyltransferase 2A (MAT2A), which were significantly increased in fetal liver tissues and porcine trophoblast (pTr) cells in response to proper methionine supplementation. CBS and MAT2A overexpression enhanced the DNA synthesis in pTr cells. More importantly, we identified a transcription factor, DNA damage-inducible transcript 3 (DDIT3), that was the primary regulator of CBS and MAT2A, which bound directly to promoters and negatively regulated the expression of CBS and MAT2A. Taken together, our findings identified that DDIT3 targeting CBS and MAT2A was a novel regulatory pathway that mediated cellular one-carbon metabolism in response to methionine signal and provided promising targets to improve pregnancy health.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Huan Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China.
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China; Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Frost ER, Ford EA, Peters AE, Lovell-Badge R, Taylor G, McLaughlin EA, Sutherland JM. A New Understanding, Guided by Single-Cell Sequencing, of the Establishment and Maintenance of the Ovarian Reserve in Mammals. Sex Dev 2022; 17:145-155. [PMID: 36122567 DOI: 10.1159/000526426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. SUMMARY This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. KEY MESSAGES The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Güneş Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
11
|
Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, Lea R, Padmanabhan V, Evans NP, Bellingham M. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103913. [PMID: 35738462 PMCID: PMC9554787 DOI: 10.1016/j.etap.2022.103913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Current declines in male reproductive health may, in part, be driven by anthropogenic environmental chemical (EC) exposure. Using a biosolids treated pasture (BTP) sheep model, this study examined the effects of gestational exposure to a translationally relevant EC mixture. Testes of 8-week-old ram lambs from mothers exposed to BTP during pregnancy contained fewer germ cells and had a greater proportion of Sertoli-cell-only seminiferous tubules. This concurs with previous published data from fetuses and neonatal lambs from mothers exposed to BTP. Comparison between the testicular transcriptome of biosolids lambs and human testicular dysgenesis syndrome (TDS) patients indicated common changes in genes involved in apoptotic and mTOR signalling. Gene expression data and immunohistochemistry indicated increased HIF1α activation and nuclear localisation in Leydig cells of BTP exposed animals. As HIF1α is reported to disrupt testosterone synthesis, these results provide a potential mechanism for the pathogenesis of this testicular phenotype, and TDS in humans.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Matthew R Elcombe
- MicroMatrices Associates Ltd, Dundee Technopole, James Lindsay Place, Dundee, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
12
|
Loup B, Poumerol E, Jouneau L, Fowler PA, Cotinot C, Mandon-Pépin B. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly. Reprod Toxicol 2022; 111:166-177. [PMID: 35667523 DOI: 10.1016/j.reprotox.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
The negative in utero effects of bisphenol A (BPA) on female reproduction are of concern since the ovarian reserve of primordial follicles is constituted during the fetal period. This time-window is difficult to access, particularly in humans. Animal models and explant culture systems are, therefore, vital tools for investigating EDC impacts on primordial germ cells (PGCs). Here, we investigated the effects of BPA on prophase I meiosis in the fetal sheep ovary. We established an in vitro model of early gametogenesis through retinoic acid (RA)-induced differentiation of sheep PGCs that progressed through meiosis. Using this system, we demonstrated that BPA (3×10-7 M & 3×10-5M) exposure for 20 days disrupted meiotic initiation and completion in sheep oogonia and induced transcriptomic modifications of exposed explants. After exposure to the lowest concentrations of BPA (3×10-7M), only 2 probes were significantly up-regulated corresponding to NR2F1 and TMEM167A transcripts. In contrast, after exposure to 3×10-5M BPA, 446 probes were deregulated, 225 were down- and 221 were up-regulated following microarray analysis. Gene Ontology (GO) annotations of differentially expressed genes revealed that pathways mainly affected were involved in cell-cycle phase transition, meiosis and spindle assembly. Differences in key gene expression within each pathway were validated by qRT-PCR. This study provides a novel model for direct examination of the molecular pathways of environmental toxicants on early female gametogenesis and novel insights into the mechanisms by which BPA affects meiosis I. BPA exposure could thereby disrupt ovarian reserve formation by inhibiting meiotic progression of oocytes I and consequently by increasing atresia of primordial follicles containing defective oocytes.
Collapse
Affiliation(s)
- Benoit Loup
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Elodie Poumerol
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Corinne Cotinot
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
13
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
14
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
15
|
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci 2021; 22:ijms22041838. [PMID: 33673278 PMCID: PMC7918761 DOI: 10.3390/ijms22041838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Collapse
|
16
|
Mourikes VE, Flaws JA. Effects of Chemical Mixtures on the Ovary. Reproduction 2021; 162:F91-F100. [PMID: 33528380 DOI: 10.1530/rep-20-0587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
The ovaries play a critical role in female reproductive health because they are the site of oocyte maturation and sex steroid hormone production. The unique cellular processes that take place within the ovary make it a susceptible target for chemical mixtures. Herein, we review the available data regarding the effects of chemical mixtures on the ovary, focusing on development, folliculogenesis, and steroidogenesis. The chemical mixtures discussed include those to which women are exposed to environmentally, occupationally, and medically. Following a brief introduction to chemical mixture components, we describe the effects of chemical mixtures on ovarian development, folliculogenesis, and steroidogenesis. Further, we discuss the effects of chemical mixtures on corpora lutea and transgenerational outcomes. Identifying the effects of chemical mixtures on the ovaries is paramount to preventing and treating mixture-inducing toxicity of the ovary that has long-term consequences such as infertility and ovarian disease.
Collapse
Affiliation(s)
- Vasiliki E Mourikes
- V Mourikes, Comparative Biosciences, University of Illinois, Urbana, United States
| | - Jodi A Flaws
- J Flaws, Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
17
|
The Influence of Environmental Factors on Ovarian Function, Follicular Genesis, and Oocyte Quality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:41-62. [PMID: 33523429 DOI: 10.1007/978-981-33-4187-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) exist ubiquitously in the environment. Epidemiological data suggest that the increasing prevalence of infertility may be related to the numerous chemicals. Exposure to EDCs may have significant adverse impacts on the reproductive system including fertility, ovarian reserve, and sex steroid hormone levels. This chapter covers the common exposure ways, the origins of EDCs, and their effects on ovarian function, follicular genesis, and oocyte quality. Furthermore, we will review the origin and the physiology of ovarian development, as well as explore the mechanisms in which EDCs act on the ovary from human and animal data. And then, we will focus on the bisphenol A (BPA), which has been shown to reduce fertility and ovarian reserve, as well as disrupt steroidogenesis in animal and human models. Finally, we will discuss the future direction of prevention and solution methods.
Collapse
|
18
|
Hale MD, Parrott BB. Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117003. [PMID: 33186072 PMCID: PMC7665278 DOI: 10.1289/ehp6627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol (E2) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and E2-treated animals, and between FSH-treated and nontreated animals. RESULTS We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with E2 overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION Recapitulation of ovarian abnormalities by precocious E2 revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627.
Collapse
Affiliation(s)
- Matthew D. Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
20
|
Zbucka-Krętowska M, Łazarek U, Miltyk W, Sidorkiewicz I, Pierzyński P, Milewski R, Wołczyński S, Czerniecki J. Simultaneous analysis of bisphenol A fractions in maternal and fetal compartments in early second trimester of pregnancy. J Perinat Med 2019; 47:765-770. [PMID: 31348763 DOI: 10.1515/jpm-2019-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/07/2019] [Indexed: 02/05/2023]
Abstract
Background Bisphenol A (BPA) is an estrogenic, endocrine-disrupting compound widely used in the industry. It is also a ubiquitous environmental pollutant. Its presence was confirmed in human fetuses, which results from maternal exposure during pregnancy. The mechanisms behind maternal-fetal transfer, and relationships between pregnant women and fetal exposures remain unclear. The aim of this study was to assess the impact of maternal exposure to BPA on the exposure of the fetus. Methods Maternal plasma and amniotic fluid samples were collected from 52 pregnant women undergoing amniocentesis for prenatal diagnosis of chromosomal abnormalities. BPA was measured by gas chromatography-mass spectrometry (GC-MS). The permeability factor - a ratio of fetal-to-maternal BPA concentration - was used as a measure delineating the transplacental transfer of BPA. Results The median concentration of maternal plasma BPA was 8 times higher than the total BPA concentration in the amniotic fluid (8.69 ng/mL, range: 4.3 ng/mL-55.3 ng/mL vs. median 1.03 ng/mL, range: 0.3 ng/mL-10.1 ng/mL). There was no direct relationship between the levels of BPA in maternal plasma and amniotic fluid levels. The permeability factor, in turn, negatively correlated with fetal development (birth weight) (R = -0.54, P < 0.001). Conclusion Our results suggest that the risk of fetal BPA exposure depends on placental BPA permeability rather than the levels of maternal BPA plasma concentration and support general recommendations to become aware and avoid BPA-containing products.
Collapse
Affiliation(s)
- Monika Zbucka-Krętowska
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Urszula Łazarek
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D, 15-522 Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D, 15-522 Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Piotr Pierzyński
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynaecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Jan Czerniecki
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
21
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pepin B, Evans NP, Sharpe RM, Cotinot C, Rees WD, O'Shaughnessy P, Fowler PA. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. ENVIRONMENT INTERNATIONAL 2019; 124:98-108. [PMID: 30641261 DOI: 10.1016/j.envint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.
Collapse
Affiliation(s)
- Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Linda Robertson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emily Eaton-Turner
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lauma Ramona
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - William D Rees
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
23
|
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu Rev Anim Biosci 2019; 7:263-287. [DOI: 10.1146/annurev-animal-020518-115206] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that include the methionine and folate cycles that are central to cellular function, providing 1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. S-adenosylmethionine is a potent aminopropyl and methyl donor within these cycles and serves as the principal substrate for methylation of DNA, associated proteins, and RNA. We propose that 1C metabolism functions as a key biochemical conduit between parental environment and epigenetic regulation of early development and that interindividual and ethnic variability in epigenetic-gene regulation arises because of genetic variants within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences. We present evidence to support these propositions, drawing upon studies undertaken in humans and animals. We conclude that future studies should assess the epigenetic effects of cumulative (multigenerational) dietary imbalances contemporaneously in both parents, as this better represents the human experience.
Collapse
Affiliation(s)
- Constance E. Clare
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Amey H. Brassington
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
24
|
Morgan HL, Watkins AJ. Transgenerational Impact of Environmental Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:71-89. [PMID: 31471795 DOI: 10.1007/978-3-030-23633-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to adapt to changing environmental conditions is critical for any species to survive. Many environmental changes occur too rapidly for an organism's genome to adapt in time. Accordingly, being able to modify either its own phenotype, or the phenotype of its offspring to better suit future anticipated environmental conditions could afford an organism a significant advantage. However, a range of animal models and human epidemiological data sets are now showing that environmental factors such as changes in the quality or quantity of an individual's diet, temperature, stress or exposure to pollutants can all adversely affect the quality of parental gametes, the development of the preimplantation embryo and the health and wellbeing of offspring over multiple generations. This chapter will examine transgenerational effects of both maternal and paternal environmental factors on offspring development and wellbeing in both human and animal model studies. Changes in the epigenetic status of either parental or grand-parental gametes provide one candidate mechanism through which the impacts of environmental experience can be passed from one generation to another. This chapter will therefore also focus on the impact of parental and grand-parental diet on epigenetic transgenerational inheritance and offspring phenotype.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
25
|
Buser MC, Abadin HG, Irwin JL, Pohl HR. Windows of sensitivity to toxic chemicals in the development of reproductive effects: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:553-578. [PMID: 30022686 PMCID: PMC6261274 DOI: 10.1080/09603123.2018.1496235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Development of the fetus is a complex process influenced by many factors including genetics, maternal health, and environmental exposures to toxic chemicals. Adverse developmental effects on the reproductive system have the potential to harm generations beyond those directly exposed. Here, we review the available literature in Agency for Toxic Substances and Disease Registry toxicological profiles related to reproductive-developmental effects in animals following in utero exposure to chemicals. We attempt to identify windows of sensitivity. In the discussion, we correlate the findings with human development. The endpoints noted are fertility, estrus, anogenital distance, sex ratio, spermatogenesis, and mammary gland development. We identified some windows of sensitivity; however, the results were hampered by chronic-exposure studies designed to detect effects occurring throughout developmental, including multi-generational studies. This paper demonstrates the need for more acute studies in animals aimed at understanding time periods of development that are more susceptible to chemically induced adverse effects.
Collapse
Affiliation(s)
- Melanie C Buser
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Henry G Abadin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - John L Irwin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Hana R Pohl
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| |
Collapse
|
26
|
Samardzija Nenadov D, Pogrmic-Majkic K, Fa S, Stanic B, Tubic A, Andric N. Environmental mixture with estrogenic activity increases Hsd3b1 expression through estrogen receptors in immature rat granulosa cells. J Appl Toxicol 2018; 38:879-887. [DOI: 10.1002/jat.3596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Svetlana Fa
- Department of Biology and Ecology; Faculty of Sciences, University of Novi Sad; Serbia
| | - Bojana Stanic
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences; University of Novi Sad; Serbia
| | - Aleksandra Tubic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences; University of Novi Sad; Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology; Faculty of Sciences, University of Novi Sad; Serbia
| |
Collapse
|
27
|
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13:400-414. [PMID: 28450750 DOI: 10.1038/nrendo.2017.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Sharma B, Sarkar A, Singh P, Singh RP. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 64:117-132. [PMID: 28336334 DOI: 10.1016/j.wasman.2017.03.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management.
Collapse
Affiliation(s)
- Bhavisha Sharma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| | - Pooja Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India; Department of Civil Engineering, University of Nebraska Lincoln, Lincoln, USA.
| |
Collapse
|
29
|
Abstract
This study tested whether feeding Rasa Aragonesa ewes certified organic feed, from 15 days before mating until lamb weaning, improved oocyte quality and in vitro maturation (IVM) and fertilization (IVF) performances of the offspring. In a second experiment, ovaries from ewe lambs that were bred on an organic farm and were of the same breed were compared with those from conventionally bred animals. The number (± standard error of the mean) of healthy oocytes per ewe lamb did not differ significantly between organic (12.2 ± 3.3) and conventionally (13.6 ± 4.0) fed ewes. Ovaries from ewe lambs born on an organic farm had significantly (P < 0.0001) more healthy oocytes per ewe lamb (39.6 ± 5.2) than did those born on a conventional farm (25.0 ± 4.2), and higher IVM (76.5% vs. 53.1%, P < 0.0001) and IVF (97.3 vs. 91%, P < 0.05) rates. In conclusion, this preliminary approach to the study of the effect of organic procedures on the sheep oocyte quality indicates that the total integration in the complete organic system improved the oocyte quality of ewe lambs, although organic feeding alone was insufficient to improve quality.
Collapse
|
30
|
Bellingham M, Fowler PA, MacDonald ES, Mandon‐Pepin B, Cotinot C, Rhind S, Sharpe RM, Evans NP. Timing of Maternal Exposure and Foetal Sex Determine the Effects of Low-level Chemical Mixture Exposure on the Foetal Neuroendocrine System in Sheep. J Neuroendocrinol 2016; 28:10.1111/jne.12444. [PMID: 27870155 PMCID: PMC5621486 DOI: 10.1111/jne.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
We have shown that continuous maternal exposure to the complex mixture of environmental chemicals (ECs) found in human biosolids (sewage sludge), disrupts mRNA expression of genes crucial for development and long-term regulation of hypothalamic-pituitary gonadal (HPG) function in sheep. The present study investigated whether exposure to ECs only during preconceptional period or only during pregnancy perturbed key regulatory genes within the hypothalamus and pituitary gland and whether these effects were different from chronic (life-long) exposure to biosolid ECs. The findings demonstrate that the timing and duration of maternal EC exposure influences the subsequent effects on the foetal neuroendocrine system in a sex-specific manner. Maternal exposure prior to conception, or during pregnancy only, altered the expression of key foetal neuroendocrine regulatory systems such as gonadotrophin-releasing hormone and kisspeptin to a greater extent than when maternal exposure was 'life-long'. Furthermore, hypothalamic gene expression was affected to a greater extent in males than in females and, following EC exposure, male foetuses expressed more 'female-like' mRNA levels for some key neuroendocrine genes. This is the first study to show that 'real-life' maternal exposure to low levels of a complex cocktail of chemicals prior to conception can subsequently affect the developing foetal neuroendocrine system. These findings demonstrate that the developing neuroendocrine system is sensitive to EC mixtures in a sex-dimorphic manner likely to predispose to reproductive dysfunction in later life.
Collapse
Affiliation(s)
- M. Bellingham
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - P. A. Fowler
- Division of Applied MedicineCentre for Reproductive Endocrinology and MedicineInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - E. S. MacDonald
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - C. Cotinot
- UMR BDRUniversite Paris SaclayParisFrance
| | - S. Rhind
- James Hutton InstituteAberdeenUK
| | - R. M. Sharpe
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - N. P. Evans
- Institute of BiodiversityAnimal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|